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ABSTRACT

Understanding the network structure connecting a group of entities is of in-

terest in applications such as predicting stock prices and making recommen-

dations to customers. The network structure is usually not directly observ-

able. However, due to improvements in technology and the ever-increasing

use of the Internet, large amounts of data about individual node behavior

is becoming more easily available. Thus, an interesting problem is to de-

vise algorithms to infer network structure from node behavior data. Since

network sizes are enormous in typical applications, the learning problem is

not tractable for general network topology. In this thesis, we focus on three

models with simplifying assumptions on the underlying network.

The first model represents the network as a Markov random field, where

each node in the network is viewed as a random variable and the conditional

independence relations among them is encoded by a graph. The simplifying

assumption is that the underlying graph is loosely connected: the number

of short paths between any pair of nodes is small. We point out that many

previously studied models are examples of this family. Given i.i.d. samples

from the joint distribution, we present a natural low complexity algorithm

for learning the structure of loosely connected Markov random fields. In par-

ticular, our algorithm learns the graph correctly with high probability using

n = O(log p) samples, where p is the size of the graph. If there are at most D1

short paths between non-neighbor nodes and D2 non-direct short paths be-

tween neighboring nodes, the running time of our algorithm is O(npD1+D2+2).

The second model arises from the recommender systems where users give

ratings to items. We make the assumption that both users and items form

clusters and users in the same cluster give the same binary rating to items

in the same cluster. The goal is to recover the user and item clusters by

observing only a small fraction of noisy entries. We first derive a lower

bound on the minimum number of observations needed for exact cluster
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recovery. Then, we study three algorithms with different running time and

compare the number of observations needed for successful cluster recovery.

Our analytical results show smooth time-data trade-offs: one can gradually

reduce the computational complexity when increasingly more observations

are available.

The third model considers a similar scenario as the previous one: instead

of giving binary ratings, users give pairwise comparisons to items. We as-

sume the users form clusters where users in the same cluster share the same

score vector for the items, and the pairwise comparisons obtained from each

user are generated according to the Bradley-Terry model with his/her score

vector. We propose a two-step algorithm for estimating the score vectors:

first cluster the users using projected comparison vectors and then estimate

a score vector separately for each cluster by the maximum likelihood esti-

mation for the classical Bradley-Terry model. The key observation is that,

though each user is represented by a high-dimensional comparison vector,

the corresponding expected comparison vector is determined by only a small

number of parameters and it lies close to a low-dimensional linear subspace.

When projecting the comparison vectors onto this subspace, it significantly

reduces the noise and improves the clustering performance. Moreover, we

show that the maximum likelihood estimation is robust to clustering errors.
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CHAPTER 1

INTRODUCTION

In many applications of interest, we wish to understand the network structure

connecting a group of entities. For example, in the stock market, knowing

how the stocks depend on each other allows one to better predict the trend

of the stock prices using current information. As another example, consider

recommender systems that recommend items to potential customers. Since

people with similar tastes behave similarly, recommender systems can in-

crease the chance of a user making a purchase by studying the past behavior

of users similar to himself/herself.

Network structures are usually not directly observable. In stock markets,

only the individual stock prices are observed; in gene regulatory networks,

only the individual gene expression levels are measured; in social networks,

even when friendship relationships are available as in Facebook, it is not

immediately helpful, as the networks of friendships are not always the same

as networks representing the opinions or preferences of the users.

Due to improvements in technology and the ever-increasing use of the In-

ternet, large amounts of data about individual node behavior is becoming

more easily available. The data from individual nodes are not independent,

and their correlation can provide information about the structure of the net-

work. Thus, an interesting problem is to devise algorithms to infer network

structure from node behavior data.

In typical applications, network sizes are enormous, and learning their

structures is not tractable without some reasonable assumptions on the net-

work topology. In this thesis, we consider three models with simplifying

assumptions.
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1.1 Learning Markov Random Fields

In Chapter 2 of the thesis, we consider a problem in which the network

corresponds to a Markov random field and we wish to learn the corresponding

graph. Each node in the network represents a random variable and the

graph encodes the conditional independence relations among the random

variables. The lack of an edge between two nodes implies that the two random

variables are independent, conditioned on all the other random variables in

the network. We observe only the nodes’ behaviors, and do not observe

or are unable to observe, interactions between the nodes. Our goal is to

infer relationships among the nodes in such a network by understanding the

correlations among them.

The canonical example used to illustrate such inference problems is the

U.S. Senate [1]. Suppose one has access to the voting patterns of the sen-

ators over a number of bills (and not their party affiliations or any other

information), the question we would like to answer is the following: can we

say that a particular senator’s vote is independent of everyone else’s when

conditioned on a few other senators’ votes? In other words, if we view the

senators’ actions as forming a Markov Random Field (MRF), we want to

infer the topology of the underlying graph.

Learning the underlying graph structure of a Markov random field, i.e.,

structure learning, refers to the problem of determining if there is an edge

between each pair of nodes, given i.i.d. samples from the joint distribution

of the Markov random field. In general, learning high-dimensional densely

connected graphical models requires a large number of samples, and is usually

computationally intractable. In this thesis, we consider the structure learning

problem for graphical models that we call loosely connected Markov random

fields [2], in which the number of short paths between any pair of nodes is

small. We show that many previously studied models are examples of this

family.

However, loosely connected MRFs are not always easy to learn. When

there are short cycles in the graph, the dependence over an edge connecting

a pair of neighboring nodes can be approximately cancelled by some short

non-direct paths between them, in which case correctly detecting this edge

is difficult, as shown in the following very simple example. This example

is perhaps well known, but we present it here to motivate our algorithm
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presented later.

Example 1.1. Consider three binary random variables Xi ∈ {0, 1}, i =

1, 2, 3. Assume X1, X2 are independent Bernoulli(1
2
) random variables and

X3 = X1 ⊕ X2 with probability 0.9, where ⊕ means exclusive or. We note

that this joint distribution is symmetric, i.e., we get the same distribution if

we assume that X2, X3 are independent Bernoulli(1
2
) and X1 = X2⊕X3 with

probability 0.9. Therefore, the underlying graph is a triangle. However, it is

not hard to see that the three random variables are marginally independent.

Therefore, previous methods in [3, 4] would return an empty graph and fail

to learn the true graph.

We propose a new algorithm that correctly learns the graphs for loosely

connected MRFs. For each node, the algorithm loops over all the other nodes

to determine if they are neighbors of this node. The key step in the algorithm

is a max-min conditional independence test, in which the maximization step

is to detect the edges while the minimization step is to detect non-edges.

We focus on computational complexity rather than sample complexity in

comparing our algorithm with previous algorithms. In fact, it has been shown

that Ω(log p) samples are required to learn the graph correctly with high

probability, where p is the size of the graph [5]. For all the previously known

algorithms for which analytical complexity bounds are available, the number

of samples required to recover the graph correctly with high probability, i.e,

the sample complexity, is O(log p). Not surprisingly, the sample complexity

for our algorithm is also n = O(log p) under reasonable assumptions.

For loosely connected Markov random fields, if there are at most D1 short

paths between non-neighbor nodes and D2 non-direct short paths between

neighboring nodes, the running time of our algorithm is O(npD1+D2+2). If in

addition the Markov random field has correlation decay and satisfies a pair-

wise non-degeneracy condition, an extended algorithm with a preprocessing

step can be applied and the running time is reduced to O(np2). In sever-

al special cases of loosely connected Markov random fields, our algorithm

achieves the same or lower computational complexity than the previously

designed algorithms for individual cases.
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1.2 Clustering Users and Items

In Chapter 3 of the thesis, we study recommender systems and want to un-

derstand both the structure of the users and items. Recommender systems

are now in widespread use in online commerce to assist users in finding inter-

esting items and information. For instance, Amazon recommends products,

Netflix recommends items, Google recommends articles and so on. These

systems predict the interest of a user and make recommendations using the

past behavior of all users. The underlying assumption is that, if two users

have the same preferences on a set of items, then they are more likely to

have the same preferences on another set of items than two randomly picked

users.

We consider a simple model introduced in [6, 7] for generating a binary

data matrix from underlying row and column clusters. Assumes that both

users and items form clusters. Users in the same cluster give the same rating

to items in the same cluster, where ratings are either +1 or −1 with +1 being

“like” and −1 being “dislike”. Each rating is flipped independently with a

fixed flipping probability less than 1/2, modeling the noisy user behavior and

the fact that users (items) in the same cluster do not necessarily give (receive)

identical ratings. Each rating is further erased independently with an erasure

probability, modeling the fact that some ratings are not observed. Then, from

the observed noisy ratings, we aim to exactly recover the underlying user and

item clusters, i.e., jointly cluster the rows and columns of the observed rating

matrix.

Data matrices exhibiting both row and column cluster structure arise in

many other applications as well, such as gene expression analysis and text

mining. The binary assumption on data matrices is of practical interest.

Firstly, in many real datasets like the Netflix dataset and DNA microarrays,

estimation of entry values appears to be very unreliable, but the task of

determining whether an entry is +1 or −1 can be done more reliably [7].

Secondly, in recommender systems like rating music on Pandora or rating

posts on sites such as Facebook and MathOverflow, the user ratings are

indeed binary [8].

The hardness of our cluster recovery problem is governed by the erasure

probability and cluster size. Intuitively, cluster recovery becomes harder

when the erasure probability increases, meaning fewer observations, and the
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cluster size decreases, meaning that clusters are harder to detect.

We first derive a lower bound on the minimum number of observations

needed for exact cluster recovery as a function of matrix dimension and

cluster size. Then we propose three algorithms with different running times

and compare the number of observations needed by them for successful cluster

recovery.

• The first algorithm directly searches for the optimal clustering of rows

and columns separately; it is combinatorial in nature and takes expo-

nential time but achieves the best statistical performance among the

three algorithms in the noiseless setting.

• By noticing that the underlying true rating matrix is a specific type of

low-rank matrix, the second algorithm recovers the clusters by solving

a nuclear norm regularized convex optimization problem, which is a

popular heuristic for low-rank matrix completion problems; it takes

polynomial-time but performs worse than the first algorithm.

• The third algorithm applies spectral clustering to the rows and columns

separately and then performs a joint clean-up step; it has lower compu-

tational complexity than the previous two algorithms, but less powerful

statistical performance.

These algorithms are then compared with a simple nearest-neighbor cluster-

ing algorithm proposed in [7]. Our analytical results show a smooth time-data

trade-off: when more observations are available, one can gradually reduce the

computational complexity by applying simpler algorithms while still achiev-

ing the desired performance. Such a time-data trade-off is of great practical

interest for statistical learning problems involving large datasets [9].

1.3 Clustering Users and Ranking Items

In Chapter 4 of the thesis, we consider the problem of ranking items with

pairwise comparisons obtained from multiple types of users. This scenario

is similar to the previous one, but instead of giving binary ratings, users

provide pairwise comparisons of items.
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The problem of estimating a ranking for items using pairwise comparisons

is of interest in many applications. Some typical examples are from sports

where pairs of players play against each other and people are interested in

knowing which are the best players from past games. There are other exam-

ples where comparisons are obtained implicitly. For example, when a user

clicks a result from a list returned by a search engine for a given request,

it implies that this user prefers this result over nearby results on the list.

Similarly, when a customer buys a product from an online retailer, it implies

that this customer prefers this product over previously browsed products.

Websites providing these services are interested in inferring users’ ranking of

items and displaying the top choices for each user to maximize their profit.

The Bradley-Terry model is a well-studied ranking model [10] where each

item i is associated with a score θi and

P [item i is preferred over item j] =
eθi

eθi + eθj
.

Let Rij be the number of times item i is preferred over item j, then the

ranking problem can be solved by maximum likelihood estimation:

θ̂ = arg max
γ

∑

ij

Rij log
eγi

eγi + eγj
.

The above optimization is convex, thus can be solved efficiently [11]. Further,

the recent work [12] provides an error bound for θ̂ when the pairs of items

are chosen uniformly and independently.

In examples like search engines and online retailers, users can have different

scores for the same item and a single ranking is no longer sufficient to capture

individual preferences. It is more realistic to assume that users form clusters

and only users in the same cluster share the same score vector. The difficulty

in this new problem is that the clusters are not known a priori, therefore,

simply treating all users as a single type is likely to result in a meaningless

global ranking as the user preferences can be conflicting.

To address this issue, we propose a two-step algorithm for estimating the

score vectors: it first clusters the users and then estimate a score vector

for each cluster separately. Let m be the number of items ranked by the

users. The key observation is that, though each user is represented by a high-

dimensional comparison vector of length
(
m
2

)
, the corresponding expected
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comparison vector is completely determined by a length m score vector and it

is close to an m-dimensional linear subspace. Therefore, we can first project

the comparison vectors onto this subspace to reduce the noise while still

preserving the separation between the clusters. The nontrivial part of the

result here is that a nonlinear
(
m
2

)
-dimensional function of the m-dimensional

vector is projected onto an m-dimensional subspace using a linearization

approximation, but the projection performs denoising even in regimes where

linearization may be a poor approximation to the nonlinear function.

In the first step of our algorithm, we consider two clustering algorithms

using the projected comparison vectors. The first one clusters the vectors

directly and the second one is a spectral clustering type of algorithm. Both

algorithms show superior performance when compared to the standard spec-

tral clustering algorithm using the original comparison vectors. In the sec-

ond step of our algorithm, we treat each cluster separately and estimate a

score vector using the maximum likelihood estimation for the single cluster

Bradley-Terry model. We show that the maximum likelihood estimation is

robust to clustering errors: as long as the number of misclustered users is

small compared to the cluster size, it is still sufficient to recover the score

vectors for most users with a good error bound as in [12].

1.4 Notations

A variety of norms on matrices will be used. Assume the matrix X ∈ Rn×m.

Define the l1 norm of X as ‖X‖1 =
∑

i,j |Xij| and the l∞ norm of X as

‖X‖∞ = maxi,j |Xij|. Let 〈X, Y 〉 = Tr
[
X>Y

]
denote the inner product

between two matrices X and Y of the same dimension, and the Frobenius

norm of X is defined as ||X||F = 〈X,X〉1/2. Let X =
∑min{n,m}

t=1 σtutv
>
t

denote the singular value decomposition of X such that σ1 ≥ · · · ≥ σmin{n,m}.

The spectral norm of a matrix X is denoted by ‖X‖, which is equal to the

largest singular value. The nuclear norm is denoted by ‖X‖∗ which is equal

to the sum of singular values and is a convex function of X. The best rank

r approximation of X is defined as Pr(X) =
∑r

t=1 σtutv
>
t . For vectors, let

〈x, y〉 denote the inner product between two vectors and the only norm that

will be used is the usual l2 norm, denoted as ‖x‖2.

Throughout the thesis, we say that an event occurs “a.a.s.” or “asymptot-
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ically almost surely” when it occurs with a probability which tends to one as

some parameter goes to infinity.
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CHAPTER 2

LEARNING LOOSELY CONNECTED
MARKOV RANDOM FIELDS

2.1 Motivation

In this chapter, we view the network as a Markov random field and want

to learn the graph structure using i.i.d. samples from the joint distribution.

This problem has been studied in [13, 3, 14, 4, 15], and our algorithm is mo-

tivated by and builds on the prior work in [13, 3, 14]. We aim to provide a

unified framework for structure learning by considering a family of graphical

models called loosely connected Markov random fields, and designing robust

algorithms to avoid the kind of pitfalls illustrated in Example 1.1. In par-

ticular, we show that several previously studied models are special cases of

this family of graphical models, and our algorithm achieves the same or low-

er computational complexity than the algorithms designed for these special

cases.

2.2 Preliminaries

2.2.1 Markov Random Fields (MRFs)

Let X = (X1, X2, . . . , Xp) be a random vector with distribution P and G =

(V,E) be an undirected graph consisting of |V | = p nodes with each node

i associated with the ith element Xi of X. Before we define an MRF, we

introduce the notation XS to denote any subset S of the random variables

in X. A random vector and graph pair (X,G) is called an MRF if it satisfies

one of the following three Markov properties:

1. Pairwise Markov: Xi ⊥ Xj|XV \{i,j},∀(i, j) 6∈ E, where ⊥ denotes inde-

pendence.
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2. Local Markov: Xi ⊥ XV \{i∪Ni}|XNi ,∀i ∈ V, where Ni is the set of

neighbors of node i.

3. Global Markov: XA ⊥ XB|XS if S separates A,B on G. We say G

is an I-map of X in this case. If G is an I-map of X and the global

Markov property does not hold if any edge of G is removed, then G is

called a minimal I-map of X.

In all three cases, G encodes a subset of the conditional independence rela-

tions of X and we say that X is Markov with respect to G. We note that

the global Markov property implies the local Markov property, which in turn

implies the pairwise Markov property.

When P (x) > 0,∀x, the three Markov properties are equivalent, i.e., if

there exists a G under which one of the Markov properties is satisfied, then

the other two are also satisfied. Further, in the case when P (x) > 0,∀x, there

exists a unique minimal I-map of X. The unique minimal I-map G = (V,E)

is constructed as follows:

1. Each random variable Xi is associated with a node i ∈ V.

2. (i, j) 6∈ E if and only if Xi ⊥ Xj|XV \{i,j}.

In this case, we consider the case P (x) > 0,∀x and are interested in learn-

ing the structure of the associated unique minimal I-map. We will also as-

sume that, for each i, Xi takes on values in a discrete, finite set X . We will

also be interested in the special case where the MRF is an Ising model, which

we describe next.

2.2.2 Ising Model

Ising models are a type of well-studied pairwise Markov random fields. In an

Ising model, each random variable Xi takes values in the set X = {−1,+1}
and the joint distribution is parameterized by edge coefficients J and external

fields h :

P (x) =
1

Z
exp

( ∑

(i,j)∈E

Jijxixj +
∑

i∈V

hixi

)
,
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where Z is a normalization constant to make P (x) a probability distribution.

If h = 0, we say the Ising model is zero-field. If Jij ≥ 0, we say the Ising

model is ferromagnetic.

Ising models have the following useful property. Given an Ising model, the

conditional probability P (XV \S|xS) corresponds to an Ising model on V \ S
with edge coefficients Jij, i, j ∈ V \S unchanged and modified external fields

hi+h′i, i ∈ V \S, where h′i =
∑

(i,j)∈E,j∈S Jijxj is the additional external field

on node i induced by fixing XS = xS.

2.2.3 Random Graphs

A random graph is a graph generated from a prior distribution over the set

of all possible graphs with a given number of nodes. Let χp be a function on

graphs with p nodes and let C be a constant. We say χp ≥ C almost always

for a family of random graphs indexed by p if P (χp ≥ C) → 1 as p → ∞.

Similarly, we say χp → C almost always for a family of random graphs if

∀ε > 0, P (|χp − C| > ε) → 1 as p → ∞. This is a slight variation of the

definition of almost always in [16].

The Erdős-Rényi random graph G(p, c
p
) is a graph on p nodes in which the

probability of an edge being in the graph is c
p

and the edges are generated

independently. We note that, in this random graph, the average degree of a

node is c. In this thesis, when we consider random graphs, we only consider

the Erdős-Rényi random graph G(p, c
p
).

2.2.4 High-Dimensional Structure Learning

Structure learning is the problem of inferring the structure of the graph G

associated with an MRF (X,G). We will assume that P (x) > 0 for all x,

and G will refer to the corresponding unique minimal I-map. The goal of

structure learning is to design an algorithm that, given n i.i.d. samples

{X(k)}nk=1 from the distribution P, outputs an estimate Ĝ which equals G

with high probability when n is large. We say that two graphs are equal

when their node and edge sets are identical.

In the classical setting, the accuracy of estimating G is considered only

when the sample size n goes to infinity while the random vector dimension p
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is held fixed. This setting is restrictive for many contemporary applications,

where the problem size p is much larger than the number of samples. A more

suitable assumption allows both n and p to become large, with n growing at

a slower rate than p. In such a case, the structure learning problem is said

to be high-dimensional.

An algorithm for structure learning is evaluated both by its computational

complexity and sample complexity. The computational complexity refers to

the number of computations required to execute the algorithm, as a function

of n and p. When G is a deterministic graph, we say the algorithm has

sample complexity f(p) if, for n = O(f(p)), there exist constants c and

α > 0, independent of p, such that Pr(Ĝ = G) ≥ 1 − c
pα

for all P which

are Markov with respect to G. When G is a random graph drawn from some

prior distribution, we say the algorithm has sample complexity f(p) if the

above is true almost always.

In the high-dimensional setting, n can be much smaller than p. It has been

shown that Ω(log p) samples are required to learn the graph correctly with

high probability, where p is the size of the graph [5]. For all the previously

known algorithms for which analytical complexity bounds are available, the

number of samples required to recover the graph correctly with high prob-

ability, i.e, the sample complexity, is O(log p). Not surprisingly, the sample

complexity for our algorithm is also O(log p) under reasonable assumptions.

2.3 Loosely Connected MRFs

Loosely connected Markov random fields are undirected graphical models

in which the number of short paths between any pair of nodes is small.

Roughly speaking, a path between two nodes is short if the dependence

between two node is non-negligible even if all other paths between the nodes

are removed. Later, we will more precisely quantify the term “short” in

terms of the correlation decay property of the MRF. For simplicity, we say

that a set S separates some paths between nodes i and j if removing S

disconnects these paths. In such a graphical model, if i, j are not neighbors,

there is a small set of nodes S separating all the short paths between them,

and conditioned on this set of variables XS the two variables Xi and Xj are

approximately independent. On the other hand, if i, j are neighbors, there
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is a small set of nodes T separating all the short non-direct paths between

them, i.e, the direct edge is the only short path connecting the two nodes

after removing T from the graph. Conditioned on this set of variables XT ,

the dependence of Xi and Xj is dominated by the dependence over the direct

edge hence is bounded away from zero. The following necessary and sufficient

condition for the non-existence of an edge in a graphical model shows that

both the sets S and T above are essential for learning the graph, which we

have not seen in prior work.

Lemma 2.1. Consider two nodes i and j in G. Then, (i, j) 6∈ E if and only

if ∃S,∀T,Xi ⊥ Xj|XS, XT .

Proof. Recall from the definition of the minimal I-map that (i, j) 6∈ E if and

only if Xi ⊥ Xj|XV \{i,j}. Therefore, the statement of the lemma is equivalent

to

I(Xi;Xj|XV \{i,j}) = 0⇔ min
S

max
T

I(Xi;Xj|XS, XT ) = 0,

where I(Xi;Xj|XS) denotes the mutual information between Xi and Xj con-

ditioned on XS, and we have used the fact that Xi ⊥ Xj|XS is equivalent to

I(Xi;Xj|XS) = 0. Notice that

min
S

max
T

I(Xi;Xj|XS, XT ) = min
S

max
T ′⊃S

I(Xi;Xj|XT ′)

and maxT ′⊃S I(Xi;Xj|XT ′) is an increasing function in S. The minimization

over S is achieved at S = V \ {i, j}, i.e.,

I(Xi;Xj|XV \{i,j}) = min
S

max
T

I(Xi;Xj|XS, XT ).

Lemma 2.1 tells that, if there is not an edge between node i and j, we can

find a set of nodes S such that the removal of S from the graph separates

i and j. From the global Markov property, this implies that Xi ⊥ Xj|XS.

However, as Example 1.1 shows, the converse is not true. In fact, for S being

the empty set or S = ∅, we have X1 ⊥ X2|XS, but (1, 2) is indeed an edge

in the graph. Lemma 2.1 completes the statement in the converse direction,

showing that we should also introduce a set T in addition to the set S to

correctly identify the edge.
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Motivated by this lemma, we define loosely connected MRFs as follows.

Definition 2.1. We say a MRF is (D1, D2, ε)-loosely connected if

1. for any (i, j) 6∈ E, ∃S with |S| ≤ D1, ∀T with |T | ≤ D2,

∆(Xi;Xj|XS, XT ) ≤ ε

4
,

2. for any (i, j) ∈ E, ∀S with |S| ≤ D1 , ∃T with |T | ≤ D2,

∆(Xi;Xj|XS, XT ) ≥ ε,

for some conditional independence test ∆.

The conditional independence test ∆ should satisfy ∆(Xi;Xj|XS, XT ) = 0

if and only if Xi ⊥ Xj|XS, XT . In this thesis, we use two types of conditional

independence tests:

• Mutual Information Test:

∆(Xi;Xj|XS, XT ) = I(Xi;Xj|XS, XT ).

• Probability Test:

∆(Xi;Xj|XS, XT ) = max
xi,xj ,x′j ,xS ,xT

|P (xi|xj, xS, xT )− P (xi|x′j, xS, xT )|.

