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ABSTRACT

This thesis focuses on designing e�cient mechanisms for controlling infor-

mation spread in networks. We consider two models for information spread.

The first one is the well-known distributed averaging dynamics. The second

model is a nonlinear one that describes virus spread in computer and biolog-

ical networks. We seek to design optimal, robust, and stabilizing controllers

under practical constraints.

For distributed averaging networks, we study the interaction between a

network designer and an adversary. We consider two types of attacks on

the network. In Attack-I, the adversary strategically disconnects a set of

links to prevent the nodes from reaching consensus. Meanwhile, the network

designer assists the nodes in reaching consensus by changing the weights

of a limited number of links in the network. We formulate two problems

to describe this competition where the order in which the players act is

reversed in the two problems. Although the canonical equations provided

by the Pontryagin’s Maximum Principle (MP) seem to be intractable, we

provide an alternative characterization for the optimal strategies that makes

connection to potential theory. Further, we provide a su�cient condition for

the existence of a saddle-point equilibrium (SPE) for the underlying zero-sum

game.

In Attack-II, the designer and the adversary are both capable of altering

the measurements of all nodes in the network by injecting global signals. We

impose two constraints on both players: a power constraint and an energy

constraint. We assume that the available energy to each player is not suf-

ficient to operate at maximum power throughout the horizon of the game.

We show the existence of an SPE and derive the optimal strategies in closed

form for this attack scenario.

As an alternative to the “network designer vs. adversary” framework, we

investigate the possibility of stabilizing unknown network di↵usion processes
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using a distributed mechanism, where the uncertainty is due to an attack on

the network. To this end, we propose a distributed version of the classical

logic-based supervisory control scheme. Given a network of agents whose

dynamics contain unknown parameters, the distributed supervisory control

scheme is used to assist the agents to converge to a certain set-point with-

out requiring them to have explicit knowledge of that set-point. Unlike the

classical supervisory control scheme where a centralized supervisor makes

switching decisions among the candidate controllers, in our scheme, each

agent is equipped with a local supervisor that switches among the available

controllers. The switching decisions made at a certain agent depend only

on the information from its neighboring agents. We provide su�cient condi-

tions for stabilization and apply our framework to the distributed averaging

problem in the presence of large modeling uncertainty.

For infected networks, we study the stability properties of a susceptible-

infected-susceptible (SIS) di↵usion model, so-called the n-intertwined Markov

model, over arbitrary network topologies. Similar to the majority of infection

spread dynamics, this model exhibits a threshold phenomenon. When the

curing rates in the network are high, the all-healthy state is the unique equi-

librium over the network. Otherwise, an endemic equilibrium state emerges,

where some infection remains within the network. Using notions from posi-

tive systems theory, we provide conditions for the global asymptotic stability

of the equilibrium points in both cases over strongly and weakly connected

directed networks based on the value of the basic reproduction number, a

fundamental quantity in the study of epidemics.

Furthermore, we demonstrate that the n-intertwined Markov model can be

viewed as a best-response dynamical system of a concave game among the

nodes. This characterization allows us to cast new infection spread dynamics;

additionally, we provide a su�cient condition, for the global convergence to

the all-healthy state, that can be checked in a distributed fashion. Moreover,

we investigate the problem of stabilizing the network when the curing rates

of a limited number of nodes can be controlled. In particular, we characterize

the number of controllers required for a class of undirected graphs. We also

design optimal controllers capable of minimizing the total infection in the

network at minimum cost. Finally, we outline a set of open problems in the

area of information spread control.
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In the name of Allah, the Beneficent, the Merciful
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Verily, knowledge is a lock and its key is the question.

Imam Ja’far ibn Muh.ammad al-S. ādiq (a.s.)
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CHAPTER 1

INTRODUCTION

This chapter provides a motivation for the questions studied in the thesis. We

provide examples of how information spread in networks could have drastic

economical and financial impact on society. We motivate the idea of con-

trol intervention in networks to control di↵usion processes, describe existing

attempts, and outline our approach and control design methodology.

1.1 Why Study Information Spread?

Various global patterns in computer, social, and biological networks stem

from local interactions among nodes. Examples include birds flying in for-

mation, propagation of rumors and computer viruses, and epidemics. A

common ingredient among these examples is the exchange of information in

the network, where “information” may refer to ideas, products, or viruses.

Studying the propagation of information in networks is important in and

relevant to many fields including control, communications, signal processing,

and social sciences. Depending on the type of information, the objective of

the nodes or the network designer can be either accelerating or decelerating

the spread of information across the network. For example, while a network

designer would be interested in containing a rumor in an infected network, he

would attempt to increase the adoption of a new product in a viral market-

ing scenario. A large body of literature is dedicated to modeling information

di↵usion processes in networks; however, controlling such processes is a rela-

tively new area that presents many open problems. Controlling information

spread is challenging primarily due to the dependence of the information

spread dynamics on the underlying network structure, and the networks we

are interested in studying tend to contain a large number of nodes. A typical

communication or online social network in today’s world comprises millions

1



of users with numerous connections. While high connectivity provides an

unprecedented source of data, controlling such networks is a tall order.

The purpose of this thesis is to demonstrate that tools from control and

game theories can be utilized to tackle the problem of information spread

control in networks. Before we delve into the details of the problems we

study, we provide practical examples that highlight the magnitude of the

impact that information spread can have on society.

1.2 Societal Impact of Information Spread

Below we list a few recent events which motivated our research, and occurred

due to the propagation of information in networks.

Spread of Rumors and Misinformation over Networks Online so-

cial networks provide a medium for the rapid spread of misinformation and

rumors. A recent example of how detrimental rumor spread can be occurred

in April 2013 when the Twitter account of the Associated Press (AP) was

hacked, and a false message claiming that the White House was attacked

was sent to the many followers of the account. The message was reportedly

retweeted more than 3000 times within a few minutes. The security breach

was quickly detected by the AP; nonetheless, this rumor led to a sharp 143

points drop in the Dow Jones industrial average [1] as shown in Fig. 1.1.

Virus Spread in Biological and Computer Networks The spread

of viruses among humans is largely dependent on one-to-one interactions.

Advances in ground and air transportation systems enabled humans to cover

larger distances in shorter times; however, travelers also carry infections with

them across borders which may lead to global epidemic outbreaks [3]. Fig-

ure 1.2 illustrates disease spread along travel routes and demonstrates the

possibility of the emergence of global pandemics.

Computer networks are also prone to virus propagation. The last decade

has witnessed many examples of security breaches resulting from virus spread

across networks. Perhaps the most notable of this is the recent outbreak of

Stuxnet, which is a computer worm designed to attack control machinery in

various systems such as assembly lines, power plants, and nuclear plants [5].
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Figure 1.1: E↵ect of a rumor that was broadcast via the AP Twitter
account on the Dow Jones industrial average [2].

Figure 1.2: Disease spread via mobility [4].

3



Stuxnet has the ability to spread over computer networks, and it was reported

that it was successful in compromising control mechanisms in Iranian nuclear

facilities [6].

Delay Propagation in Transportation Networks Another example

of information di↵usion arises in transportation networks in the form of de-

lay propagation. In the US, it has been estimated that flight delays cost an

estimated $40 billion per year according to the 2008 Report of the Congress

Joint Economic Committee [7]. Researchers have found that crew and pas-

senger connections are a major source of delays in flight schedules. Further

congestion in an airport was shown to propagate to surrounding airports and

beyond [8] as demonstrated in Fig. 1.3.

Figure 1.3: Delay propagation across US airports [7].

Whether it is a rumor spreading in a social network or delays propagat-

ing across airports, di↵usion processes across networks have the ability to

replicate local behaviors over extremely large networks in a very short time.

These examples emphasize the importance of designing control mechanisms

that are capable of e↵ectively responding to such cascading e↵ects.

1.3 Dynamical Models for Information Di↵usion

The literature is rich with dynamical models that describe information dif-

fusion for various types of networks. Earlier models did not depend on the

network structure explicitly. Examples include the Bass model [9] that de-

scribes the adoption of a new product in a population, a game-theoretic

model to describe the evolution of conventions by Young [10], and a spread

model for gonorrhea by Lajmanovich and Yorke [11].

The availability of data in recent years makes capturing the network e↵ect

on the di↵usion of information a viable direction to pursue. In fact, the

4



examples we listed in Section 1.2, which emanate from di↵erent fields, all

have clear dependence on the underlying network structure. A wide range of

models that depend explicitly on the network structure have been proposed

to describe di↵erent phenomena occurring in biological and social networks,

and we will describe several of them next.

A popular information spread model is the distributed averaging dynamics.

In this model, an agent updates its value as a linear combination of the val-

ues of its neighbors. Averaging dynamics is the basic building block in many

multi-agent systems, and they are widely used whenever an application re-

quires multiple agents, who are graphically constrained, to synchronize their

measurements. Examples include formation control, coverage, distributed

estimation and optimization, and flocking [12–14]. Besides engineering, lin-

ear averaging finds applications in other fields as well. For instance, social

scientists use averaging to describe the evolution of opinions in networks [15].

The Hegselmann-Krause dynamics [16] are also used to describe the evo-

lution of opinions. Unlike distributed averaging, the Hegselmann-Krause dy-

namics allow the underlying graph to change with time as the nodes update

their values. Many threshold based models, such as Granovetter’s model [17],

where agents adopt a certain behavior based on the choices of their neigh-

bors, have been previously proposed; see [18] for an extensive review of such

models. These models have applications in voting, riot behavior, and rumor

di↵usion. Recently proposed models have also incorporated stubborn agents

who may represent religious or political leaders. Examples include the voter

model and opinion dynamics in the presence of stubborn agents [19–21].

For epidemics, the susceptible-infected-removed (SIR) [22] and susceptible-

infected-susceptible (SIS) models are commonly used to describe the spread

of viruses in networks [23, 24]. In SIS models, a node is always susceptible

to infection, even if it has been infected and cured previously. On the other

hand, a cured node becomes immune to infection in SIR models, and hence

it is called a “removed” node. Many variants and extensions of the SIS and

SIR models are also available in the literature [23, 25–27].

5



1.4 Control Intervention

As mentioned earlier, the main goal of this thesis is to demonstrate the

e↵ectiveness of control intervention in networks. In this section, we provide

an overview of previous approaches to information spread control. We also

describe the main properties of the control strategies we design in this thesis,

and we identify ways in which our designs complement the current literature.

1.4.1 Existing Work

When examining the literature on control of di↵usion dynamics, one can

observe that the majority of approaches can be classified under four main

categories. We identify these categories below along with relevant examples.

Static Approaches Goyal and Vigier investigate the construction of

network topologies that facilitate the exchange of goods and information

in [28]. The objective of the network designer is to make the network robust

to adversarial attacks. Kempe et al. study the problem of finding the optimal

set of nodes to maximize the spread of influence in a social network [29].

They propose a polynomial-time algorithm based on submodular functions

that finds a near-optimal solution. A competition between two opposing

campaigns to influence the largest set of nodes was studied in [30], where a

greedy algorithm was proposed to find the best set of nodes for one campaign

to limit the influence of the other. In the context of epidemics control, Borgs

et al. propose a static curing rate allocation mechanism in order to cure the

network from infection [31]. Omic et al. study a similar problem, and they

adopt a static game-theoretic approach to perform the curing rates allocation

across the network [32].

The controlled parameters in all the above problems are chosen at the ini-

tial time and are left static onward. These designs, therefore, cannot handle

dynamically changing networks or the presence of other strategic players in

the network.

Randomized Algorithms To cure computer networks and populations

from viruses, Cohen et al. propose the so-called acquaintance immunization

strategy in which random acquaintances of a randomly selected set of nodes
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are immunized [33]. This approach was shown to dramatically reduce the

required number of immunized nodes in order to cure the network. Genetic

algorithms and random mutation hill climbing were used in [34] to find op-

timal vaccine distributions in order to minimize the number of illnesses in

the event of pandemic influenza. In order to achieve fast information spread,

a hybrid algorithm was proposed in [35], which alternates between random-

ized and deterministic neighbor selection in order to maximize the speed of

information spread.

While the above approaches are computationally e�cient, they are neither

robust to failures in the network nor to adversarial interventions. Networks

are susceptible to attacks, and immunization techniques must be robust to

such security breaches.

Controller at Each Node A common theme in current research is to

assume that the network designer can control all the nodes in the network in

order to limit the infection’s spread. For instance, Preciado et al. have devel-

oped a convex framework for optimizing the curing rates across the network,

where it is assumed that the curing rate of each node can be controlled [36,37].

Similar optimization problems were also studied in [32,38].

In reality, such freedom in placing controllers may not be possible. As

networks grow in size to include millions of nodes, reducing the number of

controllers required to counter the infection’s spread will result in vast cost

reductions.

Adoption Rate Control In networks described using SIS or SIR mod-

els, a large body of literature focuses on controlling the rate at which the

numbers of infected, susceptible, or removed nodes increase; see [39, 40] and

the references therein. In such approaches, controllers are not explicitly allo-

cated to the nodes, and the graph structure is not exploited. An alternative

approach would be to control node-specific parameters such as the curing or

infection rates, which will in turn control the adoption rate.

1.4.2 A New Approach

In view of the current state of the literature, we take an alternative approach

to the problem of information spread control in networks, where we focus
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on designing control mechanisms that are dynamic, robust, constrained, and

capable of exploiting the underlying network structure. In addition to these

properties, we rely on graph theoretical modeling, which allows our results

to be applicable in a rich class of networks including computer, social, and

biological networks. Below, we highlight the main features of the controllers

we design throughout the thesis.

Dynamic By relying on optimal control design, we construct strategies

that are capable of responding to dynamical changes in the network.

Robust Using the framework of di↵erential game theory, we propose

zero-sum games to construct controllers suitable for competitive dynamic

environments, which are robust also to adversarial intervention.

Constrained and Limited As opposed to controlling each and every

node in the network, we use tools from nonlinear control to propose a frame-

work for achieving certain control objectives using a limited number of con-

trollers.

Network Structure Dependent By controlling node-specific parame-

ters, we construct controllers that exploit the underlying network structure.

Such designs are motivated by the availability of data, e.g., connectivity in-

formation of users, which allows for designing more intelligent controllers.

To demonstrate how such controllers can be designed, we consider two

models of information spread: one is linear and the other one is nonlinear.

We will refer to networks described by linear (nonlinear) information di↵usion

dynamics as linear (nonlinear) dynamical networks. We now briefly describe

the problems we study under each type of dynamics.

1.4.3 Linear Dynamical Networks

In Chapters 2, 3 and 4, we study the problem of robust information spread

control over linear dynamical networks. In Chapters 2 and 3, we design ro-

bust strategies by formulating a zero-sum game that describes the interaction

between an adversary and a network designer who compete to control a net-

work of nodes performing distributed averaging. The adversary can launch

8



two network-wide attacks which we study separately. In Attack-I, the ad-

versary is capable of disconnecting certain links in the network, while the

designer can change the weights of certain links. In Attack-II, the players

are capable of injecting global signals to alter the states of the nodes. Both

the adversary and the designer are constrained by their physical capabilities,

e.g., battery life and communication range. To capture such constraints, we

allow the adversary and the designer to a↵ect only a fixed number of links in

Attack-I. As for Attack-II, we impose power and energy constraints on

both players. However, we assume that the energy constraint does not allow

for maximum power operation; this necessitates studying the problem under

both constraints as the power constraint does not capture the limited energy

budget.

In Chapter 4, we take an alternative approach to this problem, where we

model the adversary as a large modeling uncertainty, and focus on designing

distributed defense mechanisms, as opposed to having a centralized network

designer. In particular, we study the problem of distributed stabilization of

linear dynamical networks in the presence of uncertainties, where we extend

the classical adaptive supervisory control framework to a distributed setting

and investigate the conditions required for stability.

1.4.4 Nonlinear Dynamical Networks

The nonlinear model we study here is the so-called n-intertwined Markov

model [41], which belongs to the SIS class of epidemiological models. Similar

to the majority of virus spread models, the n-intertwined Markov model

exhibits a threshold phenomenon. When the curing rate is high, the all-

healthy state is the unique equilibrium. When the curing rates are low,

however, a strictly positive equilibrium point arises, and a residual infection

could persist in the network. We are interested in constructing constrained

and dynamic mechanisms that control the virus propagation, while satisfying

certain design objectives.

As a first step, we perform stability analysis for this model in Chapter 5,

where we employ notions from positive systems theory to thoroughly study

the stability properties of both equilibrium points over arbitrary network

topologies. Further, we introduce a generic infection di↵usion model that
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is motivated by theory of noncooperative games and show that this model

subsumes existing virus spread models.

In Chapter 6, we shift our attention to control design questions. In particu-

lar, we identify su�cient conditions for stabilizing the network by controlling

the curing rates of a limited number of nodes. We also formulate and solve

multiple optimal control problems which aid a network designer in minimiz-

ing control cost while reducing infection levels across the network.

1.5 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we formulate the

problems describing Attack-I and Attack-II and derive the worst-case

adversarial attacks in the absence of the network designer. We introduce a

network designer in Chapter 3 and study its interaction with the adversary

under Attack-I and Attack-II using tools from di↵erential game theory.

The distributed supervisory control framework is introduced in Chapter 4.

In Chapter 5, we review the n-intertwined Markov model and discuss its

stability properties. We design stabilizing and optimal controllers for infected

networks in Chapter 6. We outline open problems in information spread

control in Chapter 7 and collect our concluding remarks in Chapter 8.

1.6 Mathematical Preliminaries

We start with some terminology and notational conventions. We use the

words “nodes” and “agents” interchangeably. All the matrices and vectors

in this thesis are real valued. For a set of n 2 Z�1

elements, we use the

combinatorial notation [n] to denote {1, . . . , n}. Unless otherwise mentioned,

the (i, j)-th entry of a matrix X 2 Rn⇥m, n,m 2 Z�1

is denoted by X
ij

, and

the i-th entry of a vector x 2 Rn, n 2 Z�1

, is denoted by x
i

. For two real

vectors x, y 2 Rn, we write x � y if x
i

> y
i

for all i 2 [n], x � y if x
i

� y
i

for all i 2 [n] but x 6= y, and x ⌫ y if x
i

� y
i

for all i 2 [n]. We say a vector

x 2 Rn is strictly positive if x � 0. For any vector x 2 Rn, we define

x
min

:= min
i2[n]

x
i

, x
max

:= max
i2[n]

x
i

.
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The absolute value of a scalar variable is denoted by |.|. We also denote the

cardinality of a finite set by |.|, and the purpose this operator is being used

for will be clear from the context. The set of eigenvalues of a matrix X is

denoted by �(X). The spectral radius of a matrix X 2 Rn⇥n is given by

⇢(X) = max
�2�(X)

|�|,

and its abscissa is given by

µ(X) = max
�2�(X)

Re(�).

When the eigenvalues of a matrix X are real, we denote the largest eigenvalue

by �
1

(X) and the smallest eigenvalue by �
n

(X). The Euclidean norm of a

vector is denoted by k.k
2

, the `
1

-norm is denoted by k.k
1

, and the `1-norm

is denoted by k.k1. The induced 2-norm of a matrix X 2 Rn⇥n is given by

kXk
2

= max
y2Rn

kyk
2

=1

kXyk
2

=
p

�
1

(XTX).

The L
2

-norm of a function f defined over a vector space X is given by

kfk
L

2

=

✓Z

X
kf(x)k2

2

dx

◆ 1

2

,

and its L1-norm is given by

kfk
L1 = sup

x2X
kf(x)k1.

If f is di↵erentiable, we can define the C1-norm of f as follows:

kfk
C

1 = kfk
L1 +

����
d

dx
f

����
L1

.

The vector space L2 is the space of all measurable functions for which kfk
L

2

is bounded. Given a time interval [0, T ] ⇢ R, we denote the space of contin-

uously di↵erentiable functions over this interval by C1[0, T ]. We recall that

C1[0, T ] is a Banach space when endowed with the C1-norm.

We use the operator diag(.) for two purposes. When applied to a square

matrix X 2 Rn⇥n, diag(X) returns a column vector that contains the diago-
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nal entries of X. For a vector x 2 Rn, X = diag(x), or X = diag(x
1

, . . . , x
n

),

is a diagonal matrix with X
ii

= x
i

, i 2 [n]. When a diagonal matrix has

positive diagonal entries, we call it a positive diagonal matrix. The identity

matrix is denoted by I, and the all-ones vector is denoted by 1. We assume

both I and 1 have the appropriate dimensions whenever they are used. We

use [.]�1 to denote the inverse of a square matrix and [.]T to denote the trans-

pose of a vector or a matrix. We use the game theoretic notation x�i

to refer

to the vector comprised of the decision variables of all players except that of

player i, where the dimension of x�i

will be defined once a game is formally

introduced.

Let f : Rn ! Rn be a continuously di↵erentiable function that defines

a dynamical system ẋ = f(x), and let x be an equilibrium point of this

system, i.e., f(x) = 0. The Jacobian matrix of f , J(x) 2 Rn⇥n, is given by

J(x) = @

@x

f(x). Let D ⇢ Rn⇥n be a compact domain where the trajectories

of the dynamical system ẋ = f(x) lie. A continuously di↵erentiable function

V : D ! R is a Lyapunov function if, V (x) = 0 and V (x) > 0 for all

x 2 D \ {x}. The Lie derivative of V along f is given by

L
f

V (x) :=
d

dx
V (x)Tf(x).

Matrix Theory

We call two matricesX, Y 2 Rn⇥n similar if there exists a nonsingular matrix

T 2 Rn⇥n such that Y = T�1XT . An important property of similar matrices

is that they share the same set of eigenvalues [42]. Some of our results rely

on properties of Metzler matrices. A real square matrix X is called Metzler

if its o↵-diagonal entries are nonnegative. We say that a matrix X 2 Rn⇥n

is reducible if there exists a permutation matrix T such that

T�1XT =

"
Y Z

0 W

#
,

where Y and W are square matrices, or if n = 1 and X = 0 [43]. A real

square matrix is called irreducible if it is not reducible. A survey on Metzler

matrices and their stability properties can be found in [43–45]. Hurwitz

Metzler matrices have the following equivalent characterizations.
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Proposition 1.1 ([46]). For a Metzler matrix X 2 Rn⇥n, the following

statements are equivalent:

(i) The matrix X is Hurwitz.

