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ABSTRACT

Today witnesses an explosion of data coming from various types of networks such
as online social networks and biological networks. The goal of this thesis is to
understand when and how we can efficiently extract useful information from such
network data.

In the first part, we are interested in finding tight-knit communities within a net-
work. Assuming the network is generated according to a planted cluster model,
we derive a computationally efficient semidefinite programming relaxation of the
maximum likelihood estimation method and obtain a stronger performance guar-
antee than previously known. If the community sizes are linear in the total num-
ber of vertices, the guarantee matches up to a constant factor with the information
limit which we also identify, and exactly matches without a constant gap when
there is a single community or two equal-sized communities. However, if the
community sizes are sublinear in the total number of vertices, the guarantee is
far from the information limit. We conjecture that our algorithm achieves the
computational limit below which no polynomial-time algorithm can succeed. To
provide evidence, we show that finding a community in some regime below the
conjectured computational limit but above the information limit is computation-
ally intractable, assuming hardness of the well-known planted clique problem.

The second part studies the problem of inferring the group preference for a set
of items based on the partial rankings over different subsets of the items provided
by a group of users. A question of particular interest is how to optimally con-
struct the graph used for assigning items to users for ranking. Assuming the par-
tial rankings are generated independently according to the Plackett-Luce model,
we analyze computationally efficient estimators based on maximum likelihood
and rank-breaking schemes that decompose partial rankings into pairwise com-
parisons. We provide upper and lower bounds on the estimation error. The lower
bound depends on the degree sequence of the assignment graph, while the upper
bound depends on the spectral gap of the assignment graph. When the graph is an
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expander, the lower and upper bounds match up to a logarithmic factor.
The unifying theme for the two parts of the thesis is the spectral gap of the

graph. In both cases, when the graph has a large spectral gap, accurate and ef-
ficient inference is possible via maximum likelihood estimation or its convex re-
laxation. However, when the spectral gap vanishes, accurate inference may be
statistically impossible, or it is statistically possible but may be computationally
intractable.

iii



To my parents, brother and sister-in-law, and my wife, for their love and support.

iv



ACKNOWLEDGMENTS

This thesis could not have been done without the help from many people. I owe
my deepest gratitude to my advisor Professor Hajek. I can say without exagger-
ation that every piece of my ideas in this thesis originates from the long weekly
meetings with him. He is always ready to spend hours and hours tackling the
problems together with me. Meanwhile, he also gives me so much freedom that I
can develop my own interests sometimes far from the conventional research areas
in EE. His way of conducting research and living has changed me in every aspect
of my life: I started running, biking, swimming, and enjoying research.

I would like to thank Dr. Laurent Massoulié and Dr. Marc Lelarge, with whom
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CHAPTER 1

INTRODUCTION

1.1 From Data Networks to Network Data

Communication engineers have traditionally been interested in designing efficient
information transmission schemes in data networks. For instance, in cellular net-
works, wireless transmissions can interfere with each other; a key question is how
to model, counter, or even exploit the interference to increase the transmission
rate. In queueing networks, servers may not be able to serve all arriving packets
due to the stochastic nature of the arrival processes and therefore packets may
suffer from significant queueing delay; a central question is how to design effi-
cient routing and scheduling algorithms to reduce queueing delay. After decades
of effort from both academia and industry, many such questions are now well un-
derstood and there has been a wide range of technological advance making data
transmission faster and cheaper.

As a result, today we see a surge of online social networks such as Facebook,
Twitter and Bitcoin, which generate enormous network data. Also, with the advent
of high-throughput measurement methods in biology, a large amount of biologi-
cal network data has accumulated, such as gene expression data from microarrays
and protein-protein interaction networks from mass spectrometry. There are many
other sources of network data such as transportation networks, power networks,
and sensor networks. This network data contains a wealth of information and it
is often desirable to extract useful information from it for various reasons, for
instance to predict user preferences, discover disease causes or predict traffic pat-
terns. However, this network data is so noisy and voluminous that the inference
is both statistically difficult and computationally challenging. The main goal of
this thesis is to show when and how it is computationally feasible to infer useful
information from network data. A secondary goal is to understand how much the
theory developed for the transmission of information, notably information theory,
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can be applied to solve the inference problems in network data.

1.2 Two Typical Examples of Inference in Networks

Various inference problems can emerge in the context of network data, but most of
them fall into one of the following two types. For the first type, we only observe
the network structure. The problem of finding subgraphs with special patterns
within a network is an example of the first type. For the second type, the obser-
vations are associated with nodes or edges. The problem of finding the source of
a rumor with knowledge only about who has the rumor and the network topology
is an example of the second type [1]. In this thesis, we study the following two
questions, which represent the above two types, respectively.

Finding communities within networks Real networks often exhibit commu-
nity structures with many edges joining the vertices of the same community and
relatively few edges joining vertices of different communities. With only knowl-
edge of the network topology, the problem is to identify the underlying tight-
knit communities, which is known as the community detection problem. Assum-
ing dense connections within communities and loose connections across different
communities, finding communities essentially amounts to partitioning the graph
into disjoint parts of given sizes with a minimum number of edges across differ-
ent parts, a problem known to be NP-hard in the worst case [2]. Nevertheless,
some simple algorithms like spectral methods are found to perform well in some
networks [3]. Thus, a theory to predict when it is computationally feasible or in-
feasible to find communities is needed. To quote from the survey of Fortunato
[4]:

“What the field lacks the most is a theoretical framework that defines precisely

what clustering algorithms are supposed to do.”

Inference from partial rankings In many online networks such as rating sys-
tems and crowdsourcing systems, a group of users give partial rankings over dif-
ferent subsets of items explicitly or implicitly. The problem is to combine the
partial rankings and infer the inherent group preference over all the items. This
problem, known as rank aggregation, has received much attention across vari-
ous disciplines including statistics, psychology, sociology, and computer science.
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While consistency of various rank aggregation algorithms has been studied when
a growing number of sampled partial preferences is observed over a fixed number
of items [5, 6], little is known in the high-dimensional setting where the number of
items and number of observed partial rankings scale simultaneously, which arises
in many modern datasets. Inference becomes even more challenging when each
individual provides limited information. For example, in the well-known Netflix
challenge dataset, 480,189 users submitted ratings on 17,770 movies, but on aver-
age a user rated only 209 movies. Intuitively, inference becomes harder when few
partial rankings are available, or the sizes of the partial rankings (i.e., the number
of items to be ranked) are small, meaning fewer observations. Here a central ques-
tion is: For a given graph used for assigning items to users for ranking, when and

how can we efficiently predict the group preference, and what are the key graph

characteristics that determine one’s ability to infer the inherent preference?

1.3 Planted Models and Fundamental Limits

This thesis takes the model-based approach, assuming an observation is generated
from some planted model:

y = f(θ∗; noise),

where θ∗ is the planted parameter, y denotes the observation, and f represents
some parametric model. The goal is to infer θ∗ with the knowledge of y and
the parametric model. In particular, we will focus on the following two planted
models.

• Planted Cluster Model

θ∗: Community membership of nodes.

y: A graph.

f : Each pair of two nodes is connected by an edge independently at ran-
dom with probability p if they are from the same community; with
probability q otherwise.

• Plackett-Luce Model

θ∗: Group preference over all items.
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y: Partial rankings.

f : For a given subset S of items, independently assign each item i ∈ S an
unobserved value Xi, exponentially distributed with mean e−θ∗i , and
then output the ascending order of {Xi : i ∈ S}.

Our planted cluster model encompasses several classical planted random graph
models including planted clique [7], planted coloring [8], planted dense sub-
graph [9], planted partition [10], and the stochastic block model [11], which are
widely used for studying the problem of finding communities [4, 12, 13, 9, 14, 15,
16, 17, 18, 19, 20, 21]. They also provide a venue for studying the average-case
behaviors of many NP-hard graph theoretic problems including max-clique, max-
cut, graph partitioning and coloring [22, 10]. The Plackett-Luce (PL) model [23]
is widely used for studying the rank aggregation problem [24, 25, 26, 27, 28, 29].
In the special case with pairwise comparisons, the PL model reduces to the popu-
lar Bradley-Terry (BT) model [30].

This thesis focus on the following two fundamental limits under the two planted
models:

• Information limit. The fundamental limit above which the accurate infer-
ence is possible and below which it is impossible for any algorithm regard-
less of its computational complexity.

• Computational limit. The fundamental limit above which the accurate
inference is achievable in polynomial-time and below which it is computa-
tionally intractable.

Our study of the two fundamental limits is motivated by the following obser-
vations at the intersection of information theory, statistics, theoretical computer
science, applied probability and random graphs, optimization, machine learning
and social network analysis.

• From the perspective of information theory, the inference problem can be
viewed as a communication problem, where the planted parameter is the
information to be transmitted, the parametric model acts like an encoder
and a noisy channel which encodes and distorts the information, and the
inference task is nothing but the decoding procedure which aims to recover
the information. This suggests it may be possible to find the fundamental
limits of the inference problems using information-theoretic tools.
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• From the perspective of theoretical statistics, the existing minimax bounds
on estimation errors do not take computational complexity into account, and
in the high-dimensional statistical inference problems, the inference proce-
dures may not be computationally feasible. Thus it is important to under-
stand the minimax bounds under computational complexity constraint.

• From the perspective of theoretical computer science, the existing worst-
case hardness results are sometimes pessimistic: The inputs eliciting the
worst-case behavior may rarely occur in practice. The average-case com-
plexity may be a more relevant measure of an algorithm’s performance.

• From the perspective of applied probability and random graphs, the existing
phase transition results mostly focus on the threshold for the emergence of
a special network structure under a simple random graph model, such as the
emergence of the giant component in Erdős-Rényi random graph. It is of
interest to establish similar phase transition results for inference problems
in a network.

• From the perspective of optimization, the problem of finding communities
can be cast as a combinatorial optimization problem. It is observed that
semi-definite programming (SDP), as a convex relaxation of the combina-
torial optimization, leads to an efficient solver. Therefore, it is of interest
to quantify the performance limits of SDP and understand when the convex
relaxation is tight or not.

• From the perspective of machine learning and social network analysis, the
study of the fundamental limits provides a principled approach to develop
efficient algorithms with strong theoretical performance guarantees.

1.4 Notation

Throughout this thesis, we use the following notation. All logarithms are natural
unless the base is explicitly specified. We use the convention 0 log 0 = 0. For any
positive integer N , let [N ] = {1, . . . , N}. For a, b ∈ R, let a ∧ b = min{a, b}
and a ∨ b = max{a, b}. For any set S, let |S| denote its cardinality. Let sn1 =

{s1, . . . , sn}. We use standard big O notations, e.g., for any sequences {an} and
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{bn}, an = Θ(bn) or an � bn if there is an absolute constant c > 0 such that
1/c ≤ an/bn ≤ c.

Let I denote the identity matrix, and J denote the all-one matrix. We write
X � 0 if X is positive semidefinite and X ≥ 0 if all the entries of X are non-
negative. Let Sn denote the set of all n× n symmetric matrices. For X ∈ Sn, let
λ2(X) denote its second smallest eigenvalue. For any matrix Y , let ‖Y ‖ denote
its spectral norm.

Let Bern(p) denote the Bernoulli distribution with mean p and Binom(N, p)

denote the binomial distribution with N trials and success probability p. For ran-
dom variables X, Y , we write X ⊥⊥ Y if X is independent with Y . For probabil-
ity measures P and Q, let dTV(P,Q) = 1

2

∫
|dP − dQ| denote the total variation

distance and χ2(P‖Q) =
∫ (dP−dQ)2

dQ the χ2-divergence. The Kullback-Leibler
(KL) divergence between two Bernoulli distributions with means u ∈ [0, 1] and
v ∈ [0, 1] is denoted by D(u‖v) , u log u

v
+ (1 − u) log 1−u

1−v . The distribution
of a random variable X is denoted by PX . We write X ∼ P if PX = P. Let
c1, c2 etc. denote universal constants whose values can be made explicit and are
independent of the model parameters. We say a sequence of events {An} holds
with high probability if P[An] ≥ 1 − c1n

−c2 for two universal positive constants
c1, c2.
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CHAPTER 2

FINDING COMMUNITIES WITHIN A
NETWORK

In this chapter we formally introduce the problem of finding tight-knit commu-
nities within a network, summarize the previous work and overview main results
given in Chapters 3, 4, 5, 6.

2.1 Generative Network Model

Consider the following model for generating a network with some underlying
community structure with five parameters n, r,K ∈ N with n ≥ rK, and p, q ∈
[0, 1].

Definition 1 (Planted Cluster Model). Suppose that out of a total of n nodes,

rK of them are partitioned into r clusters of size K, and the remaining n −
rK nodes do not belong to any clusters (called outlier nodes); A random graph

G is generated based on the cluster structure: Each pair of nodes is connected

independently of all others by an edge with probability p (called in-cluster edge

density) if they are in the same cluster, and otherwise with probability q (called

out-cluster edge density).

The goal is to recover the underlying clusters (up to a permutation of cluster
indices) from the observation of the graph. Let {C∗i }ri=1 denote the r true clusters.
We say an estimatorA : G→ {Ĉi}ri=1 achieves (1− ε)-approximation of the true
clusters if there exists a permutation π : [r] → [r] such that

∑r
i=1 |Ĉπ(i) ∩ C∗i | ≥

(1− ε)rK. In this thesis, we will primarily focus on exact recovery where ε = 0,
but our computational lower bounds hold for any ε < 1. Correlated recovery
defined in [15, 31] refers to ε < 1− 1

r
.

The model parameters (p, q, r,K) are assumed to be known to the algorithms.
This assumption is often not necessary and can be relaxed [32, 9]. It is also possi-
ble to allow for non-uniform cluster sizes [33], and heterogeneous edge probabil-
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ities [34] and node degrees [35, 32]. These extensions are certainly important in
practical applications; we will discuss them in Chapter 6.

By varying the values of the model parameters, the planted cluster model cov-
ers several classical models including planted clique, planted coloring, planted
densest subgraph, planted partition, and the stochastic block models.

• Planted r-Disjoint-Clique [36]. Here p = 1 and 0 < q < 1, so r cliques of
size K are planted into an Erdős-Rényi random graph G(n, q). The special
case with r = 1 is known as the planted clique (PC) problem [7].

• Planted Densest Subgraph [9]. Here 0 < q < p < 1 and r = 1, so there is
a subgraph of size K and density p planted into a G(n, q) graph.

• Planted Partition [10]. Also known as the stochastic block model [11].
Here n = rK and p, q ∈ (0, 1). The special case with r = 2 can be called
planted bisection [10]. The case with p < q is sometimes called planted

noisy coloring or planted r-cut [15, 22].

• Planted r-Coloring [8]. Here n = rK and 0 = p < q < 1, so each cluster
corresponds to a group of disconnected nodes that are assigned with the
same color.

Reduction to the p > q case. For clarity we shall focus on the homophily
setting with p > q; results for the p < q case are similar. In fact, any achievability
or converse result for the p > q case immediately implies a corresponding result
for p < q. To see this, observe that if the graph A is generated from the planted
clustering model with p < q, then the flipped graph A′ := J − A − I (J is the
all-one matrix and I is the identity) can be considered as generated with in/out-
cluster edge densities p′ = 1 − p and q′ = 1 − q, where p′ > q′. Therefore, a
problem with p < q can be reduced to one with p′ > q′. Clearly the reduction can
also be done in the other direction.

2.2 Previous Work

There is a vast literature on community detection (see, e.g., the exposition [4]
for a comprehensive survey), here we cover the fraction we see as most relevant.
Detailed comparisons of existing results are given after the main theorems. Our
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investigation of the information and computational limits of cluster recovery is
inspired by the following four lines of research at the intersection of theoretical
computer science, statistics, physics, information theory, machine learning and
social network analysis.

Fundamental limits in planted clique model In the planted clique model, a
clique of size K is planted in an Erdős-Rényi random graph G(n, 1/2). If the
planted clique has size K = o(log n), recovery is impossible because G(n, 1

2
) will

have a clique with size at least K; if K ≥ 2(1 + ε) log2(n) for any ε > 0, an ex-
haustive search succeeds [7]; if K = Ω(

√
n), the state-of-the-art polynomial-time

algorithms work [7, 37, 36, 38, 39, 40, 41]; if K = Ω(
√
n log n), the nodes in

the clique can be easily identified by counting degrees [42]. It is an open problem
to find polynomial-time algorithms for the K = o(

√
n) regime, and it is believed

that this cannot be done [43, 44, 45, 46]. The same results also hold for detecting
the planted clique in Erdős-Rényi G(n, γ) for any fixed γ ∈ (0, 1), i.e., distin-
guishing G(n, γ) from a model with a cliuqe of size K planted in G(n, γ). In par-
ticular, the hardness assumption of detecting the planted clique of size o(

√
n) in

G(n, γ) with a positive constant γ is known as Planted Clique Hypothesis [47, 48].
Various hardness results in the theoretical computer science literature have been
established based on the PC Hypothesis with γ = 1

2
, e.g. cryptographic appli-

cations [44], approximating Nash equilibrium [43], testing k-wise independence
[45], etc. In this thesis, we will show the hardness of recovering a single cluster
below a certain limit based on the Planted Clique Hypothesis. In contrast to most
previous works, our computational lower bounds rely on the stronger assumption
that the PC Hypothesis holds for any positive constant γ. An even stronger as-
sumption that the PC Hypothesis holds for γ = 2−(logn)0.99 has been used in [49]
for public-key cryptography. It is an interesting open problem to prove that the
PC Hypothesis for a fixed γ ∈ (0, 1

2
) follows from that for γ = 1

2
.

Fundamental limits in planted bisection model A recent line of research iden-
tifies the sharp cluster recovery threshold under the planted bisection model with
two approximately equal-sized clusters. In the very sparse regime where p = a/n

and q = b/n for two constants a and b, it was conjectured in [15] that corre-
lated recovery (i.e., (1 − ε)-approximation with ε < 1

2
) is possible if and only if

(a − b)2 > 2(a + b); the converse part is proved in [31] and the achievability
part is proved independently in [16, 50]. In the relatively sparse regime where
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p = a logn
n

and q = b logn
logn

for two constants a and b, it is shown in [51, 52] that
exact cluster recovery is possible if and only if a+b

2
−
√
ab > 1. Remarkably, the

recovery in both cases can be achieved by a polynomial-time algorithm whenever
it is possible, showing that there is no gap between the information and compu-
tational limits. The polynomial time algorithms in [51, 52] is obtained using an
approximate cluster recovery algorithm followed by a local, greedy improvement
procedure. It is open to find a one-step polynomial-time procedure to achieve the
recovery threshold a+b

2
−
√
ab = 1. It is conjectured in [52] that the semidefinite

programming succeeds if a+b
2
−
√
ab > 1, backed by compelling simulation re-

sults. We prove the conjecture is correct in Chapter 5. However, if there are more
than two clusters, [15] and [31] conjecture a hard regime exists when constant fac-
tors are concerned. In Chapter 3, we conjecture a hard regime exists even when
only polynomial factors are concerned, if the cluster size K is sub-linear in n.

Fundamental limits in minimax inference problems There is an emerging
line of research (see, e.g.,[53, 54, 47, 55, 9, 56, 48]) which examines high di-
mensional inference problems from both the statistical and computational per-
spectives. Gaps between the information and computational limits are observed
in detecting or recovering a single sparse principal component [57, 58], detecting
or localizing a single sparse submatrix [54, 59, 60, 61], and detecting a single
cluster [9, 56]. Computational lower bounds for detecting sparse principal com-
ponents [47] and noisy biclustering (submatrix detection) [48] have been recently
proved based on the PC Hypothesis with γ = 1

2
.

Polynomial-time cluster recovery algorithms Most efficient cluster recovery
algorithms fall into one of the following three categories: spectral method, con-
vex method, or approximate Bayesian inference. The spectral method extracts
the eigenvectors corresponding to the top eigenvalues and applies K-means or
some thresholding algorithm on the eigenvectors to recover the clusters (see, e.g.,
[62, 63] for a comprehensive survey). A rigorous analysis with performance guar-
antees can be found in [36, 13, 64]. The tensor method, as an interesting variant of
the spectral method, is studied in [19] and shown to be even able to find overlap-
ping clusters. The convex method is based on taking a semidefinite relaxation of
the ML estimation (see, e.g., [32, 65, 34]). Exact MAP inference under the planted
cluster model is computationally challenging; an efficient message-passing algo-
rithm is proposed in [15] to approximate the MAP estimator. Our results on the
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convex method improve upon the previously known statistical performance of
polynomial-time algorithms.

2.3 Overview of Main Results

In Chapter 3, we present our general results allowing for any values of p, q, K
and r, which are accurate up to constant factors. Here for ease of presentation, we
specialize our general results to the following asymptotic regime:

p = cq = Θ(n−α), K = Θ(nβ), n→∞, (2.1)

where c > 1 is a fixed constant, α ∈ [0, 1] governs the sparsity of the graph and
β ∈ [0, 1] captures the size of communities. Clearly the cluster recovery problem
becomes more difficult if either α increases or β decreases. We show that the
parameter space of (α, β) is partitioned into three regimes as depicted in Fig. 2.1:

• The Easy Regime: β > 1
2

+ α
2

. The planted cluster can be perfectly re-
covered in polynomial-time with high probability via the semidefinite pro-
gramming relaxation of the ML estimation.

• The Hard Regime: α < β < 1
2

+ α
2

. The planted cluster can be exactly re-
covered with high probability by ML estimation using an exhaustive search.

• The Impossible Regime: β < α. Regardless of the computational costs, no
algorithm can exactly recover the planted cluster with vanishing probability
of error.

The impossible and hard regimes are separated by the information limit below
which the graph does not carry enough information about the underlying clus-
ters, so recovery is impossible. Our semidefinite programming improves the best
known performance guarantees of polynomial-time algorithms. We conjecture
no polynomial-time algorithm can succeed in the hard regime. If the conjecture
is true, then the easy and hard regimes are separated by the computational limit

below which finding the clusters is computationally intractable.
In Chapter 4, we bring evidence to the conjecture by showing that achieving

(1 − ε)-approximation of a single planted cluster for any ε < 1 is at least as
hard as detecting a clique of size o(

√
n) planted in G(n, γ) with a constant edge

11
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12/3

p = cq = Θ(n−α)

K = Θ(nβ)

1/2

impossible

easy

1/2

hard

O α

β

Figure 2.1: The simple (green), hard (red), impossible (gray) regimes for cluster
recovery; c > 1 is a fixed constant.

probability γ > 0 when α < β < 1
2

+ α
4

(red regime below the dashed line in
Fig. 2.1). Since it is believed to be computationally intractable to detect a clique
of size o(

√
n) planted in G(n, γ), our results imply that it is also computationally

intractable to achieve (1 − ε)-approximation of a single planted cluster for any
ε < 1 when α < β < 1

2
+ α

4
. Interestingly, if 1

2
+ α

4
< β < 1

2
+ α

2
(red regime above

the dashed line in Fig. 2.1), detecting the single planted cluster is computationally
easy by thresholding the total number of edges, but we conjecture that finding

the single planted cluster is computationally intractable. It is an interesting future
work to prove our conjecture in this regime.

From Fig. 2.1, we also see that if K = Θ(n), the hard regime disappears. In
fact, our general results in Chapter 3 show our semidefinite programming (SDP)
achieves the information limit up to constant factors. In Chapter 5, we show the
SDP even succeeds all the way down to the information limit without constant
gaps in the following two special scaling regimes:

1. Binary symmetric stochastic block model (assuming n is even): K = n
2
,

r = 2, p = a logn
n

, and q = b logn
n

;

2. Planted dense subgraph model: K = bρnc, r = 1, p = a logn
n

, and q =
b logn
n

,

where a > b > 0 and 0 < ρ < 1 are fixed constants More specifically, under
the binary symmetric stochastic block model, if

√
a−
√
b >
√

2, the SDP exactly

12



recovers the clusters with probability converging to one; if
√
a−
√
b <
√

2, any al-
gorithms fails with probability converging to one regardless of the computational
complexity. Under the planted dense subgraph model, if ρ

(
a− τ ∗ log ea

τ∗

)
> 1

with τ ∗ = (a − b)/ log(a/b), the SDP exactly recovers the planted cluster with
probability converging to one; if ρ

(
a− τ ∗ log ea

τ∗

)
< 1, any algorithm fails with

probability converging to one regardless of the computational complexity. It is an
interesting open problem to understand if SDP achieves the sharp recovery thresh-
old when there are a constant number of, but more than two, clusters of possibly
unequal sizes.

In Chapter 6, we extend the analysis of the semidefinite program to the degree-
corrected SBM (DCSBM), which is an extension of the SBM with heterogeneous
cluster sizes and node degrees, and obtain a stronger performance guarantee than
previously known. We also test the semidefinite program on the political blog
datasets [66]: The empirical performance is comparable to the best known results
in the literature.
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CHAPTER 3

INFORMATION LIMITS AND EFFICIENT
ALGORITHMS FOR FINDING

COMMUNITIES

In this chapter, we first derive the information limit above which finding commu-
nities is possible and below which it is impossible for any algorithm to reliably
find communities. Then, based on taking a semidefinite relaxation of the ML es-
timator, we derive an efficient convex program for finding communities and char-
acterize its performance limit. We find that the performance limit depends on the
spectral gap of the graph: Our convex method succeeds if and only if the spectral
gap is large.

3.1 The Impossible Regime

In this section, we characterize the necessary conditions for cluster recovery. To
facilitate subsequent discussion, we introduce a matrix representation of the clus-
ter structure. For k ∈ [r], let σ∗k ∈ {0, 1}n denote the indicator function of the true
cluster k such that σ∗ki = 1 if vertex i is in the true cluster k and σ∗ki = 0 other-
wise. We represent the true cluster structure by a cluster matrix Y ∗ ∈ {0, 1}n×n

such that Y ∗ =
∑r

k=1 σ
∗
k (σ∗k)

> . Notice that Y ∗ii = 1 if i is not an outlier node;
otherwise Y ∗ii = 0, and Y ∗ij = 1 if and only if nodes i and j are in the same true
cluster. The rank of Y ∗ equals the number of clusters r. The adjacency matrix
of the graph is denoted as A, with the convention Aii = 0, ∀i ∈ [n]. Under the
planted cluster model, we have P(Aij = 1) = p if Y ∗ij = 1 and P(Aij = 1) = q if
Y ∗ij = 0 for all i 6= j. The problem reduces to recovering Y ∗ given A.

Let Y be the set of cluster matrices corresponding to r clusters of size K; i.e.,

Y =

{
Y | Y =

r∑
k=1

σk (σk)
> , σk ∈ {0, 1}n, σk ⊥⊥ σk′ ,∀k 6= k′,

}
.

We use Ŷ ≡ Ŷ (A) to denote an estimator which takes as input the graph A and
outputs an element of Y as an estimate of the true Y ∗. Our results are stated in

14



terms of the Kullback-Leibler (KL) divergence between two Bernoulli distribu-
tions with means u and v, denoted by D(u‖v) = u log u

v
+ (1− u) log 1−u

1−v .

Theorem 3.1.1. Suppose 128 ≤ K ≤ n/2. Under the planted cluster model with

p > q, if one of the following two conditions holds:

K ·D(q‖p) ≤ 1

192
[log(rK) ∧K] , (3.1)

K ·D(p‖q) ≤ 1

192
log n, (3.2)

then

inf
Ŷ

sup
Y ∗∈Y

P
[
Ŷ 6= Y ∗

]
≥ 1

4
.

The theorem shows reliable cluster recovery is fundamentally impossible in the
regime where (3.1) or (3.2) holds, which is thus called the impossible regime. This
regime arises from an information barrier: The left hand sides of (3.1) and (3.2)
measure how much information of Y ∗ is contained in the data A via KL diver-
gence; while the right hand sides measure the amount of ambiguity in Y ∗ via the
entropy. If the in-cluster and out-cluster edge distributions are close or the cluster
size is small, then A does not carry enough information to distinguish different
cluster matrices.

It is sometimes more convenient to use the following corollary, derived by
upper-bounding the KL divergence in (3.1) and (3.2) using its Taylor expansion.
Applying the corollary to the asymptotic regime (2.1) implies that exact recovery
is impossible if β < α, as shown in Fig. 2.1.

Corollary 3.1.2. Suppose 128 ≤ K ≤ n/2. Under the planted clustering model

with p > q, if any one of the following three conditions holds:

K(p− q)2 ≤ 1

192
q(1− q) log n, (3.3)

Kp ≤ 1

193
[log(rK) ∧K] , (3.4)

Kp log
p

q
≤ 1

192
log n, (3.5)

then inf Ŷ supY ∗∈Y P[Ŷ 6= Y ∗] ≥ 1
4
.

Note the asymmetry between the roles of p and q in the conditions (3.1) and (3.2);
this is made apparent in Corollary 3.1.2. To see why the asymmetry is natural, re-
call that by a classical result of [67], the largest clique in a random graph G(n, q)
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has size kq = Θ(log n/ log(1/q)) almost surely. Such a clique cannot be distin-
guished from a true cluster if K . kq, even when p = 1. This is predicted by the
condition (3.5). When q = 0, cluster recovery requires p & log(rK)

K
to ensure all

true clusters are connected within themselves, matching the condition (3.4). The
term K on the RHS of (3.1) and (3.4) is relevant only when K ≤ log(rK).