In Sections 2.5 and 2.6, we will see that the probability test gives lower

sample complexity for learning Ising models on bounded degree graphs, while

the mutual information test gives lower sample complexity for learning Ising

models on graphs with unbounded degree.

Note that the above definition restricts the size of the sets S and T to

make the learning problem tractable. We show in the rest of the section

that several important Ising models are examples of loosely connected MRFs.

Unless otherwise stated, we assume that the edge coefficients Jij are bounded,

i.e., Jmin ≤ |Jij| ≤ Jmax.
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2.3.1 Bounded Degree Graph

We assume the graph has maximum degree d. For any (i, j) 6∈ E, the set

S = Ni of size at most d separates i and j, and for any set T we have

∆(Xi;Xj|XS, XT ) = 0. For any (i, j) ∈ E, the set T = Ni \ j of size at most

d− 1 separates all the non-direct paths between i and j. Moreover, we have

the following lower bound for neighbors from [13, Proposition 2].

Proposition 2.1. When i, j are neighbors and T = Ni \ j, there is a choice

of xi, xj, x
′
j, xS, xT such that

|P (xi|xj, xS, xT )− P (xi|x′j, xS, xT )| ≥ tanh(2Jmin)

2e2Jmax + 2e−2Jmax
, ε.

Therefore, the Ising model on a bounded degree graph with maximum

degree d is a (d, d − 1, ε)-loosely connected MRF. We note that here we do

not use any correlation decay property, and we view all the paths as short.

2.3.2 Bounded Degree Graph, Correlation Decay and Large
Girth

In this subsection, we still assume the graph has maximum degree d. From

Section 2.3.1, we already know that the Ising model is loosely connected. But

we show that when the Ising model is in the correlation decay regime and

further has large girth, it is a much sparser model than the general bounded

degree case.

Correlation decay is a property of MRFs which says that, for any pair of

nodes i, j, the correlation of Xi and Xj decays with the distance between i, j.

When a MRF has correlation decay, the correlation of Xi and Xj is mainly

determined by the short paths between nodes i, j, and the contribution from

the long paths is negligible. It is known that when Jmax is small compared

with d, the Ising model has correlation decay. More specifically, we have

the following lemma, which is a consequence of the strong correlation decay

property [17, Theorem 1].
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Lemma 2.2. Assume (d − 1) tanh Jmax < 1. ∀i, j ∈ V, d(i, j) = l, then for

any set S and ∀xi, xj, x′j, xS,

|P (xi|xj, xS)− P (xi|x′j, xS)| ≤ 4Jmaxd[(d− 1) tanh Jmax]l−1 , βαl,

where β = 4Jmaxd
(d−1) tanh Jmax

and α = (d− 1) tanh Jmax.

Proof. For some given xi, xj, x
′
j, xS, w.l.o.g. assume P (xi|xj, xS) ≥ P (xi|x′j, xS).

Applying the [17, Theorem 1] with Λ = {j} ∪ S, we get

|P (xi|xj, xS)− P (xi|x′j, xS)| ≤1− P (xi|x′j, xS)

P (xi|xj, xS)

≤1− e−4Jmaxd[(d−1) tanh Jmax]d(i,j)−1

≤4Jmaxd[(d− 1) tanh Jmax]d(i,j)−1.

This lemma implies that, in the correlation decay regime (d−1) tanh Jmax <

1, the Ising model has exponential correlation decay, i.e., the correlation

between a pair of nodes decays exponentially with their distance. We say

that a path of length l is short if βαl is above some desired threshold.

The girth of a graph is defined as the length of the shortest cycle in the

graph, and large girth implies that there is no short cycle in the graph. When

the Ising model is in the correlation decay regime and the girth of the graph is

large in terms of the correlation decay parameters, there is at most one short

path between any pair of non-neighbor nodes, and no short paths other than

the direct edge between any pair of neighboring nodes. Naturally, we can use

S of size 1 to approximately separate any pair of non-neighbor nodes and do

not need T to block the other paths for neighbor nodes as the correlations are

mostly due to the direct edges. Therefore, we would expect this Ising model

to be (1, 0, ε)-loosely connected for some constant ε. In fact, the following

theorem gives an explicit characterization of ε. The condition on the girth

below is chosen such that there is at most one short path between any pair

of nodes, so a path is called short if it is shorter than half of the girth.

Theorem 2.1. Assume (d− 1) tanh Jmax < 1 and the girth g satisfies

βα
g
2 ≤ A ∧ ln 2,
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where A = 1
1800

(1− e−4Jmin)e−8dJmax. Let ε = 48Ae4dJmax. Then ∀(i, j) ∈ E,

min
S⊂V \{i∪j}
|S|≤D1

max
xi,xj ,x′j ,xS

|P (xi|xj, xS)− P (xi|x′j, xS)| > ε,

and ∀(i, j) /∈ E,

min
S⊂V \{i∪j}
|S|≤D1

max
xi,xj ,x′j ,xS

|P (xi|xj, xS)− P (xi|x′j, xS)| ≤ ε

4
.

Proof. See Appendix A.1.

2.3.3 Erdős-Rényi Random Graph G(p, cp) and Correlation
Decay

We assume the graph G is generated from the prior G(p, c
p
) in which each

edge is in G with probability c
p

and the average degree for each node is c.

For this random graph, the maximum degree scales as O( ln p
ln ln p

) with high

probability [16]. Thus, we cannot use the results for bounded degree graphs

even though the average degree remains bounded as p→∞.
Our analysis of the class of Ising models on sparse Erdős-Rényi random

graphs G(p, c
p
) was motivated by the results in [14] which studies the special

case of the so-called ferromagnetic Ising models defined over an Erdős-Rényi

random graph. It is known from [14] that, for ferromagnetic Ising models, i.e,

Jij ≥ 0 for any i and j, when Jmax is small compared with the average degree

c, the random graph is in the correlation decay regime and the number of

short paths between any pair of nodes is at most 2 asymptotically. We show

that the same result holds for general Ising models. Our proof is related to

the techniques developed in [14], but certain steps in the proof of [14] do

rely on the fact that the Ising model is ferromagnetic, so the proof does not

directly carry over. We point out similarities and differences as we proceed

in Appendix A.3.

More specifically, letting γp = log p
K log c

for some K ∈ (3, 4), the following

theorem shows that nodes that are at least γp hops from each other have

negligible impact on each other. As a consequence of the following theorem,

we can say that a path is short if it is at most γp hops.
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Theorem 2.2. Assume α = c tanh Jmax < 1. Then, the following properties

are true almost always.

(1) Let G be a graph generated from the prior G(p, c
p
). If i, j are not neighbors

in G and S separates all the paths shorter than γp hops between i, j, then

∀xi, xj, x′j, xS,

|P (xi|xj, xS)− P (xi|x′j, xS)| ≤ |B(i, γp)|(tanh Jmax)γp = o(p−κ),

for all Ising models P on G, where κ =
log 1

α

4 log c
and B(i, γp) is the set of all

nodes which are at most γp hops away from i.

(2) There are at most two paths shorter than γp between any pair of nodes.

Proof. See Appendix A.3.

The above result suggests that for Ising models on the random graph there

are at most two short paths between non-neighbor nodes and one short non-

direct path between neighboring nodes, i.e., it is a (2, 1, ε)-loosely connected

MRF. Further the next two theorems prove that such a constant ε exists.

The proofs are in Appendix A.3.

Theorem 2.3. For any (i, j) 6∈ E, let S be a set separating the paths shorter

than γp between i, j and assume |S| ≤ 3, then almost always

I(Xi;Xj|XS) = o(p−2κ).

Theorem 2.4. For any (i, j) ∈ E, let T be a set separating the non-direct

paths shorter than γp between i, j and assume |T | ≤ 3, then almost always

I(Xi;Xj|XT ) = Ω(1).

2.4 The Algorithm CondST

Learning the structure of a graph is equivalent to learning if there exists an

edge between every pair of nodes in the graph. Therefore, we would like
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to develop a test to determine if there exists an edge between two nodes or

not. From Definition 2.1, it should be clear that learning a loosely connected

MRF is straightforward. For non-neighbor nodes, we search for the set S that

separates all the short paths between them, while for neighboring nodes, we

search for the set T that separates all the non-direct short paths between

them.

We first introduce a few notations. Given n i.i.d. samples {X(k)}nk=1 from

the distribution the empirical distribution P̂ is defined as follows: for any set

A,

P̂ (xA) =
1

n

n∑

i=1

I{
X

(i)
A =xA

}.

Let ∆̂ be the empirical conditional independence test which is the same as

∆ but computed using P̂ . Our algorithm is as follows.

Algorithm 1 CondST (D1, D2, ε)

for i, j ∈ V do
if ∃S with |S| ≤ D1,∀T with |T | ≤ D2, ∆̂(Xi;Xj|XS, XT ) ≤ ε

2

then
(i, j) 6∈ E

else
(i, j) ∈ E

end if
end for

For clarity, when we specifically use the mutual information test (or the

probability test), we denote the corresponding algorithm by CondSTI (or

CondSTP ).

The algorithm CondST (D1, D2, ε) runs for each pair (i, j). It compares

the empirical min-max conditional independence

min
|S|≤D1

max
|T |≤D2

∆̂(Xi;Xj|XS, XT )

with the threshold ε
2

to determine if there is an edge between node i and j.

The maximization step is designed to detect the edges while the minimization

step is designed to detect non-edges. The minimization step is used in several

previous works such as [14, 4]. The maximization step has been added to

explicitly break the short cycles that can cause problems in edge detection.
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Intuitively, if the direct edge is the only edge between a pair of neighboring

nodes, the dependence over the edge can be detected by the independence

test. When there are other short paths between a pair of neighboring nodes,

directly performing the independence test might fail. In Example 1.1, X1

and X3 are marginally independent as the dependence over edge (1, 3) is

canceled by the other path (1, 2, 3). Our algorithm handles this difficulty by

first finding a set T of nodes that separates all the short, non-direct paths

between them, i.e., after removing the set T from the graph, the direct edge is

the only short path connecting to two nodes. Then the dependence over the

edge can again be detected by the conditional independence test where the

conditioned set is T . In the same example, if we break the short path (1, 2, 3)

by conditioning onX2, X1 and X3 become dependent, so our algorithm is able

to detect the edges correctly. When the empirical conditional independence

test ∆̂ is close to the exact test ∆, we immediately get the following result.

Fact 2.1. For a (D1, D2, ε)-loosely connected MRF, if

|∆̂(Xi;Xj|XA)−∆(Xi;Xj|XA)| < ε

4

for any node i, j and set A with |A| ≤ D1+D2, then CondST (D1, D2, ε) recov-

ers the graph correctly. The running time for the algorithm is O(npD1+D2+2).

Proof. The correctness is immediate. We note that, for each pair of i, j

in V , we search S, T in V . So the possible combinations of (i, j, S, T ) is

O(pD1+D2+2) and we get the running time result.

When the MRF has correlation decay, it is possible to reduce the compu-

tational complexity by restricting the search space for the set S and T to a

smaller candidate neighbor set. In fact, for each node i, the nodes which are a

certain distance away from i have small correlation with Xi. As suggested in

[13], we can first perform a pairwise correlation test to eliminate these nodes

from the candidate neighbor set of node i. To make sure the true neighbors

are all included in the candidate set, the MRF needs to satisfy an additional

pairwise non-degeneracy condition. Our second algorithm is as follows.

The following result provides conditions under which the second algorithm

correctly learns the MRF.
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Algorithm 2 CondST Pre(D1, D2, ε, ε
′)

for i ∈ V do

Li = {j ∈ V \ i, max
xi,xj ,x′j

|P̂ (xi|xj)− P̂ (xi|x′j)| >
ε′

2
}.

for j ∈ Li do
if ∃S ⊂ Li with |S| ≤ D1,∀T ⊂ Li with |T | ≤
D2, ∆̂(Xi;Xj|XS, XT ) ≤ ε

2
then

j /∈ Ni

else
j ∈ Ni

end if
end for

end for

Fact 2.2. For a (D1, D2, ε)-loosely connected MRF with

max
xi,xj ,x′j

|P (xi|xj)− P (xi|x′j)| > ε′ (2.1)

for any (i, j) ∈ E, if

|P̂ (xi|xj)− P (xi|xj)| <
ε′

8

for any node i, j and xi, xj, and

|∆̂(Xi;Xj|XA)−∆(Xi;Xj|XA)| < ε

4

for any node i, j and set A with |A| ≤ D1+D2, then CondST Pre(D1, D2, ε, ε
′)

recovers the graph correctly. Let L = maxi |Li|. The running time for the

algorithm is O(np2 + npLD1+D2+1).

Proof. By the pairwise non-degeneracy condition (2.1), the neighbors of node

i are all included in the candidate neighbor set Li. We note that this pre-

processing step excludes the nodes whose correlation with node i is below ε′

4
.

Then in the inner loop, the correctness of the algorithm is immediate. The

running time of the correlation test is O(np2). We note that, for each i in V ,

we loop over j in Li and search S and T in Li. So the possible combinations

of (i, j, S, T ) is O(pLD1+D2+1). Combining the two steps, we get the running

time of the algorithm.

Note that the additional non-degeneracy condition (2.1) required for the
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second algorithm to execute correctly is not satisfied for all graphs (recall

Example 1.1).

In the following lemma we show a set of concentration results for the em-

pirical quantities in the above algorithm for general discrete MRFs, which

will be used to obtain the sample complexity results in Section 2.5 and Sec-

tion 2.6.

Lemma 2.3. Fix γ > 0. Let L = maxi |Li|. For ∀α > 0,

1. Assume γ ≤ 1
4
. If

n >
2
[
(2 + α) log p+ 2 log |X |

]

γ2
,

then ∀i, j ∈ V, ∀xi, xj,

|P̂ (xi|xj)− P (xi|xj)| < 4γ

with probability 1− c1
pα

for some constant c1.

2. Assume ∀S ⊂ V, |S| ≤ D1 + D2 + 1, P (xS) > δ for some constant δ,

and γ ≤ δ
2
. If

n >
2
[
(1 + α) log p+ (D1 +D2 + 1) logL+ (D1 +D2 + 2) log |X |

]

γ2
,

then ∀i ∈ V, ∀j ∈ Li,∀S ⊂ Li, |S| ≤ D1 +D2,∀xi, xj, xS,

|P̂ (xi|xj, xS)− P (xi|xj, xS)| < 2γ

δ

with probability 1− c2
pα

for some constant c2.

3. Assume γ ≤ 1
2|X |D1+D2+2 < 1. If

n >
2
[
(1 + α) log p+ (D1 +D2 + 1) logL+ (D1 +D2 + 2) log |X |

]

γ2
,

then ∀i, j ∈ V, |S| ≤ D1 +D2,∀xi, xj, xS,

|Î(Xi;Xj|XS)− I(Xi;Xj|XS)| < 8|X |D1+D2+2√γ

with probability 1− c3
pα

for some constant c3,
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Proof. See Appendix A.4.

This lemma could be used as a guideline on how to choose between the

two conditional independence tests for our algorithm to get lower sample

complexity. The key difference is the dependence on the constant δ, which is

a lower bound on the probability of any xS with the set size |S| ≤ D1+D2+1.

The probability test requires a constant δ > 0 to achieve sample complexity

n = O(log p), while the mutual information test does not depend on δ and

also achieves sample complexity n = O(log p). We note that, while both

tests have O(log p) sample complexity, the constants hidden in the order

notation may be different for the two tests. For Ising models on bounded

degree graphs, we show in Section 2.5 that a constant δ > 0 exists, and the

probability test gives a lower sample complexity. On the other hand, for

Ising models on the Erdős-Rényi random graph G(p, c
p
), we could not get a

constant δ > 0 as the maximum degree of the graph is unbounded, and the

mutual information test gives a lower sample complexity.

For loosely connected MRF, the required sizes D1, D2 of the conditioned

sets S, T are typically small, therefore the algorithm has low computational

and sample complexity.

2.5 Computational Complexity for General Ising

Models

In this section, we apply our algorithm to the Ising models in Section 2.3.

We evaluate both the number of samples required to recover the graph with

high probability and the running time of our algorithm. The following results

are simple combinations of the results in the previous two sections. Unless

otherwise stated, we assume that the edge coefficients Jij are bounded, i.e.,

Jmin ≤ |Jij| ≤ Jmax. Throughout this section, we use the notation x ∧ y to

denote the minimum of x and y.

2.5.1 Bounded Degree Graph

We assume the graph has maximum degree d. First we have the following

lower bound on the probability of any finite size set of variables.
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Lemma 2.4. ∀S ⊂ V, ∀xS, P (xS) ≥ 2−|S| exp(−2(|S|+ d)|S|Jmax).

Proof. See Appendix A.1.

Our algorithm with the probability test for the bounded degree graph case

reproduces the algorithm in [13]. However, our algorithm is more flexible and

achieves lower computational complexity for MRFs that are loosely connected

but have a large maximum degree as we will see later. For completeness, we

state the following result without a proof since it is nearly identical to the

result in [13], except for some constants.

Corollary 2.1. Let ε be defined as in Proposition 2.1. Define

δ = 2−2d exp(−12d2Jmax).

Let γ = εδ
16
∧ δ

2
< 1. If n >

2
[

(2d+1+α) log p+(2d+1) log 2
]

γ2
, the algorithm

CondSTP (d, d − 1, ε2) recovers G with probability 1 − c
pα

for some constant

c. The running time of the algorithm is O(np2d+1).

2.5.2 Bounded Degree Graph, Correlation Decay and Large
Girth

We assume the graph has maximum degree d. We also assume that the

Ising model is in the correlation decay regime, i.e., (d − 1) tanh Jmax < 1,

and the graph has large girth. The same setting has been considered in

[3]. Combining Theorem 2.1, Fact 2.1 and Lemma 2.3, we can show that the

algorithm CondSTP (1, 0, ε) recovers the graph correctly with high probability

for some constant ε, and the running time is O(np3) for n = O(log p).

We can get even lower computational complexity using our second algo-

rithm. The key observation is that, as there is no short path other than

the direct edge between neighboring nodes, the correlation over the edge

dominates the total correlation hence the pairwise non-degeneracy condition

is satisfied. We note that the length of the second shortest path between

neighboring nodes is no less than g − 1.

Lemma 2.5. Assume that (d− 1) tanh Jmax < 1, and the girth g satisfies

βαg−1 ≤ A ∧ ln 2,
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where A = 1
1800

(1− e−4Jmin). Let ε′ = 48A. ∀(i, j) ∈ E, we have

max
xi,xj ,x′j

|P (xi|xj)− P (xi|x′j)| > ε′.

Proof. See Appendix A.1.

Using this lemma, we can apply our second algorithm to learn the graph.

Using Lemma 2.2, if node j is of distance lε′ =
ln 4β

ε′

ln 1
α

hops from node i, we

have

max
xi,xj ,x′j

|P (xi|xj)− P (xi|x′j)| < βαlε′ ≤ ε′

4
.

Therefore, in the correlation test, Li only includes nodes within distance

lε′ from i and the size |Li| ≤ dlε′ since the maximum degree is d; i.e., L =

maxi |Li| ≤ dlε′ , which is a constant independent of p. Combining Lemma 2.5

with Theorem 2.1, Fact 2.2 and Lemma 2.3, we get the following result.

Corollary 2.2. Assume (d − 1) tanh Jmax < 1. Assume g, ε and ε′ satisfy

Theorem 2.1 and Lemma 2.5. Let δ be defined as in Theorem 2.1. Let

γ = ε′

32
∧ εδ

16
∧ δ

2
. If

n >
2
[
(2 + α) log p+ 2lε′ log d+ 3 log 2

]

γ2
,

the algorithm CondST PreP (1, 0, ε, ε′) recovers G with probability 1− c
pα

for

some constant c. The running time of the algorithm is O(np2).

By performing a simple correlation test, we can reduce the search space

for neighbors from all the nodes to a constant size candidate neighbor set,

then our algorithm and the algorithms in [13, 3, 18] all have computational

complexity O(np2), which is lower than what we would get by only applying

the greedy algorithm [3]. The results in [18] improve over [3] by proposing

two new greedy algorithms that are correct for learning small girth graphs.

However, the algorithm in [18] requires a constant size candidate neighbor

set as input, which might not be easy to obtain in general. In fact, for MRFs

with bad short cycles as in Example 1.1, learning a candidate neighbor set

can be as difficult as directly learning the neighbor set.
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2.5.3 Erdős-Rényi Random Graph G(p, cp) and Correlation
Decay

We assume the graph G is generated from the prior G(p, c
p
) in which each edge

is in G with probability c
p

and the average degree for each node is c. Because

the random graph has unbounded maximum degree, we cannot lower bound

for the probability of a finite size set of random variables by a constant, for all

p. To get good sample complexity, we use the mutual information test in our

algorithm. Combining Theorem 2.3, Theorem 2.4, Fact 2.1 and Lemma 2.3,

we get the following result.

Corollary 2.3. Assume c tanh Jmax < 1. There exists a constant ε > 0

such that, for γ =
(

ε
322

)2 ∧ 1
64
< 1, if n >

2
[

(5+α) log p+5 log 2
]

γ2
, the algorithm

CondSTI(2, 1, ε) recovers the graph G almost always. The running time of

the algorithm is O(np5).

The results in [4] extend the results in [14] to general Ising models and

more general sparse graphs (beyond the Erdős-Rényi model). We note that

the tractable graph families in [4] is similar to our notion of loosely-connected

MRFs. For general Ising models over sparse Erdős-Rényi random graphs, our

algorithm has computational complexity O(np5) while the algorithm in [4]

has computational complexity O(np4). The difference comes from the fact

that our algorithm has an additional maximization step to break bad short

cycles as in Example 1.1. Without this maximization step, the algorithm in

[4] fails for this example. The performance analysis in [4] explicitly excludes

such difficult cases by noting that these “unfaithful” parameter values have

Lebesgue measure zero [4, Section B.3.2]. However, when the Ising model

parameters lie close to this Lebesgue measure zero set, the learning problem

is still ill posed for the algorithm in [4], i.e., the sample complexity required

to recover the graph correctly with high probability depends on how close the

parameters are to this set, which is not the case for our algorithm. In fact,

the same problem with the argument that the unfaithful set is of Lebesgue

measure zero has been observed for causal inference in the Gaussian case [19].

It has been shown in [19] that a stronger notion of faithfulness is required

to get uniform sample complexity results, and the set that is not strongly

faithful has non-zero Lebesgue measure and can be be surprisingly large.
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2.5.4 Sample Complexity

In this subsection, we briefly summarize the number of samples required

by our algorithm. According to the results in this section and Section 2.6,

C log p samples are sufficient in general, where the constant C depends on the

parameters of the model. When the Ising model is on a bounded degree graph

with maximum degree d, the constant C is of order exp(−O(d+d2Jmax)). In

particular, if the Ising model is in the correlation decay regime, then dJmax =

O(1) and the constant C is of order exp(−O(d)). When the Ising model is on

an Erdős-Rényi random graph G(p, c
p
) and is in the correlation decay regime,

then the constant C is lower bounded by some absolute constant independent

of the model parameters.

2.6 Computational Complexity for Ferromagnetic Ising

Models

Ferromagnetic Ising models are Ising models in which all the edge coefficients

Jij are non-negative. We say (i, j) is an edge if Jij > 0. One important

property of ferromagnetic Ising models is association, which characterizes

the positive dependence among the nodes.

Definition 2.2. [20] We say a collection of random variables X =

(X1, X2, . . . , Xn) is associated, or the random vector X is associated, if

Cov(f(X), g(X)) ≥ 0

for all nondecreasing functions f and g for which E [f(X)] ,E [g(X)] and

E [f(X)g(X)] exist.

Proposition 2.2. [21] The random vector X of a ferromagnetic Ising model

(possibly with external fields) is associated.

A useful consequence of the Ising model being associated is as follows.

Corollary 2.4. Assume X is a zero field ferromagnetic Ising model. For

any i, j, P (Xi = 1, Xj = 1) ≥ 1
4
≥ P (Xi = 1, Xj = −1).

Proof. See Appendix A.2.
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Informally speaking, the edge coefficient Jij > 0 means that i and j are

positively dependent over the edge. For any path between i, j, as all the

edge coefficients are positive, the dependence over the path is also positive.

Therefore, the non-direct paths between a pair of neighboring nodes i, j make

Xi and Xj, which are positively dependent over the edge (i, j), even more

positively dependent. This observation has two important implications for

our algorithm.

1. We do not need to break the short cycles with a set T in order to detect

the edges, so the maximization in the algorithm can be removed.

2. The pairwise non-degeneracy is always satisfied for some constant ε′,

so we can apply the correlation test to reduce the computational com-

plexity.