(ii) There exists a vector ⇠ � 0 such that X⇠ ⌧ 0.

(iii) There exists a vector ⌫ � 0 such that ⌫TX ⌧ 0.

(iv) There exists a positive diagonal matrix Q such that

XTQ+QX = �K,

where K is a positive definite matrix.

The last characterization is often referred to as diagonal stability [43, 47].

The Perron-Frobenius (PF) theorem is a fundamental result in spectral

graph theory that characterizes some of the properties of the spectra of Met-

zler and nonnegative matrices, i.e., matrices whose entries are all nonnega-

tive. We first state the PF theorem for irreducible Metzler matrices [44, The-

orem 17].

Theorem 1.1 (PF – Irreducible Metzler Case). Let X 2 Rn⇥n be an irre-

ducible Metzler matrix. Then

(i) µ(X) is an algebraically simple eigenvalue of X.

(ii) Let v
F

be such that Xv
F

= µ(X)v
F

. Then v
F

is unique (up to scalar

multiple) and v
F

� 0.

(iii) If v � 0 is an eigenvector of X, then Xv = µ(X)v, and, hence, v is a

scalar multiple of v
F

.

For irreducible nonnegative matrices, the following version of the PF the-

orem applies [42, Theorem 8.2.11].

Theorem 1.2 (PF – Irreducible Nonnegative Case). Let X 2 Rn⇥n be an

irreducible nonnegative matrix. Then

(i) ⇢(X) > 0.

(ii) ⇢(X) is an algebraically simple eigenvalue of X.

(iii) If Xv = ⇢(X)v, then v � 0.
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Graph Theory

A directed graph, or digraph, is a pair G = (V , E), where V is the set of nodes

and E ✓ V ⇥ V is the set of edges. Given G, we denote an edge from node

i 2 V to node j 2 V by (i, j). We say node i 2 V is a neighbor of node

j 2 V if and only if (i, j) 2 E . When (i, j) 2 E if and only if (j, i) 2 E , we
call the graph undirected. For a graph with n 2 Z�1

nodes, we associate an

adjacency matrix A 2 Rn⇥n with entries a
ij

2 R�0

, where a
ij

= 0 if and only

if (i, j) /2 E . For undirected graphs, the adjacency matrix is symmetric, i.e.,

A = AT .

In a digraph, a directed path is a collection of nodes {i
1

, . . . , i
`

} ✓ V , ` 2
Z

>1

, such that (i
k

, i
k+1

) 2 E for all k 2 [`�1]. A digraph is strongly connected

if there exists a directed path between any two nodes in V . A strongly

connected component (SCC) of a graph is a subgraph which itself is strongly

connected. When a nonnegative square matrix X is viewed as an adjacency

matrix of a digraph, then X is irreducible if and only if its corresponding

digraph is strongly connected [43]. A path in an undirected graph is defined

in a similar manner. We call an undirected graph connected if it contains a

path between any two nodes in V . A digraph is called weakly connected if

when every edge in E is viewed as an undirected edge, the resulting graph

is a connected undirected graph. We call a graph, whether it is directed

or undirected, disconnected if it contains at least two isolated subgraphs.

Throughout the thesis, when the graph G is directed, we assume that it is

either strongly or weakly connected. When G is undirected, we assume that

it is connected.

A directed acyclic graph (DAG) is a digraph with no directed cycles. A

node i 2 V is called a source node if
P

j 6=i

{aji 6=0} = 0, and it is called a sink

node if
P

j 6=i

{aij 6=0} = 0, where {aij 6=0} = 1 if and only if a
ij

6= 0, and is

zero otherwise. A DAG can have multiple sources and multiple sinks. For a

given graph G, let S
source

denote the set of source nodes, and let S
N-source

be

the set of all nodes i in G such that a
ji

6= 0 for some j 2 S
source

.
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CHAPTER 2

WORST-CASE ATTACKS ON CONSENSUS
NETWORKS

2.1 Background

In practice, communication among agents performing averaging is prone to

di↵erent types of non-idealities which can a↵ect the convergence properties

of the associated distributed algorithms. Transmission delays [48], noisy

links [49, 50], and quantization [51] are some examples of non-idealities that

are due to the physical nature of the application. In addition to physical

restrictions, researchers have also studied averaging dynamics in the presence

of malicious nodes in the network [52,53]. Various algorithms that guarantee

resilience against node failures have been proposed in the literature [54].

Here, we study the problem of continuous-time distributed averaging in

the presence of an intelligent adversary. We consider two network-wide at-

tacks launched by an adversary attempting to hinder the convergence of the

nodes to consensus. The adversarial attacks we explore here di↵er from the

ones studied by [52], [55], and [53], who consider the e↵ect of malicious and

compromised agents who could update their values arbitrarily. In the first

scenario (called Attack-I) we consider, the adversary can break a set of

edges in the network at each time instant. In practice, the adversary would

be limited in its resources; we translate this practical limitation to a hard

constraint on the total number of links the adversary can compromise at each

time instant. In the second case (called Attack-II), the adversary can cor-

rupt the measurements of the nodes by injecting a signal under a maximum

power constraint. Our goal is to study the optimal behavior of the adversary

in each case, given the imposed constraints.

For both attacks, we formulate the problem of the adversary as a finite

horizon maximization problem in which the adversary seeks to maximize the

Euclidean distance between the nodes’ state and the consensus line. We com-
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pletely characterize the optimal strategy of the adversary under both attacks;

for each case we obtain a closed-form solution, providing also a potential-

theoretic interpretation of the adversary’s optimal strategy in Attack-I.

Our model is di↵erent from the models in the current literature in two ways:

(i) the adversary interacts with a dynamical network. This is di↵erent from

the problems studied in the computer science and economics communities

where the network is usually static [28]; (ii) the adversary in our model is

constrained and does not have an infinite budget. This enables us to model

practical scenarios more closely rather than allowing the malicious behavior

to be unrestricted as in [52, 55, 56], where it is assumed that the network

contains nodes that are misbehaving. In addition, those papers focus on

finding necessary and su�cient conditions for the network to reach consensus

in the presence of malicious nodes, and observability theory is the main tool

used to study such problems. Here, we assume that all the nodes are normal,

and we focus on identifying the links that are of importance to the adversary.

This requires us to borrow tools from optimal control theory.

2.2 Main Results

The contributions of this chapter are as follows. ForAttack-I, we model the

behavior of the adversary using an optimal control problem. We study the

existence of solutions and the structure of the solution using Pontryagin’s

maximum principle (MP). We provide a method to compute the optimal

attack strategy without requiring the adjoint equations to be solved. This

method provides a new characterization for the optimal strategies in terms of

potential-theoretic quantities. For Attack-II, we derive the optimal attack

strategy in closed form using a fixed-point argument.

Organization

In Section 2.3, we formulate and provide the preliminaries of Attack-I.

We show the existence of solutions, study the problem using the MP, and

derive the optimal attack strategy. Attack-II is formulated and studied in

Section 2.4. Numerical examples are provided in Section 2.5. We summarize
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the main results of the chapter in Section 2.6. Section 2.7 contains a technical

result that is used in proving one of the main results.

Terminology and Notation

We will often use x to refer to a function or its value at a given time instant;

the context should make the distinction clear. We will use the words “strat-

egy” and “action” interchangeably; since we are seeking optimal open-loop

strategies in this chapter, both terms are equivalent. We will use
P

j>i

(.)

to mean
P

n

j=2

P
j�1

i=1

(.), for some n 2 Z�2

. Given an undirected graph

G = (N , E), where N is the set of nodes and E ✓ N ⇥ N is the set of edges,

we will use e
ij

as a shorthand notation for an edge from node i 2 N to node

j 2 N , i.e., e
ij

:= (i, j). We define the projection operator � : E ⇥ R ! E
such that �((e, r)) = e, for some (e, r) 2 E ⇥ R. When applied to a set

S ⇢ E ⇥ R, the mapping � is defined as follows:

�(S) =

8
<

:

S
(e,r)2S

�((e, r)), S 6= ;

0, S = ;
.

Given S ⇢ E ⇥ R, with |S| = k, let ⇡(S) = {(e
1

, r
1

), . . . , (e
k

, r
k

)}, where
r
i

2 R and e
i

2 E for all i 2 [k], be an ordering of the elements of S

such that r
1

 . . .  r
k

. Then, given ` 2 Z�0

, we define the set operator

�
`

: E ⇥ R ! E as:

�
`

(S) =

8
><

>:

�(S), ` > k

{e
1

, . . . , e
`

}, 0 < `  k

0, ` = 0 or k = 0

.

Throughout this chapter, we will be dealing with undirected graphs. Al-

though both e
ij

, e
ji

belong to the set of edges E in such graphs, we do not

distinguish between the two edges, and we treat them as a single edge. As

a result, in any set defined over E ⇥ R, we include a single tuple (e
ij

, r
ij

),

r
ij

2 R, to represent both edges.

17



2.3 Attack-I: Single-Player Case

Consider a connected network of n nodes andm links described by a weighted

undirected graph G = (N , E) with vertex set N , |N | = n, and edge set E ,
|E| = m. The value, or state, of the nodes at time instant t 2 [0,1) is

given by x(t) = [x
1

(t), ..., x
n

(t)]T . The nodes start with an initial value

x(0) = x
0

, and they are interested in computing the average of their initial

measurements, x
avg

= 1

n

P
n

i=1

x
i

(0), via local averaging. We consider the

continuous-time averaging dynamics given by

ẋ(t) = Ax(t), x(0) = x
0

, (2.1)

where the matrix A, A
ij

= a
ij

, has the following properties:

A = AT , A1 = 0, (2.2)

A
ij

� 0, A
ij

= 0 () e
ij

/2 E , i 6= j. (2.3)

Define x̄ = 1x
avg

and let M = 11T

n

. A well-known result states that, un-

der the above assumptions, the nodes will reach consensus as t ! 1, i.e.,

lim
t!1 x(t) = x̄ [12]. To achieve his objectives, the adversary controls the

elements of A as we describe next. This will render the matrix A to be

time-varying.

The adversary attempts to slow down convergence by breaking at most

`  m links at each time t. Let u
ij

(t) 2 {0, 1} be the weight the adversary

assigns to link e
ij

at time t. He breaks link e
ij

when u
ij

(t) = 1. Define

r :=
�
n

2

�
. The action set of the adversary can then be written as

U = {w 2 Rr | w = [w
12

, ..., w
1n

, w
23

, ..., w
(n�1)n

]T , w
ij

2 {0, 1},
w

ij

= 0 if e
ij

/2 E , kwk
1

 `}.

The set of admissible controls consists of all functions that are piecewise

continuous in time and whose range is U . Given a time interval [0, T ], we

can formally write

U = {u : [0, T ] ! U | u is a piecewise continuous function of t} .

Given the above definitions, we can write down the (i, j)-th element of the
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matrix A(u(t)) as

A
ij

(u(t)) = a
ij

(1 � u
ij

(t)).

Note that using the structure of A, we can re-write the dynamics (2.1) as

follows:

ẋ = G(x(t))(1 � u(t)), (2.4)

where G
ij

= a
ij

(x
j

� x
i

). This demonstrates that the system we are consid-

ering is a�ne in the adversary’s control u.

Define the functional:

J(u) =
1

2

Z
T

0

k(t) kx(t) � x̄k2

2

dt,

where the weighting factor k is positive and integrable over [0, T ], which can,

for example, be viewed as a discounting factor, such as k(t) = e�↵t for some

↵ > 0. This constitutes the utility function of the adversary. The adversary’s

problem can now be formally written as

sup
u2U

J(u)

subject to ẋ(t) = A(u(t))x(t), x(0) = x
0

.

We make the following assumption:

Assumption 2.1. The initial matrix A(0), the time interval [0, T ], the value

`, and the initial state x
0

are known to the adversary.

Based on the above formulation, the adversary is capable of changing the

system matrix. This renders the system we are studying as a switched one.

The optimal controllers for such systems can exhibit Zeno behavior, i.e., they

may switch infinitely many times over a finite interval. Extensive simulation

results show that the optimal controllers derived below switch a few times

only. In order to explicitly eliminate the possibility of infinite switching, we

make the following assumption in the remainder of this chapter.

Assumption 2.2. Let u 2 U be an arbitrary controller with switching times

0  r
1

< . . . < r
Ku  T . We assume that K

u

2 Z�0

is finite, and that there

exists a globally minimum dwell time ⌧ > 0 such that

⌧  min
i2[Ku]

r
i+1

� r
i

(2.5)
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over which the system matrix A(u) is time-invariant.

Note that this assumption is well motivated for practical reasons. Consider,

for example, a communication network where an adversary is a jammer in-

jecting an interfering signal at some links. If the adversary chooses to change

the set of links it is jamming, there must be some delay for it to change its

configuration. This shows that the above assumption is not restrictive. Note

that we do not require the computation of ⌧ ; we just need ⌧ to be nonzero.

Since simulation results show that Zeno behavior does not occur, we strongly

believe that this assumption is not required.

Under the above assumption, we can restrict our development to piecewise

continuous controllers. Hence, the right hand side of the ordinary di↵erential

equation (ODE) is piecewise continuous in t, continuous in u, and Lipschitz

in x (uniformly over u). Hence, the ODE admits a unique solution over

[0, T ], and the optimal control problem is well-posed by Filippov’s Theorem

(see the next subsection).

To arrive at the optimal strategy of the adversary, we employ the maximum

principle. In what follows, we will often drop the time index and other

arguments for notational simplicity.

2.3.1 Existence of Optimal Control

The MP provides a necessary condition for optimality, and before one can

apply it, it is important to show that an optimal solution indeed exists for

the given problem. Recall Filippov’s Existence Theorem.

Theorem 2.1 ([57, 58]). Consider the following optimal control problem:

sup
u2U

Z
T

0

L(x, u, t)dt subject to ẋ = f(x, u, t), x(0) = x
0

.

Assume that the solutions of the ODE exist over [0, T ] for all u : [0, T ] ! U

and that for every pair (t, x), the set U is compact, and the set

Q(x, t) = {(z0, z) | z0 � L(x, u, t), z = f(x, w, t) for some w 2 U}

is convex. Then, an optimal control exists for the above problem.
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In order to apply Filippov’s Theorem, we first need to convexity the action

set U as follows:

U
c

= {w 2 Rr | w = [w
12

, ..., w
1n

, w
23

, ..., w
(n�1)n

]T , w
ij

2 [0, 1],

w
ij

= 0 if e
ij

/2 E , kwk
1

 `}.

Consider the convexified problem:

sup
u2Uc

J(u)

subject to ẋ = A(u)x, x(0) = x
0

,

where U
c

is defined in a similar manner to U with U replaced with U
c

in its

definition.

In the remainder of this subsection, we will work with the convexified

problem. We will show that the optimal solution of the convexified problems

takes values at the boundaries of the set U
c

. Hence, this convexification does

not change the optimal solution of the original problem. We are now ready

to prove the existence of optimal controls for the convexified problem.

Lemma 2.1. The convexified problem admits an optimal solution.

Proof. For each fixed pair (x, t), the set

Q
u

(x, t) =

⇢
(z0, z)

���� z
0 � k

2
kx � x̄k2

2

, z = A(w)x for some w 2 U
c

�

is convex and compact. Indeed, let � 2 [0, 1], and let (z0
1

, z
1

), (z0
2

, z
2

) 2
Q

u

(x, t). We then have �z0
1

+ (1 � �)z0
2

� k

2

kx � x̄k2

2

. Recalling the a�ne

representation in (2.4), we can write

�z
1

+ (1 � �)z
2

= �G(x)(1 � w
1

) + (1 � �)G(x)(1 � w
2

)

= G(x)(�(1 � w
1

) + (1 � �)(1 � w
2

))

= A(w̃)x, w̃ = �w
1

+ (1 � �)w
2

2 U
c

.

Having shown that optimal solutions exists, we can now replace “sup” by

“max” in what follows.
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2.3.2 Solution via the MP

The Hamiltonian associated with the above problem is:

H(x, p, u) =
1

2
k(t) kx(t) � x̄k2

2

+ pT (t)A(u(t))x(t).

The first-order necessary conditions for optimality are (noting that AT = A)

[58]:

ṗ = � @

@x
H

= �k(x � x̄) � Ap, p(T ) = 0 (2.6)

ẋ = Ax, x(0) = x
0

(2.7)

u? = argmax
Uc

H(x, p, u).

To find the optimal strategies, let us first write

pTAx =
nX

i=1

p
i

 
nX

j=1

A
ij

x
j

!

=
nX

i=1

p
i

 
�

nX

j=1,j 6=i

A
ij

x
i

+
nX

j=1,j 6=i

A
ij

x
j

!

=
X

j>i

a
ij

(1 � u
ij

)(p
j

� p
i

)(x
i

� x
j

).

Define the function

f
ij

= (p
j

� p
i

)(x
i

� x
j

),

and write

max
u2Uc

H =
1

2
k kx � x̄k2

2

+max
u2Uc

X

j>i

A
ij

f
ij

. (2.8)

Note that we cannot decouple the maximization into
�
n

2

�
maximization

problems, each corresponding to a link or a single term inside the double

summation. This is due to the constraint on the number of links that can be

targeted by the adversary. To find the optimal strategy, let D
`

✓ E be the set

containing the ` links with the lowest negative f
ij

values, if such links exist.

Formally, define the set S = {(e
ij

, a
ij

f
ij

) | e
ij

2 E , f
ij

< 0} ⇢ E ⇥ R. We can

then write D
`

= �
`

(S). Note that the definition of �
`

allows us to account

for the case when |S| < `. Given this definition and Eq. (2.8), we conclude
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that the optimal control of the adversary in the convexified maximization

problem should be of the following form:

u?

ij

(t) =

8
><

>:

1, e
ij

2 D
`

0, e
ij

/2 D
`

or f
ij

> 0

{0, 1}, otherwise

. (2.9)

Since the optimal control takes values at the boundaries U
c

, it constitutes a

solution for the original nonconvex maximization problem.

2.3.3 Solution via Potential Theory

The optimal strategy is defined in terms f
ij

’s, for e
ij

2 E , which depend

on the state x and the costate p. However, we have not derived the optimal

trajectories that satisfy the canonical equations given by the MP in (2.6) and

(2.7), and hence in that sense the solution is incomplete. Since the system is

linear time-varying, the solutions will be given in terms of a state transition

matrix. Also, the functions f
ij

depend on both the state and the costate,

which in turn are defined in terms of the control. This makes working with

f
ij

intractable.

Under Assumption 2.2, the following theorem provides a procedure to ar-

rive at the optimal solutions without the need to compute p. We will be

using the term “connected component” to refer to a set of connected nodes

which have the same values. Define ⌫
ij

= �(x
i

� x
j

)2, e
ij

2 E .

Theorem 2.2. Under Assumptions 2.1 and 2.2, the rankings performed as

part of the optimal strategies of the maximization problem can be carried out

by replacing f
ij

(t) by ⌫
ij

(t), for all e
ij

2 E.
Furthermore, it is optimal for the adversary to modify a total of ` links.

If the adversary has an optimal strategy of modifying less than ` links, then

either G has a cut of size less than ` or the nodes have reached consensus at

time t. In either of the cases, modifying ` links is also optimal.

Proof. We will show that it is optimal for the adversary to rank the links

based on their w
ij

:= a
ij

⌫
ij

values instead of the a
ij

f
ij

’s. The main complica-

tion in solving the adjoint equations is that the system is time-varying. How-

ever, under Assumption 2.2, the functions x, p become piecewise continuous.

23



Hence, the function f
ij

, for all e
ij

2 G, is also piecewise continuous and its

value cannot change abruptly over a finite interval. As a result, we can regard

the system as a time-invariant one over a small interval [t
0

, t
0

+ �] ⇢ [0, T ],

where 0 < �  ⌧ , and ⌧ was defined in (2.5). The proof consists of three

steps.

(i) Show that it is optimal for the adversary to change ` links.

(ii) Show that, over a small interval [t
0

, t
0

+�], it is optimal for the adversary

to switch from a strategy u 2 U to another strategy u? 2 U , where u?

entails ranking the links based on their w
ij

values.

(iii) Show that allowing u? to mimic u for the remaining time of the problem

preserves the gain obtained over [t
0

, t
0

+ �].

Over a small interval, u and u? induce certain system matrices. Let the

system matrix corresponding to u over [t
0

, t
0

+ �] be A(u) = A, and let

kuk
1

< ` over this interval. Since the control strategy of the adversary is

fixed over this interval, the state trajectory is given by

x(t) = eA(t�t

0

)x(t
0

), t 2 [t
0

, t
0

+ �].

Let P (t) := eAt. Due to the structure of A, P (t) is a doubly stochastic matrix

for t � 0; see [59, p. 63].

Note that we can write x(t
0

) = P̃ x
0

, where P̃ is some doubly stochastic ma-

trix. Indeed, assume that either or both controls had switched once at some

time t̃
0

2 [0, t
0

), and that the system matrix over [0, t̃
0

) was Ã
1

, and the sys-

tem matrix corresponding to [t̃
0

, t
0

) was Ã
2

. Then x(t
0

) = e
˜

A

2

(t

0

� ˜

t

0

)e
˜

A

1

˜

t

0x
0

.