Comparison to previous work When r = 1 and q = 1/2, our results recover
the K = Θ(log n) threshold for the classical planted clique problem. For planted
partition with r = O(1) clusters of size K = Θ(n) and p/q = Θ(1), the work
in [35, 68] establishes the necessary condition p−q .

√
p/n; our result is stronger

by a logarithmic factor.

3.2 The Hard Regime

In this subsection, we characterize the sufficient conditions for cluster recovery
which match the necessary conditions given in Theorem 3.1.1 up to constant fac-
tors. We consider the ML estimator of Y ∗ under the planted cluster model. The
log-likelihood of observing the graph A given a cluster matrix Y ∈ Y is

logPY (A) = log
∏
i<j

pAijYijqAij(1−Yij)(1− p)(1−Aij)Yij(1− q)(1−Aij)(1−Yij)

= log
p(1−q)
q(1−p)

∑
i<j

AijYij + log
1−p
1−q

∑
i<j

Yij + log
q

1−q
∑
i<j

Aij

+
∑
i<j

log(1−q). (3.6)

GivenA, the ML estimation maximizes the log-likelihood over the set Y of cluster
matrices. Note that

∑
i<j Yij = r

(
K
2

)
for all Y ∈ Y , so the last three terms in (3.6)

are independent of Y . Therefore, the ML estimation for the p > q case is given as
in Algorithm 1.
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Algorithm 1 ML Estimator (p > q)

Ŷ = arg max
Y

∑
i,j

AijYij (3.7)

s.t. Y ∈ Y . (3.8)

Algorithm 1 is equivalent to finding r disjointclusters of size K that maximize the
number of edges inside the clusters (similar to DensestK-Subgraph), or minimize
number of edges outside the clusters (similar to Balanced Cut) or the disagree-
ments between A and Y (similar to Correlation Clustering in [69]). Therefore,
while Algorithm 1 is derived from the planted cluster model, it is in fact quite
general and not tied to the modeling assumptions. Enumerating over the set Y is
computationally intractable in general since |Y| = Ω(en).

The following theorem provides a success condition for the ML estimator.

Theorem 3.2.1. Under the planted cluster model with p > q, there exists a uni-

versal constant c1 such that the optimal solution Ŷ to the problem (3.7)–(3.8) is

unique and equal to Y ∗ with probability at least 1 − 16(rK)−1 − 256n−1 if both

of the following hold:
K ·D(q‖p) ≥ c1 log(rK),

K ·D(p‖q) ≥ c1 log n.
(3.9)

We refer to the regime in which the condition (3.9) holds but (3.14) below
fails as the hard regime, because cluster recovery is statistically possible but con-
jectured to be computationally hard (cf. Section 3.3 and Conjecture 4.1.1). The
conditions (3.9) and (3.1)–(3.2) in Theorem 3.1.1 match up to a constant factor
under the mild assumption K ≥ log(rK), establishing the information limit up to
constant factors.

By lower bounding the KL divergence, we obtain the following corollary.

Corollary 3.2.2. For the planted cluster model with p > q, there exists a universal

constant c2 such that the optimal solution Ŷ to the problem (3.7)–(3.8) is unique

and equal to Y ∗ with probability at least 1− 4(rK)−1 − 16n−1 provided

K(p− q)2 ≥ c2q(1− q) log n, Kp ≥ c2 log(γrK) and Kp log
p

q
≥ c2 log n.

(3.10)
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The condition (3.10) can be simplified to K(p − q)2 & q(1 − q) log n if q =

Θ(p), and to Kp log p
q
& log n,Kp & log(rK) if q = o(p). These match the

converse conditions in Corollary 3.1.2 up to constant factors. Applying Corol-
lary 3.2.2 to the asymptotic regime (2.1) implies that the ML estimator exactly
recovers the clusters if β > α, and thus the information limit is given by β = α,
as shown in Fig. 2.1.

Comparison to previous work Theorem 3.2.1 establishes the information limit
tight up to constant factors. Interestingly, for a fixed cluster size, the recovery
limit (3.9) depends only weakly on the number of clusters r through the logarith-
mic term. Our results recover the information limit K � log n for the planted
clique problem. For the planted densest subgraph model where p/q = Θ(1), p
bounded away from 1 and Kq � 1, the detection limit is shown in [9] to be
(p−q)2
q
� min{ 1

K
log n

K
, n

2

K4}; while our results show that the recovery limit is
(p−q)2
q
� logn

K
, which is strictly above the detection limit because n2

K4 can be much
smaller than logn

K
. For the planted bisection model with two approximately equal-

size clusters: if p, q = Θ(log(n)/n), the recovery limit is found in [52] and [51]
to be K(

√
p−√q)2 > log n, which is consistent with our results up to constants;

if p, q = O(1/n), the correlated recovery limit is shown in [31, 50, 16] to be
K(p− q)2 > p+ q, which is consistent with our results up to a logarithmic factor.

3.3 The Easy Regime

In this subsection, we present a polynomial-time semidefinite program based on
taking a convex relaxation of the ML estimation in Algorithm 1. Note that the
objective function (3.7) in the ML estimation is linear, but the constraint Y ∈ Y is
non-convex. We replace this non-convex constraint with a trace norm (also known
as nuclear norm) constraint and a set of linear constraints. This leads to a convex
relaxation of ML estimation given in Algorithm 2. Here the trace norm ‖Y ‖∗ is
defined as the sum of the singular values of Y . Note that the true Y ∗ is feasible to
the optimization problem (3.11)–(3.13) because ‖Y ∗‖∗ = trace(Y ∗) = rK.
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Algorithm 2 Convex Relaxation of ML Estimator (p > q)

Ŷ = arg max
Y

∑
i,j

AijYij (3.11)

s.t. ‖Y ‖∗ ≤ rK, (3.12)∑
i,j

Yij = rK2, 0 ≤ Yij ≤ 1,∀i, j (3.13)

The optimization problem in Algorithm 2 is a semidefinite program (SDP) and
can be solved in polynomial time by standard interior point methods or various
fast specialized algorithms such as ADMM; e.g., see [70, 71]. Similarly to Al-
gorithm 1, this algorithm is not strictly tied to the planted cluster model because
it can also be considered as a relaxation of Correlation Clustering or Balanced
Cut. In the case where the values of r and K are unknown, one may replace
the hard constraints (3.12) and (3.13) with an appropriately weighted objective
function [32]; we will discuss them in Chapter 6.

The following theorem provides a sufficient condition for the success of the
convex relaxation of the ML estimator.

Theorem 3.3.1. Under the planted cluster model with p > q, there exists a uni-

versal constant c1 such that with probability at least 1−n−10, the optimal solution

to the problem (3.11)–(3.13) is unique and equal to Y ∗ provided

K2(p− q)2 ≥ c1 [p(1− q)K log n+ q(1− q)n] . (3.14)

Since the convex relaxation of the ML estimator can be solved in polynomial-
time, we refer to the regime where the condition (3.14) holds as the easy regime.
If p/q = Θ(1), it is easy to see that the smallest possible cluster size allowed
by (3.14) is K = Θ(

√
n) and the largest number of clusters is r = Θ(

√
n),

both of which are achieved when p, q, |p − q| = Θ(1). This generalizes the
tractability threshold K = Ω(

√
n) of the classic planted clique problem. In con-

trast, if q = o(p) (we call it the high SNR setting), the condition (3.14) becomes
Kp & max{log n,

√
qn}. In this case, it is possible to go beyond the

√
n limit on

the cluster size. In particular, when p = Θ(1), the smallest possible cluster size is
K = Θ(log n ∨√qn), which can be much smaller than

√
n.

Theorem 3.3.1 immediately implies guarantees for other tighter convex relax-
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ations. Define the sets B := {Y |(3.13) holds} and

S1 := {Y | ‖Y ‖∗ ≤ rK},

S2 := {Y | Y � 0; trace(Y ) = rK}.

The constraint in Algorithm 2 corresponds to Y ∈ S1 ∩ B, while Y ∈ S2 ∩ B is
the constraint in the standard SDP relaxation. Clearly (S1 ∩ B) ⊇ (S2 ∩ B) ⊇ Y .
Therefore, if we replace the constraint (3.12) with Y ∈ S2, we obtain a tighter

relaxation of the ML estimator, and Theorem 3.3.1 guarantees that it also recovers
Y ∗ under the condition (3.14) with high probability.

We have a partial converse to the achievability result in Theorem 3.3.1. The
following theorem characterizes the conditions under which the trace norm relax-
ation (3.11)–(3.13) provably fails with high probability; we suspect the standard
SDP relaxation with the constraint Y ∈ S2 ∩ B also fails with high probability
under the same conditions, but we do not have a proof.

Theorem 3.3.2 (Easy, Converse). Under the planted clustering model with p > q,

for any constant 1 > ε0 > 0, there exist positive universal constants c1, c2 for

which the following holds. Suppose c1 log n ≤ K ≤ n
2
, q ≥ c1

logn
n

and p ≤ 1−ε0.

If

K2(p− q)2 ≤ c2(Kp+ qn),

then with probability at least 1 − n−10, Y ∗ is not an optimal solution of the pro-

gram (3.11)–(3.13).

Theorem 3.3.2 proves the failure of our trace norm relaxation that has access
to the exact number and sizes of the clusters. Consequently, replacing the con-
straints (3.12) and (3.13) with a Lagrangian penalty term in the objective would
not help for any value of the Lagrangian multipliers. Theorems 3.3.1 and 3.3.2
together establish that under the assumptions of both theorems, the sufficient and

necessary condition for the success of our trace norm relaxation is

K2(p− q)2

pK + qn

.

& 1, (3.15)

where
.

& ignores the logarithmic factors. Specializing (3.15) to the asymptotic
regime (2.1) implies that the convexified ML estimator succeeds if β > 1

2
+ α

2
and

fails if β < 1
2

+ α
2

, as shown in Fig. 2.1.
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Condition (3.15) is known as “spectral barrier” [14] in the literature. Let J
denote the all-one matrix and I denote the identity matrix. Let Ã , A− qJ + qI

be the centered adjacency matrix, which can be decomposed into a mean term
plus a noise term:

Ã = EÃ+ Ã− EÃ = (p− q)Y ∗ + A− EA,

where here we adopt a different convention that Y ∗ii = 0,∀i.
Observe that EÃ contains the information about the true cluster matrix Y ∗ and

the r largest eigenvalues of EÃ are around K(p− q), whereas A−EA is induced
by the random noise and its largest eigenvalue is around Θ(

√
Kp+ qn) (see e.g.,

[72]). Therefore, the left hand side of (3.15) can be interpreted as the “spectral
signal-to-noise ratio”. If the ratio is much smaller than 1, then there is no spectral
gap between the top r eigenvalues and the rest of the eigenvalues of A; therefore
the spectrum of A cannot reveal useful information about the hidden cluster struc-
ture. In contrast, if the ratio is much larger than 1, then there is a large spectral
gap and the top r eigenvectors of A can be exploited to estimate the hidden clus-
ter structure. In fact, our proofs for Theorems 3.3.1 and 3.3.2 are built on this
intuition.

Comparison to previous work We refer to [32] for a survey of the perfor-
mance of state-of-the-art polynomial-time algorithms under various planted mod-
els. Theorem 3.3.1 matches and in many cases improves upon existing results in
terms of the scaling. For example, for planted partition, the previous best results
are (p−q)2 & p(K log4 n+n)/K2 in [32] and (p−q)2 & pn polylog n/K2 in [19].
Theorem 3.3.1 removes some extra log n factors, and is also order-wise better
when q = o(p) (the high SNR case) or 1−q = o(1). For planted r-disjoint-clique,
existing results require 1− q to be Ω((rn+ rK log n)/K2) [36], Ω(

√
n/K) [65]

or Ω((n+K log4 n)/K2) [32]. We improve them to Ω((n+K log n)/K2).
Our converse result in Theorem 3.3.2 is inspired by, and improves upon, the

recent work in [73], which focuses on the special case p > 1/2 > q, and considers
a convex relaxation approach that is equivalent to our relaxation (3.11)–(3.13) but
without the additional equality constraint in (3.13). The approach is shown to fail
when K2(p − 1

2
)2 . qn. Our result is stronger in the sense that it applies to a

tighter relaxation and a larger region of the parameter space.

21



CHAPTER 4

COMPUTATIONAL LOWER BOUNDS FOR
FINDING COMMUNITIES

By comparing the information limit established in Theorems 3.1.1 and 3.2.1 with
the performance limit of our convex method established in Theorem 3.3.1, we get
two strikingly different observations. On one hand, if K = Θ(n), the convex
relaxation is tight and the hard regime disappears up to constants, even though
the hard regime may still exist [31, 15] when constant factors are concerned. In
this case, we get a computationally efficient and statistically order-optimal esti-
mator. On the other hand, if K = o(n), there exists a substantial gap between the
information limit and performance limit of our convex method.

4.1 Conjecture on Computational Limits

We conjecture that no polynomial-time algorithm has order-wise better statistical
performance than our convex method and succeeds beyond the performance limit
of our convex method given in (3.14).

Conjecture 4.1.1. For any given constant δ > 0, there is no algorithm with run-

ning time polynomial in n that, for all n and with probability at least 1/2, outputs

the true Y ∗ of the planted clustering problem with p > q and

(p− q)2K2 ≤ n−δ (Kp(1− p) + q(1− q)n) . (4.1)

If the conjecture is true, then in the asymptotic regime (2.1), the computational

limit for the cluster recovery is given by β = α
2

+ 1
2
, i.e., the boundary between

the green regime and red regime in Fig. 2.1.
A direct proof of Conjecture 4.1.1 seems difficult with current techniques.

There are many possible convex formulations for cluster recovery. The space of
possible polynomial-time algorithms is even larger. It is impossible for us to study
each of them separately and obtain a converse result as in Theorem 3.3.2. Recall
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that the planted dense subgraph (PDS) model is a special case of the planted clus-
ter model where 0 < q < p < 1 and r = 1. Let PDS-R (n,K, p, q, ε) denote the
problem of recovering a (1 − ε)-approximation of the planted cluster under the
PDS model. We prove the computational lower bounds for PDS-R (n,K, p, q, ε)
problem for any ε < 1 conditional on the PC Hypothesis.

The proof is divided into two steps. First, we show that PDS-R (n,K, p, q, ε)
problem for any ε < 1 is at least as hard as the planted binomial-sized dense sub-
graph detection (PBDS-D) problem, i.e., distinguishing between Erdős-Rényi ran-
dom graph model and the planted binomial-sized dense subgraph (PBDS) model.
Second, adopting the standard reduction approach in complexity theory, we show
that the PBDS-D problem in some regime below the (conjectured) computational
limit is computationally intractable conditional on the PC Hypothesis.

4.2 Planted Binomial-sized Dense Subgraph Detection

In this section, we formally introduce the planted binomial-sized dense subgraph
detection (PBDS-D) problem and connect it to PDS-R (n,K, p, q, ε).

Let G(N, q) denote the Erdős-Rényi random graph with N vertices, where each
pair of vertices is connected independently with probability q. Let G(N,K, p, q)

denote the PBDS model with N vertices where: (1) each vertex is included in
the random set S independently with probability K

N
; (2) for any two vertices, they

are connected independently with probability p if both of them are in S and with
probability q otherwise, where p > q. In this case, the vertices in S form a
community with higher connectivity than elsewhere and |S| ∼ Binom(N,K/N).
The planted dense subgraph here has a random size with meanK, which is similar
to the models adopted in [15, 31, 16, 74, 50, 75], instead of a deterministic size K
as assumed in [9, 56, 76].

Definition 2. The planted binomial-sized dense subgraph detection problem with

parameters (N,K, p, q), henceforth denoted by PBDS-D (N,K, p, q), refers to the
problem of distinguishing hypotheses:

H0 : G ∼ G(N, q) , P0,

H1 : G ∼ G(N,K, p, q) , P1.

The following theorem shows that PDS-R (N,K, p, q, ε) is at least as hard as

23



PBDS-D (N,K, p, q). Notice that in PDS-R (N,K, p, q, ε), the planted cluster
has a deterministic size K, while in PBDS-D (N,K, p, q), the size of the planted
cluster is binomially distributed with mean K.

Theorem 4.2.1. For any given constant ε < 1 and c > 0, suppose there is an al-

gorithm AN with running time TN that with probability 1− ηN solves the PDS-R
(N,K, cq, q, ε) problem. Then there exists a test φN with running time at most
N2 +NTN +NK2 that solves PBDS-D (N, 2K, cq, q) with Type-I+II error prob-
abilities upper bounded by ηN + e−CK + Ne−CK

2q for a constant C > 0 only
depending on ε and c.

4.3 Computational Lower Bounds for PBDS-D

In this section, we prove the computational lower bounds for PBDS-D (N,K, cq, q)
assuming the intractability of the planted clique detection (PC-D) problem, which
further implies the hardness of PDS-R (N,K, cq, q, ε) for any ε < 1 in view of
Theorem 4.2.1.

We first formally introduce the PC Hypothesis as our hardness assumption. Let
G(n, k, γ) denote the planted clique model in which we add edges to k vertices
uniformly chosen from G(n, γ) to form a clique.

Definition 3. The planted clique detection problem with parameters (n, k, γ), de-

noted by PC-D (n, k, γ) henceforth, refers to the problem of distinguishing hy-
potheses:

HC
0 : G ∼ G(n, γ),

HC
1 : G ∼ G(n, k, γ).

The problem of finding or detecting the planted clique has been extensively
studied for γ = 1

2
and there is no known polynomial-time solver for either the

PC recovery or detection problems for k = o(
√
n) and any constant γ > 0. It is

conjectured [77, 43, 44, 45, 74] that the PC detection problem cannot be solved
in polynomial time for k = o(

√
n) with γ = 1

2
, which we refer to as the PC

Hypothesis.

24



Hypothesis 1 (PC Hypothesis). Fix some constant 0 < γ ≤ 1
2
. For any sequence

of randomized polynomial-time tests {ψn,kn} such that lim supn→∞
log kn
logn

< 1/2,

lim inf
n→∞

PHC
0
{ψn,k(G) = 1}+ PHC

1
{ψn,k(G) = 0} ≥ 1

2
.

The PC Hypothesis with γ = 1
2

is similar to [48, Hypothesis 1] and [47, Hy-
pothesis BPC]. Our computational lower bounds require that the PC Hypothesis
holds for any positive constant γ. An even stronger assumption that PC Hypoth-
esis holds for γ = 2−(logn)0.99 has been used in [78, Theorem 10.3] for public-
key cryptography. Furthermore, [74, Corollary 5.8] shows that under a statistical
query model, any statistical algorithm requires at least nΩ( logn

log(1/γ)
) queries for de-

tecting the planted bi-clique in an Erdős-Rényi random bipartite graph with edge
probability γ.

4.3.1 Polynomial-time Reduction from PC-D to PBDS-D

In this subsection, we show the PBDS-D problem can be approximately reduced
from the PC-D problem of appropriately chosen parameters in randomized poly-
nomial time. Based on this reduction scheme, we establish a formal connection
between the PC-D problem and the PBDS-D problem in Proposition 4.3.1, and
the desired computational lower bounds follow as Theorem 4.3.3.

We aim to reduce the PC-D (n, k, γ) problem to the PBDS-D (N,K, cq, q)

problem. For simplicity, we focus on the case of c = 2; the general case fol-
lows similarly with a change in some numerical constants that come up in the
proof. We are given an adjacency matrix A ∈ {0, 1}n×n, or equivalently, a graph
G, and with the help of additional randomness, will map it to an adjacency matrix
Ã ∈ {0, 1}N×N , or equivalently, a graph G̃ such that the hypothesis HC

0 (resp.
HC

1 ) in Definition 3 is mapped to H0 exactly (resp. H1 approximately) in Defini-
tion 2. In other words, if A is drawn from G(n, γ), then Ã is distributed according
to P0; if A is drawn from G(n, k, 1, γ), then the distribution of Ã is close in total
variation to P1.

Our reduction scheme works as follows. Each vertex in G̃ is randomly assigned
a parent vertex in G, with the choice of parent being made independently for
different vertices in G̃, and uniformly over the set [n] of vertices in G. Let Vs
denote the set of vertices in G̃ with parent s ∈ [n] and let `s = |Vs|. Then the sets
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of children nodes {Vs : s ∈ [n]} form a random partition of [N ]. For any 1 ≤
s ≤ t ≤ n, the number of edges, E(Vs, Vt), from vertices in Vs to vertices in Vt in
G̃ will be selected randomly with a conditional probability distribution specified
below. Given E(Vs, Vt), the particular set of edges with cardinality E(Vs, Vt) is
chosen uniformly at random.

It remains to specify, for 1 ≤ s ≤ t ≤ n, the conditional distribution of
E(s, t) given ls, lt, and As,t. Ideally, conditioned on `s and `t, we want to con-
struct a Markov kernel from As,t to E(s, t) which maps Bern(1) to the desired
edge distribution Binom(`s`t, p), and Bern(1/2) to Binom(`s`t, q), depending
on whether both s and t are in the clique or not, respectively. Such a kernel,
unfortunately, provably does not exist. Nonetheless, this objective can be ac-
complished approximately in terms of the total variation. For s = t ∈ [n], let
E(Vs, Vt) ∼ Binom(

(
`t
2

)
, q). For 1 ≤ s < t ≤ n, denote P`s`t , Binom(`s`t, p)

and Q`s`t , Binom(`s`t, q). Fix 0 < γ ≤ 1
2

and put m0 , blog2(1/γ)c. Define

P ′`s`t(m) =


P`s`t(m) + a`s`t for m = 0

P`s`t(m) for 1 ≤ m ≤ m0

1
γ
Q`s`t(m) for m0 < m ≤ `s`t

where a`s`t =
∑

m0<m≤`s`t [P`s`t(m) − 1
γ
Q`s`t(m)]. Let Q′`s`t = 1

1−γ (Q`s`t −
γP ′`s`t). As we show later, Q′`s`t and P ′`s`t are well-defined probability distri-
butions as long as `s, `t ≤ 2` and 16q`2 ≤ 1, where ` = N/n. Then, for
1 ≤ s < t ≤ n, let the conditional distribution of E(Vs, Vt) given `s, `t, and
As,t be given by

E(Vs, Vt) ∼


P ′`s`t if Ast = 1, `s, `t ≤ 2`

Q′`s`t if Ast = 0, `s, `t ≤ 2`

Q`s`t if max{`s, `t} > 2`.

(4.2)

The next proposition (proved in Section A.6) shows that the randomized re-
duction defined above maps G(n, γ) into G(N, q) under the null hypothesis and
G(n, k, γ) approximately into G(N,K, p, q) under the alternative hypothesis, re-
spectively. The intuition behind the reduction scheme is as follows: By con-
struction, (1 − γ)Q′`s`t + γP ′`s`t = Q`s`t = Binom(`s`t, q) and therefore the null
distribution of the PC problem is exactly matched to that of the PDS problem,
i.e., PG̃|HC

0
= P0. The core of the proof lies in establishing that the alternative

distributions are approximately matched. The key observation is that P ′`s`t is close
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to P`s`t = Binom(`s`t, p) and thus for nodes with distinct parents s 6= t in the
planted clique, the number of edges E(Vs, Vt) is approximately distributed as the
desired Binom(`s`t, p); for nodes with the same parent s in the planted clique,
even though E(Vs, Vs) is distributed as Binom(

(
`s
2

)
, q) which is not sufficiently

close to the desired Binom(
(
`s
2

)
, p), after averaging over the random partition

{Vs}, the total variation distance becomes negligible.

Proposition 4.3.1. Let `, n ∈ N, k ∈ [n] and γ ∈ (0, 1
2
]. Let N = `n, K = k`,

p = 2q and m0 = blog2(1/γ)c. Assume that 16q`2 ≤ 1 and k ≥ 6e`. If G ∼
G(n, γ), then G̃ ∼ G(N, q), i.e., PG̃|HC

0
= P0. If G ∼ G(n, k, 1, γ), then

dTV

(
PG̃|HC

1
,P1

)
≤ e−

K
12 + 1.5ke−

`
18 + 2k2(8q`2)m0+1 + 0.5

√
e72e2q`2 − 1 +

√
0.5ke−

`
36 . (4.3)

An immediate consequence of Proposition 4.3.1 is the following result (proved
in Section A.7) showing that any PBDS-D solver induces a solver for a corre-
sponding instance of the PC-D problem.

Proposition 4.3.2. Let the assumption of Proposition 4.3.1 hold. Suppose φ :

{0, 1}(
N
2 ) → {0, 1} is a test for PBDS-D (N,K, 2q, q) with Type-I+II error prob-

ability η. Then G 7→ φ(G̃) is a test for the PC-D (n, k, γ) whose Type-I+II error
probability is upper bounded by η+ ξ with ξ given by the right-hand side of (4.3).

The following theorem establishes the computational limit of the PBDS-D prob-
lem.

Theorem 4.3.3. Assume Hypothesis 1 holds for a fixed 0 < γ ≤ 1/2. Let m0 =

blog2(1/γ)c. Let α > 0 and 0 < β < 1 be such that

α < β <
1

2
+

m0α + 4

4m0α + 4
α− 2

m0α
. (4.4)

Then there exists a sequence {(N`, K`, q`)}`∈N satisfying

lim
`→∞

log 1
q`

logN`

= α, lim
`→∞

logK`

logN`

= β

such that for any sequence of randomized polynomial-time tests φ` : {0, 1}(
N`
2 ) →

{0, 1} for the PBDS-D (N`, K`, 2q`, q`) problem, the Type-I+II error probability
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is lower bounded by

lim inf
`→∞

P0{φ`(G′) = 1}+ P1{φ`(G′) = 0} ≥ 1

2
,

where G′ ∼ G(N, q) under H0 and G′ ∼ G(N,K, p, q) under H1. Consequently,
if Hypothesis 1 holds for all 0 < γ ≤ 1/2, then the above holds for all α > 0 and
0 < β < 1 such that

α < β < β](α) ,
1

2
+
α

4
. (4.5)

Consider the asymptotic regime (2.1). The function β] in (4.5) gives the com-
putational barrier for the PBDS-D (N,K, cq, q) problem. Notice that PBDS-D
(N,K, cq, q) problem can be solved in linear time by thresholding based on the
total number of edges if β > β] [79].

In view of Theorem 4.2.1, Theorem 4.3.3 further implies the computational
lower bounds for PDS-R (N,K, 2q, q).

Corollary 4.3.4. Assume Hypothesis 1 holds for a fixed 0 < γ ≤ 1/2. Given any

constant ε < 1 and c > 0. Let m0 = blogc(1/γ)c. Let α > 0 and 0 < β < 1 be

such that

α < β <
1

2
+

m0α + 4

4m0α + 4
α− 2

m0α
. (4.6)

Then there exists a sequence {(N`, K`, q`)}`∈N satisfying

lim
`→∞

log 1
q`

logN`

= α, lim
`→∞

logK`

logN`

= β

such that any sequence of polynomial-time algorithms A` : {0, 1}(
N`
2 ) → S ⊂

[N`] with |S| = K` fails to solve PDS-R (N`, K`, 2q`, q`) problem with probability
at least 1/2. Consequently, if Hypothesis 1 holds for all 0 < γ ≤ 1/2, then the
above holds for all α > 0 and 0 < β < 1 such that

α < β < β](α) ,
1

2
+
α

4
. (4.7)

Corollary 4.3.4 implies that in the asymptotic regime (2.1), PDS-R (n,K, p, q)
is computational intractable if α < β < 1

2
+ α

4
conditional on the PC Hypothesis
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(see Fig. 2.1).

Comparison to previous work on reduction from the PC Problem Most pre-
vious work [43, 45, 80, 78] in the theoretical computer science literature uses
the reduction from the PC-D problem to generate computationally hard instances
of problems and establish worst-case hardness results; the underlying distribu-
tions of the instances could be arbitrary. Similarly, in the recent works [47, 48]
on the computational limits of certain minimax inference problems, the reduction
from the PC-D problem is used to generate computationally hard but statistically
feasible instances of their problems; the underlying distributions of the instances
can also be arbitrary as long as they are valid priors on the parameter spaces. In
contrast, here our goal is to establish the average-case hardness of the PBDS-D
problem based on that of the PC-D problem. Thus the underlying distributions of
the problem instances generated from the reduction must be close to the desired
distributions under both the null and alternative hypotheses. To this end, we start
with a small dense graph generated from G(n, γ) under H0 and G(n, k, γ) under
H1, and arrive at a large sparse graph whose distribution is exactly G(N, q) un-
der H0 and approximately equal to G(N,K, p, q) under H1. Notice that simply
sparsifying the PC-D problem does not capture the desired tradeoff between the
graph sparsity and the cluster size. Our reduction scheme differs from those used
in [47, 48] which start with a large dense graph. Similar to ours, the reduction
scheme in [80] also enlarges and sparsifies the graph by taking its subset power;
but the distributions of the resulting random graphs are rather complicated and not
close to Erdős-Rényi type graphs.
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CHAPTER 5

ACHIEVING SHARP RECOVERY
THRESHOLD VIA SDP

By comparing the information limit established in Theorems 3.1.1 and 3.2.1 and
the performance limit of our convex method established in Theorem 3.3.1, we see
the SDP achieves the information limit up to constants ifK = Θ(n). It is tempting
to ask whether SDP achieves the sharp information limit without constant gaps if
K = Θ(n). In this chapter, we focus on the following particular cases:

• Binary symmetric stochastic block model (assuming n is even):

r = 2, K =
n

2
, p =

a log n

n
, q =

b log n

n
, n→∞ (5.1)

• Planted dense subgraph model:

r = 1, K = bρnc, p =
a log n

n
, q =

b log n

n
, n→∞, (5.2)

where a 6= b and 0 < ρ < 1 are fixed constants, and show the SDP achieves the
sharp recovery thresholds.