2.6.1 Bounded Degree Graph

We assume the graph has maximum degree d. We have the following non-

degeneracy result for ferromagnetic Ising models.

Lemma 2.6. ∀(i, j) ∈ E, S ⊂ V \ {i, j} and ∀xS,

max
xi,xj ,x′j

|P (xi|xj, xS)− P (xi|x′j, xS)| ≥ 1

16
(1− e−4Jmin)e−4|NS |Jmax .

Proof. See Appendix A.2.

The following theorem justifies the remarks after Corollary 2.4 and shows

that the algorithm with the preprocessing step CondST Pre(d, 0, ε, ε′) can

be used to learn the graph, where ε, ε′ are obtained from Lemma 2.6. Recall

that Li is the candidate neighbor set of node i after the preprocessing step

and L = maxi |Li|.
Theorem 2.5. Let

ε =
1

16
(1− e−4Jmin)e−4d2Jmax , ε′ =

1

16
(1− e−4Jmin),

and δ be defined as in Theorem 2.1. Let γ = ε′

32
∧ εδ

16
∧ δ

2
. If

n >
2
[
(1 + α) log p+ (d+ 1) logL+ (d+ 2) log 2

]

γ2
,
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the algorithm CondST PreP (d, 0, ε, ε′) recovers G with probability 1− c
pα

for

some constant c. The running time of the algorithm is O(np2 + npLd+1). If

we further assume that (d − 1) tanh Jmax < 1, then the running time of the

algorithm is O(np2).

Proof. We choose |S| ≤ d and T = ∅ in our algorithm, and we have |NS| ≤ d2

as the maximum degree is d. By Lemma 2.6, we have

max
xi,xj ,x′j ,xS

|P (xi|xj, xS)− P (xi|x′j, xS)| ≥ ε

for any |S| ≤ d. Therefore, the Ising model is a (d, 0, ε)-loosely connected

MRF. Note that Lemma 2.6 is applicable to any set S (not necessarily the

set S in the conditional independence test). Applying Lemma 2.6 again with

S = ∅, we get the pairwise non-degeneracy condition

max
xi,xj ,x′j

|P (xi|xj)− P (xi|x′j)| ≥ ε′.

Combining Fact 2.2 and Lemma 2.3, we get the correctness of the algorithm.

The running time is O(np2 + npLd+1), which is at most O(npd+2).

When (d− 1) tanh Jmax < 1, as the Ising model is in the correlation decay

regime, L = maxi |Li| ≤ dlε′ is a constant independent of p as argued for

Theorem 2.2. Therefore, the running time is only O(np2) in this case.

2.6.2 Erdős-Rényi Random Graph G(p, cp) and Correlation
Decay

When the Ising model is ferromagnetic, the result for the random graph

is similar to that of a deterministic graph. For each graph sampled from

the prior distribution, the dependence over the edges is positive. If i, j are

neighbors in the graph, having additional paths between them makes them

more positively dependent, so we do not need to block those paths with a set

T to detect the edge and set D2 = 0. In fact, we can prove a stronger result

for neighbor nodes than the general case. The following result also appears

in [14], but we are unable to verify the correctness of all the steps there and

so we present the result here for completeness.
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Theorem 2.6. ∀i ∈ V, ∀j ∈ Ni, let S be any set with |S| ≤ 2, then almost

always

I(Xi;Xj|XS) = Ω(1).

Proof. See Appendix A.3.

Moreover, the pairwise non-degeneracy condition in Theorem 2.5 also holds

here. We can thus use algorithm CondST Pre(2, 0, ε, ε′) to learn the graph.

Without the pre-processing step, our algorithm is the same as in [14], which

has computational complexity O(np4). We show in the following theorem

that by using the pre-processing step our algorithm reduces the computa-

tional complexity to O(np2).

Theorem 2.7. Assume c tanh Jmax < 1 and the Ising model is ferromagnetic.

Let ε′ be defined as in Theorem 2.5. There exists a constant ε > 0 such that,

for γ = ε1
32
∧
(
ε2

512

)2 ∧ 1
32
< 1, if n >

2
[

(2+α) log p+3 logL+5 log 2
]

γ2
, the algorithm

CondST PreI(2, 0, ε, ε
′) recovers the graph G almost always. The running

time of the algorithm is O(np2).

Proof. Combining Theorem 2.3, Theorem 2.4, Fact 2.2, Lemma 2.3 and Lem-

ma 2.6, we get the correctness of the algorithm.

From Theorem 2.2 we know that if j is more than γp hops away from i, the

correlation between them decays as o(p−κ). For the constant threshold ε′

2
,

these far-away nodes are excluded from the candidate neighbor set Li when p

is large. It is shown in the proof of [22, Lemma 2.1] that for G(p, c
p
), the num-

ber of nodes in the γp-ball around i is not large with high probability. More

specifically, ∀i ∈ V, |B(i, γp)| = O(cγp log p) almost always, where B(i, γp) is

the set of all nodes which are at most γp hops away from i. Therefore we get

L = max
i
|Li| ≤ |B(i, γp)| = O(cγp log p) = O(p

1
K log p) = O(p

1
3 ).

So the total running time of algorithm CondSTI(2, 0, ε, ε
′) is O(np2+npL3) =

O(np2).
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2.7 Related Work

Another way to learn the structures of MRFs is by solving l1-regularized

convex optimizations under a set of incoherence conditions [15]. It is shown in

[23] that, for some Ising models on a bounded degree graph, the incoherence

conditions hold when the Ising model is in the correlation decay regime. But

the incoherent conditions do not have a clear interpretation as conditions for

the graph parameters in general and are NP-hard to verify for a given Ising

model [23]. Using results from standard convex optimization theory [24], it is

possible to design a polynomial complexity algorithm to approximately solve

the l1-regularized optimization problem. However, the actual complexity will

depend on the details of the particular algorithm used, therefore, it is not

clear how to compare the computational complexity of our algorithm with

the one in [15].

We note that the recent development of directed information graphs [25]

is closely related to the theory of MRFs. Learning a directed information

graph, i.e., finding the causal parents of each random process, is essentially

the same as finding the neighbors of each random variable in learning a MRF.

Therefore, our algorithm for learning the MRFs can potentially be used to

learn the directed information graphs as well.

2.8 Experimental Results

In this section, we present experimental results to show the importance of the

choice of a non-zero D2 in correctly estimating the edges and non-edges of the

underlying graph of a MRF. We evaluate our algorithm CondSTI(D1, D2, ε),

which uses the mutual information test and does not have the preprocessing

step, for general Ising models on grids and random graphs as illustrated in

Figure 2.1. In a single run of the algorithm, we first generate the graph

G = (V,E): for grids, the graph is fixed, while for random graphs, the

graph is generated randomly each time. After generating the graph, we

generate the edge coefficients uniformly from [−Jmax,−Jmin] ∪ [Jmin, Jmax],

where Jmin = 0.4 and Jmax = 0.6. We then generate samples from the Ising

model by Gibbs sampling. The sample size ranges from 400 to 1000. The
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algorithm computes, for each pair of nodes i and j,

Îij = min
|S|≤D1

max
|T |≤D2

Î(Xi;Xj|XS, XT )

using the samples. For a particular threshold ε, the algorithm outputs (i, j)

as an edge if Îij > ε and gets an estimated graph Ĝ = (V, Ê). We select ε

optimally for each run of the simulation, using the knowledge of the graph,

such that the number of errors in Ê, including both errors in edges and

non-edges, is minimized. The performance of the algorithm in each case

is evaluated by the probability of success, which is the percentage of the

correctly estimated edges, and each point in the plots is an average over 50

runs. We then compare the performance of the algorithm under different

choices of D1 and D2.

four−neighbor grid eight−neighbor grid random graph

Figure 2.1: Illustrations of four-neighbor grid, eight-neighbor grid and the
random graph.

The experimental results for the algorithm with D1 = 0, . . . , 3 and D2 =

0, 1 applied to eight-neighbor grids on 25 and 36 nodes are shown in Fig-

ure 2.2. We omit the results for four-neighbor grids as the performances of

the algorithm with D2 = 0 and D2 > 0 are very close. In fact, four-neighbor

grids do not have many short cycles and even the shortest non-direct paths

are weak for the relatively small Jmax we choose, therefore there is no benefit

using a set T to separate the non-direct paths for edge detection. However,

for eight-neighbor grids which are denser and have shorter cycles, the prob-

ability of success of the algorithm significantly improves by setting D2 = 1,

as seen from Figure 2.2. It is also interesting to note that increasing from

D1 = 2 to D1 = 3 does not improve the performance, which implies that a

set S of size 2 is sufficient to approximately separate the non-neighbor nodes

in our eight-neighbor grids.

The experimental results for the algorithm with D1 = 0, . . . , 3 and D2 =
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Figure 2.2: Plots of the probability of success versus the sample size for 5×5
and 6× 6 eight-neighbor grids with D1 = 0, . . . , 3 and D2 = 0, 1.

0, 1 applied to random graphs on 20 and 30 nodes are shown in Figure 2.3.

For a random graph on n nodes with average degree d, each edge is included

in the graph with probability d
n−1

and is independent of all other edges. In

the experiment, we choose average degree 5 for the graphs on 20 nodes and

7 for the graphs on 30 nodes. From Figure 2.3, the probability of success of

the algorithm improves a lot when we increase D2 from 0 to 1, which is very

similar to the result of the eight-neighbor grids. We also note that, unlike

the previous case, the algorithm with D1 = 3 does have a better performance

than with D1 = 2 as there might be more short paths between a pair of nodes

in random graphs.
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Figure 2.3: Plots of the probability of success versus the sample size for
random graphs with D1 = 0, . . . , 3 and D2 = 0, 1.

In a true experiment where only the data is available and no prior knowl-

edge of the MRF is available, the choice of ε itself may affect the performance

33



of the algorithm. At this time, we do not have any theoretical results to in-

form the choice of ε. We briefly present a heuristic, which seems reasonable.

However, extensive testing of the heuristic is required before we can confi-

dently state that the heuristic is reasonable, which is beyond the scope of

this thesis. Our proposed heuristic is as follows.

For a given D1 and D2, we compute Îij for each pair of nodes i and j. If

the choice of D1 and D2 is good, Îij is expected to be close to 0 for non-edges

and away from 0 for edges. Therefore, we can view the problem of choosing

the threshold ε as a two-class hypothesis testing, where the non-edge class

concentrates near 0 while the edge class is more spread out. If we view Î, the

collection of Îij for all i and j, as samples generated from the distribution of

some random variable Z, then the hypothesis testing problem can viewed as

one of finding the right ε such that the density of Z has a big spike below

ε. One heuristic is to first estimate a smoothed density function from Î via

kernel density estimation [26] and then set ε to be the right boundary of the

big spike near 0.

In order to choose proper D1 and D2 for the algorithm, we can start with

(D1, D2) = (0, 0). At each step, we run the algorithm with two pairs of

values (D1 + 1, D2) and (D1, D2 + 1) separately, and choose the pair that has

a more significant change on the density estimated from Î as the new value

for (D1, D2). We continue this process and stop increasing D1 or D2 if at

some step there is no significant change for either pair of values.

Justifying this heuristic either through extensive experimentation or the-

oretical analysis is a topic for future research.
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CHAPTER 3

CLUSTERING IN RECOMMENDER
SYSTEMS

3.1 Introduction

In this chapter, we consider recommender systems where users and items form

clusters. The goal is to cluster both users and items using a small fraction of

noisy binary ratings that users give to items. We first try to understand the

fundamental limit of the number of observations required. Then we propose

three clustering algorithms and analyze their performances. In particular, our

results show an interesting trade-off between the amount of data available

and the running time of the algorithms.

3.2 Model and Main Results

3.2.1 Model

Our model is described in the context of recommender systems, but it is

applicable to other systems with binary data matrices having row and column

cluster structure. Consider a recommender system with n users and n items.

Let R be the rating matrix of size n×n where Rij is the rating user i gives to

item j. Assume both users and items form r clusters of size K = n/r. Users

in the same cluster give the same rating to items in the same cluster. The set

of ratings corresponding to a user cluster and a item cluster is called a block.

Let B be the block rating matrix of size r×r where Bkl is the block rating user

cluster k gives to item cluster l. Then the rating Rij = Bkl if user i is in user

cluster k and item j is in item cluster l. Further assume that entries of B are

independent random variables which are +1 or −1 with equal probability.

Thus, we can imagine the rating matrix as a block-constant matrix with all
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Table 3.1: Main results: Comparison of a lower bound and four algorithms.

regime in (K,ε) regime in (K,m) running time remark

lower bound nK2(1− ε)2 = O(1) m = O(n
1.5

K )

combinatorial method nK(1− ε)2 = Ω(log n) m = Ω(n
1.5
√

logn√
K

) exponential assuming noiseless

convex method K(1− ε) = Ω(logn) m = Ω(n
2 logn
K ) polynomial assuming Conjecture 3.1

spectral method K2(1− ε) = Ω(n log2 n) m = Ω(n
3 log2 n
K2 ) O(n3)

nearest-neighbor clustering n(1− ε)2 = Ω(log n) m = Ω(n1.5
√

log n) O(mr)

the entries in each block being either +1 or −1. Observe that if r is a fixed

constant, then users from two different clusters have the same ratings for

all items with some positive probability, in which case it is impossible to

differentiate between these two clusters. To avoid such situations, assume r

is at least Ω(log n).

Suppose each entry of R goes through an independent binary symmetric

channel with flipping probability p < 1/2, representing noisy user behavior,

and an independent erasure channel with erasure probability ε, modeling the

fact that some entries are not observed. The expected number of observed

ratings is m = n2(1 − ε). We assume that p is a constant throughout the

thesis and ε could converge to 1 as n→∞. Let R′ denote the output of the

binary symmetric channel and Ω denote the set of non-erased entries. Let

R̂ij = R′ij if (i, j) ∈ Ω and R̂ij = 0 otherwise. The goal is to exactly recover

the row and column clusters from the observation R̂.

3.2.2 Main Results

The main results are summarized in Table 3.1. Note that these results do

not explicitly depend on p. In fact, as p is assumed to be a constant strictly

less than 1/2, it affects the results by constant factors.

The parameter regime where exact cluster recovery is fundamentally im-

possible for any algorithm is proved in Section 3.4. The combinatorial

method, convex method and spectral method are studied in Section 3.5,

Section 3.6 and Section 3.7, respectively. We only analyze the combinatorial

method in the noiseless case where p = 0, but we believe a similar result is

true for the noisy case as well. The parameter regime in which the convex

method succeeds is obtained by assuming that a technical conjecture holds,

which is justified through extensive simulation. The parameter regime in
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which the spectral method succeeds is obtained for the first time for exact

cluster recovery with a growing number of clusters. The nearest-neighbor

clustering algorithm was proposed in [7]. It clusters the users by finding the

K − 1 most similar neighbors for each user. The similarity between users i

and i′ is measured by the number of items with the same observed rating,

i.e.,

sii′ =
n∑

j=1

I{R̂ij 6=0}I{R̂i′j 6=0}I{R̂ij=R̂i′j},

where I{·} is an indicator function. Items are clustered similarly. It is shown

in [7] that the nearest-neighbor clustering algorithm exactly recovers user

and item clusters when n(1− ε)2 > C log n for a constant C.

The number of observations needed for successful cluster recovery can be

derived from the corresponding parameter regime using the identity m =

n2(1−ε) as shown in Table 3.1. For better illustration, we visualize our results

in Figure 3.1. In particular, we take log(m/n) as x-axis and logK as y-axis

and normalize both axes by log n. Since exact cluster recovery becomes easy

when the number of observations m and cluster size K increase, we expect

that exact cluster recovery is easy near (1, 1) and hard near (0, 0).

From Figure 3.1, we can observe interesting trade-offs between algorithmic

running time and statistical performance. In terms of the running time, the

combinatorial method is exponential, while the other three algorithms are

polynomial. In particular, the convex method can be casted as a semidefi-

nite programming and solved in polynomial time. For the spectral method,

the most computationally expensive step is the singular value decomposition

of the observed data matrix which can always be done in time O(n3) and

more efficiently when the observed data matrix is sparse. It is not hard to

see that the time complexity for the nearest-neighbor clustering algorithm is

O(n2r) and more careful analysis reveals that its time complexity is O(mr).

On the other hand, in terms of statistical performance, the combinatorial

method needs strictly fewer observations than the other three algorithms

when there is no noise, and the convex method always needs fewer observa-

tions than the spectral method. It is somewhat surprising to see that the

simple nearest-neighbor clustering algorithm needs fewer observations than

the more sophisticated convex method when the cluster size K is O(
√
n).
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Figure 3.1: Summary of results in terms of number of observations m and
cluster size K. The lower bound states that it is impossible for any algo-
rithm to reliably recover the clusters exactly in the shaded regime (gray).
The combinatorial method, the convex method, the spectral method and the
nearest-neighbor clustering algorithm succeed in the regime to the right of
lines AE (yellow), BE (red), CE (blue) and AD (green), respectively.

In summary, we see that when more observations available, one can apply

algorithms with less running time while still achieving exact cluster recov-

ery. For example, consider the noiseless case with cluster size K = n0.8, the

number of observations per user required for cluster recovery by the com-

binatorial method, convex method, spectral method and nearest-neighbor

clustering algorithm are Ω(n0.1), Ω(n0.2), Ω(n0.4) and Ω(n0.5), respectively.

Therefore, when the number of observations per user increases from Ω(n0.1)

to Ω(n0.5), one can gradually reduces the computational complexity from

exponential-time to polynomial-time as low as O(n1.7).

The main results in this chapter of the thesis can be easily extended to the

more general case with n1 rows and n2 = Θ(n1) columns and r1 row clusters

and r2 = Θ(r1) column clusters. The sizes of different clusters could vary

as long as they are of the same order. Likewise, the flipping probability p

and the erasure probability ε could also vary for different entries of the data

matrix as long as they are of the same order. Due to space constraints, such

generalizations are omitted in this thesis.
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3.3 Related Work

In this section, we point out some connections of our model and results to

prior work. There is a vast literature on clustering and we only focus on theo-

retical works with rigorous performance analysis. More detailed comparisons

are provided after we present the theorems.

3.3.1 Graph Clustering

Much of the prior work on graph clustering, as surveyed in [27], focuses on

graphs with a single node type, where nodes in the same cluster are more

likely to have edges among them. A low-rank plus sparse matrix decomposi-

tion approach is proved to exactly recover the clusters with the best-known

performance guarantee in [28]. The same approach is used to recover the

clusters from a partially observed graph in [29]. A spectral method for exact

cluster recovery is proposed and analyzed in [30] with the number of clusters

fixed. More recently, [31] proved an upper bound on the number of nodes

“mis-clustered” by a spectral clustering algorithm in the high-dimensional

setting with a growing number of clusters. An interesting recent work [32]

studies the graph clustering problem under both non-adaptive and adaptive

sampling strategies of node pairs.

In contrast to the above works, in our model, we have a labeled bipartite

graph with two types of nodes (rows and columns). Notice that there are

no edges among nodes of the same type and cluster structure is defined for

the two types separately. In this sense, our cluster recovery problem can

be viewed as a natural generalization of graph clustering problem to labeled

bipartite graphs. In fact, our second algorithm via convex programming is

inspired by the work [28, 29, 33].

A model similar to ours but with a fixed number of clusters has been

considered in [34], where the spectral method plus majority voting is shown

to approximately predict the rating matrix. However, our third algorithm

via spectral method is shown to achieve exact cluster and rating matrix

recovery with a growing number of clusters. To our best knowledge, this is

the first theoretical result on spectral method for exact cluster recovery with

a growing number of clusters to our knowledge.
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3.3.2 Biclustering

Biclustering [35, 36, 37, 38] tries to find (overlap) sub-matrices with partic-

ular patterns in a data matrix. Many of the proposed algorithms are based

on heuristic searches without provable performance guarantees. Our clus-

ter recovery problem can be viewed as a special case where the data matrix

consists of non-overlapping sub-matrices with constant binary entries, and

this thesis provides a thorough study of this special biclustering problem.

Recently, there is a line of work studying another special case of bicluster-

ing problem, which tries to detect a single small submatrix with elevated

mean in a large fully observed noisy matrix [39]. Interesting statistical and

computational trade-offs are summarized in [40].

3.3.3 Low-Rank Matrix Completion

Under our model, the underlying true data matrix is a specific type of low-

rank matrix. If we recover the true data matrix, we immediately get the

user (or item) clusters by assigning the identical rows (or columns) of the

matrix to the same cluster. In the noiseless setting with no flipping, the

nuclear norm minimization approach [41, 42, 43] can be directly applied to

recover the true data matrix and further recover the row and column clus-

ters. Alternate minimization is another popular and empirically successful

approach for low-matrix completion [44]. However, it is harder to analyze

and the performance guarantee is weaker than nuclear norm minimization

[45]. In the low noise setting with the flipping probability restricting to be

a small constant, the low-rank plus sparse matrix decomposition approach

[46, 47, 48] can be applied to exactly recover data matrix and further recover

the row and column clusters.

The performance guarantee for our convex method is better than these

previous approaches and it allows the flipping probability to be any constant

less than 1/2. Moreover, our proof turns out to be much simpler. The

recovery of our true data matrix from binary observations can also be viewed

as a specific type of one-bit matrix completion problem recently studied in

[8]. However, [8] focuses on approximately recovering a low-rank matrix with

real-valued entries.
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3.4 Lower Bound

In this section, we derive a lower bound for any algorithm to reliably recover

the user and item clusters. The lower bound is constructed by considering

a genie-aided scenario where the set of flipped entries is revealed as side

information, which is equivalent to saying that we are in the noiseless setting

with p = 0. Hence, the true rating matrix R agrees with R̂ on all non-erased

entries. We construct another rating matrix R̃ with the same item cluster

structure as R but different user cluster structure by swapping two users

in two different user clusters. We show that if nK2(1 − ε)2 = O(1), then

R̃ agrees with R̂ on all non-erased entries with positive probability, which

implies that no algorithm can reliably distinguish between R and R̂ and thus

recover user clusters.

Theorem 3.1. Fix 0 < δ < 1. If nK2(1 − ε)2 < δ, then with probability at

least 1− δ, it is impossible for any algorithms to recover the user clusters or

item clusters.

Intuitively, Theorem 3.1 says that when the erasure probability is high

and the cluster size is small that nK2(1 − ε)2 = O(1), the observed rating

matrix R̂ does not carry enough information to distinguish between different

possible cluster structures.

3.5 Combinatorial Method

In this section, we study a combinatorial method which clusters users or items

by searching for a partition with the least total number of “disagreements”.

We describe the method in Algorithm 3 for clustering users only. Items are

clustered similarly. The number of disagreements Dii′ between a pair of users

i, i′ is defined as the number of items satisfying that: The two ratings given

by users i, i′ are both observed and the observed two ratings are different.

In particular, if for every item, the two ratings given by users i, i′ are not

observed simultaneously, then Dii′ = 0.

The idea of Algorithm 3 is to reduce the problem of clustering both users

and items to a standard user clustering problem without item cluster struc-

ture. In fact, this algorithm looks for the optimal partition of the users which

41



Algorithm 3 Combinatorial Method

1: For each pair of users i, i′, compute the number of disagreements Dii′

between them.
2: For each partition of users into r clusters of equal size K, compute its

total number of disagreements defined as

∑

i,i′ in the same cluster

Dii′ .

3: Output a partition which has the least total number of disagreements.

has the minimum total in-cluster distance, where the distance between two

users is measured by the number of disagreements between them. The fol-

lowing theorem shows that such simple reduction does not achieve the lower

bound given in Theorem 3.1. The optimal algorithm for our cluster recovery

problem might need to explicitly make use of both user and item cluster

structures.

Theorem 3.2. If nK(1 − ε)2 ≤ 1
4
, then with probability at least 3/4, Algo-

rithm 3 cannot recover user and item clusters.

Next we show that the above necessary condition for the combinatorial

method is also sufficient up to a logarithmic factor when there is no noise,

i.e., p = 0. We suspect that the theorem holds for the noisy setting as well,

but we have not yet been able to prove this.

Theorem 3.3. If p = 0 and nK(1− ε)2 > C log n for some constant C, then

a.a.s. Algorithm 3 exactly recovers user and item clusters.

This theorem is proved by considering a conceptually simpler greedy al-

gorithm that does not need to know K. After computing the number of

disagreements for every pair of users, we search for a largest set of users

which have no disagreement between each other, and assign them to a new

cluster. We then remove these users and repeat the searching process until

there is no user left. In the noiseless setting, the K users from the same true

cluster have no disagreement between each other. Therefore, it is sufficient

to show that, for any set of K users consisting of users from more than one

cluster, they have more than one disagreement with high probability under

our assumption.
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3.6 Convex Method

In this section, we show that the rating matrix R can be exactly recovered

by a convex program, which is a relaxation of the maximum likelihood (ML)

estimation. When R is known, we immediately get the user (or item) clusters

by assigning the identical rows (or columns) of R to the same cluster.