Since both e
˜

A

1

t, e ˜

A

2

t are doubly stochastic matrices, their product is also

doubly stochastic. We can readily generalize this result to any number of

switches in the interval [0, t
0

). With this observation, we can write

x(t) � x̄ = P (t � t
0

)P̃ x
0

� Mx
0

= (P (t � t
0

) � M)x(t
0

),

where the last equality follows from the fact that

P̃M = MP̃ = M, P̃ is doubly stochastic. (2.10)

We want to show that switching to strategy u? at some time t? 2 [t
0

, t
0

+ �]

can improve the utility of the adversary. To this end, we assume that the
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matrix induced by u? over [t
0

, t?) is A, while the system matrix corresponding

to u? over [t?, t
0

+ �] is B. Define the doubly stochastic matrix Q(t) := eBt,

t � 0. Over [t?, t
0

+ �], the strategies u and u? are identical except at link

e
ij

2 E , where u
ij

= 0 and u?

ij

= 1. It follows that:

A
ij

> B
ij

= 0, A
kl

= B
kl

8e
kl

6= e
ij

. (2.11)

Formally, we want to prove the following inequality:

Z
t

0

+�

t

0

k(t) k(P (t � t
0

) � M)x(t
0

)k2

2

dt

<

Z
t

?

t

0

k(t) k(P (t � t
0

) � M)x(t
0

)k2

2

dt

+

Z
t

0

+�

t

?

k(t) k(Q(t � t?) � M)P (t? � t
0

)x(t
0

)k2

2

dt,

or equivalently

Z
t

0

+�

t

?

k(t) · ⇥k(Q(t � t?) � M)P (t? � t
0

)x(t
0

)k2

2

� k(P (t � t
0

) � M)x(t
0

)k2

2

⇤
dt > 0. (2.12)

Using (2.10) and the semi-group property, Eq. (2.12) simplifies to

Z
t

0

+�

t

?

k(t) · x(t
0

)T⇤(t, t?)x(t
0

)dt > 0, (2.13)

where ⇤(t, t?) = P (t? � t
0

)Q(2(t � t?))P (t? � t
0

) � P (2(t � t
0

)). A su�cient

condition for (2.13) to hold is

h(t, x(t
0

)) = x(t
0

)T⇤(t, t?)x(t
0

) > 0, for t > t?.

As � # 0, we can write P (t) = I + tA + O (�2), where O (�2) /�  L for

su�ciently small � and some finite constant L. We therefore have

⇤(t, t⇤) =
�
I + (t? � t

0

)A+ O �
�2
�� �

I + 2(t � t?)B + O �
�2
��

�
I + (t? � t

0

)A+ O �
�2
��� �

I + 2(t � t
0

)A+ O �
�2
��

= 2(t � t?)B + 2(t? � t
0

)A � 2(t � t
0

)A+ O �
�2
�
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= 2(t � t?)(B � A) + O �
�2
�
.

For su�ciently small �, the first term dominates the second term. Recall

that the quadratic form of a Laplacian matrix L exhibits the following form:

xTLx =
P

l>k

L
kl

(x
l

� x
k

)2, for any x 2 Rn. Note that B � A is in fact a

negative Laplacian. Using (2.11), we can then write

h(t, x(t
0

)) = 2(t � t?)
X

r>s

(A
sr

� B
sr

) (x
r

(t
0

) � x
s

(t
0

))2 + O �
�2
�

= 2(t � t?)A
ij

(x
j

(t
0

) � x
i

(t
0

))2 + O �
�2
�
. (2.14)

For small enough �, the higher order terms are dominated by the first term.

Hence, if there is a link e
ij

such that x
i

(t
0

) 6= x
j

(t
0

), there exists t? such that

h(t, x(t
0

)) > 0 for t 2 (t?, t
0

+ �]. Since t
0

was arbitrary, we conclude that

the optimal strategy must satisfy ku?(t)k
1

= ` for all t, given that each of

the ` links connects two nodes having di↵erent values.

If no link such that x
i

(t
0

) 6= x
j

(t
0

) exists at a given time t
0

, the adversary

does not need to break additional links, although breaking more links does

not a↵ect optimality because h(t, x(t
0

)) = 0 in such a case. There are two

cases under which the adversary cannot find a link to make h(t, x(t
0

)) > 0:

(i) The graph at time t
0

is one connected component. In this case, the nodes

have already reached consensus and ku?k
1

< `. This is a losing strategy for

the adversary as it failed in preventing nodes from reaching agreement; (ii)

The graph at time t
0

has multiple connected components, and the number of

links connecting the components is less than `. The adversary here possesses

a winning strategy with ku?k
1

< `, as it can disconnect G into multiple

components and prevent consensus.

The second step is to show that the adversary will modify the ` links with

the lowest w
ij

= a
ij

⌫
ij

values, e
ij

2 E . Let us again restrict our attention to

the interval [t
0

, t
0

+�] where the adversary applies strategy u. Assume (to the

contrary) that the links the adversary breaks over this interval are not the

ones with the lowest w
ij

(t) values. In particular, assume that the adversary

chooses to break link e
kl

2 E , while there is a link e
ij

2 E such that w
ij

< w
kl

.

Assume that the adversary switches at time t? 2 [t
0

, t
0

+ �] to strategy u? by

breaking link e
ij

and unbreaking link e
kl

. Then, (2.14) becomes

h(t, x(t
0

)) = 2(t � t⇤) (w
kl

(t
0

) � w
ij

(t
0

)) + O �
�2
�
.
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tt

�
t0 t0 + �

t0 + 2�

A(u) = A

A(u�) = B

A(u) = C

A(u) = CA(u) = A

Figure 2.1: A demonstration of the technique used in the third step of the
proof. The blue solid trajectory corresponds to u while the red dashed
trajectory corresponds to u?.

Hence, by following the same arguments as above, we can conclude that

breaking e
kl

is not optimal. This proves that the optimal strategy for the

adversary is to break the links with the lowest w
ij

values.

The final step of the proof is to show that switching to strategy u? guar-

antees an improved utility for the adversary regardless of how the original

trajectory corresponding to u changes beyond time t
0

+ �. To this end, we

will assume that from time t
0

+ � onward, strategy u? will mimic strategy

u. Assume that strategy u switches from matrix A to matrix C over the

interval [t
0

+ �, t
0

+ 2�], and define R(t) := eCt. Hence, strategy u? will also

switch from the system matrix B to matrix C. However, the trajectories

corresponding to u and u? will have di↵erent initial conditions at time t
0

+ �,

due to the switch that strategy u? made at time t?. Figure 2.1 illustrates this

idea. Consider the behavior of the system over the interval [t
0

+ �, t
0

+ 2�]

where we can assume that the system is time-invariant. To show that the

gain obtained over [t
0

, t
0

+ �] by the switch made by u? is maintained over

[t
0

+ �, t
0

+ 2�], we must prove the following inequality:
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Z
t

0

+2�

t

0

+�

k(t) ·
2

4k(R(t � (t
0

+ �)) � M)Q(t
0

+ � � t?)P (t? � t
0

)x(t
0

)k2

2| {z }
:=L

1

� k(R(t � (t
0

+ �)) � M)P (t
0

+ � � t
0

)x(t
0

)k2

2| {z }
:=L

2

3

5 dt > 0.(2.15)

As before, it su�ces to prove that the integrant L
1

� L
2

is positive. Let us

now expand both L
1

and L
2

.

L
1

= x(t
0

)TP (t? � t
0

)Q(t
0

+ � � t?)(R(t � (t
0

+ �)) � M)

(R(t � (t
0

+ �)) � M)Q(t
0

+ � � t?)P (t? � s)x(t
0

)

= x(t
0

)TP (t? � t
0

)Q(t
0

+ � � t?)(R(2(t � (t
0

+ �))) � M)

Q(t
0

+ � � t?)P (t? � t
0

)x(t
0

)

= x(t
0

)T (P (t? � t
0

)Q(t
0

+ � � t?)R(2(t � (t
0

+ �)))

Q(t
0

+ � � t?)P (t? � t
0

) � M)x(t
0

).

Similarly,

L
2

= x(t
0

)T (P (�)R(2(t � (t
0

+ �)))P (�) � M)x(t
0

).

We can then write

L
1

� L
2

= x(t
0

)T (P (t? � t
0

)Q(t
0

+ � � t?)R(2(t � (t
0

+ �)))Q(t
0

+ � � t?)

P (t? � t
0

) � P (�)R(2(t � (t
0

+ �)))P (�))x(t
0

)

:= x(t
0

)T (F
1

� F
2

)x(t
0

).

Before we perform a first-order Taylor expansion to the above terms, let us

define the following quantities:

⌧
1

= t? � t
0

, ⌧
2

= (t
0

+ �) � t?, ⌧
3

= t � (t
0

+ �),

where t? 2 [t
0

, t
0

+ �] and t 2 [t
0

+ �, t
0

+ 2�].

Using Proposition 2.1 (see Section 2.7), we can now expand F
1

and F
2

as
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follows:

F
1

=
�
I + ⌧

1

A+ O �
⌧ 2
1

�� �
I + ⌧

2

B + O �
⌧ 2
2

�� �
I + 2⌧

3

C + O �
⌧ 2
3

��

�
I + ⌧

2

B + O �
⌧ 2
2

�� �
I + ⌧

1

A+ O �
⌧ 2
1

��

=
�
I + ⌧

1

A+ ⌧
2

B + O �
�2
�� �

I + 2⌧
3

C + O �
�2
��

�
I + ⌧

1

A+ ⌧
2

B + O �
�2
��

=
�
I + ⌧

1

A+ ⌧
2

B + 2⌧
3

C + O �
�2
�� �

I + ⌧
1

A+ ⌧
2

B + O �
�2
��

= I + 2⌧
1

A+ 2⌧
2

B + 2⌧
3

C + O �
�2
�
.

F
2

=
�
I + �A+ O �

�2
�� �

I + 2⌧
3

C + O �
⌧ 2
3

�� �
I + �A+ O �

�2
��

=
�
I + �A+ 2⌧

3

C + O �
�2
�� �

I + �A+ O �
�2
��

= I + 2�A+ 2⌧
3

C + O �
�2
�
.

Hence, we have

F
1

� F
2

= 2 (⌧
1

� �)A+ 2⌧
2

B + O �
�2
�
,

= 2⌧
2

(B � A) + O �
�2
�

= 2 ((t
0

+ �) � t?) (B � A) + O �
�2
�
,

and thereby we obtain

L
1

� L
2

= 2 ((t
0

+ �) � t?)
X

r>s

(A
sr

� B
sr

) (x
r

(t
0

) � x
s

(t
0

))2 + O �
�2
�

= 2 (t
0

+ � � t?)A
ij

(x
j

(t
0

) � x
i

(t
0

))2 + O �
�2
�
.

Thus, for small enough �, we conclude that L
1

� L
2

> 0, which implies that

(2.15) is satisfied, and the gain obtained by switching to system matrix B

at t? 2 [t
0

, t
0

+ �] is maintained over [t
0

+ �, t
0

+ 2�]. Note that the e↵ect

of switching to matrix C is cancelled in F
1

� F
2

, and hence L
1

� L
2

, since

the strategy u? is mimicking strategy u. Hence, by dividing the interval

(t
0

+ 2�, T ] into small intervals of length � and repeating the above analysis,

we conclude that the gain due to the switch at time t? is preserved over the

remaining time of the problem. The proof is therefore complete.

Remark 2.1. (Potential-Theoretic Analogy) When the graph is viewed as

an electrical network, a
ij

can be viewed as the conductance of link e
ij

2 E
and x

i

�x
j

as the potential di↵erence across the link. Therefore, the optimal

29



strategy of the adversary involves breaking the links with highest power dis-

sipation given by a
ij

(x
i

� x
j

)2. These links correspond to the edges with the

highest information flow; therefore, for the purpose of delaying or preventing

consensus, attacking these links is optimal. •

2.4 Attack II: Single Player Case

Assume now that the adversary is capable of adding a noise signal to all the

nodes in the network in order to slow down convergence. The dynamics in

this case are:

ẋ(t) = Ax(t) + u(t), x(0) = x
0

. (2.16)

We assume that the instantaneous power ku(t)k2

2

that the adversary can

expend cannot exceed a fixed value P
max

. We also assume that the adversary

has su�cient energy E
max

to allow it to operate at maximum instantaneous

power. Accordingly, the action set of the adversary is

U = {w 2 Rn | kwk2

2

 P
max

}.

The set of admissible controls consists of all functions that are continuously

di↵erentiable in time and whose range is U . Given a time interval [0, T ], we

can formally write

U =
�
u : [0, T ] ! U | u 2 C1[0, T ]

 
.

The adversary’s problem is given by

max
u2U

J(u) (2.17)

subject to ẋ(t) = Ax(t) + u(t), x(0) = x
0

, (2.18)

where A satisfies the properties given in (2.2) and (2.3). The Hamiltonian in

this case is given by

H(x, p, u) = k(t) kx(t) � x̄k2

2

+ p(t)T (Ax(t) + u(t))

+�(t)
�ku(t)k2

2

� P
max

�
,
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where � is a continuously di↵erentiable scalar Lagrange multiplier associated

with the power constraint. As before, we let x, p 2 C1[0, T ]. Here, � must

satisfy

�(t)  0, �(t)
�ku(t)k2

2

� P
max

�
= 0, 8t 2 [0, T ].

The first-order necessary conditions for optimality are:

ṗ(t) = � @

@x
H(x, p, u)

= �2k(t)(x(t) � x̄) � Ap(t), p(T ) = 0

ẋ(t) = Ax(t) + u(t), x(0) = x
0

@

@u
H(x, p, u) = 2�(t)u(t) + p(t) = 0. (2.19)

To find u?, consider the following cases:

Case 1: (�(t
0

) < 0 =) ku(t
0

)k2

2

= P
max

, for some t
0

2 [0, T ]) Using

(2.19), we obtain �(t
0

)ku(t
0

)k2

2

= �1

2

u(t
0

)Tp(t
0

); hence,

�(t
0

) = � 1

2P
max

u(t
0

)Tp(t
0

), (2.20)

which we can then use to solve for the optimal control:

u?(t
0

) = P
max

p(t
0

)

u(t
0

)Tp(t
0

)
=

E
max

T
· p(t

0

)

u(t
0

)Tp(t
0

)
.

Remark 2.2. The optimal strategy u?(t
0

) is the vector of maximum power

that it is aligned with p(t
0

). To see this, note that (2.20) implies that u(t
0

)Tp(t
0

) >

0, because �(t
0

) < 0. Hence, the vectors u?(t
0

) and p(t
0

) are aligned. Define

the unit vector p̄(t
0

) = p(t
0

)/kp(t
0

)k
2

. Then, we can further write

u?(t
0

) =
E

max

/T

ku(t
0

)k2

2

· p̄(t
0

) =
p

P
max

· p̄(t
0

). (2.21)

Hence, the adversary’s optimal solution in this case is to operate at the max-

imum power available. •

Case 2: (ku(t
0

)k2

2

< P
max

=) �(t
0

) = 0, for some t
0

2 [0, T ]) Using

(2.19), we obtain p(t
0

) = 0. In this case the control is singular, since it

does not appear in @

@u

H = 0. By continuity of the costate p, there exists an

interval �t = [t
0

, t
0

+ �], � > 0, such that p(t) = 0, for all t 2 �t. This
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implies that all the time derivatives of p must also be zero:

d

dt

@

@u
H = ṗ(t) = �2k(t) (x(t) � x̄) � ATp(t) = 0, 8t 2 �t,

which implies that x(t) = x̄, for all t 2 �t. The conditions obtained by taking

the time derivatives are also necessary conditions that must be satisfied at the

optimal trajectory. However, having x(t) = x̄, for all t 2 �t, could violate

the initial condition when t
0

= 0. In order to resolve this inconsistency, we

set the control at t = 0 to be an impulse, u
i

(t) = c · �(t), for all i 2 V , in
order to make x(0) = x̄, where c 2 R is chosen to guarantee ku(t)k2

2

< P
max

.

Note that we still have not recovered the control, and therefore we need to

di↵erentiate again:

d2

dt2
@

@u
H = ẋ(t) = Ax(t) + u(t) = 0, 8t 2 �t,

which implies that u(t) = �Ax(t) = �Ax̄ = 0, for all t 2 �t.

Remark 2.3. Note that x(t) = x̄ leads to having u(t) = 0. This result

matches intuition; when the nodes reach consensus, J(u) = 0 for all u 2 U .

Hence, no matter what the control is, the utility of the adversary will always

be zero. Thus, expending power becomes sub-optimal, and the optimal strategy

is to do nothing. •

Since the adversary attempts to increase the Euclidean distance between

x and x̄, we can readily see that u ⌘ 0 cannot be optimal, unless x(0) = x̄.

The following lemma proves this formally.

Lemma 2.2. The solution of the problem (2.17)-(2.18) satisfies ku(t)k2

2

=

P
max

.

Proof. Let u
1

2 U be such that ku
1

(t)k2

2

< P
max

, for all t 2 [0, T ]. Then, it

follows from Case 2 that J(u
1

) = 0. Consider another solution, u
2

2 U , which

satisfies the power constraint with equality. Namely, let u
2

(t) =
q

P

max

n

1,

for all t 2 [0, T ]. Using the solution to (2.16), and by defining the doubly

stochastic matrix P (t) = eAt we can write

x(t) = P (t)x
0

+

r
P
max

n
1t, t 2 [0, T ].
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In this case, for all t 2 [0, T ], we have

kx(t) � x̄k2

2

= xT

0

(P (t) � M)T (P (t) � M)x
0

+P
max

t2 + 2

r
P
max

n
xT

0

(P (t) � M)1t

= xT

0

(P (t)2 � 2MP (t) � M2)x
0

+ P
max

t2 (2.22)

= xT

0

P (2t)(I � M)x
0

+ P
max

t2, (2.23)

where (2.22) follows because P (t), t 2 [0, T ], and M are stochastic matrices,

and (2.23) follows from (2.10) and the semi-group property. Being a stochas-

tic matrix, P (2t) is positive semidefinite, for t 2 [0, T ]. Also, I � M is a

Laplacian matrix; therefore, it is also positive semidefinite. Further, note

that

P (2t)(I � M) = P (2t) � MP (2t) = (I � M)P (2t), t 2 [0, T ].

Hence, P (2t)(I �M) is also positive semidefinite, and therefore xT

0

P (2t)(I �
M)x

0

� 0, for all t 2 [0, T ]. This in turn implies

J(u
2

) =

Z
T

0

k(t)
⇥
xT

0

P (2t)(I � M)x
0

+ P
max

t2
⇤
dt

� P
max

3
T 3 > J(u

1

) = 0.

We conclude that not utilizing the power budget available yields a lower

utility for the adversary.

From the above analysis, and with Lemma 2.2 at hand, we conclude that

the optimal control of the adversary must be given by (2.21), for all t
0

2 [0, T ].

Hence, it remains to determine the costate vector in order to completely char-

acterize u?. To do so, we will invoke Banach’s fixed-point theorem. To this

end, we will work with the scaled utility J̃(u) = ⌫J(u), ⌫ > 0, without loss

of generality. Note that u? in (2.21) is also the solution to the maximization

problem of J̃(u). The costate trajectory is given by

p(t) = 2⌫

Z
T

t

k(⌧)P (⌧ � t)(x(⌧) � x̄)d⌧. (2.24)
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Substituting (2.21) and the solution to (2.16) into (2.24) yields

p(t) = g(t) + 2⌫
p

P
max

Z
T

t

Z
⌧

0

k(⌧)P (2⌧ � (t+ s))p̄(s)dsd⌧,

where g(t) = 2⌫
R

T

t

P (⌧ � t)k(⌧)(P (⌧)x
0

� x̄)d⌧ . Note that 2⌧ � (t+ s) � 0

for 0  s  ⌧ , t  ⌧  T , and hence P (.) is a well-defined doubly stochastic

matrix over the region of integration. We define the mapping T (p)(t) := p(t).

By its structure, it is readily seen that T (p)(t) : C1[0, T ] ! C1[0, T ]. The

following lemma aids in obtaining the costate vector.

Lemma 2.3. Let T̃ (x)(t) := k(t)
R

t

0

P (s)x(s)ds, t 2 [0, T ], where P (t) is a

doubly stochastic matrix, and fix x(t) 2 C1[0, T ]. Then

���T̃ (x)
���
L1

 sup
0tT

tk(t) · kxk
L1

.

Proof. We have:

���T̃ (x)
���
L1

= sup
0tT

����k(t)
Z

t

0

P (s)x(s)ds

����
1

= sup
0tT

k(t) sup
1in

�����

Z
t

0

nX

j=1

P
ij

(s)x
j

(s)ds

�����

 sup
0tT

k(t) sup
1in

Z
t

0

nX

j=1

P
ij

(s) |x
j

(s)| ds

 sup
0tT

k(t) sup
1in

Z
t

0

 
nX

j=1

P
ij

(s)

!
sup

1jn

|x
j

(s)| ds

= sup
0tT

k(t)

Z
t

0

sup
1jn

|x
j

(s)| ds

 sup
0tT

k(t)

Z
t

0

sup
0sT

sup
1jn

|x
j

(s)| ds

= sup
0tT

tk(t) · kxk
L1

,

where the second inequality follows from Hölder’s inequality.

Theorem 2.3. By choosing ⌫ < 1

2

p
P

max

(

ˇ

k+

ˆ

k)

, where ǩ = sup
0tT

tk(t) and

k̂ = sup
0tT

R
T

t

⌧k(⌧)d⌧ , the mapping T (p)(t) : C1[0, T ] ! C1[0, T ] has a

unique fixed point p? 2 C1[0, T ] that can be obtained by any sequence gener-

34



ated by the iteration p
k+1

(t) = T (p
k

)(t), t 2 [0, T ], starting from an arbitrary

vector p
0

2 C1[0, T ].

Proof. The theorem will follow if for this choice of ⌫, the mapping T is a

contraction. Consider two vectors y, z 2 C1[0, T ] and let ȳ, z̄ be the corre-

sponding normalized unit norm vectors. Let w̄ = ȳ � z̄. Then

1

2⌫
p
P
max

kT (y) � T (z)k
C

1

=

sup
0tT

k(t) sup
1in

�����

Z
t

0

nX

j=1

P
ij

(t � s)w̄
j

(s)ds

�����

+ sup
0tT

sup
1in

�����

Z
T

t

k(⌧)

Z
⌧

0

nX

j=1

P
ij

(2⌧ � (t+ s))w̄
j

(s)dsd⌧

�����

 sup
0tT

tk(t) kw̄k
L1

+ sup
0tT

sup
1in

Z
T

t

k(⌧)

·
Z

⌧

0

nX

j=1

P
ij

(2⌧ � (t+ s)) |w̄
j

(s)| dsd⌧,

where the last inequality follows from Lemma 2.3. Using arguments similar

to those used in proving Lemma 2.3, we have:

1

2⌫
p
P
max

kT (y) � T (z)k
C

1


✓

sup
0tT

tk(t) + sup
0tT

Z
T

t

⌧k(⌧)d⌧

◆
kw̄k

L1

 (ǩ + k̂) ky � zk
L1

 2⌫
p
P
max

(ǩ + k̂) ky � zk
C

1

,

where the second inequality follows from the properties of similar triangles.