5.1 Binary Symmetric Stochastic Block Model

Exact cluster recovery under the binary symmetric stochastic block model is stud-
ied in [52, 51] and a sharp recovery threshold is found.

Theorem 5.1.1 ([52, 51]). Under the binary symmetric stochastic block model

(5.1), if (
√
a−
√
b)2 > 2, clusters can be exactly recovered up to a permutation of

cluster indices with probability converging to 1; if (
√
a−
√
b)2 < 2, any algorithm

fails to exactly recover clusters with probability converging to 1.

The optimal reconstruction threshold in Theorem 5.1.1 is achieved by the max-
imum likelihood (ML) estimator, which entails finding the minimum bisection
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of the graph, a problem known to be NP-hard in the worst case [2, Theorem 1.3].
Nevertheless, it has been shown that the optimal recovery threshold can be attained
in polynomial time using a two-step procedure [52, 51]: First, apply the partial re-
covery algorithms in [16, 50] to correctly cluster all but o(n) vertices; Second,
flip the cluster memberships of those vertices who do not agree with the major-
ity of their neighbors. This two-step procedure has two limitations: a) the partial
recovery algorithms used in the first step are sophisticated; b) the original graph
needs to be split to implement the two steps to ensure their independence. It was
left open to find a simple direct approach to achieve the exact recovery threshold
in polynomial time. It was proved in [52] that a semidefinite programming (SDP)
relaxation of the ML estimator succeeds if (a − b)2 > 8(a + b) + 8/3(a − b).
Backed by compelling simulation results, it was further conjectured in [52] that
the SDP relaxation can achieve the optimal recovery threshold. In this paper, we
resolve this conjecture in the positive.

The cluster structure under the binary symmetric stochastic block model can
be represented by a vector σ ∈ {±1}n such that σi = 1 if vertex i is in the first
cluster and σi = −1 otherwise. Let σ∗ correspond to the true clusters. Then the
ML estimator of σ∗ for the case a > b can be simply stated as

max
σ

∑
i,j

Aijσiσj

s.t. σi ∈ {±1}, i ∈ [n]

σ>1 = 0, (5.3)

which maximizes the number of in-cluster edges minus the number of out-cluster
edges. This is equivalent to solving the NP-hard minimum graph bisection prob-
lem. Instead, let us consider its convex relaxation similar to the SDP relaxation
studied in [81, 52]. Let Y = σσ>. Then Yii = 1 is equivalent to σi = ±1 and
σ>1 = 0 if and only if 〈Y, J〉 = 0. Therefore, (5.3) can be recast as

max
Y,σ
〈A, Y 〉

s.t. Y = σσ>

Yii = 1, i ∈ [n]

〈J, Y 〉 = 0. (5.4)
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Notice that the matrix Y = σσ> is a rank-one positive semidefinite matrix. If we
relax this condition by dropping the rank-one restriction, we obtain the following
convex relaxation of (5.4), which is a semidefinite program:

ŶSDP = arg max
Y

〈A, Y 〉

s.t. Y � 0

Yii = 1, i ∈ [n]

〈J, Y 〉 = 0. (5.5)

We remark that (5.5) does not rely on any knowledge of the model parameters
except that a > b; for the case a < b, we replace arg max in (5.5) by arg min.

Let Y ∗ = σ∗(σ∗)> and Yn , {σσ> : σ ∈ {−1, 1}n, σ>1 = 0}. The following
result establishes the optimality of the SDP procedure:

Theorem 5.1.2. If (
√
a −
√
b)2 > 2, then minY ∗∈Yn P{ŶSDP = Y ∗} → 1 as

n→∞.

5.2 Planted Dense Subgraph Model

In this section we turn to the planted dense subgraph model in the asymptotic
regime (5.2), where there exists a single cluster of size ρN . To specify the optimal
reconstruction threshold, define the following function: For a, b ≥ 0, let

f(a, b) =


a− τ ∗ log ea

τ∗
if a, b > 0, a 6= b

a if b = 0

b if a = 0

0 if a = b

, (5.6)

where τ ∗ , a−b
log a−log b

if a, b > 0 and a 6= b. We show that if ρf(a, b) > 1, exact re-
covery is achievable in polynomial-time via SDP with probability tending to one;
if ρf(a, b) < 1, any estimator fails to recover the cluster with probability tending
to one regardless of the computational costs. The sharp threshold ρf(a, b) = 1 is
plotted in Fig. 5.1 for various values of ρ.

We first introduce the maximum likelihood estimator and its convex relaxation.
For ease of notation, in this section we use a vector ξ ∈ {0, 1}n, as opposed to
σ ∈ {±1}n used in Section 5.1 for the SBM, as the indicator function of the
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Figure 5.1: The recovery threshold: ρf(a, b) = 1 (solid curves) for the planted
dense subgraph model (5.2); (

√
a−
√
b)2 = 2 (dashed curve) for the stochastic

block model (5.1).

cluster, such that ξi = 1 if vertex i is in the cluster and ξi = 0 otherwise. Let ξ∗

be the indicator of the true cluster. Assuming a > b, i.e., the nodes in the cluster
are more densely connected, the ML estimation of ξ∗ is simply

max
ξ

∑
i,j

Aijξiξj

s.t. ξ ∈ {0, 1}n

ξ>1 = K, (5.7)

which maximizes the number of in-cluster edges. Due to the integrality con-
straints, it is computationally difficult to solve (5.7), which prompts us to consider
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its convex relaxation. Note that (5.7) can be equivalently1 formulated as

max
Z,ξ
〈A,Z〉

s.t. Z = ξξ>

Zii ≤ 1, ∀i ∈ [n]

Zij ≥ 0, ∀i, j ∈ [n]

〈I, Z〉 = K

〈J, Z〉 = K2, (5.8)

where the matrix Z = ξξ> is positive semidefinite and rank-one. Removing the
rank-one restriction leads to the following convex relaxation of (5.8), which is a
semidefinite program.

ẐSDP = arg max
Z
〈A,Z〉

s.t. Z � 0

Zii ≤ 1, ∀i ∈ [n]

Zij ≥ 0, ∀i, j ∈ [n]

〈I, Z〉 = K

〈J, Z〉 = K2. (5.9)

We note that, apart from the assumption that a > b, the only model parameter
needed by the estimator (5.9) is the cluster size K; for the case a < b, we replace
arg max in (5.9) by arg min.

Let Z∗ = ξ∗(ξ∗)> correspond to the true cluster and define Zn =
{
ξξ> : ξ ∈

{0, 1}n, ξ>1 = K
}

. The recovery threshold for the SDP (5.9) is given as follows.

Theorem 5.2.1. Under the planted dense subgraph model (5.2), if

ρf(a, b) > 1, (5.10)

then minZ∗∈Zn P{ẐSDP = Z∗} → 1 as n→∞.

Next we prove a converse for Theorem 5.2.1 which shows that the recovery
threshold achieved by the SDP relaxation is in fact optimal.

1Here (5.7) and (5.8) are equivalent in the following sense: for any feasible ξ for (5.7), Z =
ξξ> is feasible for (5.8); for any feasible Z, ξ for (5.8), either ξ or −ξ is feasible for (5.7).
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Theorem 5.2.2. If

ρf(a, b) < 1, (5.11)

then for any sequence of estimators Ẑn, maxZ∗∈Zn P{Ẑn = Z∗} → 0.

Under the planted dense subgraph model, our investigation of the exact cluster
recovery problem in this section has been focused on the regime where the cluster
size K grows linearly with n, and p, q = Θ( logn

n
), where the statistically optimal

threshold can be attained by SDP in polynomial time. However, this need not

be the case if K grows sublinearly in n. Recall our main results of Chapter 3
and 4 in the asymptotic regime (2.1). Assuming the PC Hypothesis, when α ∈
(0, 2

3
) (and, quite possibly, the entire range (0, 1)), there exists a significant gap

between the information limit (recovery threshold of the optimal procedure) and
the computational limit (recovery threshold for polynomial-time algorithms). In
contrast, in the asymptotic regime of (5.2), the computational constraint imposes
no penalty on the statistical performance, in that the optimal threshold can be
attained by SDP relaxation in view of Theorem 5.2.1.
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CHAPTER 6

DEGREE-CORRECTED SBM AND
EMPIRICAL STUDY ON REAL DATA

In this chapter, we analyze the convex method under the degree-corrected SBM
(DCSBM), which includes heterogeneous cluster sizes and node degrees, and test
the convex method on real data.

6.1 Degree-corrected SBM and Convex Method

The DCSBM is defined by five key parameters n, r ∈ N, p ≥ q ∈ [0, 1] and
θ ∈ Rn

+, where θi controls the expected degree of node i ∈ [n]. Assume pθiθj ≥ 1

for all i 6= j.

Definition 4 (DCSBM). Suppose there are n nodes indexed by [n] and each node i

is associated with a parameter θi. Assume the nodes are partitioned into r disjoint

clusters C∗1 , . . . , C
∗
r (called true clusters). A random graph is generated based on

the cluster structure: Each pair of nodes i and j are connected independently of

all others by an edge with probability θiθjp (p is called in-cluster edge density)

if they are in the same cluster, and otherwise with probability θiθjq (q is called

out-cluster edge density).

Note that p, q, r and θ are allowed to be functions of n. The goal is to exactly
recover the true clusters {C∗m}rm=1 given the random graph. Recall that Y ∗ is the
cluster matrix. Under DCSBM, we have, for all i 6= j, P(Aij = 1) = θiθjp if
Y ∗ij = 1 and P(Aij = 1) = θiθjq if Y ∗ij = 0. The cluster recovery problem reduces
to recovering Y ∗ given A. We can derive an efficient SDP by taking the convex
relaxation of the ML estimation.
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Algorithm 3 Convex Relaxation of ML Estimator under DCSBM with p > q

Ŷ = arg max
Y

∑
i<j

(Aij − θiθjλ)Yij (6.1)

s.t. Y � 0, (6.2)

Yii = 1,∀i, 0 ≤ Yij ≤ 1,∀i 6= j. (6.3)

The following theorem provides a sufficient condition for the success of the
convex method. For each k ∈ [r], define θ(k) ∈ Rn

+ such that θ(k)
i = θi if i ∈ C∗k

and θ(k)
i = 0 otherwise. Let θmin = mini θi and θmax = maxi θi.

Theorem 6.1.1. Consider the DCSBM with p > q. Assume the tuning parameter
λ in the problem (6.1)–(6.3) satisfies

1

4
p+

3

4
q ≤ λ ≤ 3

4
p+

1

4
q.

Then, there exists a universal constant c1 such that with high probability, the opti-
mal solution to Algorithm 3 is unique and equal to Y ∗ provided

(p− q)2 min
k
‖θ(k)‖1θmin ≥ c1p(1− q) log n, (6.4)

(p− q)2
(

min
k
‖θ(k)‖1

)2

≥ c1q(1− q)n log n. (6.5)

In the special case with θi = 1 for all i ∈ [n] and clusters of equal size K, the
DCSBM reduces to the classical SBM and conditions (6.4) and (6.5) reduce to
condition (3.14):

K2(p− q)2 ≥ c1 [Kp(1− q) log n+ q(1− q)n log n] .

6.2 Empirical Study on Political Blog Network

Note that Algorithm 3 involves the model parameter θ, which is unobservable
in practice. Nevertheless we can get an estimator of θiθj based on the degree
sequence.

37



Lemma 1. Consider the DCSBM with p > q. Assume

lim inf
n→∞

min
k
‖θ(k)‖1/‖θ‖1 = α, lim sup

n→∞
max
k
‖θ(k)‖1/‖θ‖1 = β,

and lim supn→∞
rpθmax

(p+(r−1)q)‖θ‖1 = 0. Then for all i 6= j,

((p− q)α + q)2

(p− q)β + q
≤ lim inf

n→∞

didj
θiθj

∑
i′ di′

≤ lim sup
n→∞

didj
θiθj

∑
i′ di′

≤ ((p− q)β + q)2

(p− q)α + q
.

(6.6)

To interpret Lemma 1, consider the simple case with two symmetric communi-
ties where r = 2, α = β = 1

2
and θmax = o (‖θ‖1), then Lemma 1 implies that

limn→∞
didj∑
i′ di′

= p+q
2
θiθj,∀i 6= j. Therefore, we can get a completely data-driven

algorithm by replacing the term λθiθj in Algorithm 3 with didj∑
i′ di′

. More generally,
we have the following data-driven SDP.

Algorithm 4 Data-driven SDP under DCSBM with p > q

Ŷ = arg max
Y

∑
i<j

(
Aij − τ

didj∑
i′ di′

)
Yij (6.7)

s.t. Y � 0, (6.8)

Yii = 1,∀i, 0 ≤ Yij ≤ 1,∀i 6= j, (6.9)

where τ is called resolution tuning parameter.

Next, we connect theory with practice and test the empirical performance of
Algorithm 4 on the US political blog network dataset [66]. This network dataset
collected in 2005 consists of 19090 hyperlinks (directed edges) between 1490 po-
litical blogs. Also, the political leaning of all blogs (either liberal or conservative)
is labeled manually based on blog directories, incoming and outgoing links and
posts around the time of the 2004 presidential election. We treat these labels as
the true community memberships. We pre-process the data by ignoring the edge
directions and focus on the largest connected component with 1222 nodes, 16, 714

edges. Note that the graph has high degree variation: The max degree is 351 and
the mean degree is around 27.

We solve for Ŷ in Algorithm 4 using the alternating direction method of mul-
tipliers as suggested in [34] and output clusters using k-means with k = 2 on Ŷ .
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Interestingly, letting Bij = Aij − didj∑
k dk

,∀i 6= j and Bii = 0,∀i, B is known
as the modularity matrix [3]. The modularity maximization in [3] maximizes the
objective function

∑
i<j BijYij over all possible cluster matrices Y ∈ Y . Thus,

Algorithm 4 with τ = 1 can be interpreted as a convex relaxation of the modu-
larity maximization. We find Algorithm 4 with τ = 1 only misclassifies 62 nodes
among 1222 nodes in total, which is comparable to the best known results in the
literature: The SCORE method proposed in [64] misclassifies 58 nodes.
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CHAPTER 7

INFERRING PREFERENCE FROM
PARTIAL RANKINGS

Given a set of partial rankings from multiple decision makers or judges, in this
chapter we study the problem of inferring the inherent preference of the whole
population.

7.1 Problem Setup

We describe our model in the context of recommender systems, but it is applicable
to other systems with partial rankings. Consider a recommender system with
m users indexed by [m] and n items indexed by [n]. For each item i ∈ [n],
there is a hidden parameter θ∗i measuring the underlying preference. Each user
j, independent of everyone else, randomly generates a partial ranking σj over a
subset of items Sj ⊆ [n] according to the PL model with the underlying preference
vector θ∗ = (θ∗1, . . . , θ

∗
n).

Definition 5 (PL model). A partial ranking σ : [|S|] → S is generated from

{θ∗i , i ∈ S} under the PL model in two steps: (1) independently assign each item

i ∈ S an unobserved value Xi, exponentially distributed with mean e−θ
∗
i ; (2)

select σ so that Xσ(1) ≤ Xσ(2) ≤ · · · ≤ Xσ(|S|).

The PL model can be equivalently described in the following sequential manner.
To generate a partial ranking σ, first select σ(1) in S randomly from the distribu-
tion eθ∗i /

(∑
i′∈S e

θ∗
i′
)
; secondly, select σ(2) in S \ {σ(1)} with the probability

distribution eθ∗i /
(∑

i′∈S\{σ(1)} e
θ∗
i′
)
; continue the process in the same fashion until

all the items in S are assigned. The PL model is a special case of the following
class of models.

Definition 6 (Thurstone model, or random utility model (RUM) ). A partial rank-

ing σ : [|S|] → S is generated from {θ∗i , i ∈ S} under the Thurstone model for
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a given CDF F in two steps: (1) independently assign each item i ∈ S an unob-

served utility Ui, with CDF F (c− θ∗i ); (2) select σ so that Uσ(1) ≥ Uσ(2) ≥ · · · ≥
Uσ(|S|).

To recover the PL model from the Thurstone model, take F to be the CDF
for the standard Gumbel distribution: F (c) = e−(e−c). Equivalently, take F to
be the CDF of − log(X) such that X has the exponential distribution with mean
one. For this choice of F, the utility Ui having CDF F (c − θ∗i ) is equivalent to
Ui = − log(Xi) such that Xi is exponentially distributed with mean e−θ∗i . The
corresponding partial permutation σ is such that Xσ(1) ≤ Xσ(2) ≤ · · · ≤ Xσ(|S|),

or equivalently, Uσ(1) ≥ Uσ(2) ≥ · · · ≥ Uσ(|S|). (Note the opposite ordering of X’s
and U ’s.)

Given the observation of all partial rankings {σj}j∈[m] over the subsets {Sj}j∈[m]

of items, the task is to infer the underlying preference vector θ∗. For the PL
model, and more generally for the Thurstone model, we see that θ∗ and θ∗ + a1

for any a ∈ R are statistically indistinguishable, where 1 is an all-ones vec-
tor. Indeed, under our model, the preference vector θ∗ is the equivalence class
[θ∗] = {θ : ∃a ∈ R, θ = θ∗ + a1}. To get a unique representation of the equiv-
alence class, we assume

∑n
i=1 θ

∗
i = 0. Then the space of all possible preference

vectors is given by Θ = {θ ∈ Rn :
∑n

i=1 θi = 0}. Moreover, if θ∗i − θ∗i′ be-
comes arbitrarily large for all i′ 6= i, then with high probability item i is ranked
higher than any other item i′ and there is no way to estimate θi to any accuracy.
Therefore, we further put the constraint that θ∗ ∈ [−b, b]n for some b ∈ R and
define Θb = Θ ∩ [−b, b]n. The parameter b characterizes the dynamic range of
the underlying preference. In this chapter, we assume b is a fixed constant. As
observed in [27], if b were scaled with n, then it would be easy to rank items with
high preference versus items with low preference and one can focus on ranking
items with close preference.

We denote the number of items assigned to user j by kj := |Sj| and the average
number of assigned items per use by k = 1

m

∑m
j=1 kj; parameter k may scale with

n in this chapter. We consider two scenarios for generating the subsets {Sj}mj=1:
the random item assignment case where the Sj’s are chosen independently and
uniformly at random from all possible subsets of [n] with sizes given by the kj’s,
and the deterministic item assignment case where the Sj’s are chosen determinis-
tically.

Our main results depend on the structure of a weighted undirected graph G
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defined as follows.

Definition 7 (Comparison graph G). Each item i ∈ [n] corresponds to a vertex

i ∈ [n]. For any pair of vertices i, i′, there is a weighted edge between them if

there exists a user who ranks both items i and i′; the weight equals
∑

j:i,i′∈Sj
1

kj−1
.

Let A denote the weighted adjacency matrix of G. Let di =
∑

j Aij, so di

is the number of users who rank item i, and without loss of generality assume
d1 ≤ d2 ≤ · · · ≤ dn. Let D denote the n× n diagonal matrix formed by {di, i ∈
[n]} and define the graph Laplacian L as L = D − A. Observe that L is posi-
tive semi-definite and the smallest eigenvalue of L is zero with the corresponding
eigenvector given by the normalized all-one vector. Let 0 = λ1 ≤ λ2 ≤ · · · ≤ λn

denote the eigenvalues of L in ascending order.

Summary of main results. Theorem 7.3.1 gives a lower bound for the estima-
tion error that scales as

∑n
i=2

1
di

. The lower bound is derived based on a genie-
argument and holds for both the PL model and the more general Thurstone model.
Theorem 7.4.1 shows that the Cramér-Rao lower bound scales as

∑n
i=2

1
λi

. Theo-
rem 7.5.1 gives an upper bound for the squared error of the maximum likelihood
(ML) estimator that scales as mk logn

(λ2−
√
λn)2

. Under the full rank breaking scheme that
decomposes a k-way comparison into

(
k
2

)
pairwise comparisons, Theorem 7.6.2

gives an upper bound that scales as mk logn
λ22

. If the comparison graph is an expander
graph, i.e., λ2 ∼ λn and mk = Ω(n log n), our lower and upper bounds match up
to a log n factor. This follows from the fact that

∑
i λi =

∑
i di = mk, and for

expanders mk = Θ(nλ2). Since the Erdős-Rényi random graph is an expander
graph with high probability for average degree larger than log n, when the sys-
tem is allowed to choose the item assignment, we propose a random assignment
scheme under which the items for each user are chosen independently and uni-

formly at random. It follows from Theorem 7.3.1 that mk = Ω(n) is necessary

for any item assignment scheme to reliably infer the underlying preference vector,
while our upper bounds imply that mk = Ω(n log n) is sufficient with the random
assignment scheme and can be achieved by either the ML estimator or the full
rank breaking or the independence-preserving breaking that decompose a k-way
comparison into bk/2c non-intersecting pairwise comparisons, proving that rank
breaking schemes are also nearly optimal.
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7.2 Related Work

In this chapter, we study a statistical learning approach, assuming the observed
ranking data is generated from a probabilistic model. Various probabilistic models
on permutations have been studied in the ranking literature (see, e.g., [82, 26]).
A nonparametric approach to modeling distributions over rankings using sparse
representations has been studied in [83]. Most of the parametric models fall into
one of the following three categories: noisy comparison model, distance based
model, and random utility model. The noisy comparison model assumes that there
is an underlying true ranking over n items, and each user independently gives a
pairwise comparison which agrees with the true ranking with probability p > 1/2.
It is shown in [84] thatO(n log n) pairwise comparisons, when chosen adaptively,
are sufficient for accurately estimating the true ranking.

The Mallows model is a distance-based model, which randomly generates a full
ranking σ over n items from some underlying true ranking σ∗ with probability
proportional to e−βd(σ,σ∗), where β is a fixed spread parameter and d(·, ·) can be
any permutation distance such as the Kemeny distance. It is shown in [84] that
the true ranking σ∗ can be estimated accurately given O(log n) independent full
rankings generated under the Mallows model with the Kemeny distance.

In this chapter, we study a special case of random utility models (RUMs) known
as the Plackett-Luce (PL) model. It is shown in [24] that the likelihood function
under the PL model is concave and the ML estimator can be efficiently found
using a minorization-maximization (MM) algorithm which is a variation of the
general EM algorithm. We give an upper bound on the error achieved by such
an ML estimator, and prove that this is matched by a lower bound. The lower
bound is derived by comparing to an oracle estimator which observes the random
utilities of RUM directly. The Bradley-Terry (BT) model is the special case of the
PL model where we only observe pairwise comparisons. For the BT model, [27]
proposes RankCentrality algorithm based on the stationary distribution of a ran-
dom walk over a suitably defined comparison graph and shows Ω(npoly(log n))

randomly chosen pairwise comparisons are sufficient to accurately estimate the
underlying parameters; one corollary of our result is a matching performance
guarantee for the ML estimator under the BT model. More recently, [85] ana-
lyzed various algorithms including RankCentrality and the ML estimator under a
general, not necessarily uniform, sampling scheme.

In a PL model with priors, MAP inference becomes computationally challeng-
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ing. Instead, an efficient message-passing algorithm is proposed in [25] to ap-
proximate the MAP estimate. For a more general family of random utility models,
Soufiani et al. in [86, 87] give a sufficient condition under which the likelihood
function is concave, and propose a Monte-Carlo EM algorithm to compute the ML
estimator for general RUMs. More recently in [28, 29], the generalized method of
moments together with the rank-breaking is applied to estimate the parameters of
the PL model and the random utility model when the data consists of full rankings.

7.3 Oracle Lower Bound

In this section, we derive an oracle lower bound for any estimator of θ∗. The lower
bound is constructed by considering an oracle who reveals all the hidden scores in
the PL model as side information and holds for the general Thurstone models.

Theorem 7.3.1. Suppose σm1 are generated from the Thurstone model for some

CDF F. For any estimator θ̂,

inf
θ̂

sup
θ∗∈Θb

E[||θ̂− θ∗||22] ≥ 1

2I(µ) + 2π2

b2(d1+d2)

n∑
i=2

1

di
≥ 1

2I(µ) + 2π2

b2(d1+d2)

(n− 1)2

mk
,

where µ is the probability density function ofF , i.e., µ = F ′ and I(µ) =
∫ (µ′(x))2

µ(x)
dx;

the second inequality follows from the Jensen’s inequality. For the PL model,

which is a special case of the Thurstone models with F being the standard Gum-

bel distribution, I(µ) = 1.

Theorem 7.3.1 shows that the oracle lower bound scales as
∑n

i=2
1
di

. We remark
that the summation begins with 1/d2. This makes some sense, in view of the fact
that the parameters θ∗i need to sum to zero. For example, if d1 is a moderate
value and all the other di’s are very large, then with the hidden scores as side
information, we may be able to accurately estimate θ∗i for i 6= 1 and therefore
accurately estimate θ∗1. The oracle lower bound also depends on the dynamic range
b and is tight for b = 0, because a trivial estimator that always outputs the all-zero
vector achieves the lower bound.

Comparison to previous work Theorem 7.3.1 implies that mk = Ω(n) is nec-
essary for any item assignment scheme to reliably infer θ∗, i.e., ensuring E[||θ̂ −
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θ∗||22] = o(n). It provides the first converse result on inferring the parameter vec-
tor under the general Thurstone models to our knowledge. For the Bradley-Terry
model, which is a special case of the PL model where all the partial rankings re-
duce to the pairwise comparisons, i.e., k = 2, it is shown in [27] that m = Ω(n)

is necessary for the random item assignment scheme to achieve the reliable infer-
ence based on the information-theoretic argument. In contrast, our converse result
is derived based on the Bayesian Cramér-Rao lower bound [88], applies to the
general models with any item assignment, and is considerably tighter if di’s are of
different orders.

7.4 Cramér-Rao Lower Bound

In this section, we derive the Cramér-Rao lower bound for any unbiased estimator
of θ∗.

Theorem 7.4.1. Let kmax = maxj∈[m] kj and U denote the set of all unbiased

estimators of θ∗, i.e., θ̂ ∈ U if and only if E[θ̂|θ∗ = θ] = θ, ∀θ ∈ Θb. If b > 0, then

inf
θ̂∈U

sup
θ∗∈Θb

E[‖θ̂ − θ∗‖2
2] ≥

(
1− 1

kmax

kmax∑
`=1

1

`

)−1 n∑
i=2

1

λi

≥

(
1− 1

kmax

kmax∑
`=1

1

`

)−1

(n− 1)2

mk
,

where the second inequality follows from the Jensen’s inequality.

The Cramér-Rao lower bound scales as
∑n

i=2
1
λi

. When G is disconnected, i.e.,
all the items can be partitioned into two groups such that no user ever compares
an item in one group with an item in the other group, λ2 = 0 and the Cramér-Rao
lower bound is infinity, which is valid (and of course tight) because there is no
basis for gauging any item in one connected component with respect to any item
in the other connected component and the accurate inference is impossible for any
estimator. Although the Cramér-Rao lower bound only holds for any unbiased
estimator, we suspect that a lower bound with the same scaling holds for any
estimator, but we do not have a proof.
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7.5 ML Upper Bound

In this section, we study the ML estimator based on the partial rankings. The
ML estimator of θ∗ is defined as θ̂ML ∈ arg maxθ∈Θb L(θ), where L(θ) is the log
likelihood function given by

L(θ) = logPθ[σm1 ] =
m∑
j=1

kj−1∑
`=1

[
θσj(`) − log

(
exp(θσj(`)) + · · ·+ exp(θσj(kj))

)]
.

(7.1)

As observed in [24], L(θ) is concave in θ and thus the ML estimator can be ef-
ficiently computed either via the gradient descent method or the EM type algo-
rithms.

The following theorem gives an upper bound on the error rates inversely depen-
dent on λ2. Intuitively, by the well-known Cheeger’s inequality, if the spectral gap
λ2 becomes larger, then there are more edges across any bi-partition of G, mean-
ing more pairwise comparisons are available between any bi-partition of movies,
and therefore θ∗ can be estimated more accurately.