Let Y denote the set of binary block-constant rating matrix with r2 blocks

of equal size. As the flipping probability p < 1/2, Maximum Likelihood

(ML) estimation of R is equivalent to finding a Y ∈ Y which best matches

the observation R̂:

max
Y

∑

i,j

R̂ijYij

s.t. Y ∈ Y . (3.1)

Since |Y| = Ω(en), solving (3.1) via exhaustive search takes exponential time.

Observe that Y ∈ Y implies that Y is of rank at most r. Therefore, a natural

relaxation of the constraint that Y ∈ Y is to replace it with a rank constraint

on Y , which gives the following problem:

max
Y

∑

i,j

R̂ijYij

s.t. rank(Y ) ≤ r, Yij ∈ {1,−1}.

Further by relaxing the integer constraint and replacing the rank constraint

with the nuclear norm regularization, which is a standard technique for low-

rank matrix completion, we get the desired convex program:

max
Y

∑

i,j

R̂ijYij − λ‖Y ‖∗

s.t. Yij ∈ [−1, 1]. (3.2)

The clustering algorithm based on the above convex program is given in

Algorithm 4.

The convex program (3.2) can be casted as a semidefinite program and

solved in polynomial time. Thus, Algorithm 4 takes polynomial time. Our

performance guarantee for Algorithm 4 is stated in terms of the incoherence
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Algorithm 4 Convex Method

1: (Rating matrix estimation) Solve for Ŷ the convex program (3.2).

2: (Cluster estimation) Assign identical rows (columns) of Ŷ to the same
cluster.

parameter µ defined as follows. Since the rating matrix R has rank r, the

Singular Vector Decomposition (SVD) is R = UΣV >, where U, V ∈ Rn×r

are matrices with orthonormal columns and Σ ∈ Rr×r is a diagonal matrix

with non-negative entries. Define incoherence parameter µ > 0 such that

‖UV >‖∞ ≤ µ
√
r/n. A small value of µ means that the left and right singular

vectors of R are unaligned with each other. Denote the SVD of the block

rating matrix B by B = UBΣBV
>
B . In Lemma 3.1 we show that

‖UV >‖∞ = ‖UBV >B ‖∞/K, (3.3)

and thus it is not hard to show that µ is upper bounded by
√
r.

Lemma 3.1. µ ≤ √r.

Recent studies [41, 42, 43] in low-rank matrix completion have demonstrat-

ed that the number of samples needed for exact low-rank matrix recovery

depends on the incoherence parameter µ. Not surprisingly, the performance

guarantee for Algorithm 4 given by the following theorem also depends on µ.

Theorem 3.4. If n(1− ε) ≥ C ′ log2 n for some constant C ′, and

m > Cnrmax{log n, µ2}, (3.4)

where C is a constant and µ is the incoherence parameter for R, then a.a.s.

the rating matrix R is the unique maximizer to the convex program (3.2) with

λ = 3
√

(1− ε)n.

Our proof shows that with appropriate choices of λ, the nuclear norm

regularization is effective in “de-noising” and the effectiveness depends on

‖UV >‖∞. This is exactly why our performance guarantee depends on the

incoherence parameter µ. Note that Algorithm 4 is easy to implement as λ

only depends on the erasure probability ε, which can be reliably estimated

from R̂. Moreover, the particular choice of λ in the theorem is just to simplify
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Figure 3.2: Simulation result supporting Conjecture 3.1. The conjecture is

equivalent to ‖UBV >B ‖∞ = Θ(
√

log r
r

).

notations. It is straightforward to generalize our proof to show that the above

theorem holds with λ = C1

√
(1− ε)n for any constant C1 ≥ 3.

Using Lemma 3.1, we immediately conclude from the above theorem that

the convex program succeeds when m > Cnr2 for some constant C. However,

based on extensive simulation in Figure 3.2, we conjecture that the following

result is true.

Conjecture 3.1. µ = Θ(
√

log r) a.a.s.

Conjecture 3.1 is equivalent to ‖UBV >B ‖∞ = Θ(
√

log r
r

) due to (3.3). For a

fixed r, we simulate 1000 independent trials of B, pick the largest value of

‖UBV >B ‖∞, scale it by dividing
√

log r/r, and get the plot in Figure 3.2.

Assuming this conjecture holds, Theorem 3.4 implies that

m > Cnr log n

for some constant C is sufficient to recover the rating matrix, which is better

than the previous condition by a factor of r. We do not have a proof for the

conjecture at this time.

Comparison to previous work In the noiseless setting with p = 0, the

nuclear norm minimization approach [41, 42, 43] can be directly applied to

recover data matrix and further recover the row and column clusters. It is

shown in [43] that the nuclear norm minimization approach exactly recovers
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the matrix with high probability if m = Ω(µ2nr log2 n). The performance

guarantee for Algorithm 4 given in (3.4) is better by at least a factor of log n.

Theorem 3.3 shows that the combinatorial method exactly recovers the row

and column clusters if m = Ω(nr1/2 log1/2 n), which is substantially better

than the two previous conditions by at least a factor of r1/2.

In the low noise setting with p restricted to be a small constant, the low-

rank plus sparse matrix decomposition approach [46, 47, 48] can be applied to

exactly recover data matrix and further recover the row and column clusters.

It is shown in [48] that a weighted nuclear norm and l1 norm minimization

succeeds with high probability if m = Ω(ρrµ
2nr log6 n) and p ≤ ρs for two

constants ρr and ρs. The performance guarantee for Algorithm 4 given in

(3.4) is better by several log n factors and we allow the fraction of noisy entries

p to be any constant less than 1/2. Moreover, our proof turns out to be much

simpler. The recovery of our true data matrix from binary observations can

also be viewed as a specific type of one-bit matrix completion problem [8]:

Given an unknown rank-r matrix M , generate a binary matrix Y ∈ {±1}n×n
such that Yij = 1 with probability f(Mij) and the task is to recover M from

a partial observation of Y . By taking f(1) = 1− p, f(−1) = p, our problem

reduces to the one-bit matrix completion problem. It is shown in [8] that

approximate recovery is possible using the maximum likelihood estimation

with nuclear norm constraint. In contrast, as shown in Theorem 4, our convex

method yields exact recovery.

3.7 Spectral Method

In this section, we study a polynomial-time clustering algorithm based on

the spectral projection of the observed rating matrix R̂. The description is

given in Algorithm 5.

Step 1 of the algorithm produces two subsets, Ω1 and Ω2, of Ω such that:

(1) for i ∈ {1, 2}, each rating is observed in Ωi with probability 1−ε
2
, inde-

pendently of other elements; and (2) Ω1 is independent of Ω2. The purpose

of Step 1 is to remove dependency between Step 2 and Steps 3 and 4 in

our proof. In particular, to establish our theoretical results, we identify the

initial clustering of users and items using Ω1, and then majority voting and

reclustering are done using Ω2. In practice, one can simply use the same set
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Algorithm 5 Spectral Method

1: (Producing two subsets, Ω1 and Ω2, of Ω via randomly sub-sampling Ω)
Let δ = 1−ε

4
, and independently assign each element of Ω only to Ω1 with

probability 1
2
− δ, only to Ω2 with probability 1

2
− δ, to both Ω1 and

Ω2 with probability δ, and to neither Ω1 nor Ω2 with probability δ. Let
R̂

(1)
i,j = R̂i,jI{(i,j)∈Ω1} and R̂

(2)
i,j = R̂i,jI{(i,j)∈Ω2} for i, j ∈ {1, . . . , n}.

2: (Approximate clustering) Let Pr(R̂
(1)) denote the rank r approximation

of R̂(1) and let xi denote the i-th row of Pr(R̂
(1)). Construct user clusters

Ĉ1, . . . , Ĉr sequentially as follows. For 1 ≤ k ≤ r, after Ĉ1, . . . , Ĉk−1

have been selected, choose an initial user not in the first k − 1 clusters,
uniformly at random, and let Ĉk = {i′ : ||xi − xi′ || ≤ τ}. (The threshold
τ is specified below.) Assign each remaining unclustered user to a cluster

arbitrarily. Similarly, construct item clusters D̂1, . . . , D̂r based on the
columns of Pr(R̂

(1)).
3: (Block rating estimation by majority voting) For k, l ∈ {1, . . . , r}, let

V̂kl =
∑

i∈Ĉk

∑
j∈D̂l R̂

(2)
ij be the total vote that user cluster Ĉk gives to

item cluster D̂l. If V̂kl ≥ 0, let B̂kl = 1; otherwise, let B̂kl = −1.
4: (Reclustering by assigning users and items to nearest centers) Recluster

users as follows. For k ∈ {1, . . . , r}, define center µk for user cluster

Ĉk as µkj = B̂kl if item j ∈ D̂l for all j. Assign user i to cluster k if

〈R̂(2)
i,· , µk〉 ≥ 〈R̂(2)

i,· , µk′〉 for all k′ 6= k. Recluster items similarly.
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of observations, i.e., Ω1 = Ω2 = Ω.

The following theorem shows that the spectral method exactly recovers the

user and item clusters under a condition stronger than (3.4). In particular,

we show that Step 3 exactly recovers the block rating matrix B and Step 4

cleans up clustering errors made in Step 2.

Theorem 3.5. If

n(1− ε) > Cr2 log2 n, (3.5)

for a positive constant C, then Algorithm 5 with τ = 12(1− ε)1/2r log n a.a.s.

exactly recovers user and item clusters, and the rating matrix R.

Algorithm 5 is also easy to implement as τ only depends on parameters

ε and r. The erasure probability ε can be reliably estimated from R̂ using

empirical statistics. The number of clusters r can be reliably estimated by

searching for the largest eigen-gap in the spectrum of R̂ (see Algorithm 2

and Theorem 3 in [28] for justification). We further note that the threshold

τ used in the theorem can be replaced by C1(1− ε)1/2r log n for any constant

C1 ≥ 12.

Comparison to previous work Variants of spectral method are widely

used for clustering nodes in a graph. Step 2 of Algorithm 5 for approximate

clustering has been previously proposed and it is analyzed in [49]. In [30],

an adaptation of Step 1 is shown to exactly recover a fixed number of clus-

ters under the planted partition model. More recently, [31] proves an upper

bound on the number of nodes “mis-clustered” by spectral method under the

stochastic block model with a growing number of clusters.

Compared to previous work, the main novelty of Algorithm 5 is the Steps 1,

3, and 4 which allow for exact cluster recovery even with a growing number of

clusters. To our knowledge, Theorem 3.5 provides the first theoretical result

on the spectral method for exact cluster recovery with a growing number of

clusters.

3.8 Numerical Experiments

In this section, we illustrate the performance of the convex method and the

spectral method using synthetic data.
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3.8.1 Convex Method

The convex program (3.2) can be formulated as a semidefinite program (SDP)

and solved using a general purpose SDP solver. However this method does

not scale well for our problem when the matrix dimension n is large. Instead

we apply the accelerated gradient descent method proposed in [50, 51] which

aims to solve the optimization problem

min
Y
f(Y ) + λ||Y ||∗

for some smooth function f(Y ). In our case, the smooth function is linear,

i.e., f(Y ) = −〈R̂, Y 〉. Define proximal regularization of f(Y ) at X as

Pµ(X, Y ) =f(X)− 〈Y −X, R̂〉+
µ

2
||Y −X||2F

=− 〈Y, R̂〉+
µ

2
||Y −X||2F

for some constant µ > 0. Then it is shown in [50] that (3.2) is solved by the

following iterative algorithm:

Yk = arg min
Yij∈[−1,1]

Pµ(Yk−1, Y ) + λ||Y ||∗. (3.6)

We approximate Yk by first solving the unconstrained optimization problem

min
Y
Pµ(Yk−1, Y ) + λ||Y ||∗ (3.7)

and then project each entry of the solution to [−1, 1], where we use P[−1,1] to

denote the projection operator. The minimizer of (3.7) can be explicitly writ-

ten in terms of the soft-thresholding operator D defined as follows. For any

γ ≥ 0 and for any matrix X with SVD X = UΣV > where Σ = diag({σi}),
define

Dγ(X) = Udiag({max(σi − γ, 0)})V >.

Intuitively, the soft-thresholding operator D shrinks the singular values of X

towards zero. Applying Theorem 2.1 in [52], we get

Dλ
µ

(
X +

R̂

µ

)
= arg min

Y
Pµ(X, Y ) + λ||Y ||∗.
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Thus, the update equation (3.6) of Yk is approximated by

Yk = P[−1,1]

(
Dλ

µ
(Yk−1 +

R̂

µ
)

)
.

This iterative algorithm can further be accelerated to achieve the optimal

convergence rate of O(1/k2), which results Algorithm 6 [50]. Note that we

do not use a fixed regularization parameter λ. The algorithm has better

performance when we start with λ0 = 3
√

(1− ε)n as in Theorem 3.4 and

decrease it gradually until it reaches λ̄ =
√

(1− ε)n. In the experiment, we

choose µk = 1.

Algorithm 6 Accelerated Gradient Descent Algorithm

Input: R̂
Initialization: Set Y0 = Y−1 = 0 and α0 = α−1 = 1. Pick λ0 =
3
√

(1− ε)n and λ̄ =
√

(1− ε)n. Set γ = 0.95. Set µk = 1.
for k = 0, 1, 2, . . . do
Zk = Yk + αk−1−1

αk
(Yk − Yk−1)

Yk+1 = P[−1,1]

(
Dλk

µk

(
Zk + R̂

µk

))

αk+1 =
1+
√

1+4α2
k

2

λk+1 = max{γλk, λ̄}.
end for

We simulate Algorithm 6 on the synthetic data. Assume K and ε take the

form given by

K = nβ, ε = 1− n−α. (3.8)

Theorem 3.4 shows that the convex program (3.4) recovers the rating matrix

exactly when α < β, assuming Conjecture 3.1 holds.

We generate the observed data matrix with n = 2048, p = 0.05 and various

choices of β, α ∈ (0, 1), and apply Algorithm 6. The solution Ŷ is evaluated

by the fraction of entries with correct signs, i.e., 1
n2 |{(i, j) : sign(Ŷij) = Rij}|.

The result is plotted in grayscale in Figure 3.3. In particular, the white area

represents exact recovery and the black area represents around 50% recovery,

which is equivalent to random guess. The red line represents α = β, which

shows the performance guarantee given by Theorem 3.4. As we can see, the

simulation results roughly match the theoretical performance guarantee.
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Figure 3.3: Simulation result of the convex method (Algorithm 6) with n =
2048 and p = 0.05. The x-axis corresponds to erasure probability ε = 1−n−α
and y-axis corresponds to cluster size K = nβ. The grayscale of each area
represents the fraction of entries with correct signs, with white representing
exact recovery and black representing around 50% recovery. The red line
shows the performance of the convex method predicted by Theorem 3.4.

3.8.2 Spectral Method

We simulate the spectral method given in Algorithm 5 on synthetic data.

Assume K and ε take the form of (3.8). Theorem 3.5 shows that the spectral

method exactly recovers the clusters when α < 1
2
(β + 1).

We generate the observed data matrix according to our model with n =

211, 212, 213 and p = 0.05, and various choices of β, α ∈ (0, 1). We apply

Algorithm 5 with slight modifications. Firstly, we do not split the observation

as in Step 1 but use all the observations for the later steps, i.e., Ω1 = Ω2 = Ω.

Secondly, in Step 2 we use the more robust k-means algorithm to cluster

users and items instead of the thresholding based clustering algorithm. The

clustering error is measured by the fraction of mis-clustered users and items.

We say the algorithm succeeds if the clustering error is less than 5%.

For each β, we run the algorithm for several values of α and record the

largest α for which the algorithm succeeds. The result is depicted in Fig-

ure 3.4. The solid blue line represents α = 1
2
(β+ 1), which shows the perfor-

mance guarantee of the spectral method given by Theorem 3.5. The solid red

line represents α = β, which shows the performance guarantee of the convex

method given by Theorem 3.4. We can see that the simulation results of the
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Figure 3.4: Simulation result of the spectral method given in Algorithm
5 with n = 211, 212, 213 and p = 0.05. The x-axis corresponds to erasure
probability ε = 1 − n−α and y-axis corresponds to cluster size K = nβ.
Each data point in the plot indicates the maximum value of α for which
the spectral method succeeds with a given β. The blue solid line shows the
performance of the spectral method predicted by Theorem 3.5. The red solid
line shows the performance of the convex method predicted by Theorem 3.4.

spectral method are better than its theoretical performance guarantee, but

worse than the theoretical performance guarantee of the convex method.
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CHAPTER 4

RANKING ITEMS USING PAIRWISE
COMPARISONS FROM MULTIPLE TYPES

OF USERS

4.1 Introduction

In this chapter, we consider the problem of ranking items using pairwise com-

parisons obtained from multiple types of users. This scenario is similar to

the previous one, but instead of giving binary ratings, users provide pairwise

comparisons of items. We propose a two-step algorithm for estimating the

score vectors: first cluster the users using projected comparison vectors and

then estimate a score vector separately for each cluster by the maximum like-

lihood estimation for the classical Bradley-Terry model. The key observation

is that, even though each user is represented by a high-dimensional compar-

ison vector, the corresponding expected comparison vector is determined by

only a small number of parameters and it lies close to a low-dimensional

linear subspace.

4.2 Problem Setup

Consider a system with r user clusters of sizes K and m items and let n = rK.

Each user u has a score vector for the items θu = (θu,1, . . . , θu,m), and it

compares items according to the Bradley-Terry model: it prefers item i over

item j with probability eθu,i

eθu,i+eθu,j
and the other way around with probability

eθu,j

eθu,i+eθu,j
. Assume users in the same cluster have the same score vector and

denote the common score vector for cluster k by θk. Since θk is shift invariant,

i.e., (θk,1, . . . , θk,m) and (θk,1 + C, . . . , θk,m + C) for any C define the same

probabilities in the Bradley-Terry model, to eliminate the ambiguity and

without loss of generality, we always shift θk to ensure that
∑

i θk,i = 0. In

this thesis, we will assume θk’s are generated independently as follows: for
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each k, generate θ0
k,i i.i.d. uniformly in [0, b], then define

θk,i = θ0
k,i −

1

m

m∑

i=1

θk,i.

Clearly,
∑

i θk,i = 0 and |θk,i − θk,j| ≤ b for any k, i and j. Though θk,i are

not independent, we have θk,i − θk,j = θ0
k,i − θ0

k,j.

The comparison result is represented an n×
(
m
2

)
sample comparison matrix

R. The u-th row Ru of R is the comparison vector by user u for u = 1, . . . , n.

The columns are indexed by two numbers i, j = 1, . . . ,m with i < j, and

the ij-th column corresponds to the comparisons for item i and j. For each

user u and item i and j with i < j, we sample user u’s comparison of item i

and j with probability 1− ε independently. Let Ru,ij = 1 if u prefers i over

j, Ru,ij = −1 if u prefers j over i, and Ru,ij = 0 if u’s comparison is not

sampled. Then

Ru,ij =





1 w.p. (1− ε) eθu,i

eθu,i+eθu,j

0 w.p. ε

−1 w.p. (1− ε) eθu,j

eθu,i+eθu,j
.

Our goal is to estimate the score vectors θu from R.

4.3 Related Work

The Bradley-Terry model is a probabilistic way of modeling the rank aggrega-

tion problem. Here we briefly discuss another old and popular framework for

rank aggregation. By viewing the scores for items as potentials that should

match the comparison data, [53] proposed a simple least square approach

for ranking football teams. The recent work [54] reformulates the problem

using combinatorial Hodge theory and further decomposes the residual into

local and global inconsistencies. This result is explained with more elemen-

tary linear algebra tools in [55] and extensive numerical experimental studies

comparing the algorithms can be found therein.

To solve the Bradley-Terry model, in addition to the maximum likelihood

estimation, several Markov chain based iterative methods have been proposed

[56, 12]. It is shown in [12] that their algorithm has near optimal performance
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when applied to estimate the score vectors for the Bradley-Terry model.

Several generalizations of the classical Bradley-Terry model are studied in

[11]. There are also other works focusing on permutations rather than scores

[57, 58]. Most of the literature on rank aggregation assume that there is only

one type of users.

A generalized Bradley-Terry model is considered in [59] for the crowd-

sourced setting where users have different qualities and the maximum likeli-

hood algorithm is studied. We note that under this assumption, users still

share the same score vector. A mixture approach is proposed in [60] for clus-

tering heterogeneous ranking data and an effient EM algorithm is derived for

parameter estimation. This method can take rankings of different lengths

as input. However, no analytical performance guarantee is provided for the

clustering.

Another similar line of work considers rating prediction using ratings of

items from multiple types of users [7, 61, 62]. Our clustering algorithms are

related to the algorithms in [61, 62]. The benefit of pairwise comparisons is

that they are usually more reliable and consistent than the ratings. On the

other hand, the number of pairwise comparisons is much larger than the num-

ber of items, thus the comparison vector is a much higher dimensional vector

compared to a ranking of the items, which presents a different challenge in

coming up with an algorithm for our problem.

4.4 Summary of Main Results

Before going into the details of our algorithm, we outline the main ideas in

this section.

In this problem, we observe roughly (1− ε)n
(
m
2

)
comparisons from n users.

Unlike the classical Bradley-Terry model, these users come from r clusters

with different score vectors. If one simply treats the comparisons as being

from users in a single cluster, the estimated score vector will only represent

an aggregate opinion of all clusters and do not tell much about any indi-

vidual user. Therefore, in this thesis, we consider a two-step algorithm for

estimating the score vectors: it first clusters the users and then estimate a

score vector for each cluster separately.

Each user is represented by the comparisons he/she provides. For each
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user, there are m parameters we are interested in, however, the comparisons

are given by a length
(
m
2

)
binary vector which is extremely noisy. So instead

of directly clustering comparison vectors, we would like to first denoise these

vectors. For the moment, it is easier to understand the expected behavior

of the comparison vectors and the difference from the actual comparison

vectors can be taken care of later by concentration results. Consider user u

with comparison vector Ru. The expectation of each entry is

E [Ru,ij] =(1− ε)e
θu,i − eθu,j
eθu,i + eθu,j

=(1− ε)e
θu,i−θu,j − 1

eθu,i−θu,j + 1

,(1− ε)f(θu,i − θu,j),

where f(x) = ex

ex+1
. Let A ∈ {±1, 0}m×(m2 ) be the matrix with the ij-th

column being ei − ej, where ei is the length m vector with all 0s except for

a 1 in the i-th coordinate. The expectation R̄u , E [Ru] = (1 − ε)f(θuA).

Though the dependence of R̄u on θu is nonlinear, the key observation is that,

when b is small or |θu,i − θu,j| is small, we can linearize the function f at 0

and get

R̄u,ij ≈ (1− ε)θu,i − θu,j
2

or R̄u ≈ (1− ε)θuA
2
.

The important thing to notice is that the matrix A multiplied with θu is a

known matrix the same for all users and independent of the observed com-

parisons. In this approximately linear regime, the immediate thing to do

to reduce the noise of Ru is to project it onto the linear space spanned

by the rows of A or the row space of A, and we denote the projection by

Su = PA(Ru). The signal θu’s strength in S̄u , E [Su] is roughly the same as

in R̄u. However, as A is an m ×
(
m
2

)
matrix, the noise strength is expected

to be reduce by factor of m. Because Su is less noisy compared with Ru, we

get more reliable clustering performance when using Su’s. More important-

ly, it turns out that this projection is also helpful when b is not necessarily

small. We remark that this result is somewhat surprising since the expected

comparison vector is a nonlinear function of the score vector.

After clustering, we pull together users with the same or similar score

vectors. Now it makes sense to view each cluster of users as from a single

cluster and we applies the maximum likelihood estimation for the classical
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Bradley-Terry model to estimate the score vectors. We show that, when the

number of misclustered users is small compared to the cluster size (which

happens with high probability), the score vector estimated for each cluster

is a good approximation of the true score vector.

Using the above intuition, we derive the following main result of this chap-

ter of the thesis.

Theorem 4.1. If Km2(1− ε) > C ′rmax{m,n} log5 n logm and b ∈ [0.6, 5],

then

||θ̂u − θu||2
||θu||2

≤ (eb + 1)2

beb
C

log2 n

except for K
log2 n

users a.a.s.