We readily see that by selecting ⌫ < 1

2

p
P

max

(

ˇ

k+

ˆ

k)

, the last inequality implies

that T (p)(t) is a contraction mapping. Since C1[0, T ] endowed with k.k
C

1

is a Banach space, Banach’s contraction mapping principle guarantees the

existence of a unique fixed point p? 2 C1[0, T ] which can be obtained from the

iteration p
k+1

(t) = T (p
k

)(t) as k ! 1, t 2 [0, T ], for any initial point.
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Figure 2.2: E↵ect of Attack-I on the convergence to consensus. T = 2,
n = 4, ` = 2, and x

0

= [1, 2, 3, 4].

2.5 Numerical Studies

In this section, we provide numerical examples for Attack-I and Attack-

II. We consider the complete graph with n = 4. The matrix A(0) was

generated. We let T = 2 and x
0

= [1, 2, 3, 4]T—hence, x
avg

= 2.5. We

simulated the network using Matlab’s Bvp Solver.

For Attack-I, we fixed ` = 2, and computed the optimal control using

(2.9), which was found to be u?(t) = [1, 0, 1, 0, 1, 1]T for t 2 [0, 2]. Indeed, at

t = 0, the highest w
ij

values are w
13

(0) = 2.2101 and w
14

(0) = 13.8979 which

confirms the conclusion of Theorem 2.2. In this particular example, w
13

, w
14

remain dominant throughout the problem’s horizon, and hence the control is

stationary. Figure 2.2 simulates the network at hand with and without the

presence of the adversary. Note that the adversary was successful in delaying

convergence. Since both links the adversary broke emanate from node 1, x
1

is far from consensus.

For Attack-II, we fixed P
max

= 2, and Fig. 2.3 demonstrates the network

with and without the presence of the adversary. Since the adversary in this
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Figure 2.3: E↵ect of Attack-II on the convergence to consensus. T = 2,
n = 4, and x

0

= [1, 2, 3, 4].

attack is capable of targeting nodes, he was capable of diverting the values

of all the nodes away from x
avg

.

2.6 Summary

We have considered two types of adversarial attacks on a network of agents

performing distributed averaging. Both attacks have the common objective of

slowing down the convergence of the nodes to the global average. Attack-I

involves an adversary that is capable of compromising links, with a constraint

on the number of links it can break. Despite the interdependence of the state,

costate, and control, we were able to find the optimal strategy. We also

presented a potential-theoretic interpretation of the solution. In Attack-

II, a finite power adversary attempts to corrupt the values of the nodes

by injecting a signal of bounded power. We assumed that the adversary

has su�cient energy E
max

to operate at maximum instantaneous power and

derived the corresponding optimal strategy.
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2.7 Additional Proof

The following proposition is used in proof Theorem 2.2. It will also be used

in proving some of the main results of Chapter 3.

Proposition 2.1. Given ⌧
1

, ⌧
2

, ⌧
3

, which were defined in terms of � > 0 in the

proof of Theorem 2.2, let f be a real-valued function. Then, if f(�) = O (⌧ 2
i

)

as � ! 0, we have f(�) = O (�2) , i 2 [3]. Also, if f(�) = ⌧
i

O �
⌧ 2
j

�
as � ! 0,

then f(�) = O (�3) , i, j 2 [3].

Proof. Recall that we write f(x) = O (g(x)), for some real-valued function

g, as x ! a if there exist constants M, � such that |f(x)|  M |g(x)|, for all
x satisfying |x� a| < �. Since f(�) = O (⌧ 2

i

) as � ! 0, and recalling that by

definition we have ⌧
i

 � for i 2 [3], we can write f(�)  M⌧ 2
i

 M�2. Hence,

f(�) = O (�2). To prove the second statement, recall that h(x)O (g(x)) =

O (h(x)g(x)), for any two real-valued functions h, g. Hence, as � ! 0, we

have f(�) = ⌧
i

O �
⌧ 2
j

�
= O �

⌧
i

⌧ 2
j

�
. Therefore, f(�)  M⌧

i

⌧ 2
j

 M�3 and

f(�) = O (�3).
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CHAPTER 3

A COMPETITION OVER CONSENSUS
NETWORKS

3.1 Background

Having studied the worst-case attacks on consensus networks in the previous

chapter, we now introduce a network designer and study its interaction with

the adversary. We consider a setting similar to that of the previous chapter:

the network consists of nodes performing continuous-time distributed averag-

ing, and the adversary strategically attempts to prevent the nodes from reach-

ing consensus by launching either Attack-I or Attack-II. By modeling the

adversary as a strategic player and deriving optimal defense strategies, we

guarantee robustness against worst-case attacks, unlike existing approaches

in which attacks on links were modeled as random failures [60].

For Attack-I, the adversary strategically disconnects a set of links to pre-

vent the nodes from reaching consensus. Meanwhile, the network designer

assists the nodes in reaching consensus by changing the weights of a lim-

ited number of links in the network. We formulate two Stackelberg games

to describe this competition where the order in which the players act is re-

versed in the two problems. Although the canonical equations provided by

the Pontryagin’s maximum principle seem to be intractable, we provide an

alternative characterization for the optimal strategies that makes connection

to potential theory. Finally, we provide a su�cient condition for the existence

of a saddle-point equilibrium (SPE) for the underlying zero-sum game.

In Attack-II, the designer and the adversary are both capable of altering

the measurements of all nodes in the network by injecting global signals. We

impose two constraints on both players: a power constraint and an energy

constraint. We assume that the available energy to each player is not su�-

cient to operate at the maximum power throughout the horizon of the game.

We show the existence of an SPE and derive the optimal strategies in closed
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form for this attack scenario.

Such an interaction between a network designer and an adversary can oc-

cur in various practical applications. For example, in a wireless network, the

adversary can be a jammer who is capable of breaking links by injecting high

noise signals that disrupt the communication among nodes. The link weights

in such a network represent the capacities of the corresponding links. The

designer can modify the capacity of a certain link using various communica-

tion techniques such as introducing parallel channels between two nodes as

in orthogonal frequency division multiple access (OFDMA) networks [61]. In

OFDMA networks, the number of parallel links between two nodes is usu-

ally limited [62]. To capture this limitation, we limit the amount by which

the designer can increase the capacity of a given link. The adversary can

be a jammer who is capable of breaking links by injecting high noise signals

that disrupt the communication among nodes. The adversary is assumed to

have su�cient transmit power to disrupt the communication over any link,

no matter what the number of parallel channels is.

3.2 Main Results

For Attack-I, we capture the interaction between the designer and the

adversary by formulating two separate problems. In the min–max problem,

the designer declares a strategy first to which the adversary reacts by its

optimal response. The second problem is a max–min one, where the order

of play is reversed. Assuming that the controllers do not switch infinitely

many times over a finite interval among the available actions, we derive the

optimal strategies for both problems in terms of potential-theoretic quantities

by working directly with the utility functional. Furthermore, we demonstrate

that the derived strategies satisfy the necessary conditions provided by the

MP. Further, we derive a su�cient condition guaranteeing the existence of

an SPE. For Attack-II, we show that an SPE always exists and derive the

optimal strategies in closed-form.
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Organization

The rest of this chapter is organized as follows. In Section 3.3, we provide

the preliminaries of Attack-I and formulate the min–max and max–min

problems. In Section 3.4, we derive the Stackelberg strategies and show that

they satisfy the MP. We provide a su�cient condition for the existence of

an SPE in Section 3.5. Attack-II is introduced in Section 3.6, where the

optimal strategies for both players are derived in closed form. We end the

chapter with the concluding remarks of Section 3.7. Section 3.8 includes a

proof of one of the theorems and a technical result.

Terminology and Notation

We will adopt the same notation and terminology outlined in Chapter 2.

3.3 Attack-I: Adversary vs. Network Designer

Consider a connected network of n nodes andm links described by a weighted

undirected graph G = (N , E). The value, or state, of the nodes at time

instant t 2 R�0

is given by x(t) = [x
1

(t), ..., x
n

(t)]T . The nodes start with

an initial value x(0) = x
0

, and they are interested in computing the average

of their initial values, x
avg

= 1

n

P
n

i=1

x
i

(0), via local averaging. We consider

the continuous-time averaging dynamics given by

ẋ(t) = Ax(t), x(0) = x
0

, (3.1)

where the matrix A, A
ij

= a
ij

2 R, has the following properties:

A = AT , A1 = 0, (3.2)

A
ij

� 0, A
ij

= 0 () e
ij

/2 E , i 6= j. (3.3)

Define x̄ = 1x
avg

2 Rn and let M = 1

n

11

T . A well-known result states that,

under the above assumptions, the nodes will reach consensus as t ! 1, i.e.,

lim
t!1 x(t) = x̄ [12]. To achieve their respective objectives, the designer and

the adversary control the elements of A as we describe next. This will render

the matrix A to be time-varying.
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The adversary attempts to slow down convergence by breaking at most

`  m links at each time t. Let u
ij

(t) 2 {0, 1} be the weight the adversary

assigns to link e
ij

2 E at time t 2 R�0

. He breaks link e
ij

when u
ij

(t) = 1.

Define r :=
�
n

2

�
. The action set of the adversary is then

U = {w 2 Rr | w = [w
12

, ..., w
1n

, w
23

, ..., w
(n�1)n

]T , w
ij

2 {0, 1},
w

ij

= 0 if e
ij

/2 E , kwk
1

 `}.

The set of admissible controls, U , consists of all functions that are piecewise

continuous in time and whose range is U . Given a time interval [0, T ], we

can formally write

U = {u : [0, T ] ! U | u is a piecewise continuous function of t} .

We introduce a network designer who attempts to accelerate convergence

by controlling the weights of the edges. The designer can change the weight of

a given link by adding v
ij

(t) to its weight a
ij

. We assume that v
ij

(t) 2 {0, b}
and that the number of links the designer modifies is at most `  m. Given

the above definitions, we can write down the (i, j)-th element, i 6= j, of the

matrix A(u(t), v(t)) as

A
ij

(u(t), v(t)) = (a
ij

+ v
ij

(t))(1 � u
ij

(t)), for all e
ij

2 E . (3.4)

We require that the resulting matrix is a negative Laplacian of the graph;

hence, we must have A
ii

(u(t), v(t)) = �P
j 6=i

A
ij

(u(t), v(t)), for all i 2 V .
Given a time interval [0, T ], define the following functional:

J(u, v) =
1

2

Z
T

0

k(t) kx(t) � x̄k2

2

dt,

where the weighting factor k(t) is positive and integrable over [0, T ]. This

constitutes the utility function of the adversary, and that of the designer is

�J(u, v). We will study two problems. In the first one, the adversary acts

first by selecting the links he is interested in breaking. Then, the network

designer optimizes his choices over the resulting graph, which we denote by

G(u(t)) = (N , E(u(t))), where E(u(t)) = E \ {e
ij

2 E : u
ij

(t) = 1}. In this
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case, the action set of the designer can be written as

V (u(t)) =
�
w 2 Rr | w = [w

12

, ..., w
1n

, w
23

, ..., w
(n�1)n

]T , w
ij

2 {0, b},
w

ij

= 0 if e
ij

/2 E(u(t)), kwk
1

 b`} .

The set of admissible controls for the designer, V(u), consists of all piecewise
continuous functions whose range is V (u). Formally, we define

V(u) = {v : [0, T ] ! V (u(t)) | v is a piecewise continuous function of t} .

The max–min problem can now be formally written as1

sup
u2U

inf
v2V(u)

J(u, v)

subject to ẋ(t) = A(u(t), v(t))x(t), x(0) = x
0

.

In the second problem, the order is reversed. Since the designer acts first

in this problem, he can optimize over the entire graph G. Thus, the action

set of the designer in this problem is V := V (0) and the set of its admissible

controls is V := V(0); the sets of actions and admissible controls of the

adversary remain the same. We can then write

inf
v2V

sup
u2U

J(u, v)

subject to ẋ(t) = A(u(t), v(t))x(t), x(0) = x
0

.

In a computer network, the max–min problem allows the network designer

(who is the maximizer here) to architect networks that are robust against

strategic virus di↵usion. The min–max problem finds applications in army

combat situations where the designer (the minimizer) attempts to counter

the attacks of the enemy intending to disrupt the network communication.

Given the nature of the players’ possible modifications of the network, as

described by (3.4), we can view the actions of the players as switches among

the possible Laplacian matrices resulting from modifying the links. Moreover,

the capability of the designer and the adversary to change the system matrix

1Even though existence of a maximum and a minimum has not yet been shown at this
stage, we will still call this the “max–min” problem in anticipation of such an existence
result later in the chapter. The formal definition below is still in terms of sup and inf.
The same argument applies to the min–max problem to be introduced shortly.
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renders it as a “switched” one. The optimal controllers for such systems can

exhibit Zeno e↵ect, i.e., they may switch infinitely many times over a finite

interval. In order to explicitly eliminate the possibility of infinite switching,

we make the following assumption in the remainder of this chapter.

Assumption 3.1. Let 0  r
1

< . . . < r
Ku  T be the switching times of

some u 2 U and 0  s
1

< . . . < s
Kv  T be those of some v 2 V. We assume

that K
u

, K
v

2 Z�0

are finite, and that there exists a globally minimum dwell

time ⌧ > 0 such that

⌧  min

⇢
r
i+1

� r
i

, s
i+1

� s
i

, |r
i

� s
j

|
���� i 2 [K

u

], j 2 [K
v

]

�
, (3.5)

over which the system matrix A(u, v) is time-invariant.

Note that this assumption is well motivated for practical reasons. Consider,

for example, a communication network where an adversary is a jammer in-

jecting an interfering signal at some links. If the adversary chooses to change

the set of links it is jamming, there must be some delay for the adversary to

change its configuration. Now, we make the following assumption for both

problems:

Assumption 3.2. The initial matrix A(0, 0), the time interval [0, T ], the

values ` and b, and the initial state x
0

are common information to both

players.

We recall the definition of an SPE.

Definition 3.1 (Saddle-Point Equilibrium (SPE) [63]). The pair (u?, v?)

constitutes an SPE if it satisfies the following pair of inequalities

J(u, v?)  J(u?, v?)  J(u?, v), (3.6)

for u 2 U , v 2 V.
The following remarks are now in order.

Remark 3.1. (Non-Rectangular Strategy Sets and Existence of SPE) When

the strategy sets are rectangular, i.e., the strategy of one player does not

restrict the strategy space of the other, the following relationship holds:

V = sup
u2U

inf
v2V

J(u, v)  inf
v2V

sup
u2U

J(u, v) = V , (3.7)
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where V , V are called, respectively, the lower and upper values of the game.

When the strategy sets are non-rectangular, however, the order in (3.7) may

not hold. Moreover, one should not expect the pair of inequalities (3.6) to

hold, and hence an SPE may not exist. In the max–min problem in this

chapter, the strategy sets of the players are non-rectangular as the adver-

sary’s action, removing links from G, could restrict the actions available to

the designer. •

Remark 3.2. (Problem Complexity) Let us consider the problem of the ad-

versary for a given strategy of the designer. Assume that the adversary can

act at K
u

2 Z�0

given time instances over the interval [0, T ]. Then, for

`  m, assuming that ku(t)k
1

= ` for all t 2 R�0

, the total number of links

that need to be tested in a brute-force approach is

✓
m

`

◆
Ku

�
⇣m
`

⌘
`Ku

. (3.8)

Clearly, the brute-force approach leads to an exponential number of computa-

tions as a function of K
u

. The same argument applies to the problem faced

by the network designer. •

3.4 Optimal Strategies

We will now present the solutions to the two problems introduced above.

In [64], we have shown that the canonical equations provided by the MP

are intractable due to the interdependence between the state, costate, and

the optimal controls; therefore, it may not be possible to obtain the optimal

strategies in closed form using the MP. Here, we take an alternative route

to arrive at the optimal strategies of the players by working directly with

the objective functional. In what follows, we will often drop the time index

and other arguments for notational simplicity. We will be using the term

“connected component” to refer to a set of connected nodes which have the

same values. The following quantities, which we associate with each e
ij

2 E ,
will be central to the derivation of the optimal strategies:

⌫
ij

:= �(x
i

� x
j

)2, w
ij

:= (a
ij

+ v
ij

)⌫
ij

. (3.9)
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3.4.1 The Min–Max Problem

The following theorem presents the optimal strategy of the adversary in the

min–max problem. Define the set

L
`

(v) = �
`

({(e
ij

, (a
ij

+ v
ij

)⌫
ij

) | e
ij

2 E}) ✓ E . (3.10)

Theorem 3.1. Under Assumptions 3.1 and 3.2, and for a fixed strategy v of

the designer, the optimal strategy of the adversary in the min–max problem

is

u?

ij

(v) =

(
1, e

ij

2 L
`

(v)

0, e
ij

/2 L
`

(v)
.

If the adversary has an optimal strategy of breaking fewer than ` links, then

either G has a cut of size less than ` or the nodes have reached consensus by

time t. In either of these cases, breaking ` links is also optimal.

Proof. For a fixed strategy of the designer v 2 V , we will show that it is

optimal for the maximizer to rank the links based on their w
ij

values, where

w
ij

was defined in (3.9). Under Assumption 3.1, the function x becomes

piecewise continuous. Hence, the function w
ij

, for all e
ij

2 E , is also piecewise
continuous and its value cannot change abruptly over a finite interval. As a

result, we can regard the system as a time-invariant one over a small interval

[t
0

, t
0

+ �] ⇢ [0, T ], where 0 < �  ⌧ , and ⌧ was defined in (3.5). The proof

consists of two steps.

(i) Showing that, over a small interval [t
0

, t
0

+ �], it is optimal for the

adversary to switch from a strategy u 2 U to another strategy u? 2 U ,

where u? entails breaking the ` links with the lowest w
ij

values.

(ii) Showing that allowing u? to mimic u for the remaining time of the

problem preserves the gain obtained over [t
0

, t
0

+ �].

Over a small interval, u and u? induce certain system matrices. Let the

system matrix corresponding to u over [t
0

, t
0

+ �] be A(u, v) = A, and let

kuk
1

< ` over this interval. Since the control strategies of both players are

time-invariant over this interval, we have

x(t) = eA(t�t

0

)x(t
0

), t 2 [t
0

, t
0

+ �]. (3.11)
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Let P (t) := eAt. Due to the structure of A, P (t) is a doubly stochastic matrix

for t � 0 [59, p. 63]. Note that we can write x(t
0

) = P̃ x
0

, where P̃ is some

doubly stochastic matrix. Indeed, assume that either or both controls had

switched once at some time t̃
0

2 [0, t
0

), and that the system matrix over

[0, t̃
0

) was Ã
1

, and the system matrix corresponding to [t̃
0

, t
0

) was Ã
2

. Then

x(t
0

) = e
˜

A

2

(t

0

� ˜

t

0

)e
˜

A

1

˜

t

0x
0

. Since both e
˜

A

1

t, e ˜

A

2

t are doubly stochastic matrices,

their product is also doubly stochastic. We can readily generalize this result

to any number of switches in the interval [0, t
0

). With this observation, we

can write

x(t) � x̄ = P (t � t
0

)P̃ x
0

� Mx
0

= (P (t � t
0

) � M)x(t
0

),

where the last equality follows from the fact that

P̃M = MP̃ = M, P̃ is doubly stochastic. (3.12)

We want to show that switching from strategy u to strategy u? at some time

t? 2 [t
0

, t
0

+ �], can improve the utility of the adversary. To this end, we

assume that the matrix induced by u? over [t
0

, t?) is A, while the system

matrix corresponding to u? over [t?, t
0

+�] is B. Define the doubly stochastic

matrix Q(t) := eBt, t � 0. Over [t?, t
0

+ �], the strategies u and u? are

identical except at link e
ij

2 E , where u
ij

= 0 and u?

ij

= 1, i.e., kuk
1

< ku?k
1

over this sub-interval. It follows that:

A
ij

> B
ij

= 0, A
kl

= B
kl

8e
kl

6= e
ij

. (3.13)

Formally, we want to prove the following inequality:

Z
t

0

+�

t

0

k(t) k(P (t � t
0

) � M)x(t
0

)k2

2

dt

<

Z
t

?

t

0

k(t) k(P (t � t
0

) � M)x(t
0

)k2

2

dt

+

Z
t

0

+�

t

?

k(t) k(Q(t � t?) � M)P (t? � t
0

)x(t
0

)k2

2

dt,

47



or equivalently

Z
t

0

+�

t

?

k(t) · ⇥k(Q(t � t?) � M)P (t? � t
0

)x(t
0

)k2

2

� k(P (t � t
0

) � M)x(t
0

)k2

2

⇤
dt > 0. (3.14)

Using (3.12) and the semi-group property, (3.14) simplifies to

Z
t

0

+�

t

?

k(t) · x(t
0

)T⇤(t, t?)x(t
0

)dt > 0, (3.15)

where ⇤(t, t?) = P (t? � t
0

)Q(2(t � t?))P (t? � t
0

) � P (2(t � t
0

)). A su�cient

condition for (3.15) to hold is

h(t, x(t
0

)) = x(t
0

)T⇤(t, t?)x(t
0

) > 0, for t > t?.