Theorem 7.5.1. Assume λn ≥ C log n for a sufficiently large constant C in the

case with k > 2. Then with high probability,

‖θ̂ML − θ∗‖2 ≤

{
4(1 + e2b)2λ−1

2

√
m log n If k = 2,

8e4b
√

2mk logn
λ2−16e2b

√
λn logn

If k > 2.

We compare the above upper bound with the Cramér-Rao lower bound given
by Theorem 7.4.1. Notice that

∑n
i=1 λi = mk and λ1 = 0. Therefore, mk

λ22
≥∑n

i=2
1
λi

and the upper bound is always larger than the Cramér-Rao lower bound.
When the comparison graph G is an expander and mk = Ω(n log n), by the well-
known Cheeger’s inequality, λ2 ∼ λn = Ω(log n) , the upper bound is only larger
than the Cramér-Rao lower bound by a logarithmic factor. In particular, with the
random item assignment scheme, we show that λ2, λn ∼ mk

n
if mk ≥ C log n

and as a corollary of Theorem 7.5.1, mk = Ω(n log n) is sufficient to ensure
‖θ̂ML− θ∗‖2 = o(

√
n), proving the random item assignment scheme with the ML

estimation is minimax-optimal up to a log n factor.

Corollary 7.5.2. Suppose Sm1 are chosen independently and uniformly at random

among all possible subsets of [n]. Then there exists a positive constant C > 0
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such that if m ≥ Cn log n when k = 2 and mk ≥ Ce2b log n when k > 2, then

with high probability

‖θ̂ML − θ∗‖2 ≤

 4(1 + e2b)2

√
n2 logn
m

, if k = 2,

32e4b

√
2n2 logn
mk

, if k > 2.

Comparison to previous work Theorem 7.5.1 provides the first finite-sample
error rates for inferring the parameter vector under the PL model to our knowl-
edge. For the Bradley-Terry model, which is a special case of the PL model with
k = 2, [27] derived the similar performance guarantee by analyzing the rank cen-
trality algorithm and the ML estimator. More recently, [85] extended the results
to the non-uniform sampling scheme of item pairs, but the performance guaran-
tees obtained when specialized to the uniform sampling scheme require at least
m = Ω(n4 log n) to ensure ‖θ̂ − θ∗‖2 = o(

√
n), while our results only require

m = Ω(n log n).

7.6 Rank Breaking Upper Bound

In this section, we study two rank-breaking schemes which decompose partial
rankings into pairwise comparisons. For a partial ranking σ over S, i.e., σ is a
mapping from [|S|] to S, let σ−1 denote the inverse mapping.

Definition 8. Given a partial ranking σ over the subset S ⊂ [n] of size k, the

independence-preserving breaking scheme (IB) breaks σ into bk/2c non-intersecting

pairwise comparisons of form {it, i′t, yt}
bk/2c
t=1 such that {is, i′s} ∩ {it, i′t} = ∅ for

any s 6= t and yt = 1 if σ−1(it) < σ−1(i′t) and 0 otherwise. The random IB
chooses {it, i′t}

bk/2c
t=1 uniformly at random among all possibilities.

If σ is generated under the PL model, then the IB breaks σ into independent
pairwise comparisons generated under the PL model. Hence, we can first break
partial rankings σm1 into independent pairwise comparisons using the random IB
and then apply the ML estimator on the generated pairwise comparisons with the
constraint that θ ∈ Θb, denoted by θ̂IB. Under the random assignment scheme,
as a corollary of Theorem 7.5.1, mk = Ω(n log n) is sufficient to ensure ‖θ̂IB −
θ∗‖2 = o(

√
n), proving the random item assignment scheme with the random

IB is minimax-optimal up to a log n factor in view of the oracle lower bound in
Theorem 7.3.1.
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Corollary 7.6.1. Suppose Sm1 are chosen independently and uniformly at random

among all possible subsets of [n] with size k. There exists a positive constant

C > 0 such that if mk ≥ Cn log n, then with high probability,

‖θ̂IB − θ∗‖2 ≤ 4(1 + e2b)2

√
2n2 log n

mk
.

Definition 9. Given a partial ranking σ over the subset S ⊂ [n] of size k, the

full breaking scheme (FB) breaks σ into all
(
k
2

)
possible pairwise comparisons of

form {it, i′t, yt}
(k2)
t=1 such that yt = 1 if σ−1(it) < σ−1(i′t) and 0 otherwise.

If σ is generated under the PL model, then the FB breaks σ into pairwise com-
parisons which are not independently generated under the PL model. We pretend
the pairwise comparisons induced from the full breaking are all independent and
maximize the weighted log likelihood function L(θ) given by

m∑
j=1

1

2(kj − 1)

∑
i,i′∈Sj

(
θi1{σ−1

j (i)<σ−1
j (i′)} + θi′1{σ−1

j (i)>σ−1
j (i′)} − log

(
eθi + eθi′

))
(7.2)

with the constraint that θ ∈ Θb. Let θ̂FB denote the maximizer. Notice that we put
the weight 1

kj−1
to adjust the contributions of the pairwise comparisons generated

from the partial rankings over subsets with different sizes.

Theorem 7.6.2. With high probability,

‖θ̂FB − θ∗‖2 ≤ 2(1 + e2b)2

√
mk log n

λ2

.

Furthermore, suppose Sm1 are chosen independently and uniformly at random

among all possible subsets of [n]. There exists a positive constant C > 0 such

that if mk ≥ Cn log n, then with high probability,

‖θ̂FB − θ∗‖2 ≤ 4(1 + e2b)2

√
n2 log n

mk
.

Theorem 7.6.2 shows that the error rates of θ̂FB inversely depend on λ2. When
the comparison graph G is an expander, i.e., λ2 ∼ λn, the upper bound is only
larger than the Cramér-Rao lower bound by a logarithmic factor. The similar
observation holds for the ML estimator as shown in Theorem 7.5.1. With the
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random item assignment scheme, Theorem 7.6.2 implies that the FB only needs
mk = Ω(n log n) to achieve the reliable inference, which is optimal up to a log n

factor in view of the oracle lower bound in Theorem 7.3.1.

Comparison to previous work The rank breaking schemes considered in [28,
29] break the full rankings according to rank positions while our schemes break
the partial rankings according to the item indices. The results in [28, 29] establish
the consistency of the generalized method of moments under the rank breaking
schemes when the data consists of full rankings. In contrast, Corollary 7.6.1 and
Theorem 7.6.2 apply to the more general setting with partial rankings and provide
the finite-sample error rates, proving the optimality of the random IB and FB with
the random item assignment scheme.

7.7 Numerical Experiments

Suppose there are n = 1024 items and θ∗ is uniformly distributed over [−b, b].
We first generate d full rankings over 1024 items according to the PL model with
parameter θ∗. Then for each fixed k ∈ {512, 256, . . . , 2}, we break every full
ranking σ into n/k partial rankings over subsets of size k as follows: Let {Sj}n/kj=1

denote a partition of [n] generated uniformly at random such that Sj ∩ Sj′ = ∅ for
j 6= j′ and |Sj| = k for all j; generate {σj}n/kj=1 such that σj is the partial ranking
over set Sj consistent with σ. In this way, in total we get m = dn/k k-way
comparisons which are all independently generated from the PL model. We apply
the minorization-maximization (MM) algorithm proposed in [24] to compute the
ML estimator θ̂ML based on the k-way comparisons and the estimator θ̂FB based
on the pairwise comparisons induced by the FB. The estimation error is measured
by the rescaled mean square error (MSE) defined by log2

(
mk
n2 ‖θ̂ − θ∗‖2

2

)
.

We run the simulation with b = 2 and d = 16, 64. The results are depicted in

Fig. 7.1. We also plot the Cramér-Rao (CR) limit given by log2

(
1− 1

k

∑k
l=1

1
l

)−1

as per Theorem 7.4.1. The oracle lower bound in Theorem 7.3.1 implies that the
rescaled MSE is at least 0. We can see that the rescaled MSE of the ML estimator
θ̂ML is close to the CR limit and approaches the oracle lower bound as k becomes
large, suggesting the ML estimator is minimax-optimal. Furthermore, there is an
approximately constant gap between the rescaled MSE of θ̂FB and the CR limit,
suggesting that the FB is minimax-optimal up to a constant factor.
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Figure 7.1: The error rate based on nd/k k-way comparisons with and without
full breaking.

Finally, we point out that when d = 16 and log2(k) = 1, the MSE returned by
the MM algorithm is infinity. Such singularity occurs for the following reason.
Suppose we consider a directed comparison graph with nodes corresponding to
items such that for each (i, j), there is a directed edge (i → j) if item i is ever
ranked higher than j. If the graph is not strongly connected, i.e., if there exists a
partition of the items into two groups A and B such that items in A are always
ranked higher than items in B, then if all {θi : i ∈ A} are increased by a posi-
tive constant a, and all {θi : i ∈ B} are decreased by another positive constant
a′ such that all {θi, i ∈ [n]} still sum up to zero, the log likelihood (7.1) must
increase; thus, the log likelihood has no maximizer over the parameter space Θ,
and the MSE returned by the MM algorithm will diverge. Theoretically, if b is a
constant and d exceeds the order of log n, the directed comparison graph will be
strongly connected with high probability and so such singularity does not occur
in our numerical experiments when d ≥ 64. In practice we can deal with this
singularity issue in three ways: 1) find the strongly connected components and
then run MM in each component to come up with an estimator of θ∗ restricted to
each component; 2) introduce a proper prior on the parameters and use Bayesian
inference to come up with an estimator (see [25]); 3) add to the log likelihood
objective function a regularization term based on ‖θ‖2 and solve the regularized
ML using the gradient descent algorithms (see [27]).
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

This thesis studies the information and computational limits and efficient algo-
rithms, for two typical statistical inference problems in networks: Finding com-
munities within a network and inferring group preference from partial rankings.

Our derivation of information limits is based on Fano’s inequality, Bayesian
Cramér-Rao lower bound, and non-asymptotic analysis of the ML estimators. The
techniques developed represent an important contribution to not only the study
of community detection and rank aggregation, but also other statistical inference
problems in networks. The computational limits for finding communities is es-
tablished by reducing the cluster recovery problem from the well-known planted
clique detection problem. The reduction proof deviates substantially from the
classical reduction arguments in the worst-case computational complexity theory
and draws upon a number of tools from statistics and discrete probability, such
as the second moment method, decoupling argument and negative associations.
The reduction scheme could be useful for studying the average-case complexity in
other inference problems, a topic becomingly increasingly important in both com-
puter science and statistics. The efficient algorithm proposed for finding commu-
nities is based on the semidefinite programming relaxation of the ML estimator.
Our derivation of the performance limits of the SDP exploits the convex duality
theory and spectral properties of random graphs. The techniques developed could
be useful to analyze the SDP in other combinatorial optimization problems.

Going forward, there are several interesting research directions.

8.1 Computation Lower Bounds for Statistical
Inference

My investigation of the fundamental limits for community detection unveils an
interesting phase transition in the statistical and computational complexities, but
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only touches a tip of the iceberg. Appearances of a hard regime are also observed
in some other related inference problems such as detecting or recovering a sin-
gle sparse principal component [57, 58], detecting or localizing a single sparse
submatrix [54, 59, 60, 61], and detecting a single cluster [9, 56]. In contrast, in
some special cases with two symmetric clusters of size n/2 or a single cluster of
size proportional to n, we discover the SDP achieves the sharp information limit
and there is no hard regime. A theory to completely characterize the performance
limit of the SDP and to predict the existence of the hard regime is needed, and
such theory will have profound impact in many disciplines.

8.2 Space Lower Bounds for Statistical Inference

In this thesis, we primarily focus on computational complexity rather than other
types of complexity. However, the available space resource is a bottleneck in
many systems. For example, in applications to big data analysis, data often comes
in a stream fashion and we would like to design estimators which access the data
in few passes (ideally, a single pass) over the input stream and use limited (ideally,
sublinear in input size) memory space. Therefore, it is fundamentally important
to characterize the estimation accuracy under space constraint. To be more spe-
cific, consider the planted clique detection problem (Definition 3). Assume the
edges of the graph come in a stream and one is interested in distinguishing be-
tween an Erdős-Rényi random graph G(n, 1

2
) and the planted clique model with a

hidden clique of size K in a single pass. Notice that when K = ω(
√
n), the sim-

ple algorithm based on thresholding the total number of edges only uses O(log n)

space. Also, it is known that one can maintain a spectral sparsifier of the graph
in Õ(n/ε2) space that approximates the original graph spectrum up to a multi-
plicative factor (1 + ε) [89]. Hence, if K = Ω(

√
n), one can detect the hidden

clique by applying the spectral method on the spectral sparsifier, which only uses
Õ(n) space. From these two observations, it is tempting to ask if one can detect
the clique of size Θ(

√
n) in sub-polynomial (say, poly-logarithmic) space. More

broadly, what are the fundamental limits for community detection under a given
space constraint? This streaming community detection problem has many appli-
cations such as detecting new events or topics, and has deep connections with
communication complexity, spectral graph theory, and stochastic optimization.
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APPENDIX A

PROOFS FOR FINDING COMMUNITIES

In this section, we give proofs for finding communities under the planted clus-
ter model with p > q. Let n1 , rK and n2 , n − rK denote the numbers
of non-outlier nodes and outlier nodes, respectively. Let J and I denote the
all-one matrix and identify matrix, respectively. Several matrix norms will be
used: The spectral norm ‖X‖ (the largest singular value of X); the nuclear norm
‖X‖∗ (the sum of the singular values); the Frobenius norm ‖X‖F =

∑
i,j |Xi,j|2;

the `1 norm ‖X‖1 =
∑

i,j |Xij|; and the `∞ norm ‖X‖∞ = maxi,j |Xij|. Let
〈X, Y 〉 , Tr(X>Y ) denote the inner product between two matrices and then
‖X‖2

F = 〈X,X〉.

A.1 Proof of Theorem 3.1.1 and Corollary 3.1.2

We will make use of the following upper and lower bounds on the KL-divergence
D(u‖v) between two Bernoulli distributions with means u ∈ [0, 1] and v ∈ [0, 1]:

D (u‖v) , u log
u

v
+ (1− u) log

1− u
1− v

(a)

≤ u
u− v
v

+ (1− u)
v − u
1− v

=
(u− v)2

v(1− v)
, (A.1)

where (a) follows from the inequality log x ≤ x − 1,∀x > 0. Viewing D(x‖v)

as a function of x ∈ [0, 1] and using a Taylor’s expansion, we can find some
ξ ∈ [u ∧ v, u ∨ v] such that

D (u‖v) = D (v‖v) + (u− v)D′ (v‖v) +
(u− v)2

2
D′′ (ξ‖v) (A.2)

(b)

≥ (u− v)2

2(u ∨ v)(1− u ∧ v)
, (A.3)

53



where (b) follows because D′ (v‖v) = 0 and

D′′ (ξ‖v) =
1

ξ(1− ξ)
≥ 1

(u ∨ v)(1− u ∧ v)
.

Theorem 3.1.1 is established through the following three lemmas, each of which
provides a sufficient condition for having a large error probability.

Lemma 2. Suppose that 128 ≤ K ≤ n
2
. Let δ , rK(K−1)

n(n−1)
and p̄ , δp+ (1− δ)q.

Then inf Ŷ supY ∗∈Y P
[
Ŷ 6= Y ∗

]
≥ 1

2
if

δ ·D(p‖p̄) + (1− δ) (q − p̄)2

p̄(1− p̄)
≤ n1

4n2
log

n

K
, (A.4)

Moreover, (A.4) is implied by

K(p− q)2 ≤ 1

4
q(1− q) log

n

K
. (A.5)

Proof. We use an information theoretic argument via Fano’s inequality. Recall
that Y is the set of cluster matrices corresponding to r clusters of size K. Let
P(Y ∗,A) be the joint distribution of (Y ∗, A) when Y ∗ is sampled from Y uniformly
at random and then A is generated according to the planted cluster model. Lower-
bounding the supremum by the average, we have

inf
Ŷ

sup
Y ∗∈Y

P
[
Ŷ 6= Y ∗

]
≥ inf

Ŷ
P(Y ∗,A)

[
Ŷ 6= Y ∗

]
. (A.6)

It suffices to bound P(Y ∗,A)

[
Ŷ 6= Y ∗

]
. Let H(X) be the entropy of a random

variable X and I(X;Z) the mutual information between X and Z. By Fano’s
inequality, we have for any Ŷ ,

P(Y ∗,A)

[
Ŷ 6= Y ∗

]
≥ 1− I(Y ∗;A) + 1

log |Y|
. (A.7)

We first lower bound log |Y|. Simple counting gives that |Y| =
(
n
n1

)
n1!

r!(K!)r
, where

n1 , rK. Note that
(
n
n1

)
≥ ( n

n1
)n1 and

√
n(n

e
)n ≤ n! ≤ e

√
n(n

e
)n. It follows that

|Y| ≥ (n/n1)n1

√
n1(n1/e)

n1

e
√
r(r/e)rerKr/2(K/e)n1

≥
( n
K

)n1 1

e(r
√
K)r

.

This implies log |Y| ≥ 1
2
n1 log n

K
under the assumption that 8 ≤ K ≤ n

2
and
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n ≥ 32.
Next we upper bound I(Y ∗;A). Note that H(A) ≤

(
n
2

)
H(A12) because Aij’s

are identically distributed by symmetry. Furthermore, Aij’s are independent con-
ditioning on Y ∗, so H(A|Y ∗) =

(
n
2

)
H(A12|Y ∗12). It follows that I(Y ∗;A) =

H(A) − H(A|Y ∗) ≤
(
n
2

)
I(Y ∗12;A12). We bound I(Y ∗12;A12) as follows. Simple

counting gives

P(Y ∗12 = 1) =

(
n−2
K−2

)(
n−K
K

)
· · ·
(
n−rK+K

K

)
1

(r−1)!

|Y|
=
n1(K − 1)

n(n− 1)
= δ,

and thus P(A12 = 1) = δp + (1 − δ)q = p̄. It follows that I(Y ∗12;A12) =

δD (p‖p̄) + (1 − δ)D (q‖p̄) . Using the upper bound (A.1) on the KL divergence
and condition (A.4), we obtain

I(Y ∗12;A12) = δD(p‖p̄) + (1− δ)D(q‖p̄)

≤ δD(p‖p̄) + (1− δ) (q − p̄)2

p̄(1− p̄)
≤ n1

4n2
log

n

K
.

It follows that I(Y ∗;A) ≤
(
n
2

)
I(Y ∗12‖A12) ≤ n1

8
log n

K
. Substituting into (A.7)

gives

P(Y ∗,A) [Y 6= Y ∗] ≥ 1−
n1

4
log n

K
+ 2

n1 log n
K

=
3

4
− 2

n1 log n
K

≥ 1

2
,

where the last inequality holds because K ≥ n
2

and n1 ≥ 32. This proves the
sufficiency of (A.4).

We turn to the second part of the lemma. Using the upper bound (A.1) on the
KL divergence, we get

n2

n1

δ ·D(p‖p̄) +
n2

n1

(1− δ) (q − p̄)2

p̄(1− p̄)
≤ n2

n1

δ · (p− p̄)2

p̄(1− p̄)
+
n2

n1

(1− δ) (q − p̄)2

p̄(1− p̄)

=
n2

n1

· δ(1− δ)(p− q)
2

p̄(1− p̄)
(a)

≤ K(p− q)2

q(1− q)
,

where (a) holds because n2δ
n1
≤ K and

p̄(1− p̄) ≥ δp(1− p) + (1− δ)q(1− q) ≥ (1− δ)q(1− q)

thanks to the concavity of x(1 − x). Therefore, condition (A.5) implies condi-
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tion (A.4).

Lemma 3. Suppose 128 ≤ K ≤ n
2
. Then inf Ŷ supY ∗∈Y P

[
Ŷ 6= Y ∗

]
≥ 1

2
if

K max {D(p‖q), D(q‖p)} ≤ 1

24
log(n−K). (A.8)

Proof. Let M̄ = n −K, and Ȳ = {Y0, Y1, . . . , YM̄} be a subset of Y with cardi-
nality M̄ + 1, which is specified later. Let P̄(Y ∗,A) denote the joint distribution of
(Y ∗, A) when Y ∗ is sampled from Ȳ uniformly at random and then A is generated
from the planted cluster model based on Y ∗. By Fano’s inequality, we have

inf
Ŷ

sup
Y ∗∈Y

P
[
Ŷ 6= Y ∗

]
≥ inf

Ŷ
P̄(Y ∗,A)

[
Ŷ 6= Y ∗

]
≥ inf

Ŷ

{
1− I(Y ∗;A) + 1

log |Ȳ|

}
.

(A.9)

We construct Ȳ as follows. Let Y0 be the cluster matrix with clusters {Cl}rl=1 given
by Cl = {(l − 1)K + 1, . . . , lK}. Informally, each Yi with i ≥ 1 is obtained from
Y0 by swapping the cluster memberships of node K and node K + i. Formally,
for each i ∈ [M̄ ]: (1) if node (K + i) belongs to cluster Cl for some l, then Yi
has the first cluster given by {1, 2, . . . , K − 1, K + i} and the l-th cluster given
by Cl \ {K + i} ∪ {K}, and all the other clusters identical to those of Y0; (2)
if node (K + i) is an outlier node in Y0, then Yi has the first cluster given by
{1, 2, . . . , K− 1, K+ i}, and node K as an outlier node, and all the other clusters
identical to those of Y0.

Let Pi be the distribution of the graph A conditioned on Y ∗ = Yi. Note that
each Pi is the product of 1

2
n(n−1) Bernoulli distributions. We have the following

chain of inequalities:

I(Y ∗;A)
(a)

≤ 1

(M̄ + 1)2

M̄∑
i,i′=0

D (Pi‖Pi′)
(b)

≤ 3K ·D (p‖q) + 3K ·D (q‖p) ,

where (a) follows from the convexity of KL divergence, and (b) follows by our
construction of {Yi}. If assumption (A.8) holds, then I(Y ;A) ≤ 1

4
log(n−K) =

1
4

log
∣∣Ȳ∣∣ . Since log(n − K) ≥ log(n/2) ≥ 4 if n ≥ 128, it follows from (A.9)

that the minimax error probability is at least 1/2.
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Lemma 4. Suppose 128 ≤ K ≤ n/2. Then inf Ŷ supY ∗∈Y P
[
Ŷ 6= Y ∗

]
≥ 1

4
if

Kp ≤ 1

8
min{log(rK/2), K}, (A.10)

or K(1− q) ≤ 1

4
logK. (A.11)

Proof. First assume condition (A.10) holds. We call a node a disconnected node

if it is not connected to any other node in its own clusters. Let E be the event that
there exist two disconnected nodes from two different clusters. Suppose Y ∗ is uni-
formly distributed over Y and let ρ := P[E]. We claim that P

[
Ŷ 6= Y ∗

]
≥ ρ/2.

To see this, consider the ML estimate of Y ∗ given by ŶML(a) := arg maxy P[A =

a|Y ∗ = y] with tie broken uniformly at random. It is a standard fact that the ML
estimator minimizes the error probability under the uniform prior, so for all Ŷ we
have

P
[
Ŷ 6= Y ∗

]
≥ 1

|Y|
∑
y∈Y

∑
a∈{0,1}n×n

P
[
ŶML(a) 6= y]P[A = a|Y ∗ = y

]
. (A.12)

Let Ay ⊆ 0, 1n×n denote the set of adjacency matrices with at least two discon-
nected nodes with respect to the clusters defined by y ∈ Y . For each a ∈ Ay, let
y′(a) denote the cluster matrix obtain by swapping the two rows and columns of
y corresponding to the two disconnected nodes in a. It is easy to check that for
each a ∈ Ay, the likelihood satisfies P[A = a|Y ∗ = y] ≤ P[A = a|Y ∗ = y′(a)]

and therefore P[ŶML(a) 6= y] ≥ 1/2. It follows from (A.12) that

P
[
Ŷ 6= Y ∗

]
≥ 1

|Y|
∑
y

∑
a∈Ay

1

2
· P[A = a|Y ∗ = y] =

1

2
ρ,

where the last equality holds because P[Ay|Y ∗ = y] = P[E] = ρ independently
of y.

Since the minimax error probability is lower bounded by the average error prob-
ability, it suffices to show ρ ≥ 1/2. Without loss of generality, suppose r is even
and the first rK/2 nodes i ∈ [rK/2] form r/2 clusters. For each i ∈ [rK/2], let
ξi be the indicator random variable for node i being a disconnected node. Then
ρ1 := P

[∑rK/2
i=1 ξi ≥ 1

]
is the probability that there exists at least one discon-

nected node among the first rK/2 nodes. We use a second moment argument [90]
to lower-bound ρ1. Observe that ξ1, . . . , ξrK/2 are (possibly dependent) Bernoulli
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variables with mean µ = (1− p)K−1. For i 6= j, we have

E [ξiξj] = P [ξi = 1, ξj = 1] = (1− p)2K−3 =
1

1− p
µ2.

Therefore, we have

Var

rK/2∑
i=1

ξi

 =
1

2
rKµ(1− µ) +

1

2
rK(rK/2− 1)

(
1

1− p
− 1

)
µ2

≤ 1

2
rKµ+

1

4
r2K2µ2 p

1− p
.

On the other hand, by the assumptions (A.10) we have p ≤ 1/8 and

µ = (1− p)K−1
(a)

≥ e−2(K−1)p ≥ (rK/2)−1/4, (A.13)

where (a) uses the inequality 1 − x ≥ e−2x,∀x ∈ [0, 1
2
]. Applying Chebyshev’s

inequality, we get

P

∣∣∣∣∣∣
rK/2∑
i=1

ξi − rKµ/2

∣∣∣∣∣∣ ≥ rKµ/2

 ≤ 1
2
rKµ+ 1

4
(rKµ)2 p

1−p

r2K2µ2/4
≤ 2

rKµ
+

p

1− p
≤ 1

4
,

(A.14)
where the last inequality holds due to (A.13) and p ≤ 1/8. It follows that ρ1 ≥ 3

4
.

If we let ρ2 denote the probability that there exists a disconnected node among
the next rK/2 nodes rK/2 + 1, . . . , rK, then by symmetry ρ2 ≥ 3

4
. Therefore

ρ = ρ1ρ2 ≥ 1/2, proving the sufficiency of (A.10).
We next assume the condition (A.11) holds and bound the error probability

using a similar strategy. For k = 1, 2, we call a node in cluster k a betrayed node

if it is connected to all nodes in cluster (3 − k). Let E ′ be the event of having at
least one betrayed node in each of cluster 1 and 2, and let P[E ′] := ρ′. Suppose
Y ∗ is uniformly distributed over Y; again we can show that P[Ŷ 6= Y ∗] ≥ ρ′/2

for any Ŷ . Suppose cluster 1 is formed by nodes i ∈ [K]. For each i ∈ [K], let ξ′i
be the indicator for node i being a betrayed node. Then ρ′1 := P

[∑K
i=1 ξ

′
i > 0

]
is

the probability having a betrayed node in cluster 1. We have

P

[
K∑
i=1

ξ′i = 0

]
=
(
1− qK

)K ≤ exp
(
−KqK

) (a)

≤ exp(−K1/2) ≤ 1/4,
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where (a) follows from (A.11) and qK = (1− (1− q))K ≥ exp (−2(1− q)K)

since 1− q ≤ 1/2. Let ρ′2 be the probability of having a betrayed node in cluster 2

and by symmetry ρ′2 ≥ 3/4. We thus get ρ′ = ρ′1ρ
′
2 ≥ 1/2, proving the sufficiency

of (A.11).

We are ready to prove Theorem 3.1.1 by combining the above three lemmas.

Proof of Theorem 3.1.1. Since 256 ≤ 2K ≤ n, we have the following relations
between the log terms:

log(n−K) ≥ log(n/2) ≥ 1

2
log n, log(rK/2) ≥ 1

2
log(rK). (A.15)

Our goal is to show that if condition (3.1) or (3.2) holds, then the minimax error
probability is large.

First assume (3.1) holds. By (A.3) we know condition (3.1) implies

K(p− q)2 ≤ 1

96
p(1− q) (log(rK) ∧K) . (A.16)

(i) If p ≤ 2q, then (A.16) implies K(p − q)2 ≤ 1
48
q(1 − q) log(rK); it fol-

lows from (A.1) and (A.15) that KD(p‖q) ≤ 1
48

log(rK) ≤ 1
24

log(n − K) and
thus Lemma 3 proves the conclusion. (ii) If p > 2q, (A.16) implies Kp ≤
1
24

log(rK) ∧K ≤ min{ 1
24
K, 1

12
log( rK

2
)} and Lemma 4 proves the conclusion.