Since our problem involves r ranking problems of size m, at least rm logm

comparisons are required to reliably estimate the score vectors. Theorem 4.1

shows that our algorithm needs approximately

1

2
(1− ε)Km2 = O(r2 max{m,n}poly(log n) logm)

comparisons. Suppose n and m are on the same order. If r is polylog in

n or m, then our analysis shows that we require only a polylog factor of m

more measurements than the minimum required. In the rest of the thesis,

we present the intermediate theorems from which the above theorem imme-

diately follows. As mentioned earlier, the proofs of all the results are in the

supplemental material.

4.4.1 Preprocessing the Samples

Recall that our algorithm has two steps: user clustering and score vector es-

timation. To remove the dependency between these two steps in our analysis,

we divide the sampled comparisons into two smaller samples with indepen-

dent support sets. We emphasize that this is only necessary for the analysis,

and in practice one can use R for both steps. Let Ω be the support of R, i.e.,

Ω = {(u, ij)|Ru,ij 6= 0}. We construct two sets Ω1 and Ω2 by independently

assigning each element of Ω only to Ω1 or Ω2 with probability b and to both

57



Ω1 and Ω2 with probability a, for some a, b ∈ (0, 1). Lemma 4.1 shows that

for proper choice of a and b, Ω1 and Ω2 are independent.

Lemma 4.1. When a = (1 − ε)/4 and b = (1 + ε)/4, Ω1 and Ω2 are inde-

pendent and P [(u, ij) ∈ Ω1] = P [(u, ij) ∈ Ω2] = (1− ε)/2.

Define R
(1)
u,ij = Ru,ijI{(u,ij)∈Ω1} and R

(2)
u,ij = Ru,ijI{(u,ij)∈Ω2}, and in the algo-

rithm, we use R(1) and R(2) for the first and second step, respectively.

4.5 Clustering

In this section, we present two algorithms for clustering the users using the

sampled comparison matrix R(1). To simplify the notation, we abuse the

notation by calling the sampled comparison matrix R instead through this

section, but we note that the sampling probability is only (1− ε)/2.

As mentioned in Section 4.4, the comparison vectors for the users are in

high-dimensional space and are very noisy for clustering. When b is small,

by a linearization argument, we show that the expected comparison vectors

R̄u’s are close to the row space of A, therefore we can project the comparison

vectors onto this linear subspace to reduce the noise before clustering. Now

we describe the projection in more detail.

4.5.1 Cluster Separation Preserving Projection

We first summarize a few properties of A.

Lemma 4.2. The matrix A is of rank m−1 with SVD A =
√
mUV >, where

U ∈ Rn×(m−1) and V ∈ R(m2 )×(m−1). Moreover, the l2-norms of the rows of U

and V are
√

(m− 1)/m and
√

2/m, respectively.

Note that V > is an orthonormal basis of the row space of A and the

projection of any row vector η> onto this space is given by η>V V >. In

particular, the cosine of the angle between η> and the row space of A is
||η>V ||2
||η||2 .

For any user u, we showed in Section 4.4 that when |θu,i − θu,j| are small

for any i and j, R̄u is close to the row space of A. Here we consider the

other extreme when |θu,i − θu,j| → ∞ for any i and j. In this case, we have
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R̄u,ij ≈ 1−ε
2

sign(θu,i − θu,j), and Lemma 4.3 implies that R̄u is again close to

the row space of A by showing that the angle between R̄k and the row space

of A is small.

Lemma 4.3. For any θk ∈ Rm and assume θk,i 6= θk,j for any i and j. Define

η ∈ {−1,+1}(m2 ) as ηij = sign(θk,i− θk,j). Then ||η>V ||22 = 1
3
(m2− 1). Since

||η||22 = 1
2
m(m − 1), the angle between η> and row space of A is arccos

√
2
3

in the limit as m→∞.

Motivated by the linearization argument presented in Section 4.4 and the

above observation, we instead represent the users by the projected compari-

son vectors Su = RuV which is of length m− 1. By the assumption on θu’s,

the rows of R̄ = E [R] and S̄ = E [S] are the same for users in the same

cluster and denote the common row for cluster k by R̄k and S̄k, respectively.

It is not difficult to see that ||R̄k−R̄k′||2 is of order O((1−ε)m). Theorem 4.2

shows that S̄k’s are also separated by a distance of C(1− ε)m, which means

the separation between R̄k’s are preserved after the projection.

Theorem 4.2. Assume m ≥ C ′ log r for some constant C ′. If b ∈ [0.6, 5] or

b ≥ C ′′m3 logm, then a.a.s. there exists some constant C such that for any

k 6= k′,

||S̄k − S̄k′||2 ≥ C(1− ε)m.

We note that even though this lemma requires b ∈ [0.6, 5] or b very large,

our experiment shows that the S̄k’s are in fact well separated for any b ≥ 0.6.

Moreover, our analysis does not restrict to the Bradley-Terry model. For any

pairwise comparison model, as long as R̄u,ij depends on θu,i − θu,j through

a function with hyperbolic tangent shape, the same result should still hold.

We note that a lower bound on b is required since, if b is very small, then all

θu,i’s are close to zero and there is no way to distinguish between the clusters.

4.5.2 Two Clustering Algorithms

Our first algorithm is called projected clustering and it clusters the rows of

the matrix S = RV .

The following theorem shows that this algorithm clusters the users exactly

when the number of observations is large enough.
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Algorithm 7 Projected Clustering

Step 1: Define S = RV .
Step 2: Construct the clusters Ĉ1, . . . , Ĉr sequentially. For 1 ≤ k ≤ r, after
Ĉ1, . . . , Ĉk−1 have been selected, choose an initial user u not in the first
k − 1 clusters uniformly at random, and let Ĉk = {u′ : ||Su − Su′ ||2 ≤ τ}
where the threshold τ is specified later. Assign each remaining unclustered
user to a cluster arbitrarily.

Theorem 4.3. If m(1− ε) > C log n for some constant C and b ∈ [0.6, 5] or

b ≥ C ′m3 logm, then a.a.s. Algorithm 7 with τ = 6
√

(1− ε)m log n clusters

the users exactly.

Algorithm 7 applies simple nearest-neighbor clustering and does not make

full use of the cluster structure. One would expect that the clustering is easier

when the cluster size K is larger but the result in Theorem 4.3 is independent

of K. In the following, we will consider a variation of the algorithm based

on the spectral method, which we call projected spectral clustering. Let S̃

be the rank r approximation of S, then our new algorithm clusters the rows

of S̃ instead of the rows of S.

Algorithm 8 Projected Spectral Clustering

Step 1: Define S = RV . Let S̃ be the rank r approximation of S.
Step 2: Construct the clusters Ĉ1, . . . , Ĉr sequentially. For 1 ≤ k ≤ r, after
Ĉ1, . . . , Ĉk−1 have be selected, choose an initial user u not in the first k− 1
clusters uniformly at random, and let Ĉk = {u′ : ||S̃u − S̃u′ ||2 ≤ τ} where
the threshold τ is specified later. Assign each remaining unclustered user
to a cluster arbitrarily.

The following theorem shows that Algorithm 8 clusters users approximate-

ly when the number of samples is large enough. In particular, it shows that

there are at most o(K) users which are assigned to the wrong clusters.

Theorem 4.4. Let Ck denote the true cluster k and Ĉk denote the k-th

cluster generated by Algorithm 8 with τ = 32
√

2 (1−ε)rmax{m,n}
K

log5/2 n. If

Km2(1 − ε) > Crmax{m,n} log5 n and b ∈ [0.6, 5] or b ≥ C ′m3 logm,

then a.a.s. there exists a permutation π such that |Ck 4 Ĉπ(k)| ≤ K
log2 n

and∑
k |Ck 4 Ĉπ(k)| ≤ 2K

log2 n
, where 4 denotes the symmetric difference of two

sets.
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Compared with the previous result, this theorem shows that Algorithm 8

only approximately clusters the users, i.e., it allows o(K) misclustered users

in each cluster, however, it requires fewer observations when K > Cr log4 n.

Based on our experiment, we believe that in practice Algorithm 8 is always

better than Algorithm 7, and the requirement of K being large is an artifact

of the analysis.

4.6 Score Vector Estimation

In this section, we consider the problem of estimating the score vectors for

users using the sampled comparison matrix R(2). After clustering the users

as in Section 4.5, we perform the score vector estimation for each cluster

separately and will only take one such cluster Ĉ as an example. For the clus-

tering step, we will assume either the result of Theorem 4.3 or Theorem 4.4

holds, thus cluster Ĉ is at least approximately equal to some true cluster C,
i.e., |C∆Ĉ| ≤ K/ log2 n, and there are at most K/ log2 n users assigned to the

wrong clusters. To simplify the notation, we omit the subscript and use θ to

denote the true score vector for the cluster C throughout this section.

To estimate the score vectors for the users in Ĉ, we view these users as

from a single cluster and apply the maximum likelihood estimation for the

Bradley-Terry model to get a common score vector θ̂. Theorem 4.5 shows

that when the number of comparisons is large enough, the relative error
||θ̂−θ||2
||θ||2 is of order o(1) when n → ∞. We should emphasize that θ̂ is only a

good approximation for the score vectors of the users from cluster C and it

is likely to be a bad estimate for the small number of users from some other

clusters.

Theorem 4.5. Assume (1 − ε)mK > C ′ log2 n logm for some constant C ′.

Then a.a.s. there exists some constant C such that

||θ̂ − θ||2
||θ||2

≤ (eb + 1)2

beb
C

log2 n
.

61



4.7 Experiments

In this section, we illustrate the performance of our algorithm using synthetic

data. In the first experiment, we compare Algorithms 7 and 8 with a stan-

dard spectral clustering algorithm, and show that the projection is essential

for clustering the users. In the second experiment, we demonstrate the per-

formance of score vector estimation and suggest a heuristic for estimating

the number of clusters.

4.7.1 Clustering Performance Comparison

In Algorithms 7 and 8, we cluster the rows of S and S̃ using a thresholding

type of algorithm, which is easy to analyze. However, in practice, we will

always use K-means clustering instead as it is more robust. We initialize the

centers for K-means clustering as follows. First, randomly pick a row as a

center. Then pick the row whose minimum distance from existing centers is

maximized and add it to the centers. Continue this process until we have

picked r centers. For comparison purpose, we also consider the standard

spectral clustering algorithm that applies the K-means algorithm to cluster

the rows of R̃, which is the rank r approximation of R.
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Figure 4.1: Performance comparison of the standard spectral clustering algo-
rithm and Algorithms 7 and 8. The y-axis is β which represents the erasure
probability ε = 1 − 1

mβ
. The algorithms succeed in the parameter regime

below the corresponding curves.

Let {Ck} denote the true clusters and {Ĉk} denote the clusters generated

by some clustering algorithm. For each k, we say Ĉk corresponds to true
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cluster k′ if the majority of users in Ĉk are from Ck′ , and we count any user

who is from a different true cluster as an error. Then the performance is

measured by the total number of errors divided by the total number of users,

i.e., the fraction of misclustered users.

We fix m = n = 120 and b = 5 or 20. Figure 4.1 shows the performance

of these three algorithms. The x-axis is the number of clusters r and y-axis

corresponds to the erasure probability ε. To better visualize the result, we

choose the normalized log scale β = log(1−ε)−1

logm
as y-axis, i.e., ε = 1 − 1

mβ
.

Each point on a curve shows, for the given number of clusters r, the largest

erasure probability ε such that the average fraction of misclustered users of

an algorithm over 50 expriments is less than 5%, in which case we say the

algorithm succeeds. In this figure, the algorithms succeed in the parameter

regime below the corresponding curves.

Compared to our algorithms, the standard spectral clustering algorithm

has very poor performance. It directly approximates R̄ and requires many

more samples, while our algorithms only approximate S̄. On the other hand,

as mentioned earlier, Algorithm 8 that uses the rank r approximation S̃

performs better than Algorithm 7 which uses S in all range of r. Note that

the case b = 20 is not covered by our theorems, but Figure 4.1 still illustrates

good performance in that case.

4.7.2 Estimating the Number of Clusters r

In practice, the number of user clusters r is usually not known a priori. One

way to get around this difficulty is to first guess the number of clusters r̃

and then apply our algorithm. In the experiment, we first clusters the rows

of S̃ using the K-means algorithm for each r̃ and then apply the maximum

likelihood estimation for the score vector in each cluster.

We fix m = n = 120, b = 5 and ε = 0.95. Figure 4.2 shows the simulation

results for r = 1, 2, 4 and 8. For each r, the blue curve shows how the

relative error ||θ̂−θ||2||θ||2 changes with r̃. When r̃ is smaller than r, two or more

true clusters are assigned to one cluster and the error in θ̂ is large. On

the other hand, when r̃ is equal or slightly larger than r, the estimation θ̂

approximate θ quite well as each cluster returned by our clustering algorithm

is mainly consisted of users from one true cluster. In particular, in the first
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plot where there is only one cluster, the relative estimation error does not

grow much even for r̃ = 6. However, when r̃ is too large, there will be many

small clusters and the variance in θ̂ can be very large, which also could result

large estimation error.

If we view θ̂ as a function of r̃, the red curve shows how the change of θ̂

in r̃, i.e., ||θ̂(r̃) − θ̂(r̃ − 1)||2, changes with r̃. For comparison purpose, we

normalize this difference by ||θ||2. From the experiment, a good heuristic

for identifying the number of clusters r is by looking for the r̃ such that the

change ||θ̂(r̃)− θ̂(r̃ − 1)||2 is minimized.
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Figure 4.2: Score vector estimation for different r. For each r, the blue curve

shows how the relative error ||θ̂−θ||||θ|| changes with r̃, and ||θ̂−θ||
||θ|| is minimized

when r̃ = r. From the red curve, r can be identified by looking for the r̃ such
that the change ||θ̂(r̃)− θ̂(r̃ − 1)|| is minimized.
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CHAPTER 5

CONCLUSION AND FUTURE
DIRECTIONS

In this thesis we study the problem of learning the underlying network struc-

ture from the observed behavior of individual nodes. Such learning problems

are computationally intractable, in general, for large networks. To facilitate

efficient algorithms, we focus on two types of simplified structure assump-

tions on the network. In the first part, we consider loosely connected MRFs

where the dependence of the nodes is encoded by a graph. The key assump-

tion is that the network is sparse in the sense that the number of short paths

between any pair of nodes is small, which allows us to propose a low complex-

ity search-based structure learning algorithm. In the second and third parts,

we turn to the case where nodes form clusters and analyzed several practical

algorithms such as spectral clustering and convex relaxation of maximum

likelihood estimation. Their performances are compared with fundamental

limits on the number of observations or some high complexity combinatorial

search method. In particular, for recommender systems where both users and

items have cluster structure, we show that there is an interesting trade-off

between the computational complexity and the statistical performance.

To conclude, we discuss several open questions as future research direc-

tions.

5.1 Maximum Likelihood Estimation and

Computational Complexity Constraint

In Chapter 3 of the thesis, we see from Figure 3.1 that there is a gap between

the combinatorial method and the lower bound. Note that the combinatorial

method is suboptimal in the sense that it clusters the users and items sepa-

rately. We expect the lower bound to be tight, and an interesting problem is

to show that the maximum likelihood estimation, which jointly clusters the
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users and items, achieves this lower bound.

We also observed that our exponential-time combinatorial method needs

substantially fewer observations for successful cluster recovery than the oth-

er three polynomial-time counterparts, which suggests that a performance

gap might exist between exponential-time algorithms and polynomial-time

algorithms. Similar performance gaps due to the computational complexity

constraint have also been observed recently in many other inference problems

such as graph clustering [63, 33], sparse PCA [64, 65, 66] and sparse subma-

trix detection [39, 40, 67]. One future direction is to provide an upper bound

on the performance that can be achieved by any polynomial-time algorithm.

5.2 Tensor Completion

In Chapter 3 of the thesis, as a byproduct of the convex relaxation approach,

we show that the block-constant rating matrix can be recovered exactly un-

der a condition that is slightly better than those required for low-rank matrix

completion or low-rank plus sparse matrix decomposition. More importantly,

our binary and block-constant assumption significantly simplifies the analy-

sis. But the analysis does not apply to the case when ratings have three or

more levels.

To get around this difficulty, we can consider the following tensor gener-

alization for the original rating matrix. Suppose we are interested in only

three types of ratings: like, dislike and do not care. Instead of using a single

scalar to represent each rating, we user a length-three indicator vector, where

each element of the vector corresponds to one type of rating. For example,

if a user likes a item, his/her rating is [1, 0, 0]. Under this representation,

the original n × n rating matrix becomes an n × n × 3 rating tensor, which

preserves the desired property that each entry of the tensor is binary. Then

a natural question is, can we use a similar approach to recover this tensor

under noise and erasure?

Tensor completion has received much attention in recent years. Many al-

gorithms have been proposed to solve this problem [68, 69, 70, 71]. The most

common technique was first introduced in [68], which generalizes the convex

relaxation technique for matrix completion to the tensor case by defining

a trace norm with respect to the matrices obtained by unfolding a tensor.
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See [70] for a review of tensor and its norms. Recently, another algorithm

that performs Riemannian optimization on the manifold of tensors of a fixed

multilinear rank is proposed in [71]. However, the derivation of recovery

guarantee for tensor completion is still an open problem.

In light of the simple analysis of the matrix recovery problem arising from

the recommender systems, one future direction is to provide recovery guar-

antee for the natural tensor generalization mentioned above.

5.3 Clustering Overlapping Clusters

In Chapters 3 and 4 of the thesis, we make the simplifying assumption that

the network is consisted of disjoint clusters. However, in a variety of appli-

cations, it is more realistic to assume that the network contains overlapping

clusters, i.e., the nodes can belong to multiple clusters. In recommender sys-

tems like Netflix, many movies belong to more than one genre, so the clusters

for movies are likely to overlap. In biology, genes can influence more than

one metabolic pathways, thus it is more reasonable to consider overlapping

clusters when clustering genes using microarray data.

The most natural model for overlapping clusters is the latent model, in

which each node has a latent vector indicating how much it is associated

with each cluster [72, 73, 74]. The observed behavior of a node is determined

by a weighted combinations of the properties of the clusters it belongs to.

Then one can infer the latent vector for each user from the observations us-

ing standard algorithms such as the EM algorithms. Another approach is

to consider a different clustering criterion that allows the nodes to belong to

multiple clusters and then design algorithms accordingly [75, 76]. For exam-

ple, in [75], instead of measuring the performance of a clustering using the

distance of a node to its nearest cluster center, it uses the distance of a node

to the average of several nearest cluster centers, and proposes a generalized

K-means algorithm to solve the problem with respect to the new criteri-

on. Some other algorithms can be found in the references in [76]. However,

these works do not have theoretical guarantees for the performance of their

algorithms.

The recent work [77] applies the tensor method to solve the community

detection problem where communities can overlap. It assumes each node has
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a latent vector indicating the probability it belongs to each cluster, and the

algorithm estimates the latent vectors by decomposing the moment tensor

using the power method. Moreover, it provides a performance guarantee

for the algorithm by showing an upper bound on the difference between the

estimated latent vectors and the original ones. One future direction is to

generalize the analysis to the setting considered in this thesis.
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APPENDIX A

PROOFS IN CHAPTER 2

A.1 Bounded Degree Graph

A.1.1 Proof of Lemma 2.4

Let NS be the neighbor nodes of S. Note that each node in S has at most d

neighbors in NS.

P (xS) =
∑

xNS

P (xNS)P (xS|xNS)

≥ min
xS ,xNS

P (xS|xNS)

= min
xS ,xNS

exp(xTSJSSxS + xTSJSNSxNS)∑
x′S

exp(x′S
TJSSx′S + x′S

TJSNSxNS)

≥
minxS ,xNS exp(xTSJSSxS + xTSJSNSxNS)

2|S|maxx′S ,xNS exp(x′S
TJSSx′S + x′S

TJSNSxNS)

≥ exp(−|S|2Jmax − |S|dJmax)

2|S| exp(|S|2Jmax + |S|dJmax)

=2−|S| exp(−2(|S|+ d)|S|Jmax).

A.1.2 Correlation Decay and Large Girth

We assume that the Ising model on the bounded degree graph is further in

the correlation decay regime. Both Theorem 2.1 and Lemma 2.5 immedi-

ately follow from the following more general result, which characterizes the

conditions under which the Ising model is (D1, D2, ε)-loosely connected. We

will make the connections at the end of this subsection.
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Theorem A.1. Assume (d− 1) tanh Jmax < 1. Fix D1, D2. Let h satisfy

βαh ≤ A ∧ ln 2,

where A = 1
1800

(1 − e−4Jmin)e−8(D1+D2)dJmax, and let ε = 48Ae4(D1+D2)dJmax.

Assume that there are at most D1 paths shorter than h between non-neighbor

nodes and D2 paths shorter than h between neighboring nodes. Then ∀(i, j) ∈
E,

min
S⊂V \{i∪j}
|S|≤D1

max
T⊂V \{i∪j}
|T |≤D2

max
xi,xj ,x′j ,xS ,xT

|P (xi|xj, xS, xT )− P (xi|x′j, xS, xT )| > ε,

and ∀(i, j) /∈ E,

min
S⊂V \{i∪j}
|S|≤D1

max
T⊂V \{i∪j}
|T |≤D2

max
xi,xj ,x′j ,xS ,xT

|P (xi|xj, xS, xT )− P (xi|x′j, xS, xT )| ≤ ε

4
.

Proof. First consider (i, j) ∈ E. Without loss of generality, assume Jij > 0.

By the assumption that there are at most D2 paths shorter than h between

neighboring nodes, there exists T ′ ⊂ Ni, |T ′| ≤ D2 such that, when the set

T ′ is removed from the graph, the length of any path from i to j is no less

than h. For any S, let T = T ′ \ S. To simplify the notation, let R = S ∪ T
and W = V \ R. For any value xR, let Q be the joint probability of XW

conditioned on XR = xR, i.e., Q(XW ) = P (XW |xR). Q has the same edge

coefficients for the unconditioned nodes, but is not zero-field as conditioning

induces external fields. Let Q̃ denote the joint probability when edge (i, j) is

removed from Q. We note that Q and Q̃ satisfy the same correlation decay

property as P , so

Q̃(1, 1) =Q̃(Xi = 1)Q̃(Xj = 1|Xi = 1)

≥Q̃(Xi = 1)[Q̃(Xj = 1|Xi = −1)− βαlij ]
≥Q̃(Xi = 1)[Q̃(Xj = 1|Xi = −1)− βαh].
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Similarly, Q̃(−1,−1) ≥ Q̃(Xi = −1)[Q̃(Xj = −1|Xi = 1)− βαh]. Then,

Q̃(1, 1)Q̃(−1,−1)

≥Q̃(Xi = 1)Q̃(Xi = −1)[Q̃(Xj = 1|Xi = −1)− βαh]
[Q̃(Xj = −1|Xi = 1)− βαh]
≥Q̃(1,−1)Q̃(−1, 1)− 2βαh.

Using the above inequality, we have the following lower bound on the P -test

quantity.

max
xi,xj ,x′j

|P (xi|xj, xS, xT )− P (xi|x′j, xS, xT )|

≥ |Q(xi = 1|xj = 1)−Q(xi = 1|xj = −1)|

=

∣∣∣∣
Q(xi = 1, xj = 1)

Q(xj = 1)
− Q(xi = 1, xj = −1)

Q(xj = −1)

∣∣∣∣

=
1

Q(xj = 1)Q(xj = −1)
|Q(xi = 1, xj = 1)Q(xi = −1, xj = −1)

−Q(xi = 1, xj = −1)Q(xi = −1, xj = 1)|

=

∣∣∣e2JjiQ̃(1, 1)Q̃(−1,−1)− e−2JjiQ̃(1,−1)Q̃(−1, 1)
∣∣∣

(
eJjiQ̃(1, 1) + e−JjiQ̃(−1, 1)

)(
e−JjiQ̃(1,−1) + eJjiQ̃(−1,−1)

)

≥e−2Jij
[
(e2Jij − e−2Jij)Q̃(1,−1)Q̃(−1, 1)− 2e2Jijβαh

]

=(1− e−4Jij)Q̃(1,−1)Q̃(−1, 1)− 2βαh

≥(1− e−4Jmin)Q̃(1,−1)Q̃(−1, 1)− 2βαh.

Let Q̌ denote the joint probability when all the external field terms are

removed from Q̃; i.e.,

Q̃(XW ) ∝ Q̌(XW )eh
T
WXW .