As � # 0, we can write P (t) = I + tA + O (�2), where O (�2) /�  L for

su�ciently small � and some finite constant L. We therefore have

⇤(t, t⇤) =
�
I + (t? � t

0

)A+ O �
�2
�� �

I + 2(t � t?)B + O �
�2
��

�
I + (t? � t

0

)A+ O �
�2
��� �

I + 2(t � t
0

)A+ O �
�2
��

= 2(t � t?)B + 2(t? � t
0

)A � 2(t � t
0

)A+ O �
�2
�

= 2(t � t?)(B � A) + O �
�2
�
. (3.16)

For su�ciently small �, the first term dominates the second term. Recall

that the quadratic form of a Laplacian matrix L exhibits the following form:

xTLx =
P

n

l=1

P
l�1

k=1

L
kl

(x
l

�x
k

)2, for any x 2 Rn. Note that B �A is in fact

a negative Laplacian. Using (3.13), we can then write

h(t, x(t
0

)) = 2(t � t?)
X

r>s

(A
sr

� B
sr

) (x
r

(t
0

) � x
s

(t
0

))2 + O �
�2
�

= 2(t � t?)A
ij

(x
j

(t
0

) � x
i

(t
0

))2 + O �
�2
�
. (3.17)

For small enough �, the higher order terms are dominated by the first term.

Hence, if there is a link e
ij

such that x
i

(t
0

) 6= x
j

(t
0

), there exists t? such that

h(t, x(t
0

)) > 0 for t 2 (t?, t
0

+ �]. Since t
0

was arbitrary, we conclude that

the optimal strategy must satisfy ku?(t)k
1

= ` for all t, given that each of

the ` links connects two nodes having di↵erent values.
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If no link such that x
i

(t
0

) 6= x
j

(t
0

) exists at a given time t
0

, the adversary

does not need to break additional links, although breaking more links does

not a↵ect optimality because h(t, x(t
0

)) = 0 in such a case. There are two

cases under which the adversary cannot find a link to make h(t, x(t
0

)) > 0:

(i) The graph at time t
0

is one connected component. In this case, the

nodes have already reached consensus and ku?(t)k
1

< `. This is a losing

strategy for the adversary as he has failed in preventing nodes from reaching

agreement; (ii) The graph at time t
0

has multiple connected components, and

the number of links connecting the components is less than `. The adversary

here possesses a winning strategy with ku?(t)k
1

< `, as he can disconnect G
into multiple components and prevent consensus.

Next, we need to show that the adversary will modify the ` links with

the lowest w
ij

values. Let us again restrict our attention to the interval

[t
0

, t
0

+ �] where the adversary applies strategy u. Assume (to the contrary)

that the links the adversary breaks over this interval are not the ones with

the lowest w
ij

values. In particular, assume that the adversary chooses to

break link e
kl

, while there is a link e
ij

such that w
ij

< w
kl

. Assume that the

adversary switches at time t? 2 [t
0

, t
0

+ �] to strategy u? by breaking link e
ij

and unbreaking link e
kl

. Then, (3.17) becomes

h(t, x(t
0

)) = 2(t � t⇤) (w
kl

(t
0

) � w
ij

(t
0

)) + O �
�2
�
.

Hence, by following the same arguments as above, we can conclude that

breaking e
kl

is not optimal.

The second step of the proof is to show that switching to strategy u?

guarantees an improved utility for the adversary regardless of how the original

trajectory corresponding to u changes beyond time t
0

+ �. To this end, we

will assume that from time t
0

+ � onward, strategy u? will mimic strategy u.

Assume that strategy u switches from matrix A to matrix C over the interval

[t
0

+�, t
0

+2�], and define R(t) := eCt. Hence, strategy u? will also switch from

the system matrix B to matrix C. However, the trajectories corresponding to

u and u? will have di↵erent initial conditions at time t
0

+�, due to the switch

that strategy u? made at time t?. Figure 3.1 illustrates this idea. Recall that

according to A, we have kuk
1

< ` and u
ij

= 0. Here, the system matrix

B can di↵er from the matrix A in two ways: either (i) B dictates breaking

one additional link compared to A, or (ii) B dictates breaking link e
ij

and
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tt

�
t0 t0 + �

t0 + 2�

A(u�
, v

�) = A A(u�
, v

�) = B A(u�
, v

�) = C

A(u�
, v

�) = CA(u�
, v

�) = A

Figure 3.1: A demonstration of the technique used in the proof. The blue
solid trajectory corresponds to u while the red dashed trajectory
corresponds to u?.

unbreaking link e
kl

where w
ij

< w
kl

. Consider Case (i) first and let us study

the behavior of the system over the interval [t
0

+ �, t
0

+ 2�] where we can

assume that the system is time-invariant. To show that the gain obtained

over [t
0

, t
0

+ �] by the switch made by u? is maintained over [t
0

+ �, t
0

+ 2�],

we must prove the following inequality:

Z
t

0

+2�

t

0

+�

k(t) · [L
1

� L
2

] dt > 0, (3.18)

where

L
1

:= k(R(t � (t
0

+ �)) � M)Q(t
0

+ � � t?)P (t? � t
0

)x(t
0

)k2

2

,

L
2

:= k(R(t � (t
0

+ �)) � M)P (t
0

+ � � t
0

)x(t
0

)k2

2

.

As before, it su�ces to prove that the integrand L
1

� L
2

is positive. Let us

now expand both L
1

and L
2

.

L
1

= x(t
0

)TP (t? � t
0

)Q(t
0

+ � � t?)(R(t � (t
0

+ �)) � M)

(R(t � (t
0

+ �)) � M)Q(t
0

+ � � t?)P (t? � s)x(t
0

)

= x(t
0

)TP (t? � t
0

)Q(t
0

+ � � t?)(R(2(t � (t
0

+ �))) � M)Q(t
0

+ � � t?)

P (t? � t
0

)x(t
0

)
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= x(t
0

)T (P (t? � t
0

)Q(t
0

+ � � t?)R(2(t � (t
0

+ �)))Q(t
0

+ � � t?)

P (t? � t
0

) � M)x(t
0

).

Similarly,

L
2

= x(t
0

)T (P (�)R(2(t � (t
0

+ �)))P (�) � M)x(t
0

).

We can then write

L
1

� L
2

= x(t
0

)T (P (t? � t
0

)Q(t
0

+ � � t?)R(2(t � (t
0

+ �)))Q(t
0

+ � � t?)

P (t? � t
0

) � P (�)R(2(t � (t
0

+ �)))P (�))x(t
0

)

:= x(t
0

)T (F
1

� F
2

)x(t
0

).

Before we perform a first-order Taylor expansion to the above terms, let

us define the following quantities: ⌧
1

= t? � t
0

, ⌧
2

= (t
0

+ �) � t?, and

⌧
3

= t � (t
0

+ �), where t? 2 [t
0

, t
0

+ �] and t 2 [t
0

+ �, t
0

+ 2�]. Using

Proposition 2.1 in Section 2.7, we can now expand F
1

and F
2

as follows:

F
1

=
�
I + ⌧

1

A+ O �
⌧ 2
1

�� �
I + ⌧

2

B + O �
⌧ 2
2

�� �
I + 2⌧

3

C + O �
⌧ 2
3

��

�
I + ⌧

2

B + O �
⌧ 2
2

�� �
I + ⌧

1

A+ O �
⌧ 2
1

��

=
�
I + ⌧

1

A+ ⌧
2

B + O �
�2
�� �

I + 2⌧
3

C + O �
�2
��

�
I + ⌧

1

A+ ⌧
2

B + O �
�2
��

=
�
I + ⌧

1

A+ ⌧
2

B + 2⌧
3

C + O �
�2
�� �

I + ⌧
1

A+ ⌧
2

B + O �
�2
��

= I + 2⌧
1

A+ 2⌧
2

B + 2⌧
3

C + O �
�2
�

F
2

=
�
I + �A+ O �

�2
�� �

I + 2⌧
3

C + O �
⌧ 2
3

�� �
I + �A+ O �

�2
��

=
�
I + �A+ 2⌧

3

C + O �
�2
�� �

I + �A+ O �
�2
��

= I + 2�A+ 2⌧
3

C + O �
�2
�
.

Hence, we have

F
1

� F
2

= 2 (⌧
1

� �)A+ 2⌧
2

B + O �
�2
�

= 2⌧
2

(B � A) + O �
�2
�

= 2 ((t
0

+ �) � t?) (B � A) + O �
�2
�
,
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and thereby we obtain

L
1

� L
2

= 2 ((t
0

+ �) � t?)
X

r>s

(A
sr

� B
sr

) (x
r

(t
0

) � x
s

(t
0

))2 + O �
�2
�

= 2 (t
0

+ � � t?)A
ij

(x
j

(t
0

) � x
i

(t
0

))2 + O �
�2
�
.

If instead the matrix B dictates breaking link e
ij

and unbreaking link e
kl

,

where w
ij

< w
kl

, the di↵erence in the utilities would be

L
1

� L
2

= 2 (t
0

+ � � t?) (w
kl

(t
0

) � w
ij

(t
0

)) + O �
�2
�
.

Hence, in both cases, for small enough �, we conclude that L
1

� L
2

> 0,

which implies that (3.18) is satisfied, and the gain obtained by switching to

system matrix B at t? 2 [t
0

, t
0

+ �] is maintained over [t
0

+ �, t
0

+ 2�]. Note

that the e↵ect of switching to matrix C is cancelled out in F
1

�F
2

, and hence

L
1

�L
2

, since the strategy u? is mimicking strategy u. Hence, by partitioning

the interval (t
0

+2�, T ] into small sub-intervals of length � and repeating the

above analysis, we conclude that the gain due to the switch at time t? is

preserved over the remaining time of the problem.

We can now derive the optimal strategy of the designer in the min–max

problem. Recall the set L
`

(v) ✓ E defined in (3.10). Let L
`,k

(v) 2 E denote

the k-th link of L
`

(v), k 2 [`]. Also, define L�1

`,k

(v) 2 R as the value such

that �(L
`,k

(v),L�1

`,k

(v)) = L
`,k

(v). We assume that L�1

`,1

(v) � . . . � L�1

`,`

(v).

Further, define the sets P(v) = {(e
ij

, a
ij

⌫
ij

) | e
ij

/2 L
`

(v)} ⇢ E ⇥ R and

P(v) = {(e
ij

, ⌫
ij

) | e
ij

/2 L
`

(v)} ⇢ E ⇥ R. We also define

[vS(b)]ij =

(
b, e

ij

2 S
0, e

ij

/2 S .

Theorem 3.2. In the min–max problem, and under Assumptions 3.1 and

3.2, the optimal strategy of the designer is to run Algorithm 3.1 and set

v?
ij

2 {0, b} if ⌫
ij

= 0. Further, it is optimal for the designer to modify `

links.

Proof. By Theorem 3.1, we deduce that kv?(t)k
1

= b`, because the designer

would be at a disadvantage if he modifies fewer links than the adversary.
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Algorithm 3.1: Computing the optimal strategy for the minimizer in the
min–max problem.

0: input: a strategy v with kvk
1

= 0

1: for i = ` # 1

2: if 9S ✓ �(P(0)), |S| = i, L
`,i

(0) /2 L
`

(vS(b))

3: Set v?
ij

= b, 8e
ij

2 S [ �
`�i

�P(vS(b))
�
.

4: Exit for loop.
5: end

6: end

7: if kvk
1

= 0

8: Set v?
ij

= b for all e
ij

2 �
`

�P(0)
�
.

9: end

We first consider the designer’s strategy over a fixed small interval [t
0

, t
0

+�]

over which both u and v are fixed. Using similar steps as those leading to

(3.15), and after applying a first-order Taylor expansion, we can write the

designer’s utility over [t
0

, t
0

+ �] as

Z
t

0

+�

t

0

k(t) ·2(t�t
0

)
X

j>i

(a
ij

+v
ij

)(1�u
ij

)(x
i

(t
0

)�x
j

(t
0

))2dt+O �
�2
�
. (3.19)

According to Theorem 3.1, and in the absence of the designer, it is optimal

for the adversary to break the links in L
`

(0). Therefore, the designer must

attempt to modify the ranking of the links such that the links (or a subset

of them) in L
`

(0) are not in L
`

(v?). In essence, this is what Algorithm 3.1

attempts to achieve. Being of the lowest negative value, and hence the link

both the adversary and the designer are interested in, let us explore how

the designer can push L
`,`

(0) higher in the ranking of the link values. The

designer can achieve this if under some strategy v 2 V , the value L�1

`,`

(0) is

no longer among the lowest ` negative values; in other words, the designer

can alter the ranking if there is a set S ⇢ P(0), |S| = `, such that when he

sets v
ij

= b for all links in S, there will be ` values that are smaller than

L�1

`,`

(0) (steps 2 and 3 in Algorithm 3.1). The adversary will then break the

links in S and will spare the link corresponding to L�1

`,`

(0) as required. To

see why this is optimal, consider the following two cases, covering the types

of links that can be in S.
Case 1: If a link in S is also in L

`

(0), then this is optimal due to the fact
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that the adversary will disconnect that link since it is in L
`

(0). Hence, if the

designer can utilize this link to modify the ranking and protect a link whose

associated value is more negative (L
`,`

(0) in this case), then this can only

improve his utility. The same reasoning applies if more than one of the links

in S are also in L
`

(0).

Case 2: If none of the links in S is in L
`

(0), then necessarily some of the

links in L
`

(0) will also be protected along with the link corresponding to

L�1

`,`

(0). This is because |S| = `, and the adversary can break at most ` links.

Hence, this scenario is more favorable to the designer than the previous one

and can therefore only improve his utility.

If such an S exists, then the designer would have exhausted all possible

moves, since |S| = `, and the algorithm terminates (step 4 of the algorithm).

Otherwise, if no such set exists in P(0), then the designer should try to

protect the next most negative link whose value is precisely L�1

`,`�1

(0) by

finding a set S of size `�1. Since L�1

`,`�1

(0) � L�1

`,`

(0), the link corresponding

to L�1

`,`

(0) along with S will constitute the set of ` links that the adversary

will break. Then, the designer should set v
ij

= b for all the links in S, and
for the remaining action the designer should select the link with the most

negative ⌫
ij

that is not in L
`

(vS(b)); this is precisely the set �
1

�P(vS(b))
�

(step 3 of the algorithm). The reason behind searching in P(vS(b)) and not in

P(vS(b)) after finding S is that the a
ij

’s only a↵ect the utility of the designer

when he attempts to alter the ranking.

This procedure then repeats until the designer has tried to protect all the

links in L
`

(0). If the designer fails in protecting all the links in L
`

(0), then

we must have kvk
1

= 0, i.e., the input strategy was not altered. Then, the

optimal strategy is to set v
ij

= b for the links with most negative ⌫
ij

’s in

P(0) (steps 7 and 8 in Algorithm 3.1).

The final step of the proof is to show that applying Algorithm 3.1 over [0, T ]

is optimal for the designer. To this end, it su�ces to show that modifying

links with lower ⌫
ij

values is more beneficial to the designer, as Algorithm

3.1 attempts to protect these links. Given the links e
ij

, e
kl

2 E , assume that

⌫
ij

< ⌫
kl

. Consider the two system matrices A and B, and let v
ij

= 0, v
kl

= b

and v?
ij

= b, v?
kl

= 0. Assume that a strategy v dictates applying matrix A

over [t
0

, t
0

+ �] and applying the matrix C over [t
0

+ �, t
0

+2�]. Also, assume

that according to v?, the designer applies A over [t
0

+�, t?), B over (t?, t
0

+�],
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and C over [t
0

+ �, t
0

+ 2�]. Following the steps presented in step 2 of the

proof of Theorem 3.1, we conclude that, for � small enough, the quantity

�2 (t
0

+ � � t?) b(⌫
kl

� ⌫
ij

) +O (�2) is negative. It then follows that the gain

obtained by switching to system matrix B at t? 2 [t
0

, t
0

+ �] is maintained

over [t
0

+�, t
0

+2�]. Hence, by partitioning the interval (t
0

+2�, T ] into small

sub-intervals of length � and repeating the above analysis, we conclude that

Algorithm 3.1 is optimal over [0, T ].

3.4.2 The Max–Min Problem

The following theorem specifies the optimal strategies of the adversary and

the designer in the max–min problem. Let F
`

(u) = �
`

({(e
ij

, ⌫
ij

) | e
ij

2
E(u)}) ⇢ E(u), where we recall that E(u) = E \ {e

ij

2 E | u
ij

(t) = 1}, for
some u 2 U . If m < 2`, the sets E(u),F

`

(u) could contain fewer than ` links.

For simplicity, we assume thatm � ` in the following proof, which guarantees

that |F
`

(u)| = `. However, the result of the theorem applies regardless of

this assumption, and the modification of the proof is straightforward.

Theorem 3.3. Under Assumptions 3.1 and 3.2, and for a fixed strategy u of

the adversary, the optimal strategy of the network designer in the max–min

problem is given by

v?
ij

(u) =

(
b, e

ij

2 F
`

(u)

0, e
ij

/2 F
`

(u)
.

If the designer has an optimal strategy of modifying fewer than ` links, then

either G has a cut of size less than ` or the nodes have reached consensus by

time t. In either of these cases, breaking ` links is also optimal.

Proof. The proof follows the same two steps used to prove Theorem 3.1. For

a fixed strategy of the adversary u, we will show that it is optimal for the

minimizer to rank the links based on their ⌫
ij

values. Under Assumption

3.1, the function x becomes piecewise continuous. Hence, the function ⌫
ij

,

for all e
ij

2 E(u), is also piecewise continuous and its value cannot change

abruptly over a finite interval. As a result, we can regard the system as a

time-invariant one over a small interval [t
0

, t
0

+ �] ⇢ [0, T ], where 0 < �  ⌧ ,

and ⌧ was defined in (3.5).
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Let v be an arbitrary strategy of the designer with kvk
1

< b`. Over a small

interval, v and v? induce certain system matrices. Let the system matrix

corresponding to v over [t
0

, t
0

+�] be A(u, v) = A. Since the control strategies

of both players are time-invariant over this interval, the state trajectory is

given by (3.11). We want to show that switching from strategy v to strategy

v? at some time t? 2 [t
0

, t
0

+ �] can improve the utility of the designer. To

this end, we assume that the matrix induced by v? over [t
0

, t?) is A, while

the system matrix corresponding to v? over [t?, t
0

+ �] is B. Assume that

e
ij

2 E(u), i.e., u
ij

= 0. Over [t?, t
0

+ �], the strategies v and v? are identical

except at link e
ij

, where v
ij

= 0 and v?
ij

= b, i.e., kvk
1

< kv?k
1

over this

sub-interval. It follows that:

B
ij

= a
ij

+ b > A
ij

= a
ij

, A
kl

= B
kl

, 8e
kl

6= e
ij

. (3.20)

Following similar steps to those in the proof of Theorem 3.1, we conclude

that it su�ces to prove

h(t, x(t
0

)) = x(t
0

)T⇤(t, t?)x(t
0

) < 0, for t > t?,

where ⇤(t, t?) was defined in the proof of Theorem 3.1. For su�ciently small

�, we can arrive at the expansion in (3.16). Using (3.20) and properties of

Laplacian matrices, we can then write

h(t, x(t
0

)) = 2(t � t?)
X

r>s

(A
sr

� B
sr

) (x
r

(t
0

) � x
s

(t
0

))2 + O �
�2
�

= �2(t � t?)b (x
j

(t
0

) � x
i

(t
0

))2 + O �
�2
�
. (3.21)

For small enough �, the higher order terms are dominated by the first term.

Hence, if there is a link e
ij

such that x
i

(t
0

) 6= x
j

(t
0

), there exists t? such that

h(t, x(t
0

)) < 0 for t 2 (t?, t
0

+ �]. Since t
0

was arbitrary, we conclude that

the optimal strategy must satisfy kv?(t)k
1

= b` for all t, given that each of

the ` links connects two nodes having di↵erent values.

If no link such that x
i

(t
0

) 6= x
j

(t
0

) exists at a given time t
0

, the designer

does not need to break additional links, although breaking more links does

not a↵ect optimality because h(t, x(t
0

)) = 0 in such a case. There are two

cases where the designer cannot find a link to make h(t, x(t
0

)) < 0, and

they were presented in the proof of Theorem 3.1 in the case of the adversary.
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However, unlike the case of the adversary, Case (i) presents a winning strategy

for the designer as the nodes are in agreement. Case (ii) is not necessarily a

winning or a losing strategy for the designer.

Next, we need to show that the designer will modify the ` links in E(u)
with the lowest ⌫

ij

values. Let us again restrict our attention to the interval

[t
0

, t
0

+ �] where the designer applies strategy v. Assume (to the contrary)

that the links the designer modifies over this interval are not the ones with

the lowest ⌫
ij

values. In particular, assume that the designer chooses to

modify link e
kl

2 E(u), while there is a link e
ij

2 E(u) such that ⌫
ij

< ⌫
kl

.

Assume that the designer switches at time t? 2 [t
0

, t
0

+ �] to strategy v? by

modifying link e
ij

instead of link e
kl

. Then, (3.21) becomes

h(t, x(t
0

)) = �2(t � t⇤)b (⌫
kl

(t
0

) � ⌫
ij

(t
0

)) + O �
�2
�
.

Hence, by following the same arguments as above, we can conclude that

modifying e
kl

is not optimal.

The second step of the proof is to show that switching to strategy v?

guarantees an improved utility for the designer regardless of how the original

trajectory corresponding to v changes beyond time t
0

+ �. To this end, we

will assume that from time t
0

+ � onward, strategy v? will mimic strategy v.

Assume that strategy v switches from matrix A to matrix C over the interval

[t
0

+ �, t
0

+2�]. Hence, strategy v? will also switch from the system matrix B

to matrix C. However, the trajectories corresponding to v and v? will have

di↵erent initial conditions at time t
0

+ �, due to the switch that strategy v?

made at time t?. Recall that according to A, we have kvk
1

< b` and v
ij

= 0.