Next assume the condition (3.2) holds. By the lower-bound (A.3) on the KL
divergence, we know (3.2) implies

K(p− q)2 ≤ 1

96
p(1− q) log n. (A.17)

(i) If 1 − q ≤ 2(1 − p), then (A.17) implies that K(p − q)2 ≤ 1
48
p(1 − p) log n;

it follows from (A.1) and (A.15) that KD(q‖p) ≤ 1
48

log n ≤ 1
24

log(n −K) and
thus Lemma 3 implies the conclusion. (ii) If 1−q > 2(1−p) then (A.17) implies

K(1− q) ≤ 1

24
log n ≤ 1

12
max

{
log

n

K
, logK

}
. (A.18)

We divided the analysis into two subcases.
Case (ii.1): K ≥ log n. It follows from (A.18) that 1− q ≤ 1

24
, i.e., q ≥ 23

24
and

thus (p − q)2 ≤ 2q(1 − q)2. Therefore, (A.18) implies either the condition (A.5)
in Lemma 2 or the condition (A.11) in Lemma 4, which proves the conclusion.
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Case (ii.2): K < log n. It follows that δ = n1(K−1)
n(n−1)

≤ 1
10

and log n
K
≥ 1

2
log n.

Note that p̄ = δp+ (1− δ)q ≥ max{δp, q} and 1− p̄ ≥ 9
10

(1− q). Therefore, we
have

n2(q − p̄)2

n1p̄(1− p̄)
=
n2δ2(p− q)2

n1p̄(1− p̄)
≤ 2n2δ(p− q)2

n1p(1− q)
(a)

≤ 4KD(p‖q)
(b)

≤ 1

24
log

n

K
,

(A.19)

where we use (A.3) in (a) and (3.2) in (b). On the other hand, we have

D(p‖p̄) = p log
p

p̄
+ (1− p) log

1− p
1− p̄

≤ p log
p

q
+ (1− p) log

10(1− p)
9(1− q)

≤ D(p‖q) + (1− q) log
10

9
≤ 1

6K
log

n

K
, (A.20)

where the last inequality follows from (3.2) and (A.18). Equations (A.19) and
(A.20) imply assumption (A.4) in Lemma 2, and therefore the conclusion follows.

A.1.1 Proof of Corollary 3.1.2

The corollary is derived from Theorem 3.1.1 using the upper bound (A.1) on
the KL divergence. In particular, Condition (3.3) in the corollary implies Con-
dition (3.2) in Theorem 3.1.1 in view of (A.1). Similarly, Condition (3.4) implies
Condition (3.1) because D(q‖p) ≤ p

1−p in view of (A.1) and p ≤ 1
193

; Condi-
tion (3.5) implies Condition (3.2) because D(p‖q) ≤ p log p

q
by definition.

A.2 Proof of Theorem 3.2.1 and Corollary 3.2.2

For any feasible solution Y ∈ Y of (3.7), we define ∆(Y ) , 〈A, Y ∗ − Y 〉 and
d(Y ) , 〈Y ∗, Y ∗ − Y 〉. To prove the theorem, it suffices to show that ∆(Y ) > 0

for all feasible Y with Y 6= Y ∗. For simplicity, in this proof we use a different
convention that Y ∗ii = 0 and Yii = 0 for all i ∈ V . Note that E[A] = qJ + (p −
q)Y ∗− qI , where J is the n× n all-one matrix and I is the n× n identity matrix.
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We may decompose ∆(Y ) into an expectation term and a fluctuation term:

∆(Y ) = 〈E[A], Y ∗−Y 〉+〈A−E[A], Y ∗−Y 〉 = (p−q)d(Y )+〈A−E[A], Y ∗−Y 〉,
(A.21)

where the second equality follows from
∑

i,j Yij =
∑

i,j Y
∗
ij and

∑
i,i Yii =

∑
i,i Y

∗
i,i

by feasibility of Y . For the second term in (A.21), observe that

〈A− E[A], Y ∗ − Y 〉 = 2
∑

(i<j):
Y ∗ij=1

Yij=0

(Aij − p)

︸ ︷︷ ︸
T1(Y )

−2
∑

(i<j):
Y ∗ij=0

Yij=1

(Aij − q)

︸ ︷︷ ︸
T2(Y )

.

Here each of T1(Y ) and T2(Y ) is the sum of 1
2
d(Y ) i.i.d. centered Bernoulli ran-

dom variables with parameter p and q, respectively. Using the Chernoff bound,
we can bound the fluctuation for each fixed Y ∈ Y:

P
{
T1(Y ) ≤ −p− q

4
d(Y )

}
≤ exp

(
−1

2
d(Y )D

(
p+ q

2

∣∣∣∣∣∣p))
P
{
T2(Y ) ≥ p− q

4
d(Y )

}
≤ exp

(
−1

2
d(Y )D

(
p+ q

2

∣∣∣∣∣∣q))
We need to control the perturbation uniformly over Y ∈ Y . Define the equiv-

alence class [Y ] = {Y ′ ∈ Y : Y ′ij = Yij,∀(i, j) s.t. Y ∗ij = 1}. Notice that all
cluster matrices in the equivalence class [Y ] have the same value T1(Y ). The fol-
lowing combinatorial lemma upper bounds the number of Y ’s and [Y ]’s such that
d(Y ) = t. Note that 2(K − 1) ≤ d(Y ) ≤ rK2 for any feasible Y 6= Y ∗.

Lemma 5. For each integer t ∈ [K, rK2], we have

|{Y ∈ Y : d(Y ) = t}| ≤
(

4t

K

)2

n16t/K ,

|{[Y ] : d(Y ) = t}| ≤ 4t

K
(rK)8t/K .

We also need the following lemma to upper bound D
(
p+q

2
‖q
)

and D
(
p+q

2
‖p
)

using D (p‖q) and D (q‖p), respectively.
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Lemma 6.

D

(
p+ q

2

∣∣∣∣∣∣q) ≥ 1

36
D (p‖q) (A.22)

D

(
p+ q

2

∣∣∣∣∣∣p) ≥ 1

36
D (q‖p) (A.23)

We prove the lemmas in the next subsection. Using the union bound and
Lemma 5 and Lemma 6, we obtain

P
{
∃[Y ] : Y 6= Y ∗, T1(Y ) ≤ −p− q

4
d(Y )

}
≤

rK2∑
t=K

P
{
∃[Y ] : d(Y ) = t, T1(Y ) ≤ −p− q

4
t

}

≤
rK2∑
t=K

|{∃[Y ] : d(Y ) = t}|P
{
T1(Y ) ≤ −p− q

4
t

}

≤
rK2∑
t=K

4t

K
(rK)8t/K exp

(
− 1

72
tD(q‖p)

)
(a)

≤4
rK2∑
t=K

(rK)(rK)−4t/K ≤ 4(rK)−1,

where (a) follows from the theorem assumption that D(q‖p) ≥ c1 log(rK)/K for
a large constant c1. Similarly,

P
{
∃Y ∈ Y : Y 6= Y ∗, T2(Y ) ≥ p− q

4
d(Y )

}
≤

rK2∑
t=K

P
{
∃Y ∈ Y : d(Y ) = t, T2(Y ) ≥ p− q

4
t

}

≤
rK2∑
t=K

|{Y ∈ Y : d(Y ) = t}| · P
{
T2(Y ) ≥ p− q

4
t

}

≤
rK2∑
t=K

16t2

K2
n16t/K · exp

(
− 1

72
tD(p‖q)

)
(a)

≤ 16n−1,

where (a) follows from the theorem assumption that D(p‖q) ≥ c1 log(n)/K for a
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large constant c1. Combining the above two bounds with (A.21), we obtain

P {∃Y ∈ Y : ∆(Y ) ≤ 0} ≤ 4(rK)−1 + 16n−1 (A.24)

and thus Y ∗ is the unique optimal solution with high probability. This proves the
theorem.

A.2.1 Proof of Lemma 5

Let C∗1 , . . . , C
∗
r denote the true clusters associated with Y ∗. Let V denote the set

of nodes. Recall that the nodes in V which do not belong to any clusters are called
outlier nodes.

Fix a Y ∈ Y with d(Y ) = 〈Y ∗, Y − Y ∗〉 = t. Based on Y , we construct a new
ordered partition (C1, . . . , Cr+1) of V as follows:

1. Let Cr+1 := {i : Yij = 0,∀j}.

2. The nodes in V \Cr+1 are further partitioned into r new clusters of size K,
such that nodes i and i′ are in the same cluster if and only if the i-th and i′-th
rows of Y are identical. We now define an ordering C1, . . . , Cr of these r
new clusters in the following manner.

(a) For each new cluster C, if there exists a k ∈ [r] such that |C ∩ C∗k | >
K/2, then we label this new cluster as Ck; this label is unique because
the cluster size is K.

(b) The remaining unlabeled clusters are labeled arbitrarily.

For each (k, k′) ∈ [r]×[r+1], we use αkk′ := |C∗k∩Ck′ | to denote the sizes of inter-
sections of the true and new clusters. We observe the new clusters (C1, . . . , Cr+1)

have the following three properties:

(A0) (C1, . . . , Cr, Cr+1) is a partition of V with |Ck| = K for all k ∈ [r];

(A1) For each k ∈ [r], exactly one of the following is true: (1) αkk > K/2; (2)
αkk′ ≤ K/2 for all k′ ∈ [r];

(A2) We have

r∑
k=1

(
αk(r+1)(αk(r+1) − 1) +

∑
k′,k′′:k′ 6=k′′

αkk′αkk′′

)
= t;
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here and henceforth, all the summations involving k′ or k′′ (as the indices
of the new clusters) are over the range [r + 1] unless defined otherwise.

Here, Property (A0) holds due to Y ∈ Y; Property (A1) is direct consequence
of how we label the new clusters, and Property (A2) follows from the following
identity:

t = d(Y ) =
r∑

k=1

|{(i, j) : i 6= j, (i, j) ∈ C∗k × C∗k , Yij = 0}|

=
r∑

k=1

|{(i, j) : i 6= j, (i, j) ∈ C∗k × C∗k , (i, j) ∈ Cr+1 × Cr+1}|

+
r∑

k=1

∑
(k′,k′′):k′ 6=k′′

|{(i, j) : (i, j) ∈ C∗k × C∗k , (i, j) ∈ Ck′ × Ck′′}|.

Since a different Y corresponds to a different ordered partition, and the ordered
partition for any given Y with d(Y ) = t must satisfy the above three properties,
we obtain the following bound on the cardinality of the set of interest:

|{Y ∈ Y : d(Y ) = t}| ≤ |{(C1, . . . , Cr+1) : it satisfies (A0)–(A2)}|. (A.25)

It remains to upper-bound the right hand side of (A.25).
Fix any ordered partition (C1, . . . , Cr, Cr+1) with properties (A0)–(A2). Con-

sider the first true cluster C∗1 . Define m1 :=
∑

k′:k′ 6=1 α1k′ , which can be inter-
preted as the number of nodes in C∗1 that are misclassified by Y . We consider the
following two cases for the values of α11.

• If α11 > K/4, then

∑
(k′,k′′):k′ 6=k′′

α1k′α1k′′ ≥ α11

∑
k′′:k′′ 6=1

α1k′′ >
1

4
m1KL.

• If α11 ≤ K/4, then m1 ≥ 3K/4, and we must also have α1k′ ≤ K/2 for all
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1 ≤ k′ ≤ r by Property (A1). Hence,∑
(k′,k′′):k′ 6=k′′

α1k′α1k′′ + α1(r+1)(α1(r+1) − 1)

≥
∑

(k′,k′′):k′ 6=k′′
1 {k′ 6= 1}1 {k′′ 6= 1}α1k′α1k′′ + α1(r+1)(α1(r+1) − 1)

=m2
1 −

∑
2≤k′≤r

α1k′α1k′ − α1(r+1) ≥ m2
1 −

1

2
Km1 ≥

1

4
m1K.

Combining the above two cases, we conclude that we always have

∑
(k′,k′′):k′ 6=k′′

α1k′α1k′′ + α1(r+1)(α1(r+1) − 1) ≥ 1

4
m1K.

This inequality continue to hold if we replace α1k′ andm1 respectively by αkk′ and
mk (defined in a similar manner) for each k ∈ [r]. Summing these inequalities
over k ∈ [r] and using Property (A2), we obtain

t =
r∑

k=1

αk(r+1)(αk(r+1) − 1) +
∑

(k′,k′′):k′ 6=k′′
αkk′αkk′′

 ≥ K

4

r∑
k=1

mk.

In other words, we have
∑

k∈[r] mk ≤ 4t/K, i.e., the total number of misclassified
non-outlier nodes is upper bounded by 4t/K. It implies that the total number of
misclassified outlier nodes is also upper bounded by 4t/K, because by the cluster
size constraint in Property (A0), one misclassified outlier node must produce one
misclassified non-outlier node.

We are ready to upper-bound the right hand side of (A.25). Fix a Y with d(Y ) =

t, let N1 denote the total number of misclassified non-outlier nodes and N2 denote
the total number of misclassified outlier nodes. SinceN1, N2 ≤ 4t/K, there are at
most (4t/K)2 different choices for the value of the pair (N1, N2). Moreover, for a
fixed (N1, N2), there are at most

(
n1

N1

)(
n2

N2

)
≤ n8t/k different ways to choose these

misclassified nodes. Each misclassified non-outlier node can then be assigned to
one of r− 1 ≤ n different clusters or left as outlier, and each misclassified outlier
node can be assigned to one of r ≤ n different clusters. Hence, the right hand
side of (A.25) is upper bounded by

(
4t
K

)2
n16t/K . This proves the first part of the

lemma.
To count the number of possible equivalence classes [Y ], we use a similar ar-
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gument but only need to consider the misclassified non-outlier nodes. Note that
N1 can take at most 4t/K different values. For a fixed N1, there are at most(
rK
N1

)
≤ (rK)N1 different ways to choose these misclassified non-outlier nodes.

Each misclassified non-outlier node then can be assigned to one of r− 1 different
clusters or leave outlier. Therefore, the number of possible equivalence classes
[Y ] with d(Y ) = t is upper bounded by 4t

K
(rK)8t/K .

A.2.2 Proof of Lemma 6

We first prove (A.22). Note that if u ≥ v, then

D (u‖v) = u log
u

v
+ (1− u) log

1− u
1− v

≤ u log
u

v
(A.26)

D (u‖v) ≥ u log
u

v
+ (1− u) log(1− u)

(a)

≥ u log
u

ev
, (A.27)

where (a) follows from the inequality x log x ≥ x− 1,∀x ∈ [0, 1]. We divide the
analysis into two cases:

Case 1: p ≤ 8q. In view of (A.1) and (A.3),D (p‖q) ≤ (p−q)2
q(1−q) andD

(
p+q

2
‖q
)
≥

(p−q)2
4(p+q)(1−q) . Since p ≤ 8q, it follows that D

(
p+q

2
‖q
)
≥ (p−q)2

36q(1−q) ≥
1
36
D (p‖q).

Case 2: p > 8q. In view of (A.26) and (A.27),D (p‖q) ≤ p log p
q

andD
(
p+q

2
‖q
)
≥

p+q
2

log p+q
2eq

. Since p > 8q and 8 > e2, it follows that log p
q
> 6

5
log(2e) and thus

D
(
p+q

2
‖q
)
≥ p

12
log p

q
≥ 1

12
D (p‖q) .

We next prove (A.23). Similar to (A.26) and (A.27), if u ≤ v, then

(1− u) log
1− u

e(1− v)
≤ D (u‖v) ≤ (1− u) log

1− u
1− v

. (A.28)

We also divide the analysis into two cases:
Case 1: 1 − q ≤ 8(1 − p). In view of (A.1) and (A.3), D (q‖p) ≤ (p−q)2

p(1−p) and

D
(
p+q

2
‖p
)
≥ (p−q)2

4p(2−p−q) . Since 1 − q ≤ 8(1 − p), it follows that D
(
p+q

2
‖p
)
≥

(p−q)2
36p(1−p) ≥

1
36
D (q‖p).

Case 2: 1 − q < 8(1 − p). In view of (A.28), D (q‖p) ≤ (1 − q) log 1−q
1−p and

D
(
p+q

2
‖p
)
≥
(
1− p+q

2

)
log 2−p−q

2e(1−p) . Since 1− q < 8(1− p) and 8 > e2, it follows
that log 1−q

1−p >
6
5

log(2e) and thus D
(
p+q

2
‖p
)
≥ 1

12
(1− q) log 1−q

1−p ≥
1
12
D (q‖p) .
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A.2.3 Proof of Corollary 3.2.2

The corollary is derived from Theorem 3.2.1 using the lower bound (A.3) on the
KL divergence. In particular, first assume e2q ≥ p. Then K(p − q)2 & q(1 −
q) log n implies condition (3.9) in view of (A.3). Next assume e2q < p. It follows
that log p

q
≤ 2 log p

eq
. By definition, D(p‖q) ≥ p log p

q
+ (1 − p) log(1 − p) ≥

p log p
eq

. Hence, Kp log p
q
& log n implies KD(p‖q) & log n. Furthermore,

D(q‖p) ≥ 1
2
(1− 1/e2)p in view of (A.3) and p > e2q. Therefore, Kp & log(rK)

implies KD(q‖p) & log(rK).

A.3 Proof of Theorem 3.3.1

Our proof only relies on the standard concentration results for the adjacency ma-
trix A (see Proposition A.3.1 below). Let U ∈ Rn×r be the normalized character-
istic matrix for the clusters, i.e.,

Uik =

 1√
K

if node i is in the k-th cluster

0 otherwise,

The true cluster matrix Y ∗ has the rank-r singular value decomposition given
by Y ∗ = KUU>. Define the projections PT (M) = UU>M + MUU> −
UU>MUU> andPT⊥(M) = M−PT (M). Let ν , p−q and Ā , qJ+(p−q)Y ∗,
where J is the all-ones matrix. The proof hinges on the following concentration
property of the random matrix A− Ā.

Proposition A.3.1. Under the condition (3.14), the following holds with proba-

bility at least 1− n−10:

‖A− Ā‖ ≤ 1

8
νK, (A.29)

‖PT (A− Ā)‖∞ ≤
1

8
ν. (A.30)

We prove the proposition in Section A.3.1 to follow. In the rest of the proof we
assume (A.29) and (A.30) hold. To establish the theorems, it suffices to show that
〈Y ∗ − Y,A〉 > 0 for all feasible solution Y of the convex program with Y 6= Y ∗.
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For any feasible Y , we may write

〈Y ∗ − Y,A〉 = 〈Ā, Y ∗ − Y 〉+ 〈A− Ā, Y ∗ − Y 〉
(a)
= ν〈Y ∗, Y ∗ − Y 〉+ 〈A− Ā, Y ∗ − Y 〉
(b)
=
ν

2
‖Y ∗ − Y ‖1 + 〈A− Ā, Y ∗ − Y 〉, (A.31)

where (a) holds in view of the definition of Ā and the fact that
∑

i,j Yij =
∑

i,j Y
∗
ij ;

(b) holds because Yij ∈ [0, 1],∀i, j.
Let W , 8(A−Ā)

νK
. By (A.29) we have ‖PT⊥(W )‖ ≤ ‖W‖ ≤ 1, so UV > +

PT⊥(W ) is a subgradient of ||X||∗ at X = Y ∗. It follows that

‖Y ‖∗ − ‖Y ∗‖∗ ≥
〈
UV > + PT⊥(W ), Y − Y ∗

〉
= 〈W,Y − Y ∗〉+

〈
UV > − PT (W ), Y − Y ∗

〉
.

Since ‖Y ∗‖∗ ≥ ‖Y ‖∗, by rearranging terms and using the definition of W , we get

〈
A− Ā, Y ∗− Y

〉
=
νK

8
〈W,Y ∗ − Y 〉 ≥ νK

8

〈
−UV > + PT (W ), Y ∗− Y

〉
.

(A.32)

Assembling (A.31) and (A.32), we obtain that for any feasible Y ,

〈Y ∗ − Y,A〉 ≥ ν

2
‖Y ∗ − Y ‖1 +

νK

8

〈
−UV > + PT (W ), Y ∗ − Y

〉
≥
(
ν

2
− νK

8
‖UV >‖∞ − ‖PT (A− Ā)‖∞

)
‖Y ∗ − Y ‖1,

where the last inequality follows from the duality between `1 and `∞ norms. Us-
ing (A.30) and the fact that ‖UV >‖∞ = 1

K
, we get

〈Y ∗ − Y,A〉 ≥
(ν

2
− ν

8
− ν

8

)
‖Y ∗ − Y ‖1 =

ν

4
‖Y ∗ − Y ‖1,

which is positive for all Y 6= Y ∗. This completes the proof.

68



A.3.1 Proof of Proposition A.3.1

We first prove (A.30). By definition of PT , we have

‖PT (A− Ā)‖∞
≤ ‖UU>(A− Ā)‖∞ + ‖(A− Ā)UU>‖∞ + ‖UU>(A− Ā)UU>‖∞
≤ 3 max

(
‖UU>(A− Ā)‖∞, ‖(A− Ā)V V >‖∞

)
. (A.33)

Suppose node i is from cluster k. Then

(UU>(A− Ā))ij =
1

K

∑
l∈C∗k

(A− Ā)lj =
1

K

∑
l∈C∗k

(A− EA)lj +
1

K

∑
l∈C∗k

(EA− Ā)lj.

(A.34)
The entries of the matrix A−EA are centered Bernoulli random variables with

variance bounded by p(1 − q) and mutually independent up to symmetry with
respect to the diagonal. The first term of (A.34) is the average of K such random
variables; by Bernstein’s inequality, with probability at least 1−n−13 and for some
universal constant c2,∣∣∣∑l∈C∗k

(A− EA)lj

∣∣∣ ≤√26p(1− q)K log n+ 9 log n ≤ c2

√
p(1− q)K log n,

where the last inequality follows because Kp(1 − q) > c1 log n in view of the
condition (3.14). By definition of Ā, E[A]− Ā is a diagonal matrix with diagonal
entries equal to −p or −q, so the second term of (A.34) has magnitude at most
1/K. By the union bound over all (i, j) and substituting back to (A.33), we have
with probability at least 1− 2n−11,

‖PT (A− Ā)‖∞ ≤ 3c2

√
p(1− q) log n/K + 3/K ≤ (p− q)/8 = ν/8,

where the last inequality follows from the condition (3.14). This proves (A.30) in
the proposition.

We now turn to the proof of (A.29) in the proposition. Note that ‖A − Ā‖ ≤
‖A − E[A]‖ + ‖Ā − E[A]‖ ≤ ‖A − E[A]‖ + 1. Under the condition (3.14),
Kp(1− q) ≥ c1 log n. The spectral norm term is bounded below.

Lemma 7. If Kp(1 − q) ≥ c1 log n, then there exists some universal constant

c4 such that ‖A− E[A]‖ ≤ c4

√
p(1− q)K log n+ q(1− q)n with probability at

least 1− n−10.
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We prove the lemma in Section A.3.2 to follow. Applying the lemma, we obtain

‖A− Ā‖ ≤ c4

√
p(1− q)K log n+ q(1− q)n+ 1 ≤ K(p− q)

8
=
Kν

8
,

where the second inequality holds under the condition (3.14).

A.3.2 Proof of Lemma 7

Let R := support(Y ∗) and PR(·) : Rn×n → Rn×n be the operator which sets the
entries outside of R to zero. Let B1 = PR(A− E[A]) and B2 = A− E[A]− B1.
ThenB1 is a block-diagonal symmetric matrix with r blocks of sizeK×K and its
upper-triangular entries are independent with zero mean and variance bounded by
p(1− q). Applying the matrix Bernstein inequality [91] and using the assumption
that Kp(1 − q) ≥ c1 log n in the lemma, we get that there exists some universal
constant c6 such that ‖B1‖ ≤ c6

√
p(1− q)K log n with probability at least 1 −

n−11.

On the other hand, B2 is symmetric and its upper-triangular entries are inde-
pendent centered Bernoulli random variables with variance bounded by σ2 :=

max{q(1− q), c7 log n/n} for any universal constant c7. If σ2 ≥ log7 n
n

, then The-
orem 8.4 in [72] implies that ‖B2‖ ≤ 3σ

√
n with probability at least 1 − n−11.

If c7
logn
n
≤ σ2 ≤ log7 n

n
for a sufficiently large constant c7, then Lemma 2 in [92]

implies that ‖B2‖ ≤ c8σ
√
n with probability at least 1− n−11 for some universal

constant c8 ≥ 3. (See Lemma 8 in [93] for a similar derivation.) It follows that
with probability at least 1− 2n−11,

‖A− E[A]‖ ≤ ‖B1‖+ ‖B2‖

≤ c6

√
p(1− q)K log n+ c8 max{

√
q(1− q)n,

√
log n}

≤ c4

√
p(1− q)K log n+ q(1− q)n,

where the last inequality holds becauseKp(1−q) ≥ c1 log n by assumption. This
proves the lemma.
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A.4 Proof of Theorem 3.3.2

Observe that if any feasible solution Y has the same support as Y ∗, then the con-
straint (3.13) implies that Y must be exactly equal to Y ∗. Therefore, it suffices to
show that Y ∗ is not an optimal solution.

We first claim that K(p − q) ≤ c2

√
Kp+ qn implies K(p − q) ≤ c2

√
2qn

under the assumption that K ≤ n/2 and qn ≥ c1 log n. In fact, if Kp ≤ qn, then
the claim trivially holds. If Kp > qn, then q < Kp/n ≤ p/2. It follows that

Kp/2 < K(p− q) ≤ c2

√
Kp+ qn ≤ c2

√
2Kp.

Thus, Kp < 8c2
2 which contradicts the assumption that Kp > qn ≥ c1 log n.

Therefore, Kp > qn cannot hold. Hence, it suffices to show that if K(p − q) ≤
c2

√
2qn, then Y ∗ is not an optimal solution. We do this by deriving a contradiction

assuming the optimality of Y ∗.
Let J be the n×n all-ones matrix. LetR := support(Y ∗) andA := support(A).

Recall the cluster characteristic matrix U and the projection PT (M) = UU>M +

MUU>−UU>MUU> defined in Section A.3, and that Y ∗ = KUU> is the SVD
of Y ∗. Consider the Lagrangian

L(Y ;λ, µ, F,G) ,− 〈A, Y 〉+ λ (‖Y ‖∗ − ‖Y
∗‖∗) + η

(
〈J, Y 〉 − rK2

)
− 〈F, Y 〉+ 〈G, Y − J〉 ,

where the Lagrangian multipliers are λ, η ∈ R and F,G ∈ Rn×n. Since Y =
rK2

n2 J is strictly feasible, strong duality holds by Slater’s condition. Therefore, if
Y ∗ is an optimal solution, then there must exist some F,G ∈ Rn×n and λ for
which the KKT conditions hold:

0 ∈ ∂L(Y ;λ, µ, F,G)

∂Y

∣∣∣∣
Y=Y ∗

}
Stationary condition

Fij ≥ 0, Gij ≥ 0, ∀(i, j)

λ ≥ 0

}
Dual feasibility

Fij = 0, ∀(i, j) ∈ R

Gij = 0, ∀(i, j) ∈ Rc

}
Complementary slackness.

Recall that M ∈ Rn×n is a sub-gradient of ‖X‖∗ at X = Y ∗ if and only if
PT (M) = UU> and ‖M − PT (M)‖ ≤ 1. Let H = F −G; the KKT conditions
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imply that there exist some numbers λ ≥ 0, η ∈ R and matrices W , H obeying

A− λ
(
UU> +W

)
− ηJ +H = 0; (A.35)

PTW = 0; ‖W‖ ≤ 1; (A.36)

Hij ≤ 0, ∀(i, j) ∈ R; Hij ≥ 0, ∀(i, j) ∈ Rc. (A.37)

Now observe thatUU>WUU> = 0 by (A.36). We left and right multiply (A.35)
by UU> to obtain

Ā− λUU> − ηJ + H̄ = 0,

where for any X ∈ Rn×n, X̄ := UU>XUU> is the matrix obtained by averaging
each K × K block of X . Consider the last display equation on the entries in R
andRc respectively. By the Bernstein inequality for each entry Āij , we have with
probability at least 1− 2n−11,

p− λ

K
− η + H̄ij ≥ −

c3

√
p(1− p) log n

K
− c4 log n

2K2

(a)

≥ −ε0
8
, ∀(i, j) ∈ R

(A.38)

q − η + H̄ij ≤
c3

√
q(1− q) log n

K
+
c4 log n

2K2

(b)

≤ ε0
8
, ∀(i, j) ∈ Rc

(A.39)

for some universal constants c3, c4 > 0, where (a) and (b) follow from the as-
sumption K ≥ c1 log n with the universal constant c1 sufficiently large. In the rest
of the proof, we assume (A.38) and (A.39) hold. Using (A.37), we get that

η ≥ q −
c3

√
q(1−q) log n

K
− c4 log n

2K2
≥ q − ε0

8

η ≤ p+
c3

√
p(1−p) log n

K
+
c4 log n

2K2
− λ

K
≤ p+

ε0
8
− λ

K
.