As there are at most (D1 +D2)d edges between R and W , we have ||hW ||1 ≤
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(D1 +D2)dJmax. Hence, for any subset U ⊂ W and value xU ,

Q̃(xU) =
Q̃(xU)∑
x′U
Q̃(x′U)

=

∑
xW\U

Q̌(xU , xW\U)eh
T
W xW

∑
x′U

∑
x′
W\U

Q̌(x′U , x
′
W\U)eh

T
W x′W

≥Q̌(xU)e−(D1+D2)dJmax

e(D1+D2)dJmax

=e−2(D1+D2)dJmaxQ̌(xU).

Moreover, Q̌ is zero-field by definition and again has the same correlation

decay condition as P , hence

Q̌(1,−1) + Q̌(1, 1) =Q̌(Xi = 1) =
1

2
Q̌(1,−1)

Q̌(1, 1)
≥e−βαh ,

which gives the lower bound Q̌(1,−1) ≥ 1

2(1+eβαh )
. Therefore, we have

Q̃(1,−1) ≥ e−2(D1+D2)dJmax

2(1 + eβαh)
.

The same lower bound applies for Q̃(−1, 1). Hence,

max
xi,xj ,x′j

|P (xi|xj, xS, xT )− P (xi|x′j, xS, xT )|

≥(1− e−4Jmin)e−4(D1+D2)dJmax

4(1 + eβαh)2
− 2βαh

≥(1− e−4Jmin)e−4(D1+D2)dJmax

36
− 2βαh

≥(1− e−4Jmin)e−4(D1+D2)dJmax

36
− 2e4(D1+D2)dJmaxβαh

>ε.

The second inequality uses the fact that eβα
h
< 2. The last inequality is by

the choice of h.

Next consider (i, j) /∈ E. By the choice of h, there exists S ⊂ Ni, |S| ≤ D1

such that, when the set S is removed from the graph, the distance from i to
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j is no less than h. Let T set with |T | ≤ D2. As there is no edge between

i, j, the joint probability Q and Q̃ are the same. Then ∀xS, xT , xi, xj,

|P (xi|xj, xS, xT )− P (xi| − xj, xS, xT )|
=|Q̃(xi|xj)− Q̃(xi| − xj)|

=
|Q̃(xi, xj)Q̃(−xi,−xj)− Q̃(xi,−xj)Q̃(−xi, xj)|

Q̃(xj)Q̃(−xj)
.

Similar as above, we have

Q̃(xj) ≥ e−2(D1+D2)dJmaxQ̌(xj) =
1

2
e−2(D1+D2)dJmax .

The same bound applies for Q̃(−xj). Therefore,

|P (xi|xj, xS, xT )− P (xi| − xj, xS, xT )|
≤4e4(D1+D2)dJmax|Q̃(xi, xj)Q̃(−xi,−xj)− Q̃(xi,−xj)Q̃(−xi, xj)|.

By correlation decay and the fact βαh < ln 2 < 1,

Q(xi, xj)Q(−xi,−xj)
=Q(xi|xj)Q(xj)Q(−xi| − xj)Q(−xj)
≤(Q(xi| − xj) + βαh)Q(xj)(Q(−xi| − xj) + βαh)Q(−xj)
≤Q(xi,−xj)Q(−xi, xj) + 3βαh.

Similarly, we have Q(xi, xj)Q(−xi,−xj) ≥ Q(xi,−xj)Q(−xi, xj) − 2βαh.

Hence, by the choice of h,

|P (xi|xj, xS, xT )− P (xi| − xj, xS, xT )| ≤12e4(D1+D2)dJmaxβαh ≤ ε

4
.

Now we specialize this lemma for large girth graphs, in which there is

at most one short path between non-neighbor nodes and no short non-direct

path between neighboring nodes. Setting D1 = 1 and D2 = 0 in the theorem,

we get Theorem 2.1. For the lower bound on the correlation between neighbor

nodes, we set D1 = D2 = 0 in the theorem and get Lemma 2.5.
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A.2 Ferromagnetic Ising Models

A.2.1 Proof of Corollary 2.4

By Proposition 2.2, we apply Definition 2.2 to X with f(X) = Xi and

g(X) = Xj, and get E [[]XiXj] ≥ E [[]Xi]E [[]Xj]. As there is no external

field, P (Xi = 1) = P (Xi = −1) = 0 for any i and P (Xi = xi, Xj = xj) =

P (Xi = −xi, Xj = −xj) for any i, j. Therefore, E [[]Xi] = 0 and

E [[]XiXj] =4[P (Xi = 1, Xj = 1)− P (Xi = 1, Xj = −1)][P (Xi = 1, Xj = 1)

+ P (Xi = 1, Xj = −1)].

By the above inequality, noticing that P (Xi = 1, Xj = 1) + P (Xi = 1, Xj =

−1) = 1
2
, we get the result.

A.2.2 Proof of Lemma 2.6

For any i ∈ V, j ∈ Ni, S ⊂ V , Q, Q̃, Q̌ are defined as in the proof of Lem-

ma A.1. When X is ferromagnetic but with external field, as in Corollary 2.4,

we can show that

P (Xi = 1, Xj = 1)P (Xi = −1, Xj = −1)

≥P (Xi = 1, Xj = −1)P (Xi = −1, Xj = 1)

for any i, j. Therefore, we have

max
xi,xj ,x′j

|P (xi|xj, xS)− P (xi|x′j, xS)|

≥e−2Jij

∣∣∣e2JjiQ̃(1, 1)Q̃(−1,−1)− e−2JijQ̃(1,−1)Q̃(−1, 1)
∣∣∣

≥e−2Jij(e2Jij − e−2Jij)Q̃(1, 1)Q̃(−1,−1)

≥(1− e−4Jmin)Q̃(1, 1)Q̃(−1,−1).

We note that Q̌ is zero field, so by Corollary 2.4 we get Q̌(1, 1) = Q̌(−1,−1)

≥ 1
4
. As shown in Lemma A.1,

Q̃(1, 1) ≥ e−2|NS |JmaxQ̌(1, 1) ≥ 1

4
e−2|NS |Jmax .
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The same lower bound can be obtained for Q̃(−1,−1). Plugging the lower

bounds to the above inequality, we get the result.

A.3 Random Graphs

The proofs in this section are related to the techniques developed in [14, 4].

The key differences are in adapting the proofs for general Ising models, as

opposed to ferromagnetic models. We point out similarities and differences

as we proceed with the section.

A.3.1 Self-Avoiding-Walk Tree and Some Basic Results

This subsection introduces the notion of a self-avoiding-walk (SAW) tree,

first introduced in [78], and presents some properties of a SAW tree. For an

Ising model on a graph G, fix an ordering of all the nodes. We say dge (i, j)

is larger (smaller resp.) than (i, l) with respect to node i if j comes after

(before resp.) l in the ordering. The SAW tree rooted at node i is denoted

as Tsaw(i;G). It is essentially the tree of self-avoiding walks originated from

node i except that the terminal nodes closing a cycle are also included in the

tree with a fixed value +1 or −1. In particular, a terminal node is fixed to

+1 (resp. −1) if the closing edge of the cycle is larger (resp. smaller) than

the starting edge with respect to the terminal node. Let A denote the set of

all terminal nodes in Tsaw(i;G) and xA denote the fixed configuration on A.

For set S ⊂ V , let U(S) denote the set of all non-terminal copies of nodes in

S in Tsaw(i;G). Notice that there is a natural way to define conditioning on

Tsaw(i;G) according to the conditioning on G; specifically, if node j in graph

G is fixed to a certain value, the non-terminal copies of j in tree Tsaw(i;G)

are fixed to the same value.

One important result is [79, Theorem 7], motivated by [78], says that the

conditional probability of node i on graph G is the same as the corresponding

conditional probability of node i on tree Tsaw(i;G), which is easier to deal

with.

Proposition A.1. Let S be a subset of V . ∀xi, xS, P (xi|xS;G) =

P (xi|xU(S), xA;Tsaw(i;G)).
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Next we list some basic results which will be used in later proofs. First we

have the following lemma about the number of short paths between a pair

of nodes from [14]. The second part of Theorem 2.2 is an immediate result

of this lemma.

Lemma A.1. [14] For all i, j ∈ V , the number of paths shorter than γp

between nodes i, j is at most 2 almost always.

Let B(i, l;Tsaw(i;G)) be the set of nodes of distance l from i on the tree

Tsaw(i;G). Recall that A is the set of terminal nodes in the tree. Let Ã

be the subset of A that are of distance at most γp from i. The size of

B(i, l;Tsaw(i;G)) and Ã are upper bounded as follows.

Lemma A.2. [22, Lemma 2.2] For 1 ≤ l ≤ a log p, where 0 < a < 1
2 log c

, we

have

max
i
|B(i, l;Tsaw(i;G))| = O(cl log p), almost always.

Lemma A.3. ∀i ∈ V, |Ã| ≤ 1 in Tsaw(i;G) almost always.

Proof. Each terminal node in Ã corresponds to a cycle connected to i with

the total length of the cycle and the path to i at most γp. Let OLOl denote

the subgraph consists of two connected circles with total length l. This

structure has l − 1 nodes and l edges. Let H = {OLOl, l ≤ 2γp} and NH

denote the number of subgraphs containing an instance from H. Then it is

equivalent to show that there is at most one such small cycle close to each

node or NH = 0 almost always.

E [[]NH ] ≤
2γp∑

l=1

(
p

l − 1

)
(l − 1)!(l − 1)2(

c

p
)l ≤ O(

2γp∑

l=1

p−1l2cl)

=O(p−1γ2
pc

2γp) ≤ O(p−
1
3 ) = o(1).

So, P (NH ≥ 1) = o(1).

A.3.2 Correlation Decay in Random Graphs

This subsection is to prove the first part of Theorem 2.2 which characterizes

the correlation decay property of a random graph.
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First we state a correlation decay property for tree graphs. This result

shows that having external fields only makes the correlation decay faster.

Lemma A.4. Let P be a general Ising model with external fields on a tree

T . Assume |Jij| ≤ Jmax. ∀i, j ∈ T ,

|P (xi|xj)− P (xi|x′j)| ≤ (tanh Jmax)d(i,j).

Proof. The basic idea in the proof is get an upper bound that does not depend

on the external field. To do this, we proceed as in the proof of Lemma 4.1

in [80]. First, as noted in [80], without loss of generality, assume the tree is

a line from i to j. Then, we prove the result by induction on the number of

hops in the line.

1. d(i, j) = 1 or j ∈ Ni. The graph has only two nodes. We have

P (xi|xj) =
eJijxixj+hixi

eJijxj+hi + e−Jijxj−hi
.

Hence,

|P (xi|xj)− P (xi|x′j)| =
|e2Jij − e−2Jij |

(eJij+hi + e−Jij−hi)(e−Jij+hi + eJij−hi)

=
|e2Jij − e−2Jij |

e2Jij + e−2Jij + e2hi + e−2hi
.

This function is even in both Jij and hi. Without loss of generality,

assume Jij ≥ 0, hi ≥ 0. It is not hard to see that the RHS is maximized

when hi = 0. So

|P (xi|xj)− P (xi|x′j)| ≤ tanh |Jij| ≤ tanh Jmax.

The inequality suggests that, when there is external field, the impact

of one node on the other is reduced.

2. Assume the claim is true for d(i, j) ≤ k. For d(i, j) = k + 1, pick any l

on the path from i to j, and note that Xi — Xl — Xj forms a Markov
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chain. Moreover, d(i, l) ≤ k and d(l, j) ≤ k.

|P (xi|xj)− P (xi|x′j)|
=|
∑

xl

P (xi|xl)P (xl|xj)−
∑

xl

P (xi|xl)P (xl|x′j)|

=|P (xi|xl)(P (xl|xj)− P (xl|x′j)) + P (xi|x′l)(P (x′l|xj)− P (x′l|x′j))|
=|(P (xi|xl)− P (xi|x′l))(P (xl|xj)− P (xl|x′j))|
≤(tanh Jmax)d(i,l)(tanh Jmax)d(l,j) = (tanh Jmax)d(i,j).

The third equality follows by observing that P (xl|xj) − P (xl|x′j) =

−(P (x′l|xj)− P (x′l|x′j)). The last inequality is by induction.

Writing the conditional probability on a graph as a conditional probability

on the corresponding SAW tree, we can apply the above lemma and show

the correlation decay property for random graphs.

Lemma A.5. Let P be a general Ising model on a graph G. Fix i ∈ V .

∀j /∈ Ni, let S be the set that separates the paths shorter than γ between i, j

and B = B(i, γ;Tsaw(i;G)) , then ∀xi, xj, x′j, xS,

|P (xi|xj, xS)− P (xi|x′j, xS)| ≤ |B|(tanh Jmax)γ.

Proof. Let Z be the subset of U(j) on Tsaw(i;G) that is not separated by

U(S) from i. By the definition of S, Z is of distance at least γ from i. So
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the γ-sphere B separates Z and i.

|P (xi|xj, xS)− P (xi|x′j, xS)|
(a)
=|P (xi|xU(j), xU(S), xA;Tsaw(i;G))− P (xi|x′U(j), xU(S), xA;Tsaw(i;G))|
(b)
=|P (xi|xZ , xU(S), xA;Tsaw(i;G))− P (xi|x′Z , xU(S), xA;Tsaw(i;G))|
(c)
=|
∑

xB

P (xi|xB, xU(S), xA;Tsaw(i;G))P (xB|xZ , xU(S), xA;Tsaw(i;G))

−
∑

xB

P (xi|xB, xU(S), xA;Tsaw(i;G))P (xB|x′Z , xU(S), xA;Tsaw(i;G))|

≤max
xB

P (xi|xB, xU(S), xA;Tsaw(i;G))−min
xB

P (xi|xB, xU(S), xA;Tsaw(i;G))

(d)
=P (xi|xMB , xU(S), xA;Tsaw(i;G))− P (xi|xmB , xU(S), xA;Tsaw(i;G))

(e)

≤|B|(tanh Jmax)γ.

In the above, (a) follows from the property of SAW tree in Prop A.1. Step

(b) is by the choice of S and the definition of Z. Step (c) uses the fact that

Z is separated from i by B. In (d), xMB , x
m
B represent the maximizer and

minimizer respectively. Step (e) is by telescoping the sign of xB. Notice that

the Hamming distance between xMB , x
m
B is at most |B|, and we can apply the

above lemma to each pair as the conditioning terms differ only on one node.

The above proof is similar to the proof of Lemma 3 in [14]. However, in going

from step (c) to step (d) above, it is important to note that our proof holds

for general Ising models, whereas the proof in [14] is specific to ferromagnetic

Ising models.

Proof of Theorem 2.2. As in [14], setting γ = γp in the above lemma and

noticing that

|B(i, γp;Tsaw(i;G))| = O(cγp log p),

we get

|P (xi|xj, xS)− P (xi|x′j, xS)|
≤O((c tanh Jmax)γp log p) = O(p−

logα
K log c log p) = o(p−κ).
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A.3.3 Asymptotic Lower Bound on P (xi|xR) When |R| ≤ 3

This subsection is to prove that P (xi|xR) is lower bounded by some constant

when |R| ≤ 3. This result comes in handy when proving the other two

theorems. This result was conjectured to hold in [14] for ferromagnetic Ising

models on the random graph G(p, c
p
) without a proof. Here we prove that it

is also true for general Ising models on the random graph.

Lemma A.6. ∀i ∈ V, ∀R ⊂ V, |R| ≤ 3, there exists a constant C such that

∀xi, xR, P (xi|xR) ≥ C almost always.

This basic idea is that the conditional probability P (xi|xR) is equal to

some conditional probability on a SAW tree, which in turn is viewed as some

unconditional probability on the same tree with induced external fields. Then

we apply a tree reduction to the SAW tree until only the root is left, and

show that the induced external field on the root is bounded, which implies

that the probability of the root taking +1 or −1 is bounded.

On a tree graph, when calculating a probability which involves no nodes in

a subtree, we can reduce the subtree by simply summing (marginalizing) over

all the nodes in it. This reduction produces an Ising model on the rest part

of the tree with the same Jij and hi except for the root of the subtree, which

would have an induced external field due to the reduction of the subtree.

The probability we want to calculate remains unchanged on this new tree.

Such induced external fields are bounded according to the following lemma.

Lemma A.7. Consider a leaf node 2 and its parent node 1. The induced

external field h′1 on node 1 due to summation over node 2 satisfies

|h′1| ≤ |h2| tanh |J12|.

We first prove an inequality which is used in the proof of the above lemma.

Lemma A.8. ∀x ≥ 0, y ≥ 0,

e2x tanh y ≥ ex+y + e−x−y

ex−y + e−x+y
.

Proof. Let u = tanh y ∈ [0, 1), then y = 1
2

ln 1+u
1−u . The required result is

equivalent to showing that

e2xu[(1 + u)e−x + (1− u)ex] > (1 + u)ex + (1− u)e−x.
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Define

fu(z) = (1 + u)euz + (1− u)e(1+u)z − (1 + u)ez − (1− u).

Clearly, fu(0) = 0, and

f ′u(z) = (1 + u)[ueuz + (1− u)e(1+u)z − ez].

By the convexity of ez, ueuz + (1 − u)e(1+u)z ≥ ez. Hence, f ′u(z) ≥ 0, which

implies fu(z) ≥ 0. We finish the proof by noticing that the original inequality

is equivalent to fu(2x) ≥ 0.

Proof of Lemma A.7.

∑

x2

eJ12x1x2+h2x2 = eJ12x1+h2 + e−J12x1−h2 ∝ eh
′
1x1 .

Comparing the ratio of x1 = ±1, we get

eJ12+h2 + e−J12−h2

e−J12+h2 + eJ12−h2
=

eh
′
1

e−h
′
1

= e2h′1 .

So

h′1 =
1

2
log

eJ12+h2 + e−J12−h2

e−J12+h2 + eJ12−h2
≤ |h2| tanh |J12|.

The last inequality follows from Lemma A.8.

It is easy to see that |h′1| ≤ |h2| tanh |Jmax| < |h2|. By induction, we can

bound the external field induced by the whole subtree.

Proof of Lemma A.6. First we have

P (xi|xR) =P (xi|xU(R), xA;Tsaw(i;G))

=
∑

xB

P (xi|xB, xŨ(R), xÃ;Tsaw(i;G))P (xB|xU(R), xA;Tsaw(i;G))

≥min
xB

P (xi|xB, xŨ(R), xÃ;Tsaw(i;G))

=P (xi|xmB , xŨ(R), xÃ;Tsaw(i;G)) , Q(xi),

where Q is the probability on the tree with external fields induced by xmB ,
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xŨ(R) and xÃ. We only need to consider the external fields on the parent

nodes of B, Ũ(R), Ã as the conditional probability is on a tree. The nodes

affected by B are all γp away from i and the total number of them is no larger

than |B|, which is bounded by Lemma A.2. The number of nodes affected

by Ũ(R), Ã is no larger than |Ũ(R)|+ |Ã|. By Lemma A.1 and Lemma A.3,

|Ũ(R)| ≤ 2|R| and |Ã| ≤ 1 almost always. Applying the reduction technique

to the tree until a single root node i, by Lemma A.7, we bound the induced

external field on i as

|hi| ≤[(tanh Jmax)γn|B|+ (|Ũ(R)|+ |Ã|)]Jmax

≤O((c tanh Jmax)γn log n+ 2|R|+ 1)

≤O(n−κ + 7) = O(1).

So,

Q(xi) =
ehixi

ehixi + e−hixi
≥ Ω(e−2|hi|) = Ω(1).

When p is large enough, there exists some constant C such that P (xi|xR) ≥
C.

A.3.4 Proof of Theorem 2.3

Let S be the set that separates all the paths shorter than γp between nodes

i, j with size |S| ≤ 3. It is straightforward to show that I(Xi;Xj|XS) =

o(p−2κ) in a manner similar to [14, Lemma 5]. The only difference is that

the correlation decay property in Theorem 2.2 takes a different form, which

is easier to apply, therefore the proof there needs to be modified accordingly.

We also note that the constant C in Lemma A.6 is referred to as fmin(S) in

[14]. The details are omitted here.

A.3.5 Proof of Theorem 2.4

When j is a neighbor of i, conditioned on the approximate separator T , there

is one copy of j which is a child of the root i in the SAW tree and is the

only copy that within γp from i. In Theorem 2.4, we show that the effect
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of conditioning on T is bounded and this copy of j has a nontrivial impact

on i. With a little abuse of notation, we use j to denote this copy of j in

Tsaw(i;G). W.l.o.g assume Jij > 0. As in Lemma A.5,

max
xi,xj
|P (xi|xj, xT )− P (xi|x′j, xT )|

= max
xi,xj
|P (xi|xU(j), xU(T ), xA;Tsaw(i;G))− P (xi|x′U(j), xU(T ), xA;Tsaw(i;G))|

= max
xi,xj
|P (xi|xZ , xU(T ), xA;Tsaw(i;G))− P (xi|x′Z , xU(T ), xA;Tsaw(i;G))|

= max
xi,xj
|
∑

xB

P (xi|xj, xB, xŨ(T ), xÃ;Tsaw(i;G))P (xB|xZ , xU(T ), xA;Tsaw(i;G))

−
∑

xB

P (xi|xB, xŨ(T ), xÃ;Tsaw(i;G))P (xB|x′Z , xU(T ), xA;Tsaw(i;G))|

≥min
xB

P (xi = +|xj = +, xB, xŨ(T ), xÃ;Tsaw(i;G))

−max
xB

P (xi = +|xj = −, xB, xŨ(T ), xÃ;Tsaw(i;G))

=P (xi = +1|xj = +1, xmB , xŨ(T ), xÃ;Tsaw(i;G))

− P (xi = +1|xj = −1, xMB , xŨ(T ), xÃ;Tsaw(i;G))

=P (xi = +1|xj = +1, xmB , xŨ(T ), xÃ;Tsaw(i;G))

− P (xi = +1|xj = −1, xmB , xŨ(T ), xÃ;Tsaw(i;G))

+ P (xi = +1|xj = −1, xmB , xŨ(T ), xÃ;Tsaw(i;G))

− P (xi = +1|xj = −1, xMB , xŨ(T ), xÃ;Tsaw(i;G))

≥Q(xi = +1|xj = +1)−Q(xi = +1|xj = −1)− |B|(tanh Jmax)γn ,

where Q is the probability measure on the reduced graph with only nodes

i, j. We have

Q(xi = +1|xj = +1)−Q(xi = +1|xj = −1)

=
e2Jij − e−2Jij

e2Jij + e−2Jij + e2hi + e−2hi

≥ e2Jmin − e−2Jmin

e2Jmin + e−2Jmin + e2hi + e−2hi
= Ω(e−2|hi|).

The external fields in Q are induced by the conditioning on B, Ũ(T ), Ã. As in

the proof of Lemma A.6, we have |hi| ≤ O(1), so Q(xi = +|xj = +)−Q(xi =
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+|xj = −) = Ω(1). Hence,

max
xi,xj
|P (xi|xj, xS)− P (xi|x′j, xS)| ≥ Ω(1)−O(p−κ) = Ω(1).

Using this result, the lower bound I(Xi;Xj|XT ) = Ω(1) simply follows

from the proof of [14, Lemma 7]. Again we note that the constant C in

Lemma A.6 is referred to as fmin(T ) in [14]. The details are omitted here.

A.3.6 Proof of Theorem 2.6

The proof of the theorem needs the following lemma.

Lemma A.9. Assume X is a ferromagnetic Ising model (possibly with ex-

ternal fields). ∀i ∈ V, ∀S ⊂ V \ i,

P (xi = +1|xS = +1) ≥ P (xi = +1|xS = −1).

Proof. For any node j ∈ S, let probability P̃ (xi, xj) = P (xi, xj|xS\j). The

probability P̃ is still ferromagnetic and hence is associated. Then we have

P̃ (xi = +1, xj = +1)P̃ (xi = −1, xj = −1)

≥P̃ (xi = +1, xj = −1)P̃ (xi = −1, xj = +1).

After some algebraic manipulation, we get

P̃ (xi = +1|xj = +1) ≥ P̃ (xi = +1|xj = −1).

This is equivalent saying that

P (xi = +1|xj = +1, xS\j = +1) ≥ P (xi = +1|xj = −1, xS\j = +1).

So flipping one node from +1 to −1 reduces the conditional probability re-

gardless the what value the rest of the nodes take. Continuing this process

till we flip all the nodes in S, we get the result

P (xi = +1|xS = +1) ≥ P (xi = +1|xS = −1).
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Proof of Theorem 2.6. For (i, j) ∈ E, assume Jij > 0. Following the proof

of Theorem 2.4,

max
xi,xj
|P (xi|xj, xS)− P (xi|x′j, xS)|

= max
xi,xj
|P (xi|xU(j), xU(S), xA;Tsaw(i;G))− P (xi|x′U(j), xU(S), xA;Tsaw(i;G))|

≥P (xi = +1|xŨ(j) = +1, xmB , xŨ(S), xÃ;Tsaw(i;G))

− P (xi = +1|xŨ(j) = −1, xMB , xŨ(S), xÃ;Tsaw(i;G)).