Here, the system matrix B can di↵er from the matrix A in two ways: either

(i) B dictates modifying one additional link compared to A, or (ii) B dictates

modifying link e
ij

instead of link e
kl

where ⌫
ij

< ⌫
kl

. Consider the behavior

of the system over the interval [t
0

+ �, t
0

+2�] where we can assume that the

system is time-invariant. To show that the gain obtained over [t
0

, t
0

+ �] by

the switch made by v? is maintained over [t
0

+ �, t
0

+ 2�], it su�ces to prove

that the integrant L
1

� L
2

is negative, where L
1

and L
2

were defined in the

proof of Theorem 3.1. For Case (i), by following the steps presented in the

proof of Theorem 3.1, we can write

L
1

� L
2

= �2 (t
0

+ � � t?) b (x
j

(t
0

) � x
i

(t
0

))2 + O �
�2
�
.
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For Case (ii), the di↵erence in utilities would be

L
1

� L
2

= 2 (t
0

+ � � t?) (w
kl

(t
0

) � w
ij

(t
0

)) + O �
�2
�
.

Hence, for small enough �, we conclude that L
1

� L
2

< 0. By partitioning

the interval (t
0

+ 2�, T ] into small sub-intervals of length � and repeating

the above analysis, we conclude that the gain due to the switch at time t?

is preserved over the remaining time of the problem. This concludes the

proof.

Next, we present the optimal strategy of the adversary. To this end, define

the set

D
`

= �
`

({(e
ij,

a
ij

⌫
ij

) | e
ij

2 E} [ {(e
ij

, (a
ij

+ b)⌫
ij

) : e
ij

2 E}).

Theorem 3.4. In the max–min problem, and under Assumptions 3.1 and

3.2, the optimal strategy of the adversary is given by

u?

ij

(t) =

(
1, e

ij

2 D
`

0, e
ij

/2 D
`

.

Further, it is optimal for the adversary to break ` links.

Proof. By Theorem 3.3, we deduce that ku?(t)k
1

= `, because the adversary

would be at a disadvantage if he breaks fewer links than the designer. We

first consider the adversary’s strategy over a fixed small interval [t
0

, t
0

+ �]

over which both u and v are fixed. Using a first-order Taylor expansion, the

adversary’s utility over [t
0

, t
0

+ �] is given by (3.19).

In this problem, the adversary has the first-mover-advantage and needs

to dispose of the links that can reduce his utility. The adversary knows

that, according to v?(u), the designer attempts to make the ⌫
ij

’s smaller by

adding b to the corresponding edge weights. However, we cannot rule out

the possibility that (a
lk

+ b)⌫
lk

> a
ij

⌫
ij

, for some links e
kl

and e
ij

. Hence,

the adversary is not only interested in finding the smallest negative (a
ij

+

b)⌫
ij

’s, but also needs to consider the a
ij

⌫
ij

’s themselves. It follows that the

adversary needs to find the terms that can become very small (negative) and

set u
ij

= 1 to the corresponding links. But those links are exactly the ones
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included in D
`

. Formally, we can write

�
X

j>i

eij2D`

(a
ij

+ v
ij

)⌫
ij

 �
X

j>i

eij /2D`

(a
ij

+ v
ij

)⌫
ij

,

This confirms that, over the interval [t
0

, t
0

+ �], u? is as claimed.

The final step of the proof is to show that switching from a strategy u

to strategy u? guarantees an improved utility for the designer over [0, T ].

To this end, it su�ces to show that modifying links with lower w
ij

values

is more beneficial to the adversary. For the links e
ij

, e
kl

2 E , assume that

w
ij

< w
kl

. Consider the two system matrices A and B, and let u
ij

= 0,

u
kl

= 1 and u?

ij

= 1, u?

kl

= 0. Assume that the strategy u dictates applying

matrix A over [t
0

, t
0

+ �] and applying the matrix C over [t
0

+ �, t
0

+ 2�].

On the other hand, we assume that according to u?, the adversary applies A

over [t
0

+ �, t?), B over (t?, t
0

+ �], and C over [t
0

+ �, t
0

+ 2�]. Following the

steps presented in step 2 of the proof of Theorem 3.1, we conclude that, for

� small enough, the quantity 2 (t
0

+ � � t?) (w
kl

� w
ij

) + O (�2) is positive,

which implies that the gain obtained by switching to system matrix B at

t? 2 [t
0

, t
0

+ �] is maintained over [t
0

+ �, t
0

+ 2�]. Hence, by partitioning

the interval (t
0

+2�, T ] into small sub-intervals of length � and repeating the

above analysis, we conclude that u? is optimal over [0, T ].

Remark 3.3. (Potential-Theoretic Analogy) When the graph is viewed as an

electrical network, a
ij

+ v
ij

can be viewed as the conductance of link e
ij

2 E,
and x

i

�x
j

as the potential di↵erence across the link. Therefore, according to

Theorems 3.2 and 3.3, the optimal strategy of the designer in both problems

involves finding the links with the highest potential di↵erence (or the lowest

⌫
ij

’s) and increasing the conductance of those links by setting v
ij

= b. This

leads to increasing the power dissipation across those links, which translates

to increasing the information flow across the network and results in faster

convergence. The optimal strategy of the adversary should therefore involve

breaking the links with the highest power dissipation. But power dissipation

is given by (a
ij

+ v
ij

)(x
i

�x
j

)2, and this is exactly what the adversary targets

according to Theorems 3.1 and 3.4. •
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3.4.3 From Potential Theory to the Maximum Principle

In this section, we show that the strategies derived in the above theorems

satisfy the first-order necessary conditions for optimality given by the MP.

We will address here the min–max problem; a theorem similar to the one

presented below can be obtained also for the max–min problem. In [64],

we showed that the optimal strategies provided by the MP for the min–

max problem are the same as those derived in Theorems 3.1 and 3.2, with

the ranking of the links performed after replacing the quantity ⌫
ij

with the

quantity (p
j

� p
i

)(x
i

� x
j

), where p is the costate vector. The next theorem

states that the potential-theoretic strategies satisfy the MP if the controllers

do note switch infinitely many times over [0, T ].

Theorem 3.5. Under Assumptions 3.1 and 3.2, the optimal strategies in

Theorems 3.1 and 3.2 satisfy the canonical equations of the MP.

Proof. See Section 3.8.

3.4.4 Complexity of the Optimal Strategies

We next study the complexity of the optimal strategies. We first start with

the max–min problem. Assuming, as in Remark 3.2, that the players switch

their strategies a total of K times over [0, T ], we conclude that the worst-case

complexity of the strategy of either player is O(K ·m logm) as their strategies

involve merely the ranking of sets of size at most 2m. As for the min–max

problem, the complexity of the adversary’s strategy is O(K · m logm). The

main bottleneck in the strategy of the designer is step 2 in Algorithm 3.1.

The size of the set P(0) is at most m� `; thus, the worst-case complexity for

the designer is K ·Pm�`

i=1

�
m�`

i

� ⇡ K ·P`

i=1

(m�`)i. By comparison with (3.8),

we conclude that the optimal strategies achieve vast complexity reductions.

3.4.5 An Illustrative Example

The goal of this example is twofold: (i) to show how the players execute their

strategies; and (ii) to serve as a counterexample showing that an SPE may

not exist and to provide some guidelines as to when one would exist. We will

study the interaction between the designer and the adversary for the case
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when T = ⌧ , and ⌧ is very small. By Assumption 3.1, we conclude that the

players cannot change the actions they choose at time t = 0. Assume that G
is a complete graph with three nodes with the following weights:

A(0, 0) =

2

64
�4 3 1

3 �5 2

1 2 �3

3

75 .

Define e
1

= (1, 2), e
2

= (2, 3), e
3

= (1, 3). Let ⌫
12

= �1, ⌫
23

= �2, and

⌫
13

= �5. Let x(0) = [1, 2, 3]T and ` = 1. Consider the following two cases:

Case 1: (b = 1) Let us first consider the max–min problem. We have

D
1

= �
1

({(e
1

,�3), (e
1

,�4), (e
2

,�4), (e
3

,�5), (e
2

,�6), (e
3

,�10)}) = {e
3

}.

Hence, according to Theorem 3.4, the adversary breaks e
3

, and we have that

E(u?) = E \ e
3

. We also have F
1

(u?) = {e
2

}, which means that v? = [0, 1, 0]T

and u? = [0, 0, 1]T . Hence, using (3.19), we can write

V =

Z
T

0

k(t) · 2t[3(x
1

(0) � x
2

(0))2 + 3(x
2

(0) � x
3

(0))2]dt+ O �
�2
�

=

Z
T

0

k(t) · 12tdt+ O �
�2
�
.

For the min–max problem, Algorithm 3.1 uses the following sets L
1

(0) =

{e
3

} and P(0) = {(e
1

,�3), (e
2

,�4)}. Let S = {e
2

}, and note that S 2
�(P(0)) = {e

1

, e
2

}. We then have v
S

(1) = [0, 1, 0]T and L
1

(v
S

(1)) = {e
2

}.
Note that L

1

(0) /2 L
1

(vS(1)). Hence, the condition in step 2 of the algorithm

is satisfied with this choice of S, and we have v? = vS(1). Then, Theorem

3.2 says that the designer will increase the weight of e
2

, and Theorem 3.1

says that the adversary will break the same link, i.e., v? = [0, 1, 0]T and

u? = [0, 1, 0]T . We thus have

V =

Z
T

0

k(t) · 14tdt+ O �
�2
�
.

We conclude that in this case V > V , and an SPE does not exist.

Case 2: (b = 0.4) By repeating the above steps, we conclude that in the

max–min problem we have v? = [0, 0.4, 0]T and u? = [0, 0, 1]T , and we can
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write

V =

Z
T

0

k(t) · 10.8tdt+ O �
�2
�
.

For the min–max problem, one cannot find a set S satisfying the conditions

of step 2 in Algorithm 3.1. To execute step 8 of the algorithm, note that

L
1

(0) = {e
3

}, and hence �
1

(P(0)) = {e
2

}. We therefore have v? = [0, 0.4, 0]T

and u? = [0, 0, 1]T , and hence

V =

Z
T

0

k(t) · 10.8tdt+ O �
�2
�
.

In this case, the pair of inequalities (3.6) are satisfied and an SPE exists.

The main di↵erence between the two cases was that the designer was able to

find a set S that allows him to alter the ranking and deceive the adversary

when b = 1. This made the adversary break e
3

in the max–min problem

and break e
2

in the min–max problem which led to having V 6= V . When

such a set does not exit, the strategy of the adversary is unchanged in both

problems, and hence the upper and lower values would agree. Hence, for an

SPE to exist, one needs a behavior similar to Case 2 to occur throughout

the problem horizon [0, T ]. This of course depends on the value of b and the

weights a
ij

. Section 3.5 explores the question of existence of an SPE further.

3.5 A Su�cient Condition for the Existence of an SPE

Thus far, we have solved the min–max and max–min problems separately

and showed that the derived optimal strategies achieve the upper and lower

values. Hence, to prove the existence of an SPE, it remains to verify whether

the pair of inequalities (3.6) can be satisfied under some assumptions, even

though the action sets of the players are non-rectangular in the max–min

problem. Besides the issue of non-rectangular action sets, the main reason

that the upper and lower values are di↵erent is mainly due to the ability of

the minimizer to deceive the maximizer by altering the ranking of the most

negative values. If we remove this ability from the network designer, we

should expect that an SPE would exist. The following theorem makes this

argument formal. Define � := 4kx
0

k21
✏

2

, ✏ > 0. We assume that ✏ is chosen to

guarantee � > 1.
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Theorem 3.6. Given ✏ > 0, assume that T is small enough such that (3.36)

in Section 3.8 holds. Then, under Assumptions 3.1 and 3.2, a su�cient con-

dition for the existence of an SPE for the underlying zero-sum game between

the designer and the adversary is to select b such that

0  b  min
eij ,ekl2E

|�a
ij

� a
kl

| , (3.22)

given that a
ij

6= a
kl

and a
ij

> �a
kl

whenever a
ij

> a
kl

, for all e
ij

, e
kl

2 E.

Proof. It su�ces to show that L
`

(v?) = L
`

(0) = D
`

as this would imply that

the adversary would break the same links whether he acts first or second,

and as a result the strategy of the minimizer in both problems will be the

same. This will guarantee that (3.6) is satisfied. This would occur if the

minimizer cannot protect any of the links in L
`

(0). In other words, this will

happen if the minimizer cannot satisfy the condition in step 2 of Algorithm

3.1 for any i 2 [`]. A su�cient condition for L
`

(v?) = L
`

(0) = D
`

to hold is

to require

min
eij2�(P(0))

(a
ij

+ b)⌫
ij

> max
eij2L`(0)

a
ij

⌫
ij

.

This implies that no matter how the designer changes the weights of the links

in �(P(0)), he cannot make those links more negative than the links in L
`

(0).

To satisfy this inequality, we will establish that whenever a
ij

⌫
ij

> a
kl

⌫
kl

, we

must have (a
ij

+ b)⌫
ij

> a
kl

⌫
kl

, for all e
ij

, e
kl

2 E . We can then re-write the

condition on b as

b  a
ij

⌫
ij

� a
kl

⌫
kl

�⌫
ij

= a
kl

|⌫
kl

|
|⌫

ij

| � a
ij

, 8e
ij

, e
kl

2 E (3.23)

Consider the following two cases. If ⌫
kl

� ⌫
ij

, then we must have a
kl

> a
ij

.

Then, by assumption we have that a
kl

> �a
ij

. By Lemma 3.1 in Section 3.8,

we can write

a
kl

|⌫
kl

|
|⌫

ij

| � a
ij

� 1

�
a
kl

� a
ij

> 0. (3.24)

Next, consider the case when ⌫
ij

> ⌫
kl

. In this case, a
ij

can be larger or

smaller than a
kl

. However, if a
ij

> a
kl

, and recalling that a
ij

⌫
ij

> a
kl

⌫
kl

,

then

�a
kl

< a
ij

< a
kl

|⌫
kl

|
|⌫

ij

|  �a
kl

,
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which is a contradiction. The case a
kl

= a
ij

is excluded by assumption.

Hence, in this case, we must have a
ij

< a
kl

, and the inequality in (3.24)

applies. Thus, by choosing b as in (3.22), we obtain the condition we are

seeking. Note that we do not need to consider the case when a
ij

⌫
ij

= a
kl

⌫
kl

since the players will be indi↵erent as to which link to choose.

Remark 3.4. The condition derived in the Theorem 3.6 requires the network

to be “su�ciently diverse” in the sense that the weights of the links have to

be not only di↵erent from each other, but also a factor � apart. This is due

to the fact that we were seeking uniform bounds on the ⌫
ij

’s, for all e
ij

2 E .
If we allow b to vary with time, then one can find less restrictive conditions

to ensure the existence of an SPE. However, this would require (3.23) to be

verified at each time instant. Further, the bound derived in (3.24) is loose,

because it was obtained by bounding |v
kl

| and |v
ij

| independently. Tighter

bounds could be obtained by studying the dynamics of |⌫
kl

|/|⌫
ij

|. However,

studying the time derivative of this ratio is not tractable. •
Remark 3.5. This result highlights the fact that, in general, Stackelberg

games are more natural to study security problems than zero-sum games. In

fact, the leader-follower formulation fits many real-world security scenarios;

see [65] and the references therein. However, the su�cient condition we

derive here is a step in the right direction for establishing the existence of an

SPE for the zero-sum game between the designer and the adversary. We are

currently investigating whether this condition is also necessary. •

3.6 Attack-II: Adversary vs. Network Designer

Assume now that both the adversary and the designer are capable of adding

signals to all the nodes in the network in order to carry out their respective

objectives. The dynamics in this case are given by:

ẋ(t) = Ax(t) + v(t) + u(t), x(0) = x
0

, (3.25)

where x(t) is the state of the network. Also, u(t) is the signal to be added

by the adversary and that controlled by the designer is v(t). The system

matrix A is time-invariant in this setting and it satisfies the properties in

(3.2) and (3.3), with A
ij

= a
ij

. To capture physical constraints, we assume
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that both signals must satisfy power and energy constraints. Formally, the

action spaces of the players in this case are

U =
�
u 2 C1[0, T ] | ku(t)k2

2

 P
max

, 8t 2 [0, T ],

kuk2

L

2

 E
max

< TP
max

 
,

V =
�
v 2 C1[0, T ] | kv(t)k2

2

 P
max

, 8t 2 [0, T ],

kvk2

L

2

 E
max

< TP
max

 
.

It will be evident from the structure of the Hamiltonian that if we allow

E
max

� TP
max

, it is straightforward to show that both v?, u? will have mag-

nitude
p
P
max

throughout [0, T ], and the energy constraint will be satisfied;

see Section 2.4 for a similar case. We thus consider the more interesting case

where the players do not have enough energy to operate at maximum power

throughout [0, T ]. Also, the case where the power and budgets are di↵er-

ent for the players can be readily obtained from the results we demonstrate

below.

As in the previous section, we are interested in studying the interaction

between the designer, who attempts to minimize J(u, v), and the adversary

who is interested in maximizing J(u, v). We make the following assumption.

Assumption 3.3. The matrix A, the time interval [0, T ], the values P
max

and E
max

, and the initial state x
0

are known to both players.

Unlike Attack-I, the zero-sum game played by the designer and the adver-

sary admits a pure-strategy SPE as the following theorem proves. To derive

the feedback SPE, we will invoke Theorem 8.1 in [63, p. 427] which provides

a necessary and su�cient condition for the existence of a feedback SPE. We

will also derive the open-loop SPE using Theorem 8.2 in [63, p. 428]. Let

V (t, x) be the value function we seek. Define the vector V
x

:= @

@x

V . The

Hamiltonian associated with the game can then be written as:

H(x, V
x

, u, v) =
k(t)

2
kx � x̄k2

2

+ V T

x

(Ax+ u+ v)

+ �
1

(t)(kuk2

2

� P
max

) + ⌫
1

(kuk2

2

� E
max

)

+ �
2

(t)(kvk2

2

� P
max

) + ⌫
2

(kvk2

2

� E
max

),

where �
1

,�
2

2 C1[0, T ] and ⌫
1

, ⌫
2

are constant Lagrange multipliers. Recall
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Isaacs condition [63]:

min
kvk2

2

P

max

max
kuk2

2

P

max

H(x, V
x

, u, v) = max
kuk2

2

P

max

min
kvk2

2

P

max

H(x, V
x

, u, v), (3.26)

and note that it is satisfied here because the Hamiltonian is separable in u

and v.

Theorem 3.7. Under Assumption 3.3, the value function V (t, x) = xTXx

satisfies Isaacs condition (3.26), where X � 0 is a symmetric matrix that

satisfies the following Riccati di↵erential equation:

Ẋ = XA+ ATX +
k

2
M � k

2
I, X(T ) = 0.

Further, the pair

v?(t) = �
p

E
max

/T
Xx

kXxk
2

, u?(t) =
p

E
max

/T
Xx

kXxk
2

,

constitutes a feedback SPE for the zero-sum game between the network de-

signer and the adversary.

Proof. Note that

argmax
kuk2

2

P

max

H(x, V
x

, u, v?) = argmax
kuk2

2

P

max

V T

x

u+ (�
1

(t) + ⌫
1

)kuk2

2

 argmax
kuk2

2

P

max

kuk
2

kV
x

k
2

+ (�
1

(t) + ⌫
1

)kuk2

2

,

argmin
kvk2

2

P

max

H(x, V
x

, u?, v) = argmin
kvk2

2

P

max

V T

x

v + (�
2

(t) + ⌫
2

)kvk2

2

� argmin
kvk2

2

P

max

�kvk
2

kV
x

k
2

+ (�
2

(t) + ⌫
2

)kvk2

2

,

where the inequalities follow from the Cauchy–Schwarz inequality. We there-

fore conclude that u? must be aligned with V
x

, whereas v? and V
x

must have

opposite directions.

To obtain u?, we di↵erentiate the Hamiltonian:

@

@u
H = 2(�

1

(t) + ⌫
1

)u+ V
x

= 0. (3.27)

Note that optimality requires that both players spend all the energy available

to them. Hence, the energy constraints are, in fact, equality ones. We
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therefore have that �
1

 0 and ⌫
1

6= 0. By complementary slackness, we

have the following two cases.

Case 1: (�
1

(t) < 0 =) ku(t)k2

2

= P
max

, for some t 2 [0, T ]) Using

(3.27), we obtain

� 1

2(�
1

+ ⌫
1

)
=

kuk2

2

uTV
x

. (3.28)

We thus have

u?

1

=
kuk2

2

kuk
2

kV
x

k
2

V
x

=
p

P
max

V
x

kV
x

k
2

.

Case 2: (ku(t)k2

2

< P
max

=) �
1

(t) = 0, for some t 2 [0, T ]) Using

(3.27), we obtain
�1

2⌫
1

=
uTV

x

kV
x

k2

2

, (3.29)

and therefore

u =
uTV

x

kV
x

k2

2

V
x

,

This enables us to write

E
max

=

Z
T

0

kuk2

2

dt =

Z
T

0

(uTV
x

)2

kV
x

k2

2

dt,

which is satisfied by the control

u?

2

=
p
E

max

/T
V
x

kV
x

k
2

.

It is not clear whether it is optimal to apply u?

1

or u?

2

for some t 2 [0, T ]

or throughout [0, T ]. We need to solve for the Lagrange multipliers in order

to characterize the optimal control. By (3.29), we can obtain

⌫
1

= �1

2

kV
x

k
2p

E
max

/T
.

Since ⌫
1

is time-invariant, it must maintain this value even when �(t) < 0,

i.e., in Case 1. Hence, we can substitute this value in (3.28) to obtain

�
1

=
1

2

 
1p

E
max

/T
� 1p

P
max

!
kV

x

k
2

.

However, E
max

< TP
max

by assumption, which implies that �
1

(t) > 0. This
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contradicts the assumption in Case 1. It therefore follows that either �
1

(t) <

0 for all t 2 [0, T ] or kuk2

2

< P
max

for all t 2 [0, T ]. The former is impossible

because
R

T

0

ku?

1

k2

2

dt = TP
max

> E
max

. Hence, u? = u?

2

as claimed. By

following the same steps as above, and noting that �
2

� 0 and ⌫
2

6= 0, it is

straightforward to show that v? = �u?.