(A.40)

It follows that

λ ≤ K(p− q) + c3(
√
p(1− p) log n+

√
q(1− q) log n) +

c4 log n

K

≤ 4 max

{
K(p− q), c3

√
p(1− p) log n, c3

√
q(1− q) log n,

c4

c1

}
. (A.41)
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On the other hand, (A.36) and (A.35) imply

λ2 =
∥∥λ(UU> +W )

∥∥2 ≥ 1

n

∥∥λ(UU> +W )
∥∥2

F

=
1

n
‖A− ηJ +H‖2

F ≥
1

n
‖ARc − ηJRc +HRc‖2

F ≥
1

n

∑
(i,j)∈Rc

(1− η)2Aij,

where XRc denotes that matrix obtained from X by setting the entries outsideRc

to zero. Using (A.40), λ ≥ 0 and the assumption p ≤ 1−ε0, we obtain η ≤ 1− 7
8
ε0

and therefore
λ2 ≥ 49

64n
ε20

∑
(i,j)∈Rc

Aij. (A.42)

Note that
∑

(i,j)∈Rc Aij equals two times the sum of
(
n
2

)
− r
(
K
2

)
i.i.d. Bernoulli

random variables with parameter q. By the Chernoff bound of Binomial distribu-
tions and the assumption that qn ≥ c1 log n, with probability at least 1 − n−11,∑

(i<j)∈Rc Aij ≥ c5qn
2 for some universal constant c5. It follows from (A.42) that

λ2 ≥ 1
2
ε20c5qn. Combining with (A.41) and the assumption that qn ≥ c1 log n,

we conclude that with probability at least 1 − 3n−11, K2(p − q)2 ≥ 1
32
ε2c5qn.

Choosing c2 in the assumption sufficiently small such that 2c2
2 <

1
32
ε2c5, we have

K(p − q) > c2

√
2qn, which leads to the contradiction. This completes the proof

of the theorem.

A.5 Proof of Theorem 4.2.1

Given G generated either under G(N, q) or G(N, 2K, p, q), we obtain a sequence
of N graphs G1, . . . , GN by each time picking a vertex (without replacement) in
any arbitrary order and replacing it with a new vertex that connects to all other ver-
tices independently at random with probability q. We run the given algorithm A
onG1, . . . , GN and let S1, . . . , SN denote the outputs which are sets ofK vertices.
LetE(Si, Si) denote the total number of edges in Si and τ = q+(1−ε)2(p−q)/2.
Define a test φ : G → {0, 1} such that φ(G) = 1 if maxi∈[N ] E(Si, Si) > τ

(
K
2

)
;

otherwise φ(G) = 0. The construction of each Gi takes N time units; the run-
ning time of A on Gi is at most T (N) time units; the computation of E(Si, Si)

takes at most K2 time units. Therefore, the total running time of φ is at most
N2 +NT (n) +NK2. Next we upper bound the Type-I+II error probabilities. Let
C denote the positive universal constant whose value may change line by line.
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If G ∼ G(N, q), by the union bound and the Bernstein inequality,

P0{φ(G) = 1} ≤
N∑
i=1

P0

{
E(Si, Si) ≥ τ

(
K

2

)}

≤ N

(
−

(
K
2

)2
(1− ε)4(p− q)2/4

2
(
K
2

)
q +

(
K
2

)
(1− ε)2(p− q)/3

)
≤ N exp(−CK2q).

IfG ∼ G(N, 2K, p, q), let S denote the planted cluster. Then |S| ∼ Binom(N, 2K
N

)

and by the Chernoff bound, P1[|S| < K] ≤ exp(−CK). If |S| = K ′ ≥ K, then
there must exist some I ∈ [N ] such that GI is distributed exactly as the planted
cluster model with a single cluster S∗ of size K and p = cq; conditional on I = i

and the success of A on Gi, |Si ∩ S∗| ≥ (1 − ε)K and S∗ ∼ Binom(
(
K
2

)
, p).

Therefore, by the Bernstein inequality

P1

{
E(Si, Si) <

p+ q

2

(
K

2

)∣∣∣∣|S| = K ′, I = i

}
≤ ηN +

(
−

(
K
2

)2
(1− ε)4(p− q)2/4

2
(
K
2

)
p+

(
K
2

)
(1− ε)2(p− q)/3

)
≤ ηN + exp(−CK2q).

It follows that

P1{φ(G) = 0}

≤ P1{|S| < K}+
∑
K′≥K

N∑
i=1

P1{|S| = K ′, I = i}P1{φ(G) = 0||S| = K ′, I = i}

≤ exp(−CK) + ηN + exp(−CK2q).

A.6 Proof of Proposition 4.3.1

We first introduce several key auxiliary results used in the proof. The following
lemma ensures that P ′`s`t and Q′`s`t are well-defined under suitable conditions and
that P ′`s`t and P`s,`t are close in total variation.

Lemma 8. Suppose that p = 2q and 16q`2 ≤ 1. Fix {`t} such that `t ≤ 2` for all
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t ∈ [k]. Then for all 1 ≤ s < t ≤ k, P ′`s`t and Q′`s`t are probability measures and

dTV(P ′`s`t , P`s`t) ≤ 4(8q`2)(m0+1).

Proof. Fix an (s, t) such that 1 ≤ s < t ≤ k. We first show that P ′`s`t and Q′`s`t
are well-defined. By definition,

∑`s`t
m=0 P

′
`s`t

(m) =
∑`s`t

m=0Q
′
`s`t

(m) = 1 and it
suffices to show positivity, i.e.,

P`s`t(0) + a`s`t ≥ 0, (A.43)

Q`s`t(m) ≥ γP ′`s`t(m), ∀0 ≤ m ≤ m0. (A.44)

Recall that P`s`t ∼ Binom(`s`t, p) and Q`s`t ∼ Binom(`s`t, q). Hence, for ∀0 ≤
m ≤ `s`t,

Q`s`t(m) =

(
`s`t
m

)
qm(1− q)`s`t−m, P`s`t(m) =

(
`s`t
m

)
pm(1− p)`s`t−m.

It follows that

1

γ
Q`s`t(m)− P`s`t(m) =

1

γ

(
`s`t
m

)
qm(1− 2q)`s`t−m

[(
1− q
1− 2q

)`s`t−m
− 2mγ

]
.

Recall that m0 = blog2(1/γ)c and thus Q`s`t(m) ≥ γP`s`t(m) for all m ≤ m0.
Furthermore,

Q`s`t(0) = (1− q)`s`t ≥ (1− q`s`t) ≥ 1− 4q`2 ≥ 3

4
≥ γ ≥ γP ′`s`t(0),

and thus (A.44) holds. Recall that

a`s`t =
∑

m0<m≤`s`t

(
P`s`t(m)− 1

γ
Q`s`t(m)

)
.

Since 2m0+1γ > 1 and 8q`2 ≤ 1/2, it follows that

1

γ

∑
m0<m≤`s`t

Q`s`t(m) ≤ 1

γ

∑
m0<m≤`s`t

(
`s`t
m

)
qm ≤

∑
m>m0

(2`s`tq)
m ≤ 2(8q`2)(m0+1),

(A.45)
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and therefore a`s`t ≥ −1/2. Furthermore,

P`s`t(0) = (1− p)`s`t ≥ 1− p`s`t ≥ 1− 8q`2 ≥ 1/2,

and thus (A.43) holds.
Next we bound dTV

(
P ′`s`t , P`s`t

)
. Notice that

∑
m0<m≤`s`t

P`s`t(m) ≤
∑

m0<m≤`s`t

(
`s`t
m

)
pm ≤

∑
m>m0

(`s`tp)
m ≤ 2(8q`2)(m0+1).

(A.46)

Therefore, by the definition of the total variation distance and a`s`t ,

dTV(P ′`s`t , P`s`t) =
1

2
|a`s`t |+

1

2

∑
m0<m≤`s`t

∣∣∣∣P`s`t(m)− 1

γ
Q`s`t(m)

∣∣∣∣
≤

∑
m0<m≤`s`t

(
P`s`t(m) +

1

γ
Q`s`t(m)

)
≤ 4(8q`2)(m0+1),

where the last inequality follows from (A.45) and (A.46).

The following lemma is useful for upper bounding the total variation distance
between a truncated mixture of product distribution PY and a product distribution
QY .

Lemma 9. Let PY |X be a Markov kernel from X to Y and denote the marginal of

Y by PY = EX∼PX [PY |X ]. Let QY be such that PY |X=x � QY for all x. Let E be

a measurable subset of X . Define g : X 2 → R̄+ by

g(x, x̃) ,
∫

dPY |X=xdPY |X=x̃

dQ
.

Then

dTV(PY , QY ) ≤ 1

2
PX(Ec) +

1

2

√
E
[
g(X, X̃)1E(X)1E(X̃)

]
− 1 + 2PX(Ec),

(A.47)
where X̃ is an independent copy of X ∼ PX .
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Proof. By definition of the total variation distance,

dTV(PY , QY ) =
1

2
‖PY −QY ‖1

≤ 1

2
‖E[PY |X ]− E[PY |X1{X∈E}]‖1 +

1

2
‖E[PY |X1{X∈E}]−QY ‖1,

where the first term is ‖E[PY |X ] − E[PY |X1{X∈E}]‖1 = ‖E[PY |X1{X 6∈E}]‖1 =

P {X 6∈ E}. The second term is controlled by

‖E[PY |X1{X∈E}]−QY ‖2
1

=

(
EQY

[∣∣∣∣∣E
[
PY |X1{X∈E}

]
QY

− 1

∣∣∣∣∣
])2

≤ EQY

(E
[
PY |X1{X∈E}

]
QY

− 1

)2
 (A.48)

= EQY

(E
[
PY |X1{X∈E}

]
QY

)2
+ 1− 2E[E

[
PY |X1{X∈E}

]
] (A.49)

= E
[
g(X, X̃)1E(X)1E(X̃)

]
+ 1− 2P {X ∈ E}, (A.50)

where (A.48) is Cauchy-Schwartz inequality, (A.50) follows from Fubini theorem.
This proves the desired (A.47).

Note that {Vt : t ∈ [n]} can be equivalently generated as follows: Throw
balls indexed by [N ] into bins indexed by [n] independently and uniformly at
random; let Vt denote the set of balls in the tth bin. We need the following negative
association property [94, Definition 1].

Lemma 10. Let {Ṽt : t ∈ [n]} be an independent copy of {Vt : t ∈ [n]}. Fix

a subset C ⊂ [n] and let S = ∪t∈CVt. Conditional on C and S, the full vector

{|Vs ∩ Ṽt| : s, t ∈ C} is negatively associated, i.e., for every two disjoint index

sets I, J ⊂ C × C,

E[f(Vs ∩ Ṽt, (s, t) ∈ I)g(Vs ∩ Ṽt, (s, t) ∈ J)]

≤ E[f(Vs ∩ Ṽt, (s, t) ∈ I)]E[g(Vs ∩ Ṽt, (s, t) ∈ J)],

for all functions f : R|I| → R and g :|J | that are either both non-decreasing or

both non-increasing in every argument.
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Proof. Define the indicator random variables Zm,s,t for m ∈ S, s, t ∈ C as

Zm,s,t =

{
1 if the mth ball is contained in the sth and the tth bins,
0 otherwise .

By [94, Proposition 12], the full vector {Zm,s,t : m ∈ S, s, t ∈ C} is negatively
associated. By definition, we have

|Vs ∩ Ṽt| =
∑
m∈S

Zm,s,t,

which is a non-decreasing function of {Zm,s,t : m ∈ S}. Moreover, for distinct
pairs (s, t) 6= (s′, t′), the sets {(m, s, t) : m ∈ S} and {(m, s′, t′) : m ∈ S} are
disjoint. Applying [94, Proposition 8] yields the desired statement.

The negative association property of {|Vs ∩ Ṽt| : s, t ∈ C} allows us to bound
the expectation of any non-decreasing function of {|Vs∩Ṽt| : s, t ∈ C} conditional
on C and S as if they were independent [94, Lemma 2], i.e., for any collection of
non-decreasing functions {fs,t : s, t ∈ [n]},

E

[∏
s,t∈C

fs,t(|Vs ∩ Ṽt|)
∣∣∣∣ C, S

]
≤
∏
s,t∈C

E
[
fs,t(|Vs ∩ Ṽt|)

∣∣∣∣ C, S] . (A.51)

Lemma 11. Suppose that X ∼ Binom(1.5K, 1
k2

) and Y ∼ Binom(3`, e
k
) with

K = k` and k ≥ 6e`. Then for all 1 ≤ m ≤ 2`− 1,

P[X = m] ≤ P[Y = m],

and P[X ≥ 2`] ≤ P[Y = 2`].

Proof. In view of the fact that ( n
m

)m ≤
(
n
m

)
≤ ( en

m
)m, we have for 1 ≤ m ≤ 2`,

P[X = m] =

(
1.5K

m

)(
1

k2

)m(
1− 1

k2

)1.5K−m

≤
(

1.5eK

mk2

)m
.

Therefore,

P[X ≥ 2`] ≤
∞∑

m=2`

(
1.5e`

km

)m
≤

∞∑
m=2`

(
3e

4k

)m
≤ (0.75e/k)2`

1− 0.75e/k
.

78



On the other hand, for 1 ≤ m ≤ 2`− 1

P[Y = m] =

(
3`

m

)( e
k

)m (
1− e

k

)3`−m

≥
(

3e`

mk

)m(
1− 3e`

k

)
≥ 2m−1

(
1.5e`

mk

)m
≥ P[X = m].

Moreover, P[Y = 2`] ≥ P[X ≥ 2`].

Lemma 12. Let T ∼ Binom(`, τ) and λ > 0. Assume that λ` ≤ 1
16

. Then

E[exp(λT (T − 1))] ≤ exp
(
16λ`2τ 2

)
. (A.52)

Proof. Let (s1, . . . , s`, t1, . . . , t`)
i.i.d.∼ Bern(τ), S =

∑`
i=1 si and T =

∑`
i=1 ti.

Next we use a decoupling argument to replace T 2 − T by ST :

E [exp (λT (T − 1))] = E

[
exp

(
λ
∑
i 6=j

titj

)]

≤ E

[
exp

(
4λ
∑
i 6=j

sitj

)]
, (A.53)

≤ E [exp (4λST )] ,

where (A.53) is a standard decoupling inequality (see, e.g., [95, Theorem 1]).
Since λT ≤ λ` ≤ 1

16
and exp(x) − 1 ≤ exp(a)x for all x ∈ [0, a], the desired

(A.52) follows from

E [exp (4λST )] = E
[
(1 + τ(exp(4λT )− 1))`

]
≤ E

[
(1 + 8τλT )`

]
≤ E [exp (8τλ`T )]

= (1 + τ (exp (8τλ`)− 1))`

≤ exp
(
16τ 2λ`2

)
.

Proof of Proposition 4.3.1. Let [i, j] denote the unordered pair of i and j. For any
set I ⊂ [N ], let E(I) denote the set of unordered pairs of distinct elements in I ,
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i.e., E(I) = {[i, j] : i, j ∈ S, i 6= j}, and let E(I)c = E([N ]) \ E(I). For s, t ∈ [n]

with s 6= t, let G̃VsVt denote the bipartite graph where the set of left (right) vertices
is Vs (resp. Vt) and the set of edges is the set of edges in G̃ from vertices in Vs to
vertices in Vt. For s ∈ [n], let G̃VsVs denote the subgraph of G̃ induced by Vs. Let
P̃VsVt denote the edge distribution of G̃VsVt for s, t ∈ [n].

First, we show that the null distributions are exactly matched by the reduction
scheme. Lemma 8 implies that P ′`s`t and Q′`s`t are well-defined probability mea-
sures, and by definition, (1−γ)Q′`s`t+γP

′
`s`t

= Q`s`t = Binom(`s`t, q). Under the
null hypothesis, G ∼ G(n, γ) and therefore, according to our reduction scheme,
E(Vs, Vt) ∼ Binom(`s`t, q) for s < t and E(Vt, Vt) ∼ Binom(

(
`t
2

)
, q). Since the

vertices in Vs and Vt are connected uniformly at random such that the total number
of edges is E(Vs, Vt), it follows that P̃VsVt =

∏
(i,j)∈Vs×Vt Bern(q) for s < t and

P̃VsVt =
∏

[i,j]∈E(Vs)
Bern(q) for s = t. Conditional on V n

1 , {E(Vs, Vt) : 1 ≤ s ≤
t ≤ n} are independent and so are {G̃VsVt : 1 ≤ s ≤ t ≤ n}. Consequently,
PG̃|HC

0
= P0 =

∏
[i,j]∈E([N ]) Bern(q) and G̃ ∼ G(N, q).

Next, we proceed to consider the alternative hypothesis, under which G is
drawn from the planted clique model G(n, k, γ). Let C ⊂ [n] denote the planted
clique. Define S = ∪t∈CVt and recall K = k`. Then |S| ∼ Binom(N,K/N) and
conditional on |S|, S is uniformly distributed over all possible subsets of size |S|
in [N ]. By the symmetry of the vertices of G, the distribution of Ã conditional on
C does not depend on C. Hence, without loss of generality, we shall assume that
C = [k] henceforth. The distribution of Ã can be written as a mixture distribution
indexed by the random set S as

Ã ∼ P̃1 , ES

P̃SS × ∏
[i,j]∈E(S)c

Bern(q)

 .
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By the definition of P1,

dTV(P̃1,P1)

= dTV

ES

P̃SS × ∏
[i,j]∈E(S)c

Bern(q)

 ,ES
 ∏

[i,j]∈E(S)

Bern(p)
∏

[i,j]∈E(S)c

Bern(q)


≤ ES

dTV

P̃SS × ∏
[i,j]∈E(S)c

Bern(q),
∏

[i,j]∈E(S)

Bern(p)
∏

[i,j]∈E(S)c

Bern(q)


= ES

dTV

P̃SS, ∏
[i,j]∈E(S)

Bern(p)


≤ ES

dTV

P̃SS, ∏
[i,j]∈E(S)

Bern(p)

1{|S|≤1.5K}

+ exp(−K/12), (A.54)

where the first inequality follows from the convexity of (P,Q) 7→ dTV(P,Q),
and the last inequality follows from applying the Chernoff bound to |S|. Fix an
S ⊂ [N ] such that |S| ≤ 1.5K. Define PVtVt =

∏
[i,j]∈E(Vt)

Bern(q) for t ∈ [k]

and PVsVt =
∏

(i,j)∈Vs×Vt Bern(p) for 1 ≤ s < t ≤ k. By the triangle inequality,

dTV

P̃SS, ∏
[i,j]∈E(S)

Bern(p)


≤ dTV

(
P̃SS,EV k1

[ ∏
1≤s≤t≤k

PVsVt

∣∣∣∣ S
])

(A.55)

+ dTV

EV k1

[ ∏
1≤s≤t≤k

PVsVt

∣∣∣∣ S
]
,
∏

[i,j]∈E(S)

Bern(p)

 . (A.56)

To bound the term in (A.55), first note that conditional on S, {V k
1 } can be gener-

ated as follows: Throw balls indexed by S into bins indexed by [k] independently
and uniformly at random; let Vt is the set of balls in the tth bin. Define the event
E = {V k

1 : |Vt| ≤ 2`, t ∈ [k]}. Since |Vt| ∼ Binom(|S|, 1/k) is stochastically
dominated by Binom(1.5K, 1/k) for each fixed 1 ≤ t ≤ k, it follows from the
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Chernoff bound and the union bound that P{Ec} ≤ k exp(−`/18).

dTV

(
P̃SS,EV k1

[ ∏
1≤s≤t≤k

PVsVt

∣∣∣∣ S
])

(a)
= dTV

(
EV k1

[ ∏
1≤s≤t≤k

P̃VsVt

∣∣∣∣ S
]
,EV k1

[ ∏
1≤s≤t≤k

PVsVt

∣∣∣∣ S
])

≤ EV k1

[
dTV

( ∏
1≤s≤t≤k

P̃VsVt ,
∏

1≤s≤t≤k

PVsVt

) ∣∣∣∣ S
]

≤ EV k1

[
dTV

( ∏
1≤s≤t≤k

P̃VsVt ,
∏

1≤s≤t≤k

PVsVt

)
1{V k1 ∈E}

∣∣∣∣ S
]

+ k exp(−`/18),

where (a) holds because conditional on V k
1 ,
{
ÃVsVt : s, t ∈ [k]

}
are independent.

Recall that `t = |Vt|. For any fixed V k
1 ∈ E, we have

dTV

( ∏
1≤s≤t≤k

P̃VsVt ,
∏

1≤s≤t≤k

PVsVt

)
(a)
= dTV

( ∏
1≤s<t≤k

P̃VsVt ,
∏

1≤s<t≤k

PVsVt

)
(b)
= dTV

( ∏
1≤s<t≤k

P ′`s`t ,
∏

1≤s<t≤k

P`s`t

)

≤ dTV

( ∏
1≤s<t≤k

P ′`s`t ,
∏

1≤s<t≤k

P`s`t

)

≤
∑

1≤s<t≤k

dTV

(
P ′`s`t , P`s`t

) (c)

≤ 2k2(8q`2)(m0+1),

where (a) follows since P̃VtVt = PVtVt for all t ∈ [k]; (b) is because the number
of edges E(Vs, Vt) is a sufficient statistic for testing P̃VsVt versus PVsVt on the
submatrix AVsVt of the adjacency matrix; (c) follows from Lemma 8. Therefore,

dTV

(
P̃SS,EV k1

[ ∏
1≤s≤t≤k

PVsVt

∣∣∣∣ S
])
≤ 2k2(8q`2)(m0+1) + k exp(−`/18).

(A.57)
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To bound the term in (A.56), applying Lemma 9 yields

dTV

EV k1

[ ∏
1≤s≤t≤k

PVsVt

∣∣∣∣ S
]
,
∏

[i,j]∈E(S)

Bern(p)


≤ 1

2
P {Ec}+

1

2

√
EV k1 ;Ṽ k1

[
g(V k

1 , Ṽ
k

1 )1{V k1 ∈E}1{Ṽ k1 ∈E}

∣∣∣∣ S]− 1 + 2P {Ec},

(A.58)

where

g(V k
1 , Ṽ

k
1 ) =

∫ ∏
1≤s≤t≤k PVsVt

∏
1≤s≤t≤k PṼsṼt∏

[i,j]∈E(S) Bern(p)

=
k∏

s,t=1

(
q2

p
+

(1− q)2

1− p

)(|Vs∩Ṽt|2 )

=
k∏

s,t=1

(
1− 3

2
q

1− 2q

)(|Vs∩Ṽt|2 )
.

Let X ∼ Bin(1.5K, 1
k2

) and Y ∼ Bin(3`, e/k). It follows that

EV k1 ;Ṽ k1

 k∏
s,t=1

(
1− 3

2
q

1− 2q

)(|Vs∩Ṽt|2 ) k∏
s,t=1

1{|Vs|≤2`,|Ṽt|≤2`}

∣∣∣∣ S


(a)

≤ EV k1 ;Ṽ k1

[
k∏

s,t=1

eq(
|Vs∩Ṽt|∧2`

2 )
∣∣∣∣ S
]

(b)

≤
k∏

s,t=1

E
[
eq(
|Vs∩Ṽt|∧2`

2 )
∣∣∣∣ S]

(c)

≤
(
E
[
eq(

X∧2`
2 )
])k2 (d)

≤ E
[
eq(

Y
2)
]k2 (e)

≤ exp(72e2q`2), (A.59)

where (a) follows from 1+x ≤ ex for all x ≥ 0 and q < 1/4; (b) follows from the
negative association property of {|Vs ∩ Ṽt| : s, t ∈ [k]} proved in Lemma 10 and
(A.51), in view of the monotonicity of x 7→ eq(

x∧2`
2 ) on R+; (c) follows because

|Vs ∩ Ṽt| is stochastically dominated by Binom(1.5K, 1/k2) for all (s, t) ∈ [k]2;
(d) follows from Lemma 11; (e) follows from Lemma 12 with λ = q/2 and
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q` ≤ 1/8. Therefore, by (A.58)

dTV

P̃SS, ∏
[i,j]∈E(S)

Bern(p)

 ≤ 0.5ke−
`
18 + 0.5

√
e72e2q`2 − 1 + 2ke−

`
18

≤ 0.5ke−
`
18 + 0.5

√
e72e2q`2 − 1 +

√
0.5ke−

`
36 .

(A.60)

The proposition follows by combining (A.54), (A.55), (A.56), (A.57) and (A.60).

A.7 Proof of Proposition 4.3.2

Proof. By assumption the test φ satisfies

P0{φ(G′) = 1}+ P1{φ(G′) = 0} = η,

whereG′ is the graph in PDS(N,K, 2q, q) distributed according to either P0 or P1.
Let G denote the graph in the PC(n, k, γ) and G̃ denote the corresponding output
of the randomized reduction scheme. Proposition 4.3.1 implies that G̃ ∼ G(N, q)

under HC
0 . Therefore PHC

0
{φ(G̃) = 1} = P0{φ(G′) = 1}. Moreover,

|PHC
1
{φ(G̃) = 0} − P1{φ(G′) = 0}| ≤ dTV(PG̃|HC

1
,P1) ≤ ξ.

It follows that

PHC
0
{φ(G̃) = 1}+ PHC

1
{φ(G̃) = 0} ≤ η + ξ.

A.8 Proof of Theorem 4.3.3

Proof. Fix α > 0 and 0 < β < 1 that satisfy (4.4). Then it is straightforward to
verify that

α < β < min

{
2 +m0δ

4 + 2δ
α,

1

2
− δ +

1 + 2δ

4 + 2δ
α

}
(A.61)
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holds for some δ > 0. Let ` ∈ N and q` = `−(2+δ). Define

n` = b`
2+δ
α
−1c, k` = b`

(2+δ)β
α
−1c, N` = n``, K` = k``. (A.62)

Then

lim
`→∞

log 1
q`

logN`

=
(2 + δ)

(2 + δ)/α− 1 + 1
= α, lim

`→∞

logK`

logN`

=
(2 + δ)β/α− 1 + 1

(2 + δ)/α− 1 + 1
= β.

(A.63)

Suppose that for the sake of contradiction there exists a small ε > 0 and a sequence
of randomized polynomial-time tests {φ`} for PDS(N`, K`, 2q`, q`), such that

P0{φN`,K`(G′) = 1}+ P1{φN`,K`(G′) = 0} ≤ 1/2− ε

holds for arbitrarily large `, where G′ is the graph in the PDS(N`, K`, 2q`, q`).
Since β > α, we have k` ≥ `1+δ. Therefore, 16q``

2 ≤ 1 and k` ≥ 6e` for all
sufficiently large `. Applying Proposition 4.3.2, we conclude that G 7→ φ(G̃) is a
randomized polynomial-time test for PC(n`, k`, γ) whose Type-I+II error proba-
bility satisfies

PHC
0
{φ`(G̃) = 1}+ PHC

1
{φ`(G̃) = 0} ≤ 1

2
− ε+ ξ, (A.64)

where ξ is given by the right-hand side of (4.3). By the definition of q`, we have
q``

2 = `−δ and thus

k2
` (q``

2)m0+1 ≤ `2((2+δ)β/α−1)−(m0+1)δ ≤ `−δ,

where the last inequality follows from (A.61). Therefore ξ → 0 as ` → ∞.
Moreover, by the definition in (A.62),

lim
`→∞

log k`
log n`

=
(2 + δ)β/α− 1

(2 + δ)/α− 1
≤ 1

2
− δ,

where the above inequality follows from (A.61). Therefore, (A.64) contradicts
our assumption that Hypothesis 1 holds for γ. Finally, if Hypothesis 1 holds for
any γ > 0, (4.5) follows from (4.4) by sending γ ↓ 0.
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A.9 Proof of Theorem 5.1.2

The following lemma provides a deterministic sufficient condition for the success
of SDP (5.5) in the case a > b.

Lemma 13. Suppose there exist D∗ = diag {d∗i } and λ∗ ∈ R such that S∗ ,

D∗ − A+ λ∗J satisfies S∗ � 0, λ2(S∗) > 0 and

S∗σ∗ = 0. (A.65)

Then ŶSDP = Y ∗ is the unique solution to (5.5).

Proof. The Lagrangian function is given by

L(Y, S,D, λ) = 〈A, Y 〉+ 〈S, Y 〉 − 〈D, Y − I〉 − λ〈J, Y 〉,

where the Lagrangian multipliers are denoted by S � 0, D = diag {di}, and
λ ∈ R. Then for any Y satisfying the constraints in (5.5),

〈A, Y 〉
(a)

≤ L(Y, S∗, D∗, λ∗) = 〈D∗, I〉 = 〈D∗, Y ∗〉 = 〈A+ S∗ − λ∗J, Y ∗〉
(b)
= 〈A, Y ∗〉,

where (a) holds because 〈S∗, Y 〉 ≥ 0; (b) holds because 〈Y ∗, S∗〉 = (σ∗)>S∗σ∗ =

0 by (A.65). Hence, Y ∗ is an optimal solution. It remains to establish its unique-
ness. To this end, suppose Ỹ is an optimal solution. Then,

〈S∗, Ỹ 〉 = 〈D∗ − A+ λ∗J, Ỹ 〉 (a)
= 〈D∗ − A, Ỹ 〉 (b)

= 〈D∗ − A, Y ∗〉=〈S∗, Y ∗〉 = 0.

where (a) holds because 〈J, Ỹ 〉 = 0; (b) holds because 〈A, Ỹ 〉 = 〈A, Y ∗〉 and
Ỹii = Y ∗ii = 1 for all i ∈ [n]. In view of (A.65), since Ỹ � 0, S∗ � 0 with
λ2(S∗) > 0, Ỹ must be a multiple of Y ∗ = σ∗(σ∗)>. Because Ỹii = 1 for all
i ∈ [n], Ỹ = Y ∗.