The only difference here is that we might have more than one copy of j in

Ũ(j). Let Z = Ũ(j) \ j. By the above lemma, we have

max
xi,xj
|P (xi|xj, xS)− P (xi|x′j, xS)|

≥P (xi = +1|xj = +1, xZ = +1, xmB , xŨ(S), xÃ;Tsaw(i;G))

− P (xi = +1|xj = −1, xZ = +1, xmB , xŨ(S), xÃ;Tsaw(i;G))

+ P (xi = +1|xj = −1, xZ = −1, xmB , xŨ(S), xÃ;Tsaw(i;G))

− P (xi = +1|xj = −1, xZ = −1, xMB , xŨ(S), xÃ;Tsaw(i;G))

≥Q(xi = +1|xj = +1)−Q(xi = +1|xj = −1)− |B|(tanh Jmax)γn .

As the size of Z is only a constant, by the same reasoning, we finish the

theorem.

A.4 Concentration

Before proving the concentration results in Lemma 2.3, we first present the

following lemma which upper bounds the difference between the entropies of

two distributions with their l1-distance. Let P and Q be two probability mass

functions on a discrete, finite set X , and H(P ) and H(Q) be their entropies

respectively. The l1 distance between P and Q is defined as ||P − Q||1 =∑
x∈X |P (x)−Q(x)|.

Lemma A.10. [81, Theorem 17.3.3] If ||P−Q||1 ≤ 1
2
, then |H(P )−H(Q)| ≤

−||P − Q||1 log ||P−Q||1|X | . When ||P − Q||1 ≤ 1
e
, the RHS is increasing in

||P −Q||1.
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Proof of Lemma 2.3. By definition, ∀S ⊂ V and ∀xS, |1{X(i)
S = xS}

−P (xs)| ≤
1 and

P̂ (xS) =
1

n

n∑

i=1

1{X(i)
S = xS}

.

By the Hoeffding inequality,

P
(
|P̂ (xS)− P (xS)| ≥ γ

)

=P

(∣∣∣∣∣
n∑

i=1

1{X(i)
S = xS}

− nP (xS)

∣∣∣∣∣ ≥ nγ

)
≤ 2e−

n2γ2

2n ≤ 2e−
nγ2

2 .

1. By the union bound, we have

P
(
∃S ⊂ V, |S| ≤ 2,∃xS, |P̂ (xS)− P (xS)| ≥ γ

)

<p2|X |22e−
nγ2

2 = 2e−
nγ2

2
+2 log p|X |.

For our choice of n, ∀i, j ∈ V, ∀xi, xj,

|P̂ (xi, xj)− P (xi, xj)| < γ, |P̂ (xi)− P (xi)| < γ,

with probability 1 − c1
pα

for some constant c1, which gives P̂ (xj) >

P (xj)− γ ≥ 1
2
− γ ≥ 1

4
as γ < 1

4
. Hence,

|P̂ (xi|xj)− P (xi|xj)|

=
|P̂ (xi, xj)P (xj)− P (xi, xj)P̂ (xj)|

P (xj)P̂ (xj)

≤ P̂ (xi, xj)|P (xj)− P (xj)|
P (xj)P̂ (xj)

+
P̂ (xj)|P̂ (xi, xj)− P (xi, xj)|

P (xj)P̂ (xj)

≤2γ
1
2

= 4γ.
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2. By the union bound, we have

P

(
∃i ∈ V, ∃S ⊂ Li, |S| ≤ D1 +D2 + 1,∃xS,

|P̂ (xS)− P (xS)| ≥ γ, |P̂ (xi, xS)− P (xi, xS)| ≥ γ

)

<2pLD1+D2+1|X |D1+D2+22e−
nγ2

2

<4e−
nγ2

2
+log p+(D1+D2+1) logL+(D1+D2+2) log |X |.

For our choice of n, ∀i ∈ V, ∀j ∈ Li,∀S ⊂ Li, |S| ≤ D1 +D2,∀xi, xj, xS,

|P̂ (xi, xj, xS)− P (xi, xj, xS)| ≤ γ, |P̂ (xj, xS)− P (xj, xS)| ≤ γ,

with probability 1 − c2
pα

for some constant c2, which gives P̂ (xj, xS) >

P (xj, xS)− γ ≥ δ
2

as γ < δ
2
. Hence,

|P̂ (xi|xj, xS)− P (xi|xj, xS)|

=
|P̂ (xi, xj, xS)P (xj, xS)− P (xi, xj, xS)P̂ (xj, xS)|

P (xj, xS)P̂ (xj, xS)

≤ P̂ (xi, xj, xS)|P (xj, xS)− P (xj, xS)|
P (xj, xS)P̂ (xj, xS)

+
P̂ (xj, xS)|P̂ (xi, xj, xS)− P (xi, xj, xS)|

P (xj, xS)P̂ (xj, xS)

≤2γ

δ
.

3. As in the previous case, for our choice of n, ∀i, j ∈ V, ∀S ⊂ Li, |S| ≤
D1 +D2, ∀xi, xj, xS,

|P̂ (xi, xj, xS)− P (xi, xj, xS)| ≤γ,
|P̂ (xj, xS)− P (xj, xS)| ≤γ,

|P̂ (xS)− P (xS)| ≤γ

with probability 1− c3
pα

for some constant c3. So we get

||P̂ (Xi, Xj, XS)− P (Xi, Xj, XS)||1 ≤ |X |D1+D2+2γ ≤ 1

2
.
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By Lemma A.10,

|Ĥ(Xi, Xj, XS)−H(Xi, Xj, XS)|
≤ − ||P̂ (Xi, Xj, XS)− P (Xi, Xj, XS)||1

log
||P̂ (Xi, Xj, XS)− P (Xi, Xj, XS)||1

|X |D1+D2+2

≤− |X |D1+D2+2γ log γ = −2|X |D1+D2+2γ log
√
γ

≤2|X |D1+D2+2√γ.

The last inequality used the fact that 0 < −√γ log
√
γ < 1 for 0 <

γ < 1. Similarly, we have the same upper bound for |Ĥ(Xi, XS) −
H(Xi, XS)|, |Ĥ(Xj, XS)−H(Xj, XS)| and |Ĥ(XS)−H(XS)|. We finish

the proof by noticing that

I(Xi;Xj|XS) = H(Xi, XS) +H(Xj, XS)−H(Xi, Xj, XS)−H(XS).
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APPENDIX B

PROOFS IN CHAPTER 3

B.1 Proof of Theorem 3.1

Without loss of generality, suppose users 1, 3, . . . , 2K−1 are in cluster 1 and

users 2, 4, . . . , 2K are in cluster 2. We construct a block-constant matrix with

the same item cluster structure as R but a different user cluster structure.

In particular, under R̃, user 1 forms a new cluster with users 2i, i = 2, . . . , K

and user 2 forms a new cluster with users 2i− 1, i = 2, . . . , K.

Let i-th row of R̃ be identical to the i-th row of R for all i > 2K. Consider

all items j in item cluster l. If the ratings of user 1 to items in item cluster

l are all erased, then let R̃1j = R2j and R̃ij = R2j for i = 4, 6, . . . , 2K;

otherwise let R̃1j = R1j and R̃ij = R1j for i = 4, 6, . . . , 2K. If the ratings

of user 2 to items in item cluster l are all erased, then let R̃2j = R1j and

R̃ij = R1j for i = 3, 5, . . . , 2K − 1; otherwise let R̃2j = R2j and R̃ij = R2j for

i = 3, 5, . . . , 2K − 1. From the above procedure, it follows that the first row

of R̃ is identical to the (2i)-th row of R̃ for all i = 2, . . . , K, and the second

row of R̃ is identical the (2i− 1)-th row of R̃ for all i = 2, . . . , K.

We show that R̃ agrees with R̂ on all non-erased entries. We say that

item cluster l is conflicting between user 1 and user cluster 2 if (1) user

cluster 1 and 2 have different block rating on item cluster l; and (2) the

ratings of user 1 to items in item cluster l are not all erased; and (3) the

block corresponding to user cluster 2 and item cluster l is not totally erased.

Therefore, the probability that item cluster l is conflicting between user 1

and user cluster 2 equals to 1
2
(1− εK2

)(1− εK). By the union bound,

P{∃conflicting item cluster between user 1 and cluster 2}
≤ r

2
(1− εK2

)(1− εK) ≤ r

2
K3(1− ε)2 ≤ δ/2,
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where the third inequality follows because (1 − x)a ≥ 1 − ax for a ≥ 1 and

x ≥ 0 and the last inequality follows from the assumption. Similarly, the

probability that there exists a conflicting item cluster between user 2 and

cluster 1 is also upper bounded by δ/2. Hence, with probability at least

1− δ, there is no conflicting item cluster between user 1 and cluster 2 as well

as between user 2 and cluster 1, and thus R̃ agrees with R̂ on all non-erased

entries.

B.2 Proof of Theorem 3.2

Consider a genie-aided scenario where the set of flipped entries is revealed as

side information, which is equivalent to saying that we are in the noiseless

setting with p = 0. Then the true partition corresponding to the true user

cluster structure has zero disagreement. Suppose that users 1, 3, . . . , 2K − 1

are in true cluster 1 and users 2, 4, . . . , 2K are in true cluster 2. We construct

a new partition different from the true partition by swapping user 1 and

user 2. In particular, under the new partition, user 1 forms a new cluster

Ĉ2 with users 2i, i = 2, . . . , K, user 2 forms a new cluster Ĉ1 with users

2i− 1, i = 2, . . . , K. It suffices to show that for k = 1, 2, any two users in Ĉk

has zero disagreement with probability at least 3/4, in which case the new

partition has zero agreement and Algorithm 3 cannot distinguish between

the true partition and the new one.

For k = 1, 2, we lower bound the probability that any two users in Ĉk has

zero disagreement.

P(Any two users in Ĉk have zero disagreement)

=1− P(total number of disagreements in Ĉk ≥ 1)

≥1− E[total number of disagreements in Ĉk]

≥1− 1

2
nK(1− ε)2 ≥ 7/8.

By union bound, the probability that for k = 1, 2, any two users in Ĉk have

zero disagreement is at least 3/4.
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B.3 Proof of Theorem 3.3

Consider a compatibility graph with n vertices representing users. Two ver-

tices i, i′ are connected if users i, i′ have zero disagreement, i.e., Dii′ = 0. In

the noiseless setting, each user cluster forms a clique of size K in the com-

patibility graph. We call a clique of size K in the compatibility graph a bad

clique if it is formed by users from more than one cluster. Then to prove

the theorem, it suffices to show that there is no bad clique a.a.s. Since the

probability that bad cliques exist increases in ε, without loss of generality,

we assume K(1− ε) < 1.

Recall that Bkl is +1 or −1 with equal probability. Define Sk = {l : Bkl =

+1} for k = 1, . . . , r. As r → ∞, by Chernoff bound, we get that a.a.s., for

any k1 6= k2

|Sk1∆Sk2| , |{l : Bk1l 6= Bk2l}| ≥
r

4
. (B.1)

Assume this condition holds throughout the proof.

Fix a set of K users that consists of users from t different clusters. Without

loss of generality, assume these users are from cluster 1, . . . , t. Let nk denote

the number of users from the cluster k and define nmax = maxk nk. By

definition, 2 ≤ t ≤ tmax , min{r,K}, nmax < K and
∑t

k=1 nk = K. For

any item j in cluster l, among the K ratings given by these users, there are∑t
k=1 nkI{l∈Sk} ratings being +1 and

∑t
k=1 nkI{l 6∈Sk} ratings being −1. Let

Ej denote the event that the observed ratings for item j by these K users

are the same. Then,

P[Ej] =1−
(

1− ε
∑t
k=1 nkI{l∈Sk}

)(
1− ε

∑t
k=1 nkI{l 6∈Sk}

)

≤ exp
(
−(1− ε

∑t
k=1 nkI{l∈Sk})(1− ε

∑t
k=1 nkI{l 6∈Sk})

)

≤ exp
(
− 1

4
(1− ε)2

t∑

k=1

nkI{l∈Sk}
t∑

k=1

nkI{l 6∈Sk}
)
.

Let pn1...nt be the probability that K users, out of which nk are from cluster

k, form a bad clique. Because {Ej} are independent and there are K items
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in each item cluster,

pn1...nt

=
n∏

j=1

P[Ej]

≤ exp
(
− 1

4
K(1− ε)2

r∑

l=1

(
t∑

k=1

nkI{l∈Sk}
t∑

k=1

nkI{l 6∈Sk})
)

= exp
(
− 1

4
K(1− ε)2

∑

1≤k1<k2≤t

nk1nk2|Sk1∆Sk2|
)

≤ exp
(
− C1n(1− ε)2

t∑

k=1

nk(K − nk)
)

(B.2)

for some constant C1. For a large enough constant C in the assumption in

the statement of the theorem, we have

K exp(−C1n(1− ε)2(K − nk)) ≤n−3, nk ≤
K

2
, (B.3)

K exp(−C1n(1− ε)2nk) ≤n−3, nk >
K

2
. (B.4)

Below we show that the probability of bad cliques existing goes to zero.

By the Markov inequality and linearity of expectation,

P[Number of bad cliques ≥ 1]

≤ E[Number of bad cliques]

=
tmax∑

t=2

(
r

t

) ∑

n1+···+nt=K

(
K

n1

)
· · ·
(
K

nt

)
pn1...nt

=
tmax∑

t=2

(
r

t

) ∑

n1+···+nt=K

(
K

n1

)
· · ·
(
K

nt

)
pn1...nt

[
I{nmax≤K/2} + I{nmax>K/2}

]
. (B.5)
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The first term in (B.5) is bounded as

tmax∑

t=2

(
r

t

) ∑

n1+···+nt=K
nmax≤K/2

(
K

n1

)
· · ·
(
K

nt

)
pn1...nt

≤
tmax∑

t=2

rt
∑

n1+···+nt=K
nmax≤K/2

t∏

k=1

(Ke−C1(1−ε)2(K−nk))nk

≤
tmax∑

t=2

rtKtn−3K = o(1), (B.6)

where the first inequality follows from the fact that
(
K
nk

)
≤ Knk and (B.2),

and the second inequality follows from (B.3). The second term in (B.5) is

bounded as

tmax∑

t=2

(
r

t

) ∑

n1+···+nt=K
nmax>K/2

(
K

n1

)
· · ·
(
K

nt

)
pn1...nt

≤
tmax∑

t=2

rt
∑

n1+···+nt=K
nmax>K/2

(Ke−C1n(1−ε)2nmax)K−nmax

∏

k:nk<nmax

(Ke−C1(1−ε)2(K−nk))nk

≤
tmax∑

t=2

I{t≤K−nmax+1}r
tKtn−6(K−nmax) = o(1), (B.7)

where the first inequality follows from the fact that
(
K
nk

)
≤ min{Knk , KK−nk}

and (B.2), and the second inequality follows from (B.3) and (B.4) and the

fact that t ≤ K − nmax + 1. Therefore we conclude that

P[Number of bad cliques ≥ 1] = o(1).

B.4 Proof of Theorem 3.4

We first introduce some notations. Let uC,k be the normalized character-

istic vector of user cluster k, i.e., uC,k(i) = 1/
√
K if user i is in cluster k

and uC,k(i) = 0 otherwise. Thus, ||uC,k||2 = 1. Let UC = [uC,1, . . . , uC,r].
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Similarly, let vC,l be the normalized characteristic vector of item cluster l

and VC = [vC,1, . . . , vC,r]. It is not hard to see that the rating matrix R can

be written as R = KUCBV
>
C . Denote the SVD of the block rating matrix

B by B = UBΣBV
>
B , then the SVD of R is simply R = UKΣBV

>, where

U = UCUB and V = VCVB. When r → ∞, B has full rank almost surely

[82]. We will assume B is full rank in the following proofs, which implies

that UBU
>
B = I and VBV

>
B = I. Note that UU> = UCU

>
C , V V

> = VCV
>
C

and UV > = UCUBV
>
B V

>
C .

We now briefly recall the subgradient of the nuclear norm [42]. Define T

to be the subspace spanned by all matrices of the form UA> or AV > for any

A ∈ Rn×r. The orthogonal projection of any matrix M ∈ Rn×n onto the space

T is given by PT (M) = UU>M + MV V > − UU>MV V >. The projection

of M onto the complement space T⊥ is PT⊥(M) = M − PT (M). Then

M ∈ Rn×n is a subgradient of ||X||∗ at X = R if and only if PT (M) = UV >

and ||PT⊥(M)|| ≤ 1.

Proof of Lemma 3.1. Assume user i is from user cluster k and item j is in

item cluster l, then

|(UV >)ij| = |(UBV >B )kl|/K ≤ 1/K = r/n,

where the inequality follows from the Cauchy-Schwartz inequality. By defi-

nition µ ≤ √r.

Next we establish the concentration property of R̂. By definition the con-

ditional expectation of R̂ is given by

E[R̂|R] = (1− ε)(1− 2p)R := R̄.

Furthermore, the variance is given by

Var[R̂ij|R] = (1− ε)− (1− ε)2(1− 2p)2 := σ2.

The following corollary applies Theorem 1.4 in [83] to bound the spectral

norm ‖R̂− R̄‖.

Corollary B.1. If σ2 ≥ C ′ log4 n/n for a constant C ′, then conditioned on
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R,

‖R̂− R̄‖ ≤ 3σ
√
n a.a.s. (B.8)

Proof. We adopt the trick called dilations [84]. In particular, define A as

A =

[
0 R̂− E[R̂|R]

R̂> − E[R̂>|R] 0

]
. (B.9)

Observe that ‖A‖ = ‖R̂ − E[R̂|R]‖, so it is sufficient to prove the theorem

for ‖A‖. Conditioned on R, A is a random symmetric 2n × 2n matrix with

each entry bounded by 1, and aij (1 ≤ i < j ≤ 2n) are independent random

variables with mean 0 and variance at most σ2. By Theorem 1.4 in [83] , if

σ ≥ C ′n−1/2 log2 n, then conditioned on R a.a.s.

‖R̂− E[R̂|R]‖ = ‖A‖ ≤ 2σ
√

2n+ C(2σ)1/2(2n)1/4 log(2n)

≤ 3σ
√
n. (B.10)

Proof of Theorem 3.4. For any feasible Y that Y 6= R, we have to show that

∆(Y ) = 〈R̂, R〉 − λ||R||∗ − (〈R̂, Y 〉 − λ||Y ||∗) > 0. Rewrite ∆(Y ) as

∆(Y ) =〈R̄, R− Y 〉+ 〈R̂− R̄, R− Y 〉
+ λ(||Y ||∗ − ||R||∗). (B.11)

The first term in (B.11) can be written as

〈R̄, R− Y 〉 = (1− ε)(1− 2p)〈R,R− Y 〉
= (1− ε)(1− 2p)||R− Y ||1,

where the second equality follows from the fact that Yij ∈ [−1, 1] and Rij =

sgn(Rij). Define the normalized noise matrix W = (R̂ − R̄)/λ. Note that

||W ||∞ ≤ 1/λ and Var(Wij) ≤ 1/9n. The second term in (B.11) becomes

〈R̂ − R̄, R − Y 〉 = λ〈W,R − Y 〉. By Corollary B.1, ||W || ≤ 1 almost surely.

Thus UV >+PT⊥(W ) is a subgradient of ||X||∗ atX = R. Hence, for the third
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term in (B.11), λ(||Y ||∗ − ||R||∗) ≥ λ〈UV > + PT⊥(W ), Y −R〉. Therefore,

∆(Y )

≥ (1− ε)(1− 2p)||R− Y ||1 + λ〈UV > − PT (W ), Y −R〉
≥ [(1− ε)(1− 2p)− λ(||UV >||∞ + ||PT (W )||∞)]||R− Y ||1
≥ [(1− ε)(1− 2p)− λ(µ

√
r/n+ ||PT (W )||∞)]||R− Y ||1, (B.12)

where the last inequality follows from definition of the incoherence parameter

µ. Below we bound the term ||PT (W )||∞. From the definition of PT and the

fact that UBU
>
B = I and VBV

>
B = I,

||PT (W )||∞ ≤||UCU>CW ||∞ + ||WVCV
>
C ||∞

+ ||UCU>CWVCV
>
C ||∞.

We bound ||UCU>CW ||∞. To bound the term (UCU
>
CW )ij, assume user i

belongs to user cluster k and let Ck be the set of users in user cluster k.

Recall that uC,k is the normalized characteristic vector of user cluster k.

Then

(UCU
>
CW )ij = (uC,ku

>
C,kW )ij = (1/K)

∑

i′∈Ck

Wi′j,

which is the average of K independent random variables. By Bernstein’s

inequality (stated in the supplementary material), with probability at least

1− n−3,

∣∣∣∣∣
∑

i′∈Ck

Wi′j

∣∣∣∣∣ ≤
√

2

3r
log n+

2 log n

λ
.

Then ||UCU>CW ||∞ ≤ 1
K

(√
2
3r

log n+ 2 logn
λ

)
with probability at least 1 −

n−1. Similarly we bound ||WVCV
>
C ||∞ and ||UCU>CWVCV

>
C ||∞. Therefore,

with probability at least 1− 3n−1,

||PT (W )||∞ ≤
C1

K

(√
log n

r
+

log n

λ

)
≤ C2

K

√
log n

r
, (B.13)

for some constants C1 and C2, where the second inequality follows from the

96



assumption in (3.4). Substituting (B.13) into (B.12) and by (3.4) again, we

conclude that ∆(Y ) > 0 a.a.s.

B.5 Proof of Theorem 3.5

The proof is divided into three parts. Recall that xi denotes the i-th row

of Pr(R̂(1)). We first show that, for most users, xi is close to the expected

value conditioned on R. Then we show that the clusters output by Step 2

are close to the true clusters. Finally, we show that Step 3 exactly recovers

the block rating matrix B and Step 4 exactly recovers clusters.

Define R̄(1) = E
[
R̂(1)|R

]
= 1

2
(1 − ε)(1 − 2p)R and let x̄i be the i-th row

of R̄(1). We call user i a good user if ‖xi − x̄i‖2 ≤ τ/2 where the threshold

τ = 12(1− ε)1/2 log n; otherwise it is called a bad user. Let I denote the set

of all good users and Ic denote the set of all bad users. Define good items

in the same way, and let J denote the set of all good items and J c denote

the set of all bad items. The following lemma shows that the number of bad

users (items) are bounded by K log−2 n.

Lemma B.1. If σ2 ≥ C ′ log4 n/n for a constant C ′, then a.a.s., |Ic| ≤
K log−2 n and |J c| ≤ K log−2 n.

Proof. Let (σ(1))2 = 1
2
(1 − ε). By Corollary B.1, ‖R̂(1) − R̄(1)‖ ≤ 3σ(1)

√
n.

Note that

‖Pr(R̂(1))− R̄‖ ≤ ‖Pr(R̂(1))− R̂(1)‖+ ‖R̂(1) − R̄‖
≤ 2‖R̂(1) − R̄‖,

where the second inequality follows from the definition of Pr(R̂
(1)) and the

fact that R̄ has rank r. Since both Pr(R̂
(1)) and R̄ have rank r, the matrix

Pr(R̂
(1))− R̄ has rank at most 2r, which implies that

‖Pr(R̂(1))− R̄‖2
F ≤ 8r‖R̂(1) − R̄‖2 ≤ 72(σ(1))2nr.

As
∑n

i=1 ‖xi − x̄i‖2
2 = ‖Pr(R̂(1)) − R̄‖2

F , we conclude that there are at most

K log−2 n users with

‖xi − x̄i‖2 > 6
√

2σ(1)r log n = τ/2.
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Similarly we can prove the result for items.

The following proposition upper bounds the set difference between the

estimated clusters and the true clusters by K log−2 n. Let C∗1 , . . . , C
∗
r be the

true user clusters and ∆ denote the set difference.

Proposition B.1. Assume the assumption of Theorem 3.5 holds. Step 2 of

Algorithm 5 outputs {Ĉk}rk=1 and {D̂l}r1=1 such that, up to a permutation of

cluster indices, a.a.s., Ĉk∆C
∗
k ⊂ Ic and D̂l∆D

∗
l ⊂ J c for all k, l. It follows

that for all k, l,

|Ĉk∆C∗k | ≤
K

log2 n
, |D̂l∆D

∗
l | ≤

K

log2 n
. (B.14)

Proof. It suffices to prove the conclusion for the user clusters. Consider two

good users i, i′ ∈ I. If they are from the same cluster, we have x̄i = x̄i′ and

‖xi − xi′‖ ≤ ‖xi − x̄i‖+ ‖xi′ − x̄i′‖ ≤ τ, (B.15)

where the last inequality follows from Lemma B.1. If they are from different

clusters, by (B.1), we have a.a.s.