It remains to find V
x

to completely characterize u? and v?. To this end,

we can now write [63, (8.9) on p. 426]:

� @

@t
V =

k

2
kx � x̄k2

2

+ V T

x

Ax.

Since the cost functional is quadratic in the state, we make the guess that

V (t, x) = xTX(t)x, X � 0. Recalling that M = 1

n

11

T , we can write

�xT Ẋx =
k

2
kx � x̄k2

2

+ xTXAx+ xTATXx

=
k

2
(xTx � 2xT x̄+ x̄T x̄) + xTXAx+ xTATXx

=
k

2
(xTx � 2xTMx+ xTMx) + xTXAx+ xTATXx.

We therefore conclude that X must satisfy the following Riccati di↵erential

equation:

Ẋ = XA+ ATX +
k

2
M � k

2
I, X(T ) = 0,

as claimed. The proof of the theorem is thus complete.

The following theorem derives the open-loop SPE for the zero-sum game.

Theorem 3.8. Under Assumption 3.3, the pair

v?(t) = �
p

E
max

/T
p

kpk
2

, u?(t) =
p

E
max

/T
p

kpk
2

, (3.30)

constitutes an open-loop SPE for the zero-sum game between the network

designer and the adversary, where p is the costate vector:

p(t) =

Z
T

t

eA(2⌧�t)(x
0

� x̄)d⌧,

which can be computed o✏ine, and locally, by both players.

Proof. The proof follows the same steps as the proof of Theorem 3.7. The

di↵erence here is that p is the costate vector (p plays the role of V
x

which
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appears in the previous theorem) which must satisfy the costate equation [63,

(8.14) on p. 429]:

ṗ = � @

@x
H = �Ap � 2(x � x̄), p(T ) = 0.

It follows that

p(t) = 2

Z
T

t

eA(⌧�t)(x(⌧) � x̄)d⌧,

and by substituting the optimal controllers (3.30) in the ODE (3.25), we can

find the optimal trajectory x and write

p(t) =

Z
T

t

eA(2⌧�t)(x
0

� x̄)d⌧,

as claimed.

Remark 3.6. The above two theorems imply that if the graph is connected,

and T is large enough, the nodes would reach consensus even though an ad-

versary is present. This is because the designer is able to cancel the signal

of the adversary completely. Note that this is due to the assumption that

the designer has complete knowledge about A and x. An interesting future

direction is to study this problem in the case where the players have varying

knowledge about the network’s topology and state. This will cast the game

into an asymmetric information setting. We suspect that the designer would

not always be successful in annihilating the adversary’s e↵ect in this case.

This invites one to establish an analogy with communication networks where

an extensive body of research has been devoted to the study of interference

cancelation under di↵erent types of uncertainties. •

3.7 Summary

In this chapter, we have considered two types of adversarial attacks on a

network of agents performing distributed averaging. Both attacks have the

common objective of slowing down the convergence of the computation at

the nodes to the global average. We introduced a network designer whose ob-

jective is to assist the nodes in reaching consensus by countering the attacks

of the adversary. Attack-I involves an adversary and a network designer
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who are capable of targeting links. We have formulated and solved two prob-

lems that capture the competition between the two players. We considered

practical models for the players by constraining their actions along the prob-

lem horizon. The derived strategies were shown to exhibit a low worst-case

complexity. When Zeno behavior is excluded, we showed that the optimal

strategies admit a potential-theoretic analogy. Finally, we showed that when

the link weights are su�ciently diverse, an SPE exists for the zero-sum game

between the designer and the adversary. Attack-II, on the other hand, in-

volves an adversary and a network designer who are able to modify the values

of the nodes by injecting signals of bounded power and energy. We utilized

the maximum principle to completely characterize the optimal strategies of

the players and showed that an SPE exists in this case.

3.8 Additional Proofs

In this section, we provide a proof of Theorem 3.5. We also provide a technical

result that is instrumental in proving Theorem 3.6.

Proof for Theorem 3.5 . For a fixed strategy v of the designer, it was

shown in [64] that the adversary’s strategy derived using the MP requires

finding the lowest f
ij

= (a
ij

+ v
ij

)(p
i

� p
j

)(x
j

� x
i

) values, for all e
ij

2
E . However, Theorem 3.1 requires finding the lowest w

ij

’s. The designer’s

strategy relies on finding the lowest (p
i

� p
j

)(x
j

� x
i

) values according to

the MP, and it requires finding the lowest ⌫
ij

’s according to Theorem 3.2. In

order to prove the theorem, and since w
ij

= (a
ij

+ v
ij

)⌫
ij

, a
ij

+ v
ij

� 0, it is

su�cient to show that w
ij

 w
kl

implies that f
ij

 f
kl

, for all e
ij

, e
kl

2 E .
Without loss of generality, we will assume that v

ij

= v
kl

= 0.

The Hamiltonian associated with the min–max problem is:

H(x, p, u, v) =
1

2
k(t) kx(t) � x̄k2

2

+ p(t)TA(u(t), v(t))x(t),

where p(t) is the costate vector, whose existence is guaranteed by the MP

because an optimal solution for the min–max exists. The first-order necessary

conditions for optimality are (noting that AT = A and recalling that V =
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V (0)) [66]:

ṗ = � @

@x
H

= �k(x � x̄) � Ap, p(T ) = 0 (3.31)

ẋ = Ax, x(0) = x
0

(3.32)

u?(v) = argmax
U

H(x, p, u, v), v? = argmax
V

H(x, p, u?(v), v).

To prove the theorem, we will rely on approximating the state and costate up

to first-order using Taylor expansion. To this end, we partition the problem’s

horizon into L > K small sub-intervals of length 0 < �  ⌧ , where ⌧ was

defined in (3.5), over which the system is time-invariant. More formally,

define the times 0 = t
1

< t
2

< . . . < t
L

< t
L+1

= T . Let A
i

be the system

matrix corresponding to the interval [t
i

, t
i+1

], i 2 [L]. We will denote the i-th

row of matrix A
k

by A
k,i

and its (i, j)-th element by ak
ij

. The proof comprises

two steps:

(i) We establish the claim of the theorem over [t
L

, t
L+1

].

(ii) We generalize the argument to hold over [0, T ].

We start by considering the interval [t
L

, t
L+1

]. The solutions to ODEs

(3.31) and (3.32) over this interval are:

x
AL(t) = eAL(t�tL)x

AL(tL)

p
AL(t) =

Z
T

t

e�AL(t�⌧)(x
AL(⌧) � x̄)d⌧.

Let P
i

(t) := eAit = I + tA
i

+O (�2). We can then re-write the above expres-

sions as

x
AL(t) = P

L

(t � t
L

)x
AL(tL)

= (I + (t � t
L

)A)x
AL(tL) + O �

�2
�

p
AL(t) =

Z
T

t

P
L

(⌧ � t)[P
L

(⌧ � t
L

) � M ]x
AL(tL)d⌧

=

Z
T

t

[P
L

(2⌧ � t � t
L

) � M ]x
AL(tL)d⌧

=

Z
T

t

[I + (2⌧ � t � s)A
L

� M ]x
AL(tL)d⌧ + O �

�2
�
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= [(T � t)I + (T � t)(T � t
L

)A
L

� (T � t)M ]x
AL(tL) + O �

�2
�

= (T � t)(I � M)x
AL(tL) + O �

�2
�
,

where the last equality follows because (T � t)(T � t
L

)A
L

= O (�2). Define

⇠(↵, �) := ↵ � �, ↵, � 2 R, and write

x
AL(t) = (I + ⇠(t, t

L

)A
L

) x
AL(tL) + O �

�2
�

p
AL(t) = ⇠(T, t)(I � M)x

AL(tL) + O �
�2
�
. (3.33)

Further, define the matrices

G := I + ⇠(t, t
L

)A
L

, R := ⇠(T, t)(I � M),

and write

w
ij

= aL
ij

(x
AL,i � x

AL,j)(xAL,j � x
AL,i)

= aL
ij

x
AL(tL)

T (G
i

� G
j

)(G
j

� G
i

)Tx
AL(tL) + O �

�2
�

f
ij

= aL
ij

x
AL(tL)

T (R
i

� R
j

)(G
j

� G
i

)Tx
AL(tL) + O �

�2
�
,

where RT

i

, RT

i

are the i-th rows ofG and R, respectively. Using the definitions

of G and R, we obtain

(G
i

� G
j

)(G
j

� G
i

)T = �(I
i

� I
j

)(I
i

� I
j

)T � ⇠(t, t
L

)((I
i

� I
j

)(A
L,i

� A
L,j

)T

+ (A
L,i

� A
L,j

)(I
i

� I
j

)T )

� ⇠(t, t
L

)2(A
L,i

� A
L,j

)(A
L,i

� A
L,j

)T .

The last term is quadratic, and thus we can absorb it in O (�2). We then

have

aL
ij

(G
i

� G
j

)(G
j

� G
i

)T � aL
kl

(G
k

� G
l

)(G
l

� G
k

)T = aL
kl

(I
k

� I
l

)(I
k

� I
l

)T

� aL
ij

(I
i

� I
j

)(I
i

� I
j

)T + (aL
kl

(I
k

� I
l

)(A
L,k

� A
L,l

)T

� aL
ij

(I
i

� I
j

)(A
L,i

� A
L,j

)T )⇠(t, t
L

) + (aL
kl

(A
L,k

� A
L,l

)(I
k

� I
l

)T

� aL
ij

(A
L,i

� A
L,j

)(I
i

� I
j

)T )⇠(t, t
L

) + O �
�2
�
.
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Similarly, we have

aL
ij

(R
i

� R
j

)(G
j

� G
i

)T � aL
kl

(R
k

� R
l

)(G
l

� G
k

)T = (aL
kl

(I
k

� I
l

)(I
k

� I
l

)T

� aL
ij

(I
i

� I
j

)(I
i

� I
j

)T )⇠(T, t) + O �
�2
�
.

Let �
1

= aL
kl

(I
k

� I
l

)(I
k

� I
l

)T � aL
ij

(I
i

� I
j

)(I
i

� I
j

)T and �
2

= aL
kl

(I
k

�
I
l

)(A
L,k

� A
L,l

)T � aL
ij

(I
i

� I
j

)(A
L,i

� A
L,j

)T . We now have

w
ij

� w
kl

= x
AL(tL)

T (�
1

+ ⇠(t, t
L

)�
2

+ ⇠(t, t
L

)�T

2

)x
AL(tL) + O �

�2
�

f
ij

� f
kl

= ⇠(T, t)x
AL(tL)

T�
1

x
AL(tL) + O �

�2
�
.

If w
ij

� w
kl

 0, since ⇠(T, t) � 0, we can write

⇠(T, t)(w
ij

� w
kl

) = x
AL(tL)

T (⇠(T, t)�
1

+ ⇠(T, t)⇠(t, t
L

)�
2

+⇠(T, t)⇠(t, t
L

)�T

2

)x
AL(tL) + O �

�2
�

 0,

or

⇠(T, t)x
AL(tL)

T�
1

x
AL(tL) + O �

�2
�  0,

but the left hand side is f
ij

� f
kl

; hence, w
ij

 w
kl

implies that f
ij

 f
kl

as

required.

So far, we have verified the claim of the theorem over the interval [t
L

, T ]

only. We are now in a position to generalize the statement of the theorem

to the interval [0, T ]. The only complication that arises when studying this

interval is that the terminal condition, i.e. p
L�1

(t
L

), is not forced to be zero

as in [t
L

, T ].

Over the interval [t
L�1

, t
L

], the state and costate are

x
L�1

(t) = eAL�1

(t�tL�1

)x
AL�1

(t
L�1

)

p
AL�1

(t) = e�AL�1

(t�tL�1

)p
AL�1

(t
L�1

) �
Z

t

tL�1

e�AL�1

(t�⌧)(x
AL�1

(⌧) � x̄)d⌧.

Solving for p
AL�1

(t
L�1

) in terms of p
AL�1

(t
L

) and substituting back, we can

write p
AL�1

(t) in terms of p
AL�1

(t
L

) as follows:

p
AL�1

(t) = e�AL�1

(t�tL)p
AL�1

(t
L

) +

Z
tL

t

e�AL�1

(t�⌧)(x
AL�1

(⌧) � x̄)d⌧. (3.34)
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By continuity of the state and costate functions, it follows that x
AL�1

(t
L

) =

x
AL(tL), p

AL�1

(t
L

) = p
AL(tL). Using a first-order Taylor expansion and

(3.33), we can write

p
AL�1

(t) = (I + ⇠(t
L

, t)A
L�1

)p
AL(tL) + ⇠(t

L

, t)(I � M)x
AL�1

(t
L�1

) + O �
�2
�

= (I + ⇠(t
L

, t)A
L�1

)(⇠(t
L

, t)(I � M)x
AL(tL))

+ ⇠(t
L

, t)(I � M)x
AL�1

(t
L�1

) + O �
�2
�

= ⇠(t
L

, t)(I � M)x
AL�1

(t
L

) + ⇠(t
L

, t)(I � M)x
AL�1

(t
L�1

) + O �
�2
�
.

We can further simplify this expression using x
AL�1

(t) as follows:

⇠(t
L

, t)(I � M)x
AL�1

(t
L

) = ⇠(t
L

, t)(I � M)eAL�1

(tL�tL�1

)x
AL�1

(t
L�1

)

= ⇠(t
L

, t)(I � M)(I + ⇠(t
L

, t
L�1

)A
L�1

)x
AL�1

(t
L�1

)

+ O �
�2
�

= ⇠(t
L

, t)(I � M)x
AL�1

(t
L�1

) + O �
�2
�
,

and therefore we have

p
AL�1

(t) = 2⇠(t
L

, t)(I � M)x
AL�1

(t
L�1

) + O �
�2
�
. (3.35)

Comparing (3.33) and (3.35), we conclude that the argument used to prove

the claim over the interval [t
L

, T ] applies over [t
L�1

, t
L

]. Hence, w
ij

�w
kl

 0

implies that f
ij

� f
kl

 0 over [t
L�1

, t
L

].

Note that we can generalize (3.34) to any interval [t
i

, t
i+1

], i 2 [L], as

follows:

p
Ai(t) = e�Ai(t�ti+1

)p
Ai(ti+1

) +

Z
ti+1

t

e�Ai(t�⌧)(x
Ai(⌧) � x̄)d⌧.

Following similar steps to the above, we can arrive at

p
Ai(t) =

T � t
i

�
⇠(t

i+1

, t)(I � M)x
Ai(ti) + O �

�2
�
, t 2 [t

i

, t
i+1

],

which maintains the same structure as in (3.35), and the claim therefore

holds for the interval [t
i

, t
i+1

], i 2 [L], and the theorem is proved.

Lemma 3.1. Given ✏ > 0 and �  ⌧ , ⌧ defined in (3.5), one can select the
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problem horizon T small enough such that

✏  |x
i

(t) � x
j

(t)|  2 kx
0

k1 , 8e
ij

2 E , (3.36)

for all t 2 [0, T ].

Proof. By the structure of the system matrix in (3.1), we can deduce that

|x
i

� x
j

| cannot increase as t ! T . Thus

|x
i

(t) � x
j

(t)|  max
i,j2[n]

|x
i

(0) � x
j

(0)|
 2max

i2[n]
|x

i

(0)| = 2 kx
0

k1 .

This provides the uniform upper bound. In order to obtain a uniform lower

bound, we need to ensure that |x
i

(t)�x
j

(t)| does not approach zero as t ! T .

We are seeking a time t? such that for a given ✏ > 0, we have |x
i

(t)�x
j

(t)| � ✏

for all t < t? and all e
ij

2 E . We can then fix T < t? to ensure the existence of

a uniform lower bound on |x
i

(t) � x
j

(t)|. Let us again restrict our attention

to a small interval [t
0

, t
0

+ �] where the system is time-invariant, and let

the system matrix over this interval be A. We require that the system did

not reach equilibrium over this interval, i.e., x(t
0

+ �) 6= x̄. Without loss

of generality, we assume that x
1

(t
0

) > . . . > x
n

(t
0

)2. Define the following

dynamics:

d

dt
(y

i

� x
1

(t
0

)) =
X

j 6=i

A
ij

(x
1

(t
0

) � y
i

)

d

dt
(y

i

� x
n

(t
0

)) =
X

j 6=i

A
ij

(x
n

(t
0

) � y
i

),

with initial conditions y
i

(t
0

) = 2x
1

(t
0

), y
i

(t
0

) = 2x
n

(t
0

). Note that ẋ
i

=
P

j 6=i

A
ij

(x
j

� x
i

). It follows that ẏ
i

 ẋ
i

 ẏ
i

. By the comparison principle,

we conclude that y
i

� x
n

(t
0

)  x
i

 y
i

� x
1

(t
0

), for i 2 N . Note that we can

readily find the solution trajectories for y and y. By defining a
i

=
P

j 6=i

A
ij

,

we can then write

y
i

� x
1

(t
0

) = e�ai(t�t

0

)x
1

(t
0

), y
i

� x
n

(t
0

) = e�ai(t�t

0

)x
n

(t
0

).

2We are making the implicit assumption that x1(0) > . . . > xn(0).
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By solving the equation y
i�i

� x
1

(t
0

) = y
i

� x
n

(t
0

), we can find a time t?
i

when x
i�1

can potentially meet x
i

:

t?
i

=
1

a
i�1

� a
i

ln

✓
x
1

(t
0

)

x
n

(t
0

)

◆
+ t

0

.

If t?
i

> t
0

+ �, for all i 2 N , then we need to propagate the solution forward,

and keeping in mind that the system matrix could change, until we find a

time t?
i

in some interval [t̃, t̃+ �] where y
i�i

= y
i

for some i 2 N . Then, for a

given ✏ > 0, we can select T < t?
i

such that |x
i

�x
i�1

| � |y
i

�y
i�1

| � ✏; hence,

we conclude that for this choice of T we can guarantee that |x
i

�x
j

| � ✏ > 0

for all e
ij

2 E .
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CHAPTER 4

STABILIZATION IN THE PRESENCE OF
MODELING UNCERTAINTY

4.1 Background

In the previous chapters, we have taken a di↵erential game-theoretic ap-

proach toward designing robust strategies to control spread of information.

In this chapter, we take a di↵erent approach, assuming that the adversary

has already acted on the network, and that his intervention has led to a large

modeling uncertainty in the system. Instead of having a centralized network

designer as in the previous chapters, our alternative approach here investi-

gates the ability of the nodes to stabilize the network, in the presence of a

large modeling uncertainty, using a distributed control law.

Logic-based switching supervisory control has been proposed as a method

to overcome limitations of adaptive control schemes [67]. A fundamental

di↵erence between the two approaches is that while adaptive control requires

continuous tuning of parameters, supervisory control relies on logic-based

switching among a collection of candidate controllers. Continuous tuning

su↵ers from well-known issues such as loss of stabilizability. In the classical

supervisory control scheme, a centralized supervisor estimates the state of the

plant, and based on the history of estimation errors, it activates a certain

candidate controller. For a more detailed study of supervisory control, see

Chapter 6 of [68].

Supervisory control has been used in various problems and applications

[69–77]. In [69, 70], the set-point control problem has been studied using a

supervisory control framework. It has also been utilized in path-following

problems for underactuated systems with large modeling uncertainties [72].

Recently, supervisory control has been extended to addresses the problem of

stabilizing uncertain systems with quantized outputs [77].

In this chapter, motivated by its attractive properties, we extend the su-
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pervisory control framework to a distributed setting. A distributed version of

supervisory control can have wide applications in stabilization and tracking

problems over networked systems in the presence of large modeling uncer-

tainties.

4.2 Main Results

The main contribution of this chapter is extending the centralized supervi-

sory control framework to a distributed setting. We first provide a detailed

description of the main components in this scheme. We prove that when

the set in which the unknown parameters take values is finite, the switching

stops in finite time at each node. Further, we provide su�cient conditions

for achieving set-point tracking using this framework without requiring the

individual agents to have explicit knowledge of the desired set-point. Finally,

we apply this scheme to the distributed averaging problem in the presence

of unknown parameters.

Organization

In Section 4.3, we introduce the system model and present the problem formu-

lation. The main components of the distributed supervisory control scheme

are provided in Section 4.4. Section 4.5 contains the stability analysis of the

proposed scheme. An application to the distributed averaging problem is

presented in Section 4.6. We conclude the chapter in Section 4.7.

Notation

We denote the i-th row of a matrix X 2 Rn⇥m by [X]
i

2 Rm, and the (i, j)-th

entry of that matrix by [X]
ij

2 R. Similarly, we denote the i-th entry of a

vector x 2 Rn by [x]
i

2 R.
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4.3 System Model

Consider a network with n nodes, and let x 2 Rn be the state of the network,

where [x]
i

2 R is the state of node i. It is possible to extend this setting to the

case where the state of the i-th agent is k
i

-dimensional, where k
1

+. . .+k
n

= n;

however, in this chapter, we restrict our attention to the case where the state

of each node is scalar for simplicity. Let u 2 Rn be a vector consisting of the

inputs to all the nodes with [u]
i

2 R being a scalar input to node i. Further,

let y 2 Rn be a vector consisting of the outputs of all the nodes with [y]
i

2 R
being a scalar output of node i. Similar to the state variables, it is possible

to allow the nodes to take multiple inputs and produce multiple outputs,

and the restriction to the single-input single-output set-up is for purpose of

clarity in presentation.

The network is described by a graph whose topology is unknown, i.e., the

interconnections among the n nodes are not known. Let P = [r] be a finite

index set. To each p 2 P , we associate a graph G
p

= (V
p

, E
p

), where V
p

is

the set of vertices, and E
p

✓ V
p

⇥ V
p

is the set of edges. The index p? 2 P
is unknown to the nodes, and its corresponding graph, G

p

? , describes the

actual network under study. The graphs G
p

, p 6= p?, are di↵erent possibilities

of what G
p

? might be. To each graph G
p

, there corresponds a linear dynamical

system represented by a triple (A
p

, B
p

, C
p

), where A
p

, B
p

, C
p

2 Rn⇥n. Each

triple represents a di↵erent possibility of the actual system (A
p

? , B
p

? , C
p

?)

that governs the dynamics of the network. In particular, we assume that the

nodes operate according to the following linear dynamics:

ẋ = A
p

?x+B
p

?u, x(0) = x
0

,

y = C
p

?x.