Proof of Theorem 5.1.2. The theorem is proved first for a > b. LetD∗ = diag {d∗i }
with

d∗i =
n∑
j=1

Aijσ
∗
i σ
∗
j (A.66)

and choose any λ∗ ≥ p+q
2

. It suffices to show that S∗ = D∗ − A + λ∗J satisfies
the conditions in Lemma 13 with high probability.
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By definition, d∗iσ
∗
i =

∑
j Aijσ

∗
j for all i, i.e., D∗σ∗ = Aσ∗. Since Jσ∗ = 0,

(A.65) holds, that is, S∗σ∗ = 0. It remains to verify that S∗ � 0 and λ2(S∗) > 0

with probability converging to one, which amounts to showing that

P
{

inf
x⊥⊥σ∗,‖x‖2=1

x>S∗x > 0

}
→ 1. (A.67)

Note that E [A] = p−q
2
Y ∗ + p+q

2
J − pI and Y ∗ = σ∗(σ∗)>. Thus for any x such

that x ⊥⊥ σ∗ and ‖x‖2 = 1,

x>S∗x = x>D∗x− x>E [A]x+ λ∗x>Jx− x> (A− E [A])x

= x>D∗x− p− q
2

x>Y ∗x+

(
λ∗ − p+ q

2

)
x>Jx+ p− x> (A− E [A])x

(a)

≥ x>D∗x+ p− x> (A− E [A])x ≥ min
i∈[n]

d∗i + p− ‖A− E [A] ‖.

(A.68)

where (a) holds since λ∗ ≥ p+q
2

and 〈x, σ∗〉 = 0. It follows from Theorem A.12.1
that ‖A − E [A] ‖ ≤ c′

√
log n with high probability for a positive constant c′

depending only on a. Moreover, note that each di is equal in distribution toX−R,
where X ∼ Binom(n

2
− 1, a logn

n
) and R ∼ Binom(n

2
, b logn

n
) are independent.

Hence, Lemma 15 implies that

P
{
X −R ≥ log n

log log n

}
≥ 1− n−(

√
a−
√
b)2/2+o(1).

Applying the union bound implies that mini∈[n] d
∗
i ≥

logn
log logn

holds with probabil-
ity at least 1−n1−(

√
a−
√
b)2/2+o(1). It follows from the assumption (

√
a−
√
b)2 > 2

and (A.68) that the desired (A.67) holds, completing the proof in the case a > b.
For the case a < b, we replace the arg max by arg min in the SDP (5.5), which

is equivalent to substituting −A for A in the original maximization problem, as
well as the sufficient condition in Lemma 13. Set the dual variable d∗i according
to (A.66) with −A replacing A and choose any λ∗ ≥ −p+q

2
. Then (A.65) still

holds and (A.68) changes to x>S∗x ≥ mini∈[n] d
∗
i − p − ‖A − E [A] ‖, where

mini∈[n] d
∗
i ≥

logn
log logn

holds with probability at least 1 − n1−(
√
a−
√
b)2/2+o(1) by

Lemma 15 and the union bound. Therefore, in view of Theorem A.12.1 and the
assumption (

√
a−
√
b)2 > 2, the desired (A.67) still holds, completing the proof

for the case a < b.
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A.10 Proof of Theorem 5.2.1

Lemma 14. Suppose there exist D∗ = diag {d∗i } ≥ 0, B∗ ∈ Sn with B∗ ≥ 0,

λ∗ ∈ R, and η∗ ∈ R such that S∗ , D∗ − B∗ − A+ η∗I + λ∗J satisfies S∗ � 0,

λ2(S∗) > 0, and

S∗ξ∗ = 0,

d∗i (Z
∗
ii − 1) = 0, ∀i,

B∗ijZ
∗
ij = 0, ∀i, j. (A.69)

Then ẐSDP = Z∗ is the unique solution to (5.9).

Proof. The Lagrangian function is given by

L(Z, S,D,B, λ, η) =〈A,Z〉+ 〈S,Z〉 − 〈D,Z − I〉+ 〈B,Z〉 − η (〈I, Z〉 −K)

− λ
(
〈J, Z〉 −K2

)
,

where S � 0, D = diag {di} ≥ 0, B ∈ Sn with B ≥ 0, and λ, η ∈ R are
the Lagrangian multipliers. Then, for any Z satisfying the constraints in (5.9), It
follows that

〈A,Z〉
(a)

≤ L(Z, S∗, D∗, B∗, λ∗, η∗) = 〈D∗, I〉+ η∗K + λ∗K2

(b)
= 〈D∗, Z∗〉+ η∗K + λ∗K2

= 〈A+B∗ + S∗ − η∗I − λ∗J, Z∗〉+ η∗K + λ∗K2 (c)
= 〈A,Z∗〉,

where (a) follows because 〈S∗, Z〉 ≥ 0, 〈D∗, Z − I〉 ≤ 0, and 〈B∗, Z〉 ≥ 0;
(b) holds due to d∗i (Z

∗
ii − 1) = 0,∀i; (c) holds because B∗ijZ

∗
ij = 0, ∀i, j and

〈Z∗, S∗〉 = (ξ∗)>S∗ξ∗ = 0. Hence, Z∗ is an optimal solution. It remains to
establish the uniqueness. To this end, suppose Z̃ is another optimal solution.
Then,

〈S∗, Z̃〉 = 〈D∗ −B∗ − A+ η∗I + λ∗J, Z̃〉 (a)
= 〈D∗ −B∗ − A, Z̃〉

(b)

≤ 〈D∗ − A,Z∗〉

= 〈S∗, Z∗〉 = 0.

where (a) holds because 〈I, Z̃〉 = K and 〈J, Z̃〉 = K2; (b) holds because
〈A, Z̃〉 = 〈A,Z∗〉, B∗, Z̃ ≥ 0, and 〈D∗, Z̃〉 ≤

∑
i∈C∗ d

∗
i = 〈D∗, Z∗〉 since d∗i ≥ 0
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and Z̃ii ≤ 1 for all i ∈ [n]. Since Z̃ � 0 and S∗ � 0 with λ2(S∗) > 0, Z̃ needs to
be a multiple of Z∗ = ξ∗(ξ∗)>. Then Z̃ = Z∗ since Tr(Z̃) = Tr(Z∗) = K.

Proof of Theorem 5.2.1. The theorem is proved first for a > b. Recall τ ∗ =
a−b

log a−log b
if a, b > 0 and a 6= b. Let τ ∗ = 0 if a = 0 or b = 0. Choose

λ∗ = τ ∗ log n/n, η∗ = ‖A− E [A] ‖, D∗ = diag {d∗i } with

d∗i =

{ ∑
j∈C∗ Aij − η∗ − λ∗K if i ∈ C∗

0 otherwise
.

Define b∗i , λ∗ − 1
K

∑
j∈C∗ Aij for i /∈ C∗. Let B∗ ∈ Sn be given by

B∗ij = bi1{i/∈C∗,j∈C∗} + bj1{i∈C∗,j /∈C∗}.

It suffices to show that (S∗, D∗, B∗) satisfies the conditions in Lemma 14 with
probability tending to one.

By definition, we have d∗i (Z
∗
ii − 1) = 0 and B∗ijZ

∗
ij = 0 for all i, j ∈ [n].

Moreover, for all i ∈ C∗,

d∗i ξ
∗
i = d∗i =

∑
j

Aijξ
∗
j − η∗ − λ∗K =

∑
j

Aijξ
∗
j +

∑
j

B∗ijξ
∗
j − η∗ − λ∗K,

where the last equality holds because B∗ij = 0 if (i, j) ∈ C∗ × C∗; for all i /∈ C∗,∑
j

Aijξ
∗
j +

∑
j

B∗ijξ
∗
j − λ∗K =

∑
j∈C∗

Aij +Kb∗i − λ∗K = 0,

where the last equality follows from our choice of b∗i . Hence, D∗ξ∗ = Aξ∗ +

B∗ξ∗ − η∗ξ∗ − λ∗K1 and consequently S∗σ∗ = 0.
We next show that D∗ ≥ 0, B∗ ≥ 0 with probability converging to 1. It follows

from Theorem A.12.1 that η∗ ≤ c′
√

log nwith probability tending to one for some
positive constant c′ depending only on a. Furthermore, letXi ,

∑
j∈C∗ Aij . Then

Xi ∼ Binom(K − 1, a logn
n

) if i ∈ C∗ and Binom(K, b logn
n

) otherwise. We divide
the analysis into two separate cases. First consider the case b = 0, then Xi = 0

for all i /∈ C∗. Since τ ∗ = 0 in this case, mini/∈C∗ b
∗
i = 0 holds automatically. For

any i ∈ C∗, applying Lemma 16 with τ = 0 yields

P
{
Xi ≥

log n

log log n

}
≥ 1− P

{
Xi ≤

log n

log log n

}
≥ 1− n−ρa+o(1).
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Applying the union bound implies that P{mini∈C∗ Xi ≥ logn
log logn

} ≥ 1−n1−ρa+o(1) →
1, because ρf(a, 0) = ρa > 1 by the assumption (5.10). Since

√
log n =

o( logn
log logn

) and τ ∗ = 0, it follows that with probability converging to 1, mini∈C∗ d
∗
i ≥

0 and we are done with the case b = 0. For b > 0, Lemma 16 implies that

P
{
Xi ≥ ρτ ∗ log n+

log n

log log n

}
≥ 1− n−ρ(a−τ∗ log ea

τ∗+o(1)), ∀i ∈ C∗,

P {Xi ≤ ρτ ∗ log n} ≥ 1− n−ρ(b−τ∗ log eb
τ∗+o(1)), ∀i /∈ C∗.

By definition, f(a, b) = a − τ ∗ log ea
τ∗

= b − τ ∗ log eb
τ∗

in this case. Applying the
union bound implies that with probability at least 1− n1−ρf(a,b)+o(1),

min
i∈C∗

Xi ≥ ρτ ∗ log n+
log n

log log n
,

max
i/∈C∗

Xi ≤ ρτ ∗ log n.

Since
√

log n = o( logn
log logn

) and ρf(a, b) > 1 by the assumption (5.10), it follows
that with probability converging to 1, mini∈C∗ d

∗
i ≥ 0 and mini/∈C∗ b

∗
i ≥ 0.

It remains to verify S∗ � 0 with λ2(S∗) > 0 with probability converging to 1,
i.e.,

P
{

inf
x⊥⊥σ∗,‖x‖2=1

x>S∗x > 0

}
→ 1. (A.70)

Note that

E [A] = (p− q)Z∗ − p

[
IK×K 0

0 0

]
− q

[
0 0

0 I(n−K)×(n−K)

]
+ qJ.
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It follows that for any x ⊥⊥ σ∗ and ‖x‖2 = 1,

x>S∗x

= x>D∗x− x>B∗x+ (λ∗ − q)x>Jx+ p
∑
i∈C∗

x2
i + q

∑
i/∈C∗

x2
i + η∗ − x> (A− E [A])x

(a)
=
∑
i∈C∗

(d∗i + p)x2
i + (λ∗ − q)x>Jx+ q

∑
i/∈C∗

x2
i + η∗ − x> (A− E [A])x

≥
(

min
i∈C∗

d∗i + p

)∑
i∈C∗

x2
i + (λ∗ − q)x>Jx+ q

∑
i/∈C∗

x2
i + η∗ − ‖A− E [A] ‖

(b)

≥
(

min
i∈C∗

d∗i + p

)∑
i∈C∗

x2
i + q

∑
i/∈C∗

x2
i

(c)

≥ min

{
min
i∈C∗

d∗i + p, q

}
, (A.71)

where (a) holds because B∗ij = 0 for all i, j /∈ C∗ and

x>B∗x = 2
∑
i/∈C∗

∑
j∈C∗

xixjB
∗
ij = 2

∑
i/∈C∗

xib
∗
i

∑
j∈C∗

xj = 0;

(b) holds because η∗ = ‖A − E [A] ‖ and λ∗ = τ ∗ logn
n
≥ q = b logn

n
, since

log a
b
≤ a

b
− 1; (c) is due to ‖x‖2

2 = 1. Notice that we have shown mini∈C∗ d
∗
i ≥ 0

with probability converging to 1. Therefore, the desired (A.70) holds in view of
(A.71), completing the proof in the case a > b.

For the case a < b, it suffices to modify the above proof by replacing A with
−A in the SDP (5.9), Lemma 14, and the definitions of d∗i and b∗i , and choosing
λ∗ = −τ ∗ log n/n− log n/(K log log n), η∗ = ‖A−E[A]‖+2q. Then (A.69) and
(A.70) still hold, andD∗ ≥ 0, B∗ ≥ 0 with probability converging to 1. Therefore
the theorem follows by applying Lemma 14.

A.11 Proof of Theorem 5.2.2

To lower bound the worst-case probability of error, consider the Bayesian setting
where the planted cluster C∗ is uniformly chosen among all K-subsets of [n] with
K = bρnc. If a = b, then the cluster is unidentifiable from the graph.

Next, we prove the theorem first for the case a > b. If b = 0, then perfect recov-
ery is possible if and only if the subgraph formed by the nodes in cluster, which is
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G(K, a log n/n), contains no isolated node.1 This occurs with high probability if
ρa < 1 [96]. Next we consider a > b > 0.

Since the prior distribution of C∗ is uniform, the ML estimator minimizes the
error probability among all estimators and thus we only need to find when the
ML estimator fails. Let e(i, S) ,

∑
j∈S Aij denote the number of edges between

node i and nodes in S ⊂ [n]. Let F denote the event that mini∈C∗ e(i, C
∗) <

maxj /∈C∗ e(j, C
∗), which implies the existence of i ∈ C∗ and j /∈ C∗, such

that the set C∗\{i} ∪ {j} achieves a strictly higher likelihood than C∗. Hence
P {ML fails} ≥ P {F}. Next we bound P {F} from below.

By symmetry, we can condition on C∗ being the first K nodes. Let T denote
the set of first b ρn

log2 n
c nodes. Then

min
i∈C∗

e(i, C∗) ≤ min
i∈T

e(i, C∗) ≤ min
i∈T

e(i, C∗\T ) + max
i∈T

e(i, T ). (A.72)

LetE1, E2, E3 denote the event that maxi∈T e(i, T ) < logn
log logn

, mini∈T e(i, C
∗\T )+

logn
log logn

≤ τ ∗ρ log n and maxj /∈C∗ e(j, C
∗) ≥ τ ∗ρ log n, respectively. In view of

(A.72), we have F ⊃ E1 ∩ E2 ∩ E3 and hence it boils down to proving that
P {Ei} → 1 for i = 1, 2, 3.

In view of the following Chernoff bound for binomial distributions [97, Theo-
rem 4.4]: For r ≥ 1 and X ∼ Binom(n, p), P {X ≥ rnp} ≤ (e/r)rnp, we have

P
{
e(i, T ) ≥ log n

log log n

}
≤
(

log2 n

ae log log n

)− logn/ log logn

= n−2+o(1).

Applying the union bound yields

P {E1} ≥ 1−
∑
i∈T

P
{
e(i, T ) ≥ log n

log log n

}
≥ 1− n−1+o(1).

1To be more precise, if there is an isolated node in the cluster C∗, then the likelihood has at
least n − K maximizers, which, in turn, implies that the probability of exact recovery for any
estimator is at most 1

n−K .
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Moreover,

P {E2}
(a)
= 1−

∏
i∈T

P
{
e(i, C∗\T ) > τ ∗ρ log n− log n

log log n

}
(b)
= 1−

(
1− n−ρ(a−τ∗ log ea

τ∗+o(1))
)|T | (c)

≥ 1− exp
(
−n1−ρ(a−τ∗ log ea

τ∗ )+o(1)
)

(d)→ 1,

where (a) holds because {e(i, C∗\T )}i∈T are mutually independent; (b) follows
from Lemma 16; (c) is due to 1 + x ≤ ex for all x ∈ R; (d) follows from the
assumption (5.11) that ρf(a, b) = ρ(a− τ ∗ log ea

τ∗
) < 1 . Similarly,

P {E3} = 1−
∏
j /∈C∗

P {e(j, C∗) < τ ∗ρ log n}

= 1−
(

1− n−(b−τ∗ log eb
τ∗+o(1))

)n−K
≥ 1− exp

(
−n1−ρ(b−τ∗ log eb

τ∗ )+o(1)
)

→ 1,

completing the proof in the case a > b > 0.
Finally, we prove the theorem for the case a < b. Consider the case a = 0 first.

For j /∈ C∗, since e(j, C∗) ∼ Binom(K, b logn
n

), it follows that logP {e(j, C∗) = 0} =

K log
(
1− b logn

n

)
= − (ρb+ o(1)) log n, and thus

P
{

min
j /∈C∗

e(j, C∗) = 0

}
= 1−

∏
j /∈C∗

(1− P {e(j, C∗) = 0})

= 1−
(
1− n−ρb+o(1)

)n−K ≥ 1− exp(−n1−ρb+o(1))→ 1,

due to the assumption that ρf(0, b) = ρb < 1. Then with probability tending to
one, there exists an isolated node j /∈ C∗, in which case the likelihood has at least
K maximizers and the probability of exact recovery for any estimator is at most
1
K

. Next assume that 0 < a < b. By symmetry, we condition on C∗ being the first
K nodes. Let T denote the set of first b ρn

log2 n
c nodes. Redefine F,E2, E3 as the

event that maxi∈C∗ e(i, C
∗) > minj /∈C∗ e(j, C

∗), maxi∈T e(i, C
∗\T ) > τ ∗ρ log n

and minj /∈C∗ e(j, C
∗) ≤ τ ∗ρ log n, respectively. Then by the same reasoning
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P {ML fails} ≥ P {F} ≥ P {E2 ∩ E3}. Applying Lemma 16, we obtain

P {E2} = 1−
∏
i∈T

P {e(i, C∗\T ) ≤ τ ∗ρ log n}

= 1−
(

1− n−ρ(a−τ∗ log ea
τ∗+o(1))

)|T |
≥ 1− exp

(
−n1−ρ(a−τ∗ log ea

τ∗ )+o(1)
)

→ 1,

and similarly,

P {E3} = 1−
∏
j /∈C∗

P {e(j, C∗) > τ ∗ρ log n}

= 1−
(

1− n−(b−τ∗ log eb
τ∗+o(1))

)n−K
≥ 1− exp

(
−n1−ρ(b−τ∗ log eb

τ∗ )+o(1)
)

→ 1,

completing the proof for the case 0 < a < b.

A.12 Spectrum of Erdős-Rényi Random Graph

Let A denote the adjacency matrix of an Erdős-Rényi random graph G, where
nodes i and j are connected independently with probability pij . Then E [Aij] =

pij . Let p = maxij pij and assume p ≥ c0
logn
n

for any constant c0 > 0. We aim to
show that ‖A− E [A]‖2 ≤ c′

√
np with high probability for some constant c′ > 0.

To this end, we establish the following more general result where the entries need
not be binary-valued.

Theorem A.12.1. Let A denote a symmetric and zero-diagonal random matrix,

where the entries {Aij : i < j} are independent and [0, 1]-valued. Assume that

E [Aij] ≤ p, where c0 log n/n ≤ p ≤ 1 − c1 for arbitrary constants c0 > 0

and c1 > 0. Then for any c > 0, there exists c′ > 0 such that for any n ≥ 1,

P{‖A− E [A]‖2 ≤ c′
√
np} ≥ 1− n−c.

Let G(n, p) denote the Erdős-Rényi random graph model with the edge proba-
bility pij = p for all i, j. Results similar to Theorem A.12.1 have been obtained in
[98] for the special case of G(n, c0 logn

n
) for some sufficiently large c0. In fact, The-

orem A.12.1 can be proved by strengthening the combinatorial arguments in [98,
Section 2.2]. Here we provide an alternative proof using results from random ma-
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trices and concentration of measures and a seconder-order stochastic comparison
argument from [99].

Furthermore, we note that the condition p = Ω(log n/n) in Theorem A.12.1 is
in fact necessary to ensure that ‖A− E [A]‖2 = ΩP(

√
np) (see Appendix A.12.1

for a proof). The condition p ≤ 1 − c1 can be dropped in the special case of
G(n, p).

Proof. We first use the second-order stochastic comparison arguments from [99,
Lemma 2]. Since 0 ≤ E[Aij] ≤ p, we have Aij − E [Aij] ∈ [−p, 1] for all
i 6= j and hence Bij , (1 − p)(Aij − E [Aij]) ∈ [−p, 1 − p]. Let C de-
note the adjacency matrix of a graph generated from G(n, p). Then, for any
i, j, Bij is stochastically smaller than Cij − E[Cij] under the convex ordering,
i.e., E [f(Bij)] ≤ E [f(Cij − E [Cij])] for any convex function f on [−p, 1 − p].2

Since the spectral norm is a convex function and the coordinate random variables
are independent (up to symmetry), it follows that E[‖B‖] ≤ E[‖C − E[C]‖] and
thus

E[‖A− E [A] ‖] =
1

1− p
E[‖B‖] ≤ 1

1− p
E[‖C − E[C]‖] ≤ 1

c1

E[‖C − E[C]‖].

(A.73)

We next bound E[‖C − E[C]‖]. Let E = (Eij) denote an n × n matrix with
independent entries drawn from µ , p

2
δ1 + p

2
δ−1 +(1−p)δ0, which is the distribu-

tion of a Rademacher random variable multiplied with an independent Bernoulli
with bias p. Define E ′ as E ′ii = Eii and E ′ij = −Eji for all i 6= j. Let C ′ be
an independent copy of C. Let D be a zero-diagonal symmetric matrix whose
entries are drawn from µ and D′ be an independent copy of D. Let M = (Mij)

denote an n × n zero-diagonal symmetric matrix whose entries are Rademacher
and independent from C and C ′. We apply the usual symmetrization arguments:

E[‖C − E[C]‖] = E[‖C − E[C ′]‖]
(a)

≤ E[‖C − C ′‖] (b)
= E[‖(C − C ′) ◦M‖]

(c)

≤ 2E[‖C ◦M‖] = 2E[‖D‖] = 2E[‖D − E[D′]‖]
(d)

≤ 2E[‖D −D′‖] (e)
= 2E[‖E − E ′‖]

(f)

≤ 4E[‖E‖], (A.74)

2This follows from f(1−p)−f(b)
1−p−b ≥ f(1−p)−f(−p) for any−p ≤ b < 1−p, by the convexity

of f .
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where (a), (d) follow from the Jensen’s inequality; (b) follows because C − C ′

has the same distribution as (C − C ′) ◦ M , where ◦ denotes the element-wise
product; (c), (f) follow from the triangle inequality; (e) follows from the fact that
D−D′ has the same distribution as E −E ′. Then, we apply the result of Seginer
[100] which characterized the expected spectral norm of i.i.d. random matrices
within universal constant factors. Let Xj ,

∑n
i=1 E

2
ij , which are independent

Binom(n, p). Since µ is symmetric, [100, Theorem 1.1] and Jensen’s inequality
yield

E[‖E‖] ≤ κE

[(
max
j∈[n]

Xj

)1/2
]
≤ κ

(
E
[
max
j∈[n]

Xj

])1/2

(A.75)

for some universal constant κ. In view of the following Chernoff bound for the
binomial distribution [97, Theorem 4.4]:

P {X1 ≥ t log n} ≤ 2−t,

for all t ≥ 6np, setting t0 = 6 max{np/ log n, 1} and applying the union bound,
we have

E
[
max
j∈[n]

Xj

]
=

∫ ∞
0

P
{

max
j∈[n]

Xj ≥ t

}
dt ≤

∫ ∞
0

(nP {X1 ≥ t} ∧ 1)dt

≤ t0 log n+ n

∫ ∞
t0 logn

2−tdt ≤ (t0 + 1) log n ≤ 6(1 + 2/c0)np,

(A.76)

where the last inequality follows from np ≥ c0 log n. Assembling (A.73) – (A.76),
we obtain

E[‖A− E[A]‖] ≤ c2
√
np, (A.77)

for some positive constant c2 depending only on c0, c1. Since the entries of A −
E[A] are valued in [−1, 1], Talagrand’s concentration inequality for 1-Lipschitz
convex functions (see, e.g., [101, Theorem 2.1.13]) yields

P {‖A− E[A]‖ ≥ E[‖A− E[A]‖] + t} ≤ c3 exp(−c4t
2)

for some absolute constants c3, c4, which implies that for any c > 0, there exists
c′ > 0 depending on c0, c1, such that P

{
‖A− E[A]‖ ≥ c′

√
np
}
≤ n−c.
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A.12.1 The Sharpness of the Condition for Theorem A.12.1

Consider the case where A is the adjacency matrix of G(n, p). We show that if
np = o(log n), then

P

{
‖A− E [A]‖2 ≥ c

√
log n

log (log n/(np))

}
→ 1 (A.78)

for some constant c and, consequently, ‖A− E [A]‖2 /
√
np → ∞ in probability.

To this end, note that ‖A− E [A]‖2 ≥ maxi∈[n] ‖(A − E [A])ei‖2, where {ei}
denote the standard basis. Without loss of generality, assume n is even. Then by
focusing on the upper-right part ofA, we have ‖A− E [A]‖2 ≥

√
maxi∈[n/2]Xi−√

n/2p, where Xi are independently distributed as Binom(n/2, p). Using the
inequality

(
n
k

)
≥
(
n
k

)k for k ≥ 1,

P {X1 ≥ k} ≥ P {X1 = k} =

(
n/2

k

)
pk(1− p)n/2−k ≥

(np
2k

)k
(1− p)n/2.

Since log(1− x) ≥ −2x for x ∈ [0, 1/2], it follows that

− logP {X1 ≥ k} ≤ k log

(
2k

np

)
− n

2
log(1− p) ≤ k log

(
2k

np

)
+ np, (A.79)

Plugging k∗ , b logn
log(logn/(np))

c into (A.79) and noting np = o(k∗) and log log n =

o (log n/ log log n), we get

− logP {X1 ≥ k∗} ≤ log n+ np− log n

log (log n/(np))
log

(
log (log n/(np))

2

)
≤ log n− log log n. (A.80)

By the independence of {Xi, i ∈ [n/2]}, we have

P
{

max
i∈[n/2]

Xi < k∗
}

=

n/2∏
i=1

P {Xi < k∗} = (1− P {X1 ≥ k})n/2

≤ exp
(
−n

2
P {X1 ≥ k∗}

)
≤ 1√

n
,

where the last inequality follows in view of (A.80).
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A.13 Tail of the Binomial Distribution

Let X ∼ Binom
(
m, a logn

n

)
and R ∼ Binom

(
m, b logn

n

)
for m ∈ N and a, b > 0,

where m = ρn + o(n) for some ρ > 0 as n → ∞. We need the following tail
bounds.

Lemma 15 ([52]). Assume that a > b and kn ∈ N such that kn = (1+o(1)) logn
log logn

.

Then

P {X −R ≤ kn} ≤ n−ρ(
√
a−
√
b)

2
+o(1).

Lemma 16. Let kn, k′n ∈ [m] be such that kn = τρ log n + o(log n) and k′n =

τ ′ρ log n+ o(log n) for some 0 ≤ τ ≤ a and τ ′ ≥ b. Then

P {X ≤ kn} = n−ρ(a−τ log ea
τ

+o(1)) (A.81)

P {R ≥ k′n} = n−ρ(b−τ
′ log eb

τ ′+o(1)). (A.82)

Proof. We use the following non-asymptotic bound on the binomial tail probabil-
ity [102, Lemma 4.7.2]: For U ∼ Binom(n, p),

(8k(1− λ))−1/2 exp(−nd(λ‖p)) ≤ P {U ≥ k} ≤ exp(−nd(λ‖p)), (A.83)

where λ = k
n
∈ (0, 1) and d(λ‖p) = λ log λ

p
+ (1− λ) log 1−λ

1−p is the binary diver-
gence function. Then (A.82) follows from (A.83) by noting that d(k

′
n

m
‖ b logn

n
) =

(b− τ ′ log be
τ ′

+ o(1)) logn
n

.
To prove (A.81), we use the following bound on binomial coefficients [102,

Lemma 4.7.1]:

√
π

2
≤

(
n
k

)
(2πnλ(1− λ))−1/2 exp(nh(λ))

≤ 1. (A.84)

where λ = k
n
∈ (0, 1) and h(λ) = −λ log λ − (1 − λ) log(1 − λ) is the bi-

nary entropy function. Note that the mode of X is at b(m + 1)pc = (aρ +

o(1)) log n, which is at least kn for sufficiently large n. Therefore, P {X = k}
is non-decreasing in k for k ∈ [0, kn] and hence

P {X = kn} ≤ P {X ≤ kn} ≤ knP {X = kn}, (A.85)

where P {X = kn} =
(
m
kn

)
pkn(1− p)m−kn and p = a log n/n. Applying (A.84) to
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(A.85) yields

P {X ≤ kn} = (log n)O(1) exp(−nd(kn/m‖p)),

which is the desired (A.81).