‖x̄i − x̄i′‖2
2 =

1

4
(1− ε)2(1− 2p)2||Ri −Ri′||22

≥1

4
(1− ε)2(1− 2p)2n,

where Ri denotes the i-th row of R. Thus,

‖xi − xi′‖ ≥ ‖x̄i − x̄i′‖ − ‖xi − x̄i‖ − ‖xi′ − x̄i′‖

≥ 1

2
(1− ε)(1− 2p)

√
n− τ > τ, (B.16)

where the last inequality follows from the assumption (3.5). Therefore, in

the clustering procedure of Step 2, if we choose a good initial user at some

iteration, the corresponding estimated cluster will contain all the good users

from the same cluster as the initial user and no good user from other clusters.

It is not hard to see that the probability of the event that we choose a good
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initial user in every iteration is lower bounded by

(
1− 1

r log2 n

)(
1− 1

(r − 1) log2 n

)
. . .

(
1− 1

log2 n

)

≥ 1− 1

log2 n

(
1

r
+

1

r − 1
+ · · ·+ 1

)

≥ 1− log r

log2 n
≥ 1− 1

log n
.

Assume the above event holds. Under proper permutation, the initial good

user in the k-th iteration is from cluster C∗k for all k. By the above argument,

the set difference Ĉk∆C
∗
k ⊂ Ic. By Lemma B.1, (B.14) follows.

Proof of Theorem 3.5. We first show that Step 3 of Algorithm 5 exactly re-

covers the block rating matrix B. Let Vkl denote the total vote that the true

user cluster k gives to the true item cluster l, i.e.,

Vkl =
∑

i∈C∗k

∑

j∈D∗l

R̂
(2)
ij .

Then by definition of V̂kl,

|V̂kl − Vkl| ≤
∑

i∈C∗k∆Ĉk

∑

j∈D∗l ∪D̂l

I{(i,j)∈Ω2}

+
∑

i∈C∗k∪Ĉk

∑

j∈D∗l ∆D̂l

I{(i,j)∈Ω2}. (B.17)

Without loss of generality, assume Bkl = 1. By Bernstein inequality and

assumption (3.5), Vkl ≥ 1
4
(1 − ε)(1 − 2p)K2 a.a.s. On the other hand, as

Ω2 and R̂(1) are independent, Ω2 is independent from {Ĉk} and {D̂l}. It

follows from (B.14) and the Chernoff bound that each term on the right-

hand side of (B.17) is upper bounded by (1 − ε)K2 log−2 n a.a.s. Hence,

when assumption (3.5) holds for some large enough constant C, we have

V̂kl > 0 thus B̂kl = Bkl.

Next we prove that Step 4 clusters the users and items correctly. Without

loss of generality, we only prove the correctness for users. Suppose user i is

from cluster k. Recall that Ri denotes the i-th row of R. When B̂ = B, we
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have µkj = Rij for j ∈ J by definition and Proposition B.1. Then

〈R̂(2)
i , µk〉 =〈R̂(2)

i , Ri〉+ 〈R̂(2)
i , µk −Ri〉

≥〈R̂(2)
i , Ri〉 − 2

∑

j∈J c
|R̂(2)

ij |. (B.18)

Similarly, for some user i′ from cluster k′ 6= k,

〈R̂(2)
i , µk′〉 =〈R̂(2)

i , Ri′〉+ 〈R̂(2)
i , µk′ −Ri′〉

≤〈R̂(2)
i , Ri′〉+ 2

∑

j∈J c
|R̂(2)

ij |. (B.19)

For ease of notation, let t := 1
2
(1 − ε)(1 − 2p)n and (σ(2))2 = 1

2
(1 − ε).

By (B.1), 〈Ri, Ri′〉 ≤ n/2 for all i 6= i′. Then conditioned on R, we have

E[〈R̂(2)
i , Ri〉] = t and Var[〈R̂(2)

i , Ri〉] ≤ n(σ(2))2, and

E[〈R̂(2)
i , Ri′〉] =

1

2
(1− ε)(1− 2p)〈Ri, R

′
i〉 ≤ t/2

and Var[〈R̂(2)
i , Ri′〉] ≤ n(σ(2))2. Now by the Bernstein inequality and as-

sumption (3.5), we have that conditioned on R, a.a.s. 〈R̂(2)
i , Ri〉 > 7t/8 and

〈R̂(2)
i , Ri′〉 < 5t/8 for all i 6= i′.

On the other hand, because J and Ω2 are independent, by the Chernoff

bound, a.a.s.
∑

j∈J c |R̂
(2)
ij | is upper bounded by (1 − ε)K log−2 n < t/16 for

all i, when assumption (3.5) holds for some large enough constant C.

Therefore, from (B.18) and (B.19), 〈R̂(2)
i , µk〉 > 〈R̂(2)

i , µk′〉 for all k′ 6=
k.
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APPENDIX C

PROOFS IN CHAPTER 4

C.1 Proof of Lemma 4.1

Suppose we require P [(u, ij) ∈ Ω1] = P [(u, ij) ∈ Ω2] = (1 − ε)δ for some

δ ∈ (0, 1). According to the assignment, we have a+ b = δ and it is not hard

to see that the independence of Ω1 and Ω2 is equivalent to (1−ε)a = (1−ε)2δ2.

Therefore, a = (1 − ε)δ2 and b = δ − (1 − ε)δ2. The constraint a + 2b ≤ 1

implies that 2δ − (1− ε)δ2 ≤ 1 and we can choose δ = 1/2.

C.2 Proof of Lemma 4.2

Note that AA> = Lm, which is the Laplacian of a complete graph on m

vertices, so A is of rank m− 1 and all nonzero singular values are
√
m, i.e.,

the SVD of A is A =
√
mUV >. As the first eigenvector of Lm has all entries

being 1/
√
m, the l2 norms of the rows of U are

√
(m− 1)/m. Let Ui be the

i-th row of U and note that {[Ui, 1/
√
m]} is an orthonormal basis, then the

l2 norms of the rows of V are

||Vij||2 =||U>Aij||2/
√
m

=||Ui − Uj||2/
√
m

=||[Ui, 1/
√
m]− [Uj, 1/

√
m]||2/

√
m

=
√

2/m.
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C.3 Proof of Lemma 4.3

Using the properties of A, we have

||η>V ||22 = η>V V >η =
1

m
η>A>Aη =

1

m
||Aη||2.

Note that

(Aη)i = #{j : θk,j < θk,i} −#{j : θk,j > θk,i}.

By the assumption that θk,i 6= θk,j for any i and j, the vector Aη is always a

permutation of the deterministic vector

[−(m− 1),−(m− 3), . . . ,m− 3,m− 1]>

representing the net wins of the items. Therefore,

||η>V ||22 =
1

m
||[−(m− 1),−(m− 3), . . . ,m− 3,m− 1]>||2 =

1

3
(m2 − 1).

C.4 Proof of Theorem 4.2

We prove the theorem by considering the two regimes of b separately in the

following two lemmas.

Lemma C.1. Assume m ≥ C ′ log r. If b ∈ [0.6, 5], then a.a.s. there exists

some constant C such that for any k 6= k′,

||S̄k − S̄k′ || ≥ C(1− ε)m.

Proof. By definition, R̄u,ij = 1−ε
2
f(θu,i − θu,j), and we have

Var [Ru,ij] ≤ E
[
R2
u,ij

]
=

1− ε
2

.

The function f(x) is nonlinear, but it behaves like x/2 for x close to 0.

According to the way we generate θk, the maximum approximation error is

given by δ(b) = |f(b)− b
2
|.
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By definition, for any k,

S̄k =
1− ε

2
f(θ>k A)V

=
1− ε

2

1

2
θ>k
√
mU +

1− ε
2

(f(θ>k A)− 1

2
θ>k A)V.

Then, the difference between S̄k and S̄k′ is lower bounded by

||S̄k − S̄k′ ||2 ≥
1− ε

2

√
m||(θk − θk′)U ||2

− 1− ε
2

[
||(f(θ>k A)− 1

2
θ>k A)V ||2 + ||(f(θ>k′A)− 1

2
θ>k′A)V ||2

]
.

As
∑

i θk,i =
∑

i θk′,i = 0,

||(θk − θk′)U ||2 = ||(θk − θk′)[U,
1√
m

1]||2 = ||θk − θk′||2,

where 1 is the vector with all ones. Using the fact that

|f((θi − θj)− (θi − θj)/2| ≤
δ(b)

b
|θi − θj|,

we get

||f(θ>k A)− 1

2
θ>k A||2 ≤

δ(b)

b

√∑

i<j

(θk,i − θk,j)2 =
δ(b)

b

√
m||θk||22.

Therefore,

||S̄k − S̄k′||2 ≥
1− ε

2

√
m

[
1

2
||θk − θk′||2 −

δ(b)

b
(||θk||2 + ||θk′ ||2)

]
.

First we bound ||θk − θk′||2. Recall that θk is the centered version of θ0
k, and

θ0
k,i are generated i.i.d. uniformly in [0, b]. When m > C1 log r, by Hoeffding’s

inequality,

|
∑

i

θ0
k,i −

mb2

2
| ≤ C2

√
m log r, |

∑

i

θ0
k′,i −

mb2

2
| ≤ C2

√
m log r
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with high probability. By definition,

||θk − θk′ ||2 ≥||θ0
k − θ0

k′ ||2 − ||
1

m
(
∑

i

θ0
k,i −

∑

i

θ0
k′,i)1||2

≥||θ0
k − θ0

k′ ||2 − 2C2

√
log r.

To bound ||θ0
k− θ0

k′||2, note that E [||θ0
k − θ0

k′||22] = E
[∑

i(θ
0
k,i − θ0

k′,i)
2
]

= mb2

6
.

Define Xi = (θ0
k,i − θ0

k′,i)
2 − b2

6
. Then |Xi| ≤ b2,E [Xi] = 0 and

E
[
X2
i

]
=E

[
(θ0
k,i − θ0

k′,i)
4
]
− b4

36

=E
[
(θ0
k,i −

b

2
)4

]
+ 6E

[
(θ0
k,i −

b

2
)2(θ0

k′,i −
b

2
)2

]

+ E
[
(θ0
k′,i −

b

2
)4

]
− b4

36

≤ b
4

80
+
b4

6
+
b4

80
− b4

36
≤ b4

6
.

By Bernstein’s inequality, when m ≥ C3 log r, with high probability,

∣∣∣∣||θ0
k − θ0

k′||22 −
mb2

6

∣∣∣∣ ≤ C4

√
m log rb2.

When m is large enough, we have ||θk − θk′||2 ≥
√

0.9mb2/6 with high prob-

ability.

Next we bound ||θk||2. By definition, ||θk||22 is the sample variance for

θ0
k and ||θk||2 is always bounded by

√
mb2/4. Using the fact that θ0

k,i is

uniform over [0, b], we can similarly show that, when m ≥ C5 log r, ||θk||2 ≤√
1.1mb2/12 with high probability.

Combining the two inequalities, we get

||S̄k − S̄k′ ||2 ≥ (
1

2

√
0.9

6
−
√

1.1

3

δ(b)

b
)
b

2
(1− ε)m , C(1− ε)m.

Note that b/δ(b) decreases with b. For b ∈ [0.6, 5], the constant C is larger

than 0.05.

Lemma C.2. Assume m ≥ C ′ log r. If b ≥ C ′′m3 logm, then a.a.s. there
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exists some constant C such that for any k 6= k′,

||S̄k − S̄k′|| ≥ C(1− ε)m.

Proof. The assumption that b is large implies that |θk,i−θk,j| is large for any

k and i < j. To show this, we note that

P [|θk,i − θk,j| < 1] ≤ 2

b
,

then by union bound we get

P [∀k, i < j, |θk,i − θk,j| ≥ 1] ≥ 1− m3

b
≥ 1− C ′′

logm
. (C.1)

In the following we will assume θk,i 6= θk,j for i 6= j. By definition, S̄k =
1−ε

2
f(θkA)V . Define ηk,ij = I{θk,i>θk,j}−I{θk,i<θk,j} to be the signed indicator

variable of the order between θk,i and θk,j. Then

||S̄k − S̄k′|| =
1− ε

2
||(f(θkA)− f(θk′A))V ||2

≥1− ε
2

[||(ηk − ηk′)V ||2 − ||(f(θkA)− ηk)V ||2
− ||(f(θk′A)− ηk′)V ||2]

≥1− ε
2

[||(ηk − ηk′)V ||2 − ||f(θkA)− ηk||2 − ||f(θk′A)− ηk′ ||2] .

First we show that ||f(θkA)− ηk||2 ≤ C1

√
m. When |θk,i − θk,j| ≥ t,

|f(θk,i − θk,j)− ηk,ij| ≤
2

et + 1
≤ 2e−t.

According to (C.1), for any integer 1 ≤ t ≤ m, there are m − t pairs of θk,i

and θk,i separated at least by t. Therefore,

||f(θkA)− ηk||22 ≤
m∑

t=1

(m− t)4e−2t ≤ C1m.

We bound ||f(θk′A)− ηk′ ||2 similarly.
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Next we show that ||(ηk − ηk′)V ||2 ≥ C2m. Observe that

||(ηk − ηk′)V ||22 =||ηkV ||22 + ||ηk′V ||22 − 2ηkV V
>η>k′

=
2

3
(m2 − 1)− 2

m
ηkA

>Aη>k′ , (C.2)

where the second equality follows from Lemma 4.3. By definition of A,

(ηkA
>)i represents the number of θj that are smaller than θi minus the num-

ber of θj that are larger than θi. Therefore, ηkA
> and ηk′A

> are independent

random permutations of the deterministic vector [−(m−1),−(m−3), . . . ,m−
3,m − 1]. Without loss of generality, assume ηkA

> = [−(m − 1),−(m −
3), . . . ,m− 3,m− 1] and denote ηk′A

> by x which is a random permutation

of ηkA
>. Let Z = ηkA

>Aη>k′ = −(m− 1)x1 + · · ·+ (m− 1)xm and define the

martingale yi = E [Z|x1, . . . , xi]. In particular, we have y0 = E [Z] = 0 and

ym = Z. We also note that |yi+1 − yi| ≤ 2m2. By Azuma’s inequality,

P [|Z| ≥ t] = P [|ym − y0| ≥ t] ≤ 2e−
t2

8m5 ,

i.e., |Z| ≤ C3m
5/2 log1/2m with high probability. Plugging it into (C.2), we

get ||(ηk − ηk′)V ||2 ≥ C2m.

Combining the above two steps, we conclude that

||S̄k − S̄k′ || ≥ C(1− ε)m.

C.5 Proof of Theorem 4.3

By definition, the rows of S are independent, and we have E
[
||Su − S̄u||22

]
≤

E
[
||Ru − R̄u||22

]
≤ (1− ε)m2. The following lemma shows that this bound is

loose, and ||Su − S̄u||2 is in fact of order O(
√

(1− ε)m).

Lemma C.3. If (1− ε)m2 > 36 log n, then with high probability,

||Su − S̄u||2 ≤ 3

√
1− ε

2
m log n, ∀u.
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Proof. Rewrite Su − S̄u as

Su − S̄u =
∑

ij

(Ru,ij − R̄u,ij)Vij ,
∑

ij

Zij.

Note that ||Zij||2 ≤ ||Vij||2 =
√

2/m. Moreover,

∑

ij

E
[
||Zij||22

]
≤ 1− ε

2

(
m

2

)
2

m
≤ 1− ε

2
m , σ2.

Now we apply the vector Bernstein’s inequality [85, Theorem 12]. We choose

t = 3σ
√

log n and under our assumption it satisfies t
√

2/m ≤ σ2. Then, for

any u,

P
[
||Su − S̄u||2 > 4σ

√
log n

]

≤P
[
||Su − S̄u||2 > σ + t

]
≤ exp(− t2

4σ2
) ≤ 1/n2.

Applying the union bound, we get the result.

Now Theorem 4.3 immediately follows from Theorem 4.2 and Lemma C.3.

Proof of Theorem 4.3. For large enough C, the condition implies that for any

user u from cluster k and any cluster k′ 6= k,

||Su − S̄u||2 ≤
τ

2
<

1

4
||S̄k − S̄k′||2.

Therefore, for any two users u and u′, if they are from the same cluster k,

then

||Su − Su′||2 ≤ ||Su − S̄k||2 + ||Su′ − S̄k||2 ≤ τ ;

if they are from different clusters k and k′, then

||Su − Su′||2 ≥ ||S̄k − S̄k′ ||2 − ||Su − S̄k||2 − ||Su′ − S̄k||2 > τ.

Suppose the first initial user we choose is from cluster k, then the above two

inequalities imply that the set of users in C1 is the same as the set of users

in cluster k. By the same argument, we can show all users are clustered

clustered correctly by the algorithm.
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C.6 Proof of Theorem 4.4

The key step in proving this theorem is to show that spectral norm ||S − S̄||
is small.

Lemma C.4. If (1− ε)m2 > 36 log n, then with high probability,

||S − S̄|| ≤ 8
√

(1− ε) max{m,n} log3/2 n.

Proof. We bound ||S − S̄|| by the matrix Bernstein’s inequality [84]. Let

Xu = eu(Su − S̄u), then S − S̄ =
∑

uXu. First we bound ||Xu||. Since

||Xu||2 =||XuX
>
u || = ||Su − S̄u||22||eue>u || = ||Su − S̄u||22,

by Lemma C.3, ||Xu|| ≤ 3
√

1−ε
2
m log n with high probability. Next we bound

σ2 , max{||
∑

u

E
[
XuX

>
u

]
||, ||

∑

u

E
[
X>u Xu

]
||}.

The covariance matrix for Su is Σu = V >DuV , where

Du = diag([Var [Ru,ij]]ij) ≤
1− ε

2
I.

Then

||
∑

u

E
[
XuX

>
u

]
|| =||

∑

u

E
[
||Su − S̄u||22eue>u

]
||

= max
u

E
[
||Su − S̄u||22

]

= max
u

Tr
[
V >DuV

]
.

Since Du ≤ 1−ε
2
I and using the fact that A ≤ B implies Tr

[
V >(B − A)V

]
≥
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0, we get ||∑u E
[
XuX

>
u

]
|| ≤ 1−ε

2
m. Similarly,

||
∑

u

E
[
X>u Xu

]
|| =||

∑

u

E
[
(Su − S̄u)>(Su − S̄u)

]
||

=||
∑

u

V >DuV ||

=||V >(
∑

u

Du)V ||

≤1− ε
2

n,

where the last inequality follows from Du ≤ 1−ε
2
I and the fact that A ≤ B

implies ||V >AV || ≤ ||V >BV || Therefore, σ2 ≤ 1−ε
2

max{m,n}. Now by

applying the matrix Bernstein’s inequality, we get

||S − S̄|| ≤3 max{max
u
||Xu|| log n, σ

√
log n}

≤8
√

(1− ε) max{m,n} log3/2 n

with probability at least 1− 2/n.

Using this lemma, we can show that most users S̃u are close to the expected

comparison vectors S̄u.

Corollary C.1. Let τ = 32
√

2(1−ε)rmax{m,n}
K

log5/2 n, then with high proba-

bility, there are at most K
log2 n

users such that ||S̃u − S̄u||2 > τ
2
.

Proof. By Lemma C.4, with probability at least 1− 2/n,

||S − S̄|| ≤ 8
√

(1− ε) max{m,n} log3/2 n.

Note that

||S̃ − S̄|| ≤||S̃ − S||+ ||S − S̄||
≤2||S − S̄||,

where the second inequality follows from the definition of S̃ and the fact that
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S̄ has rank r. Since the matrix S̃ − S̄ is of rank at most 2r, we get

||S̃ − S̄||2F ≤(
√

2r||S̃ − S̄||)2

≤8r||S − S̄||2

≤512(1− ε)rmax{m,n} log3 n.

As ||S̃ − S̄||2F =
∑

u ||S̃u − S̄u||22, we conclude that there are at most K
log2 n

users with

||S̃u − S̄u||2 > 16

√
2(1− ε)rmax{m,n}

K
log5/2 n =

τ

2
.

Combined with the fact that S̄k’s are well separated as shown in Theo-

rem 4.2, we get Theorem 4.4.

Proof of Theorem 4.4. Let τ be defined as above. We say a user is a good

user if ||S̃u− S̄u||2 ≤ τ
2
. Then under the assumption of the theorem, we have

||Su − S̄u||2 ≤
τ

2
<

1

4
||S̄k − S̄k′||2

for all good users. Let I be the set of good users and Corollary C.1 shows

that the number of bad users |Ic| ≤ K
log2 n

. The rest of the analysis is the

same as the proof of Proposition 1 in [61]. We conclude that there exists

a permutation π such that |Ck∆Ĉπ(k)| ≤ |Ic| ≤ K
log2 n

and
∑

k |Ck∆Ĉπ(k)| ≤
2|Ic| ≤ 2K

log2 n
.

C.7 Proof of Theorem 4.5

Let Du,ij = I{
R

(2)
u,ij=1

} and Du,ji = I{
R

(2)
u,ij=−1

} be the random variable indicat-

ing u’s comparison result of i and j. Then the maximum likelihood estimator

is defined as θ̂ = arg maxγ L(γ), where

L(γ) =
∑

u,i,j

Du,ij log
eγi

eγi + eγj
.
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Further let Bu,ij = Bu,ji = I{
R

(2)
u,ij 6=0

} be the random variables indicating if u

compared i and j. By definition of L(γ),

∂L

∂γi
=
∑

u,j

(Du,ij −Bu,ij
eγi

eγi + eγj
)

∂2L

∂γ2
i

=−
∑

j

Bij
eγieγj

(eγi + eγj)2

∂2L

∂γi∂γj
=Bij

eγieγj

(eγi + eγj)2
,

where Bij =
∑

uBu,ij. Let ∆ = θ̂ − θ. As θ̂ is the optimal solution,

0 ≤L(θ̂)− L(θ)

=〈∇L(θ),∆〉+
1

2
∆>(∇2L(γ))∆,

where the second step is by Taylor expansion and γ = θ + λ∆ for some

λ ∈ [0, 1]. By Cauchy-Schwartz inequality,

||∇L(θ)||2||∆||2 ≥
1

2
∆>(−∇2L(γ)∆)

≥ eb

2(eb + 1)2
∆>LB∆,

where the second inequality follows from the quadratic form of a Laplacian

and the fact that |θi − θj| ≤ b for any i, j.

Let Zu,ij = Du,ij −Bu,ij
eγi

eγi+eγj
. First we bound ||∇L(θ)||2. For each i,

∂L

∂θi
=
∑

j,u∈C

Zu,ij −
∑

j,u∈C\Ĉ

Zu,ij +
∑

j,u∈Ĉ\C

Zu,ij.

The first term is independent of Ĉ. For u ∈ C, E [Zu,ij] = 0 and Var [Zu,ij] ≤
1−ε

2
. By Bernstein’s inequality, with high probability for large m,

|
∑

j,u∈C

Zu,ij| ≤C1

√
(1− ε)Km logm.

For the next two terms, note that the matrix B only depends on Ω2 but
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not the comparison results, thus is independent of R(1) or Ĉ. As Bu,ij are

independent Bernoulli random variables with parameter 1 − ε, with high

probability for large m,

| −
∑

j,u∈C\Ĉ

Zu,ij +
∑

j,u∈Ĉ\C

Zu,ij| ≤
∑

j,u∈IC
Bu,ij ≤ C2(1− ε)m K

log2 n
.

Under the assumption, we conclude that | ∂L
∂θi
| ≤ C2(1 − ε)m K

log2 n
. There-

fore,

||∇L(θ)||2 ≤ C2(1− ε)m3/2 K

log2 n
.

Next we bound ∆>LB∆. Again by the fact that B is independent of R(1),

we can simply follow the proof of Theorem 4 in [12] and get

∆>LB∆ ≥ 1

4
(1− ε)Km||∆||22,

with high probability for large m. Combining the above results, we get the

upper bound on ||∆||2

||∆||2 ≤
C3(eb + 1)2

eb

√
m

log2 n
.

On the other hand, similar to the proof of Lemma C.1, we can show that

||θ||2 ≥
√
mb2

4
. Therefore, we get

||θ̂ − θ||2
||θ||2

=
||∆||2
||θ||2

≤ (eb + 1)2

beb
C

log2 n
.
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