A.14 Proof of Theorem 6.1.1

Let X ◦ Y denote the Hadamard (entrywise) product between two matrices X, Y .
In addition to the `1 matrix norm ‖X‖1 =

∑
i,j |Xij|, we also use the weighted

`1 norm ‖X‖1,Θ =
∑

ij Θij|Xij|, where Θ = θθ>. Define Θ
1
2 with (i, j)-th

entry given by
√

Θij . Similarly define Θ−
1
2 . Let U ∈ Rn×r be the weighted

characteristic matrix for the clusters, i.e.,

Uik =


√
θi√

‖θ(k)‖1
if node i ∈ C∗k

0 otherwise,

Let Σ ∈ Rr×r be the diagonal matrix with Σkk = ‖θ(k)‖1 for k ∈ [r]. The
weighted true cluster matrix Y ∗ ◦Θ

1
2 has the rank-r singular value decomposition

given by Y ∗◦Θ 1
2 = UΣU>. Define the projectionsPT (M) = UU>M+MUU>−

UU>MUU> and PT⊥(M) = M − PT (M).
To establish the theorem, it suffices to show for any feasible solution Y with

Y 6= Y ∗, ∆(Y ) , 〈Y ∗−Y,A−λΘ〉 > 0.Note that E [A] , (qJ + (p− q)Y ∗ − pI)◦
Θ, where J is the all-ones matrix, and I is the identity matrix. Then, we can de-
compose ∆(Y ) as

∆(Y ) = 〈E [A]− λΘ, Y ∗ − Y 〉+ 〈A− E [A] , Y ∗ − Y 〉. (A.86)

The first term in (A.21) can be written as

〈E [A]− λΘ, Y ∗ − Y 〉
(a)
= (p− λ)〈Y ∗ ◦Θ, Y ∗ − Y 〉+ (λ− q)〈(J − Y ∗) ◦Θ, Y − Y ∗〉
(b)

≥ p− q
4
‖Y ∗ − Y ‖1,Θ, (A.87)

where (a) holds in view of the definition of E [A] and the fact that Y ∗ii = Yii = 1
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for all i; (b) holds because 1
4
p + 3

4
q ≤ λ ≤ 3

4
p + 1

4
q, Y ∗ij ∈ {0, 1} and Yij ∈ [0, 1]

for all i, j. Next we control the second term in (A.86). Define the weighted
noise matrix W = (A− E [A]) ◦Θ−

1
2 . By matrix Bernstein inequality, with high

probability,

‖W‖ ≤ c2

√
(p(1− p)K + q(1− q)n) log n+ c2

log n

θmin

.

Thus UU> +PT⊥
(

W
‖W‖

)
is a subgradient of ||X||∗ at X = Y ∗ ◦Θ

1
2 . Note that if

X � 0, then ‖X‖∗ = Tr(X). Hence,

0 ≥ Tr
(
Y ◦Θ

1
2

)
− Tr

(
Y ∗ ◦Θ

1
2

)
= ‖Y ◦Θ

1
2‖∗ − ‖Y ∗ ◦Θ

1
2‖∗

≥ 〈UU> + PT⊥
(

W

‖W‖

)
, (Y − Y ∗) ◦Θ

1
2 〉.

It follows that 〈PT⊥ (W ) , (Y ∗−Y )◦Θ
1
2 〉 ≥ ‖W‖〈UU>, (Y −Y ∗)◦Θ

1
2 〉. There-

fore, the second term in (A.21) can be bounded as

〈A− E [A] , Y ∗ − Y 〉 = 〈W, (Y ∗ − Y ) ◦Θ
1
2 〉 ≥ 〈PT (W )− ‖W‖UU>, (Y ∗ − Y ) ◦Θ

1
2 〉

≥ −
(
‖W‖||UU>||

∞,Θ−
1
2

+ ||PT (W )||
∞,Θ−

1
2

)
‖Y ∗ − Y ‖1,Θ

≥ −
(

‖W‖
mink ‖θ(k)‖1

+ ||PT (W )||
∞,Θ−

1
2

)
‖Y ∗ − Y ‖1,Θ,

(A.88)

where the last inequality follows from the definition of U . Below we bound the
term ||PT (W )||

∞,Θ−
1
2
. From the definition of PT ,

||PT (W )||
∞,Θ−

1
2
≤ ||UU>W ||

∞,Θ−
1
2

+ ||WUU>||
∞,Θ−

1
2

+ ||UU>WUU>||
∞,Θ−

1
2
.

We bound ||UU>W ||
∞,Θ−

1
2

below. To bound the term (UU>W )ij , assume user i
belongs to cluster k and recall C∗k is the set of users in cluster k. Then

(UU>W )ij =

√
θi

‖θ(k)‖1

∑
i′∈Ck

√
θi′Wi′j,

which is the weighted average of independent random variables. Define the noise
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variance σ2 , p(1−q). By Bernstein’s inequality, with probability at least 1−n−3,∣∣∣∣∣∑
i′∈Ck

√
θi′Wi′j

∣∣∣∣∣ ≤
√

6σ2‖θ(k)‖1 log n+
2 log n√
θmin

≤ c2σ
√
‖θ(k)‖1 log n,

where the last inequality holds because by assumption (6.4), σ2 mink ‖θ(k)‖1θmin &

log n. Then with probability at least 1− n−1,

||UU>W ||
∞,Θ−

1
2
≤ c1σ

√
log n

mink ‖θ(k)‖1θmin

.

Similarly we bound ||WUU>||
∞,Θ−

1
2

and ||UU>WUU>||
∞,Θ−

1
2
. Therefore, with

probability at least 1− 3n−1,

||PT (W )||
∞,Θ−

1
2
≤ 3c2σ

√
log n

mink ‖θ(k)‖1θmin

. (A.89)

Substituting (A.89) into (A.88) and by assumption (6.4) and (6.5), we conclude
that with high probability ∆(Y ) > 0 for any feasible Y 6= Y ∗.

A.15 Proof of Lemma 1

Note that di =
∑

j Aij . For all j 6= i, Aij is mutually independent, and distributed
as Bern(θiθjp) if Y ∗ij = 1 and Bern(θiθjq) if Y ∗ij = 0. Let

d̄i , E [di] = θi
[
(p− q)‖θ(k(i))‖1 + q‖θ‖1 − pθi

]
. (A.90)

Then, by the law of large numbers, di → d̄i for all i ∈ [n] and thus

didj
θiθj

∑
i′ di′

→ d̄id̄j
θiθj

∑
i′ d̄i′

. (A.91)

Plugging (A.90) into (A.91) and taking the limit n→∞, the lemma follows.
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APPENDIX B

PROOFS FOR INFERRING PREFERENCES

We introduce some additional notations used in the proof. For a vector x, let
‖x‖2 denote the usual l2 norm. Let 1 denote the all-one vector and 0 denote
the all-zero vector with the appropriate dimension. Let Sn denote the set of
n × n symmetric matrices with real-valued entries. For X ∈ Sn, let λ1(X) ≤
λ2(X) ≤ · · · ≤ λn(X) denote its eigenvalues sorted in increasing order. Let
Tr(X) =

∑n
i=1 λi(X) denote its trace and ‖X‖ = max{−λ1(X), λn(X)} denote

its spectral norm. For two matrices X, Y ∈ Sn, we write X ≤ Y if Y − X is
positive semi-definite, i.e., λ1(Y −X) ≥ 0. Recall that L(θ) is the log likelihood
function. The first-order partial derivative∇iL(θ) for any i ∈ [n], is given by

∇iL(θ) =
∑
j:i∈Sj

kj−1∑
`=1

1{σ−1
j (i)≥`}

[
1{σj(`)=i} −

exp(θi)

exp(θσj(`)) + · · ·+ exp(θσj(kj))

]
,

(B.1)

and the Hessian matrix H(θ) ∈ Sn with Hii′(θ) = ∂2L(θ)
∂θi∂θi′

is given by

H(θ) = −1

2

m∑
j=1

∑
i,i′∈Sj

(ei − ei′)(ei − ei′)>
kj−1∑
`=1

exp(θi + θi′)1{σ−1
j (i),σ−1

j (i′)≥`}
[exp(θσj(`)) + · · ·+ exp(θσj(kj))]

2
.

(B.2)

It follows from the definition that−H(θ) is positive semi-definite for any θ ∈ Rn.
Define Lj ∈ Sn as

Lj =
1

2(kj − 1)

∑
i,i′∈Sj

(ei − ei′)(ei − ei′)>,

and then the Laplacian of the pairwise comparison graphG satisfiesL =
∑m

j=1 Lj .
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B.1 Proof of Theorem 7.3.1

We first introduce a key auxiliary result used in the proof. Let F be a fixed CDF
(to be used in the Thurstone model), let b > 0 and suppose θ is a parameter to be
estimated with θ ∈ [−b, b] from observation U = (U1, . . . , Ud), where the Ui’s are
independent with the common CDF given by F (c−θ). The following proposition
gives a lower bound on the average MSE for a fixed prior distribution based on
Van Trees inequality [88].

Proposition B.1.1. Let p0 be a probability density on [−1, 1] such that p0(1) =

p0(−1) = 0 and define the prior density of Θ as p(θ) = 1
b
p0( θ

b
). Then for any

estimator T (U) of Θ,

E[(Θ− T (U))2] ≥ 1

d

1

I(µ) + I(p0)/(b2d)
,

where µ is the probability density function of F with I(µ) =
∫ (µ′(x))2

µ(x)
dx and

I(p0) =
∫ 1

−1

(p′0(θ))
2

p0(θ)
dθ.

Proof. It follows from the Van Trees inequality that

E[(Θ− T (U))2] ≥ 1∫
I(θ)p(θ)dθ + I(p)

,

where the Fisher information I(θ) = dI(µ) and

I(p) =

∫ b

−b

(p′(θ))2

p(θ)
dθ =

1

b2

∫ 1

−1

(p′0(θ))2

p0(θ)
dθ =

1

b2
I(p0).

Proof of Theorem 7.3.1. Let θ̂ be a given estimator. The minimax MSE for θ̂ is
greater than or equal to the average MSE for a given prior distribution on θ∗. Let
p0(θ) = cos2(πθ/2), then I(p0) = π2. Define p(θ) = 1

b
p0( θ

b
). If n is even we use

the following prior distribution. The prior distribution of θ∗i for i odd is p(θ) and
for i even, θ∗i ≡ −θ∗i−1. If n is odd use the same distribution for θ∗1 through θ∗n−1

and set θ∗n ≡ 0. Note that θ∗ ∈ Θb with probability one. For simplicity, we assume
n is odd in the rest of this proof; the modification for n even is trivial. We use the
genie argument, so that the observer can see the hidden utilities in the Thurstone
model. The estimation of θ∗ decouples into bn

2
c disjoint problems, so we can focus
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on the estimation of θ1 from the vector of random variables U = (U1, . . . , Ud1)

associated with item 1 and the vector of random variables V = (V1, . . . , Vd2)

associated with item 2. The distribution functions of the Ui’s are all F (c−θ∗1) and
the distribution functions of the Vi’s are all F (c+ θ∗1), and the U ’s and V ’s are all
mutually independent given θ∗. Recall that µ is the probability density function
of F , i.e., µ = F ′. The Fisher information for each of the d1 + d2 observations
is I(µ), so that Proposition B.1.1 carries over to this situation with d = d1 + d2.

Therefore, for any estimator T (U, V ) of Θ∗1 (the random version of θ∗1),

E[(Θ∗1 − T (U, V ))2] ≥ 1

d1 + d2

1

I(µ) + π2/(b2(d1 + d2))
.

By this reasoning, for any odd value of i with 1 ≤ i < n we have

E[(θ̂i − θ∗i )2] + E[(θ̂i+1 − θ∗i+1)2] ≥ 2

I(µ) + π2/(b2(d1 + d2))

1

di + di+1

≥ 1

2I(µ) + 2π2/(b2(d1 + d2))

(
1

di+1

+
1

di+2

)
.

Summing over all odd values of i in the range 1 ≤ i < n yields the theorem.
Furthermore, since

∑n
i=1 di = mk, by Jensen’s inequality,

∑n
i=2

1
di
≥ (n−1)2∑n

i=2 di
≥

(n−1)2

mk
.

B.2 Proof of Theorem 7.4.1

The Fisher information matrix is defined as I(θ) = −Eθ[H(θ)] and given by

I(θ) =
1

2

m∑
j=1

∑
i,i′∈Sj

(ei − ei′)(ei − ei′)>
kj−1∑
l=1

Pθ[σ−1
j (i), σ−1

j (i′) ≥ `]

eθi+θi′

[e
θσj(`) + · · ·+ e

θσj(kj) ]2
.

Since−H(θ) is positive semi-definite, it follows that I(θ) is positive semi-definite.
Moreover, λ1(I(θ)) is zero and the corresponding eigenvector is the normalized
all-one vector. Fix any unbiased estimator θ̂ of θ ∈ Θb. Since θ̂ ∈ U , θ̂ − θ is
orthogonal to 1. The Cramér-Rao lower bound then implies that E[‖θ̂ − θ‖2] ≥
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∑n
i=2

1
λi(I(θ))

. Taking the supremum over both sides gives

sup
θ

E[‖θ̂ − θ‖2] ≥ sup
θ

n∑
i=2

1

λi(I(θ))
≥

n∑
i=2

1

λi(I(0))
.

If θ equals the all-zero vector, then

P[σ−1
j (i), σ−1

j (i′) ≥ `] =
(kj − 2)(kj − 3) · · · (kj − `)
kj(kj − 1) · · · (kj − `+ 2)

=
(kj − `+ 1)(kj − `)

kj(kj − 1)
.

It follows from the definition that

I(0) =
1

2

m∑
j=1

∑
i,i′∈Sj

(ei − ei′)(ei − ei′)>
kj−1∑
l=1

kj − `
kj(kj − 1)(kj − `+ 1)

≤

(
1− 1

kmax

kmax∑
`=1

1

`

)
L.

By Jensen’s inequality,

n∑
i=2

1

λi
≥ (n− 1)2∑n

i=2 λi
=

(n− 1)2

Tr(L)
=

(n− 1)2∑n
i=1 di

=
(n− 1)2

mk
.

B.3 Proof of Theorem 7.5.1

The main idea of the proof is inspired from the proof of [27, Theorem 4]. We first
introduce several key auxiliary results used in the proof. Observe that Eθ∗ [∇L(θ∗)] =

0. The following lemma upper bounds the deviation of∇L(θ∗) from its mean.

Lemma 17. With probability at least 1− 2e2

n
,

‖∇L(θ∗)‖2 ≤
√

2mk log n. (B.3)

Proof. The idea of the proof is to view ∇L(θ∗) as the final value of a discrete
time vector-valued martingale with values in Rn. Consider a user that ranks items
1, . . . , k. The PL model for the ranking can be generated in a series of k − 1

rounds. In the first round, the top rated item for the user is found. Suppose it
is item I . This contributes the term eI − (p1, p2, . . . , pk, 0, 0, . . . , 0) to ∇L(θ∗),

where pi = P{I = i}. This contribution is a mean zero random vector in Rn and
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its norm is less than one. For notational convenience, suppose I = k. In the second
round, item k is removed from the competition, and an item J is to be selected at
random from among {1, . . . , k − 1}. If qj denotes P{J = j} for 1 ≤ j ≤ k − 1,

then the contribution of the second round for the user to ∇L(θ∗) is the random
vector eJ − (q1, q2, . . . , qk−1, 0, 0, . . . , 0), which has conditional mean zero (given
I) and norm less than or equal to one. Considering all m users and kj − 1 rounds
for user j, we see that ∇L(θ∗) is the value of a discrete-time martingale at time
m(k−1) such that the martingale has initial value zero and increments with norm
bounded by one. By the vector version of the Azuma-Hoeffding inequality found
in [103, Theorem 1.8] we have

P{‖∇L(θ∗)‖ ≥ δ} ≤ 2e2e−
δ2

2m(k−1) ,

which implies the result.

Observe that−H(θ) is positive semi-definite with the smallest eigenvalue equal
to zero. The following lemma lower bounds its second smallest eigenvalue.

Lemma 18. Fix any θ ∈ Θb. Then

λ2 (−H(θ)) ≥

{
e2b

(1+e2b)2
λ2 If k = 2,

1
4e4b

(
λ2 − 16e2b

√
λn log n

)
If k > 2,

(B.4)

where the inequality holds with probability at least 1−n−1 in the case with k > 2.

Proof. Case kj = 2,∀j ∈ [m]: The Hessian matrix simplifies as

H(θ) = −1

2

m∑
j=1

∑
i,i′∈Sj

(ei − ei′)(ei − ei′)>
exp(θi)

exp(θi) + exp(θi′)

exp(θi′)

exp(θi) + exp(θi′)
.

Observe that H(θ) is deterministic given Sm1 . Since |θi| ≤ b,∀i ∈ [n],

exp(θi) exp(θi′)

[exp(θi) + exp(θi′)]
2 ≥

e2b

(1 + e2b)2
.

It follows that −H(θ) ≥ e2b

(1+e2b)2
L and the theorem follows.

Case kj > 2 for some j ∈ [m]: We first introduce a key auxiliary result used in
the proof.
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Claim B.3.1. Given θ ∈ Rr, let A = diag(p) − ppT , where p is the column

probability vector with

pi = eθi/(eθ1 + · · ·+ eθr) for each i. If |θi| ≤ b, for 1 ≤ i ≤ r, then λ2(A) ≥ 1
re2b

.

Equivalently, e2bA ≥ B where B = 1
r
diag(1)− 1

r2
11>.

Proof. Fix θ satisfying the conditions of the lemma. It is easy to see that for each
i, pi ≥ 1

re2b
. The matrix A is positive semidefinite, and its smallest eigenvalue is

zero, with the corresponding eigenvector 1. So λ2(A) = minα α
TAα subject to

the constraints αT1 = 0 and ‖α‖2 = 1. For α satisfying the constraints,

αTAα =
∑
i

α2
i pi −

(∑
j

αjpj

)2

=
∑
i

(
αi −

∑
j

αjpj

)2

pi

= min
c

r∑
i=1

(αi − c)2pi ≥ min
c

r∑
i=1

(αi − c)2 1

re2b

=
r∑
i=1

α2
i

1

re2b
=

1

re2b
.

The proof of the first part of the lemma is complete. We remark that the bound of
the lemma is nearly tight for the case θ1 = . . . = θr−1 = b and θr = −b, for which
λ2(A) = e2br

((r−1)e2b+1)2
. The final equivalence mentioned in the lemma follows from

the facts λ1(e2bA) = λ1(B) = 0 with common corresponding eigenvector 1, and
λi(e

2bA) ≥ 1
r

= λi(B) for 2 ≤ i ≤ r.

The Hessian matrix H(θ) depends on σm1 and therefore is random given Sm1 .
For a given user j, and ` with 1 ≤ ` ≤ kj − 1, let S(j,`) denote the set of items
contending for the `th position in the ranking of user j after higher ranking items
have been selected: S(j,`) = {i : σ−1

j (i) ≥ `}, let 1(j,`) denote the indicator vector
for the set S(j,`), and let p(j,`) denote the corresponding probability column vector
for the selection:

p
(j,`)
i = P (σj(`) = i|σj(1), . . . , σj(`− 1)) =

1
(j,`)
i eθi∑
i′∈Sj,` e

θi′
.

The Hessian can be written as H(θ) =
∑m

j=1

∑kj−1
`=1 H(j,`) where

−H(j,`) =
1

2

∑
i,i′∈S(j,`)

(ei − ei′)(ei − ei′)>p(j,`)
i p

(j,`)
i′ = diag(p(j,`))− p(j,`)(p(j,`))>.
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By Claim B.3.1 applied to the restriction of −H(j,`) to S(j,`) × S(j,`),

−e2bH(j,`) ≥ 1

kj − `+ 1
diag(1(j,`))− 1

(kj − `+ 1)2
1(j,`)(1(j,`))>

=
1

2(kj − `+ 1)2

∑
i,i′∈S(j,`)

(ei − ei′)(ei − ei′)>. (B.5)

Summing over j and ` in (B.5) and noting that kj − `+ 1 ≤ kj for all j, ` yields

−e2bH(θ) ≥ 1

2

m∑
j=1

∑
i,i′∈Sj

(ei − ei′)(ei − ei′)>
1

k2
j

kj−1∑
`=1

1{σ−1
j (i),σ−1

j (i′)≥`} := L̃.

(B.6)

Observe that

kj−1∑
`=1

Pθ
[
σ−1
j (i), σ−1

j (i′) ≥ `
]

= 1 +
∑
i′′∈Sj

1{i′′ 6=i,i′}
eθi′′

eθi + eθi′ + eθi′′

≥ 1 +
kj − 2

2e2b + 1
≥ kj + 1

3e2b
.

Recall that L is the Laplacian of G and L =
∑m

j=1 Lj . It follows that

Eθ[L̃] =
1

2

m∑
j=1

∑
i,i′∈Sj

(ei − ei′)(ei − ei′)>
1

k2
j

kj−1∑
`=1

Pθ[σ−1
j (i), σ−1

j (i′) ≥ `]

≥ 1

2

m∑
j=1

∑
i,i′∈Sj

(ei − ei′)(ei − ei′)>
kj + 1

3e2bk2
j

≥ 1

2

m∑
j=1

∑
i,i′∈Sj

(ei − ei′)(ei − ei′)>
1

4e2b(kj − 1)
=

1

4e2b
L. (B.7)

Define aii′ = 1
k2j

∑kj−1
`=1

(
1{σ−1

j (i),σ−1
j (i′)≥`} − Pθ[σ−1

j (i), σ−1
j (i′) ≥ `]

)
. Then

L̃− Eθ[L̃] =
1

2

m∑
j=1

∑
i,i′∈Sj

aii′(ei − ei′)(ei − ei′)>
 :=

m∑
j=1

Yj.

Observe that |aii′| ≤ 1
kj

and therefore − (kj−1)

kj
Lj ≤ Yj ≤ (kj−1)

kj
Lj. Furthermore,

‖Lj‖ =
kj
kj−1

and thus ‖Yj‖ ≤ 1. Moreover, Y 2
j =

∑
i,i′,i′′∈Sj aii′aii′′(ei−ei′)(ei−
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ei′′)
>. It follows that for any vector x ∈ Rn,

x>Y 2
j x =

∑
i,i′,i′′∈Sj

aii′aii′′(xi − xi′)(xi − xi′′) ≤
1

k2
j

∑
i,i′,i′′∈Sj

|xi − xi′||xi − xi′′|

=
1

k2
j

∑
i∈Sj

∑
i′∈Sj

|xi − xi′ |

2

≤ 1

kj

∑
i,i′∈Sj

(xi − xi′)2 = 2x>Ljx,

where the last inequality follows from the Cauchy-Swartz inequality. Therefore,
Y 2
j ≤ 2Lj . It follows that

∑m
j=1 Eθ[Y 2

j ] ≤ 2L and thus ‖
∑m

j=1 Eθ[Y 2
j ]‖ ≤ 2λn.

By the matrix Bernstein inequality [91], with probability at least 1− n−1,

‖L̃− Eθ[L̃]‖ ≤ 2
√
λn log n+

2

3
log n.

By the assumption that λn ≥ C log n for some sufficiently large constant C, ‖L̃−
Eθ[L̃]‖ ≤ 4

√
λn log n. It follows from (B.6) and (B.7) that

λ2(−H(θ)) ≥ 1

e2b
λ2(L̃) ≥ 1

e2b

(
1

4e2b
λ2 − 4

√
λn log n

)
.

Proof of Theorem 7.5.1. Define ∆ = θ̂ML − θ∗. It follows from the definition
that ∆ is orthogonal to the all-one vector. By the definition of the ML estimator,
L(θ̂ML) ≥ L(θ∗) and thus

L(θ̂ML)− L(θ∗)− 〈∇L(θ∗),∆〉 ≥ −〈∇L(θ∗),∆〉 ≥ −‖∇L(θ∗)‖2‖∆‖2,

(B.8)

where the last inequality holds due to the Cauchy-Schwartz inequality. By the
Taylor expansion, there exists a θ = aθ̂ML + (1 − a)θ∗ for some a ∈ [0, 1] such
that

L(θ̂ML)− L(θ∗)− 〈∇L(θ∗),∆〉 =
1

2
∆>H(θ)∆ ≤ −1

2
λ2(−H(θ))‖∆‖2

2, (B.9)

where the last inequality holds because the Hessian matrix −H(θ) is positive
semi-definite with H(θ)1 = 0 and ∆>1 = 0. Combining (B.8) and (B.9),

‖∆‖2 ≤ 2‖∇L(θ∗)‖2/λ2(−H(θ)). (B.10)
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Note that θ ∈ Θb by definition. The theorem follows by Lemma 17 and Lemma 18.

B.4 Proof of Corollary 7.5.2

Recall that L =
∑m

j=1 Lj . Observe that E[Lj] =
kj
n−1

(
I − 1

n
11>

)
. Define Zj =

Lj − E[Lj]. Then Z1, . . . , Zm are independent symmetric random matrices with
zero mean. Note that

‖Zj‖ ≤ ‖Lj‖+ ‖E[Lj]‖ ≤
kj

kj − 1
+

kj
n− 1

≤ 4.

Moreover,

E[Z2
j ] =

k2
j

(kj − 1)(n− 1)

(
I − 1

n
11>

)
−

k2
j

(n− 1)2

(
I − 1

n
11>

)
.

Therefore, ‖
∑m

j=1 E[Z2
j ]‖ ≤ 2mk

n−1
. By the matrix Bernstein inequality [91], with

probability at least 1− n−1,

‖L− E[L]‖ ≤ 2

√
mk log n

n− 1
+

8

3
log n ≤ 4

√
mk log n

n− 1
≤ mk

2(n− 1)
,

where the last two inequalities follow from the assumption that mk ≥ C log n for
some sufficiently large constant C. Since E[L] = mk

n−1

(
I − 1

n
11>

)
, the smallest

eigenvalue of E[L] is zero and all the other eigenvalues equal mk
n−1

. It follows that

|λi −
mk

n− 1
| ≤ ‖L− E[L]‖ ≤ mk

2(n− 1)
, 2 ≤ i ≤ n,

and thus λ2 ≥ mk
2(n−1)

and λn ≤ 3mk
2(n−1)

. By the assumption that mk ≥ Ce2b log n

for some sufficiently large constant C, λ2 − 16e2b
√
λn log n ≥ mk

4n
. Then the

corollary follow from Theorem 7.5.1.

B.5 Proof of Corollary 7.6.1

Without loss of generality, assume kj is even for all j ∈ [m]. After the random
IB, there are mk/2 independent pairwise comparisons and let L denote the Lapla-
cian of the comparison graph after the breaking. Recall that L =

∑m
j=1 Lj . With
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random IB, we have E[Lj] =
kj
n−1

(
I − 1

n
11>

)
. Define Zj = Lj − E[Lj]. Then

Z1, . . . , Zm are independent symmetric random matrices with zero mean. More-
over,

‖Zj‖ ≤ ‖Lj‖+ ‖E[Lj]‖ ≤ 2 +
kj

n− 1
≤ 4,

and

E[Z2
j ] =

2kj
n− 1

(
I − 1

n
11>

)
−

k2
j

(n− 1)2

(
I − 1

n
11>

)
.

Therefore, ‖
∑m

j=1 E[Z2
j ]‖ ≤ 2mk

n−1
. Following the same argument for proving

Corollary 7.5.2, we can show that λ2(LIB) ≥ mk
2(n−1)

and the corollary follows
by Theorem 7.5.1 with k = 2.

B.6 Proof of Theorem 7.6.2

It follows from the definition of L(θ) given by (7.2) that

∇iL(θ∗) =
∑
j:i∈Sj

1

kj − 1

∑
i′∈Sj :i′ 6=i

[
1{σ−1

j (i)<σ−1
j (i′)} −

exp(θ∗i )

exp(θ∗i ) + exp(θ∗i′)

]
,

(B.11)
which is a sum of di independent random variables with mean zero and bounded
by 1. By Hoeffding’s inequality, |∇iL(θ∗)| ≤

√
di log n with probability at least

1 − 2n−2. By union bound, ‖∇L(θ∗)‖2 ≤
√
mk log n with probability at least

1− 2n−1. The Hessian matrix is given by

H(θ) = −
m∑
j=1

1

2(kj − 1)

∑
i,i′∈Sj

(ei − ei′)(ei − ei′)>
exp(θi + θi′)

[exp(θi) + exp(θi′)]
2 .

If |θi| ≤ b,∀i ∈ [n], exp(θi+θi′ )

[exp(θi)+exp(θi′ )]
2 ≥ e2b

(1+e2b)2
. It follows that−H(θ) ≥ e2b

(1+e2b)2
L

for θ ∈ Θb and the theorem follows from (B.10).
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