We define the neighborhood of node i in the graph G
p

as

N
p

(i) = {j 2 V
p

| (j, i) 2 E
p

}.

Note that we have not explicitly included i in N
p

(i) to allow for applications

where node i is not able to measure its own state, for example.

In order to capture the underlying network topology, we must have that

the state x
i

, control u
i

, and measurement y
i

of node i can only depend on the
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Figure 4.1: A path graph with 3 nodes and its corresponding A
p

.

states, control inputs, and measurements of the nodes in N
p

(i). To this end,

we impose the following sparsity constraint on the matrices {A
p

, B
p

, C
p

| p 2
P}:

j /2 N
p

(i) =) [A
p

]
ij

= [B
p

]
ij

= [C
p

]
ij

= 0, p 2 P . (4.1)

Under this constraint, the matrices A
p

, B
p

, C
p

can be seen as an encoding

of the topology of the graph G
p

. To demonstrate the sparsity constraint,

consider the 3-node path graph shown in Fig. 4.1. For this graph, the

matrix A
p

must have the shown structure, where “ ⇤ ” can be any nonzero

real number.

Further, in order to be able to design decentralized controllers, we must

restrict the knowledge of node i about the graph G
p

. In particular, we assume

that the knowledge of node i about the topology of G
p

is only local; this can be

captured by restricting the knowledge of node i to the set {[A
p

]
i

, [B
p

]
i

, [C
p

]
i

}.
Formally, we make the following assumption.

Assumption 4.1. The set P is finite, and the set {[A
p

]
i

, [B
p

]
i

, [C
p

]
i

| p 2 P}
is known to node i.

Our goal is to design decentralized control inputs [u]
i

, via an extension

of the classical supervisory control scheme, in order to track the following

stable linear reference model:

ẋ
m

= A
m

x
m

, x
m

(0) = x0

m

, (4.2)

y
m

= C
m

x
m

,

where x
m

2 Rn and A
m

, C
m

2 Rn⇥n. Define the tracking error, e
T

, as follows:

e
T

= y
m

� y.

The problem we are solving here is not the general tracking problem, be-

cause there is no external reference signal. The reason behind introducing

the reference model is motivated by applications where the agents attempt
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to converge to a certain set-point without the explicit knowledge of that point.

An example of such a scenario is the distributed averaging problem where

nodes attempt to compute the average of their initial values, x
0

, without

knowing the value of the average a priori. We will apply our framework to

the distributed averaging problem in Section 4.6. Moreover, the standard

stabilization problem, i.e., regulating the state x to the origin, is a special

case of the problem we are solving and can be achieved by removing the

reference model, i.e., setting x
m

⌘ 0.

In the following section, we will introduce the distributed supervisory con-

trol scheme, and explain the functions of its main components in detail.

4.4 Distributed Supervisory Control Architecture

Figure 4.2 illustrates the general architecture of the distributed supervisory

control scheme. In this scheme, each node has access to a bank of candidate

controllers that take as input the outputs of the nodes in its neighborhood as

well as the tracking error. The “Sparse Filters” block in the figure emphasizes

that the local dynamics and controllers of node i can only use information

from neighboring nodes. It should be noted that there is no centralized sparse

filter implemented, and this block is introduced for the sake of demonstration

only. In this section, we will precisely explain how the information from the

neighboring nodes a↵ect the dynamics and control inputs of node i. Each

node has a local supervisor : a dynamical system that takes as input the

outputs and control inputs of the neighboring nodes and produces a switching

signal. The switching signal provided by the supervisor activates one of

the available controllers. The choice of a given control input is intended to

minimize the tracking error. We will study the supervisor in more detail

next.

4.4.1 The Distributed Supervisor

We will refer to the collection of the local supervisors by the distributed super-

visor. As illustrated in Fig. 4.3, the distributed supervisor has three main

blocks: a multi-estimator, a monitoring signal generator, and a switching

logic component. As in the centralized supervisory control case, there are cer-
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Figure 4.2: Distributed supervisory control architecture.

tain properties we require from the individual blocks of the local supervisors

which are crucial for achieving tracking. In particular, the multi-estimators

must guarantee that at least one estimation error e
p

is small. This will guar-

antee that switching halts in finite time. As for the candidate controllers,

they must ensure that the closed loop system is detectable with respect to

the estimation error. The switching logic must ensure that the estimation

error is bounded, while avoiding fast switching. Here, we will work with a

specific choice of these three blocks.

Distributed 
Multi-Estimator 

u

p 2 P +

�

e

1
p

e

n
p µ

n
p

µ

1
p �1

�n

...
...

Monitoring Signal  
Generator 

Monitoring Signal  
Generator Switching Logic 

Switching Logic 

y

yp

Figure 4.3: The distributed supervisor.

Distributed Multi-Estimator and Candidate Controllers

For now, we assume that the control input u is given. We will explain how

to select the control below. The distributed multi-estimator is a collection
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of local multi-estimators that are implemented at the nodes. At node i, the

local multi-estimator is a dynamical system that takes as input the outputs

and control inputs of the neighboring nodes, and it produces an estimate

[y
p

]
i

, p 2 P . At each node, we adopt the standard Luenberger observer to

design the multi-estimator. Let the matrix L
p

be sparse:

j /2 N
p

(i) =) [L
p

]
ij

= 0. (4.3)

The estimator equations at node i can then be written as

[ẋ
p

]
i

=
X

j2N(i)

[A
p

]
ij

[x
p

]
j

+ [B
p

]
ij

[u]
j

+ [L
p

]
ij

[y
p

� y]
j

,

[y
p

]
i

=
X

j2N(i)

[C
p

]
ij

[x
p

]
j

,

with arbitrary initial values [x
p

(0)]
i

. To write the estimator equations more

compactly, let x
p

= [[x
p

]
1

, . . . , [x
p

]
n

]T and y
p

= [[y
p

]
1

, . . . , [y
p

]
n

]T , for all p 2
P . Recalling that the matrices A

p

, B
p

, L
p

, C
p

are sparse, we can now write

ẋ
p

= A
p

x
p

+B
p

u+ L
p

(y
p

� y), x
p

(0) = x0

p

,

y
p

= C
p

x
p

,

where x0

p

= [[x
p

(0)]
1

, . . . , [x
p

(0)]
n

]T . It is important to note that x
p

, y
p

are

not stored at any node in the network, since they are centralized quantities,

and are introduced merely for notational simplicity.

We define the estimation error as e
p

= y
p

� y, p 2 P . We denote the

estimation error at the i-th node by

ei
p

= [y
p

� y]
i

, p 2 P .

As for the candidate control inputs at node i, we assume they are linear and

given by

[u
p

]
i

=
X

j2N(i)

[K
p

]
ij

[x
p

]
j

+ [F
p

]
ij

[e
T

]
j

, p 2 P ,

where the gain matrices K
p

and F
p

must be sparse to guarantee that the

controllers are decentralized. Formally, we have the following constraint on
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the gain matrices:

j /2 N i

p

=) [K
p

]
ij

= [F
p

]
ij

= 0, p 2 P . (4.4)

Similar to the estimators, for each p 2 P , we collect the control inputs of the

nodes into the vector u
p

= [[u
p

]
1

, . . . , [u
p

]
n

]T . We can then write

u
p

= K
p

x
p

+ F
p

e
T

, p 2 P .

In general, the number of candidate control inputs need not be equal to

|P| = r. However, we will assume in this chapter, for simplicity, that each

node has access to r controllers.

Monitoring Signal Generators

Each node implements a monitoring signal generator which keeps track of

the history of the estimation errors. This allows the switching decisions

(to be explained next) to be based on the history of errors instead of the

instantaneous estimation error values. The monitoring signals can be defined

as any norm of the estimation error. Here, we define the monitoring signal

at the i-th node as the square of the L
2

norm of ei
p

. Formally, we write

µi

p

(t) =

Z
t

0

kei
p

(s)k2

2

ds. (4.5)

It is more convenient for implementation purposes to express the monitoring

signal as an ODE:

µ̇i

p

= kei
p

k2

2

, µi

p

(0) = 0, p 2 P .

Switching Logic

The switching logic at each node takes the monitoring signals µi

p

, p 2 P , as

inputs and produces a switching signal �
i

: [0,+1) ! P which determines

the controller to be applied at each time instant. In particular, we have [u]
i

=

[u
�i ]i, i 2 [n]. The chosen controller should correspond to the monitoring

signal that has the lowest value. However, if we set �
i

= min
p2P µi

p

, we run
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into the risk of fast switching, which could be detrimental for the stability of

the system [68]. To this end, we will employ hysteresis switching logic at each

node with hysteresis constant h
i

> 0. The hysteresis constant is introduced

in order to prevent �
i

from switching its value too quickly. At each node, we

first initialize the switching signal as follows:

�
i

(0) = min
p2P

µi

p

(0).

Let p̂
i

(t) := argmin
p2P µi

p

(t). The signal �
i

switches its value at time t if

µi

p̂i
+ h

i

 µi

�i
. Figure 4.4 illustrates the hysteresis based logic at node i.

�i(0) = min
p�P

µ

i
p(0)

p̂i = arg min
p�P

µ

i
p

�i = p̂i

µ

i
p̂i

+ hi  µ

i
�i

yes no 

Figure 4.4: Hysteresis based switching logic.

4.5 Stability Analysis

In this section, we will obtain su�cient conditions for driving the tracking

error to zero. Our approach will consist of two main steps. First, we will show

that switching at all the nodes will halt in finite time. Then, assuming that

the switching has stopped at all the nodes, we will study the detectability

properties of the closed-loop system.

In order to prove that switching terminates in finite time, it is instrumental
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to show that e
p

? converges to zero exponentially fast. When p = p?, we have

ẋ
p

? � ẋ = (A
p

? + L
p

?C
p

?)(x
p

? � x).

To guarantee that x
p

? converges exponentially fast to x, we need to impose

the following condition.

Condition 4.1. The matrix A
p

? +L
p

?C
p

? is Hurwitz with L
p

? , C
p

? satisfying

(4.1) and (4.3), respectively.

Remark 4.1. This condition can be viewed as a distributed version of de-

tectability for the plant. In the case when C
p

= I, for all p 2 P, this condition

can be satisfied via diagonal dominance. Diagonal dominance can be achieved

by choosing

[L
p

]
ii

< �[A
p

]
ii

� max
p2P

X

⌘ 6=i

|[A
p

]
ij

|.

Note that the maximization can be carried out locally at each node because

of Assumption 4.1. To guarantee that L
p

is sparse, we can select it to be a

diagonal matrix. With such choice of L, the matrix A
p

? + L
p

? becomes di-

agonally dominant with negative diagonal entries, and by Gershgorin’s circle

theorem, it follows that the matrix is Hurwitz. •

Under Condition 4.1, x
p

? converges exponentially fast to x, and conse-

quently e?
p

= C
p

?(x
p

? � x) converges to zero exponentially fast regardless of

the applied control u. We now have the following proposition, which is an

immediate extension of its counterpart in the centralized architecture [68,78].

Proposition 4.1. For all i 2 [n], there exists a time T ?

i

and an index q?
i

2 P
such that �

i

(t) = q?
i

, for all t � T ?

i

. Moreover, ei
q

?
i

2 L2, for all i 2 [n].

Proof. Since e?
p

converges to zero exponentially fast, it follows from (4.5)

that µi

p

? is bounded. Let K
i

2 N be such that µi

p

?  K
i

. By definition,

µi

p

is a nondecreasing function, for all p 2 P . Hence, each µi

p

must have a

limit. Since P is finite, there exists a time T
i

such that either µi

p

� K
i

or

µi

p

(t
2

) � µi

p

(t
1

) < h
i

for all t
2

> t
1

� T
i

; therefore, at most one more switch

can occur for t � T
i

. This in turn implies that there exists a time T ?

i

such

that �
i

(t) = q?
i

, q?
i

2 P , for t � T ?

i

. Since µi

p

? is bounded, µi

q

?
i
must also be

bounded. By (4.5), it then follows that ei
q

?
i

2 L2.
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Note that after the switching stops, the estimate of node i, q?
i

, might not

match that of another node j, q?
j

. In other words, the perception of node i

about the underlying graph will in general be di↵erent than that of node j.

This leads to new analysis challenges that were not present in the centralized

structure.

In order to study the stability of the system following termination of

switching, we first define

x̂
q

? := [[x
q

?
1

]
1

, . . . , [x
q

?
n
]
n

]T ,

q? := [q?
1

, . . . , q?
n

]T .

Further, we need to construct the following matrices:

Â
q

? :=

2

664

[A
q

?
1

]
1

...

[A
q

?
n
]
n

3

775 , B̂
q

? :=

2

664

[B
q

?
1

]
1

...

[B
q

?
n
]
n

3

775 , Ĉ
q

? :=

2

664

[C
q

?
1

]
1

...

[C
q

?
n
]
n

3

775 ,

K̂
q

? :=

2

664

[K
q

?
1

]
1

...

[K
q

?
n
]
n

3

775 , F̂
q

? :=

2

664

[F
q

?
1

]
1

...

[F
q

?
n
]
n

3

775 , L̂
q

? :=

2

664

[L
q

?
1

]
1

...

[L
q

?
n
]
n

3

775 .

With these definitions, we can write the control law u after the switching

stops as

u = K̂
q

? x̂
q

? + F̂
q

?e
T

.

Define x := [xT , x̂T

q

? ]T . After the switching stops, the closed-loop system

becomes:

ẋ = Ax+Dx
m

ê
q

? = Cx,

where

A =

"
A

p

? � B
p

?F̂
q

?C
p

? B
p

?K̂
q

?

�(B̂
q

?F̂
q

? + L̂
q

?)C
p

? Â
q

? + B̂
q

?K̂
q

? + L̂
q

?Ĉ
q

?

#
,

D =

"
B

p

?F̂
q

?C
m

B̂
q

?F̂
q

?C
m

#
,
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C =
h
�C

p

? Ĉ
q

?

i
.

Consider now the matrix

� =

"
B

p

?F̂
q

? + L
p

?

B̂
q

?F̂
q

? + L̂
q

?

#
,

and note that

A � � C =

"
A

p

? + L
p

?C
p

? B
p

?(K̂
q

? � F̂
q

?Ĉ
q

?) � L
p

?Ĉ
q

?

0 Â
q

? + B̂
q

?(K̂
q

? � F̂
q

?Ĉ
q

?)

#
.

Using output injection, we can write

ẋ = (A � � C)x+ � ê
q

? +Dx
m

. (4.6)

To achieve tracking, the matrix A � � C must be Hurwitz. Hence, in

addition to Condition 4.1, we need to impose the following condition.

Condition 4.2. The matrix Â
q

? + B̂
q

?(K̂
q

? � F̂
q

?Ĉ
q

?) is Hurwitz for all q? =

[q?
1

, . . . , q?
n

]T with {q?
1

, . . . , q?
n

} ⇢ P , while satisfying (4.1) and (4.4).

Remark 4.2. Assume that B
p

= C
p

= I, for all p 2 P, and let us select

[K
p

]
i

= �[A
p

]
i

, for all i and p. Note that such selection for [K
p

]
i

is made

possible by Assumption 4.1. In this case, Condition 4.2 simplifies to requiring

�F̂
q

? to be sparse and Hurwitz. This can be achieved by selecting F
p

= kI,

where k 2 R
>0

. •

We are now ready to state the main result of this section. Denote the state

to which the reference model converges by x?

m

.

Proposition 4.2. Under Conditions 4.1 and 4.2, and assuming that x
m

converges asymptotically to x?

m

, the state of the plant x remains bounded,

and it asymptotically converges to

x? = �(A
p

? +B
p

?(K̂
q

? � F̂
q

?Ĉ
q

?))�1B
p

?F̂
q

?C
m

x?

m

.

Proof. Under Conditions 4.1 and 4.2, the matrix A � � C is Hurwitz. We

know from Proposition 4.1 that ei
q

?
i

2 L2 for all i 2 [n]. Noting that

ê
q

? = [e1
q

?
1

, . . . , en
q

?
n
], we conclude that ê

q

? converges to zero as t ! 1. Then,
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because x
m

is bounded, we deduce from (4.6) that x must remain bounded.

Using the fact that ê
q

? converges to zero, the steady-state expression follows

immediately from (4.6).

Remark 4.3. Since the objective of the controller is to enable the plant to

track the reference model, we are interested in cases where x? = x?

m

. Assum-

ing that B
p

, C
p

, C
m

are all equal to the identity matrix, for all p 2 P, the

steady-state expression simplifies to

x? = �(A
p

? + K̂
q

? � F̂
q

?)�1F̂
q

?x?

m

.

Hence, by setting K
p

= �A
p

for all p 2 P, we will have x? = x?

m

if and only

if p? = q?, i.e., when all the nodes correctly identify the unknown topology.

Otherwise, there will be a discrepancy between x and the reference trajectory

x
m

. Nonetheless, in certain scenarios, this discrepancy may be negligible as

we will demonstrate in Section 4.6. •
Finally, we note that the multi-estimators and controllers we used here are

only a specific possibility which we adopted to demonstrate the idea behind

distributed supervisory control. One possible variation is to select the control

inputs as

u
p

= K
p

y
p

+ F
p

e
T

, p 2 P .

By following similar steps to the above, one can show that, with this choice

of controllers, the matrix that is required to be Hurwitz in Condition 4.2

becomes

Â
q

? + B̂
q

?(K̂
q

? � F̂
q

?)Ĉ
q

? .

Hence, di↵erent choices of the controllers will provide di↵erent conditions

on the system parameters to ensure stability. We are currently investigat-

ing di↵erent design choices that would place less restrictions on the system

parameters.

4.6 Application: Tracking Consensus Dynamics

In this section, we apply the distributed supervisory control scheme to the

distributed averaging problem [12, 79] in the case where the dynamics of

the nodes contain unknown parameters. In distributed averaging networks,
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the nodes attempt to converge to the average of their initial values, x(0),

by performing local averaging. When the dynamics of the nodes contain

unknown parameters, adaptive control techniques have been applied to solve

this problem in [80]. By performing logic-based switching, our scheme enables

convergence to the average without requiring continuous tuning of parameters

as in the adaptive control approach. In [12, 81], the problem of achieving

consensus when the underlying topologies are switching has been studied.

Note that the topology in our case is unknown, but fixed, and the switching

is performed at each node to choose the controller that minimizes the tracking

error.

To specialize the reference model (4.2) to the distributed averaging dy-

namics, we assume that A
m

is the negative of the weighted Laplacian matrix

of a connected undirected graph. In particular, we have

A
m

= AT

m

, A
m

1 = 0,

[A
m

]
ij

� 0, [A
m

]
ij

= 0 () (i, j) /2 E , i 6= j,

where the weights [A
m

]
ij

, j 6= i are randomly generated. The connectivity of

the graph corresponding to A
m

is necessary for the convergence to the average

[12]. We assume that there is full state observation across the network; we

therefore set C
m

= I and C
p

= I, for all p 2 P . We also set B
p

= I, for

all p 2 P . Since the agents attempt to compute the average of their initial

values, we set x0

m

= x
0

and x0

p

= x
0

, for all p 2 P .

We consider a network of n = 5 agents and set x
0

= [1, . . . , 5]T . The agents

will therefore attempt to converge to 1

5

1

Tx
0

= 3. We let |P| = 10, that is,

there are 10 possible topologies, and we set p? = 10. The matrices {A
p

}
p2P

are generated at random, without any connectivity requirements.

In order to satisfy Condition 4.1, we pick L
p

= �kI, for all p 2 P , where

k 2 R is selected as explained in Remark 4.1. In view of Remark 4.2, we set

K
p

= �A
p

and F
p

= 5I, for all p 2 P , in order to satisfy Condition 4.2.

We will run two experiments, where we generate di↵erent {A
p

}
p2P , Am

matrices, each time while respecting the connectivity constraint on A
m

. Fig-

ure 4.5 demonstrates the trajectories of the state of the network x, the state

of the reference model x
m

, the switching signals �
i

, and the tracking error

e
T

for the first experiment. In this case, all the agents correctly converge to

the correct topology G
p

? , and, hence, converge to the average value 3. The
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tracking error therefore converges to zero.
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Figure 4.5: All the agents correctly identify the unknown topology.

Figure 4.6 illustrates the same signals for the second experiment. In this

case, agent 3 does not select the correct topology, i.e., q?
3

6= 10. Nonetheless,

it converges to 3.09, and the tracking error is very small. The remaining

nodes all converge to 3. A potential future research direction is quantifying

the tracking error in the event where q?
i

6= p?.

4.7 Summary

We proposed a distributed version of the classical centralized supervisory con-

trol scheme. Our scheme is based on logic-based switching among candidate

controllers at each node. The switching decisions performed at each node

depend only on information from neighboring nodes. The goal of the con-

trollers is to track a set-point, without requiring the agents to have explicit

knowledge of this point. The classical stabilization or regularization problem
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Figure 4.6: One of the agents does not identify the correct topology.
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is a special case of this set-point tracking problem. We showed that switching

stops in finite time at each node, and we provided su�cient conditions for

stability. We applied our scheme to the distributed averaging problem when

the dynamics of the agents contain unknown parameters. Simulation results

demonstrated the e�cacy of our scheme.
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CHAPTER 5

VIRUS SPREAD IN NETWORKS:
STABILITY ANALYSIS

5.1 Background

In this chapter, and in preparation for studying various control design ques-

tions in infected networks in the following chapter, we perform stability anal-

ysis for the n-intertwined Markov model [41, 82], which is a virus spread

model that belongs to the SIS class. Epidemiological models for disease

spread among humans constitute important classes of spread dynamics, as

they can potentially provide models for many engineering related phenomena

such as the spread of viruses in computer networks [41, 83–85]. There is a

vast literature on various aspects of epidemiological models and the study of

infection propagation over networks; we refer the reader to [84,86,87] and the

references therein. Characterization of the stability properties of such dif-

fusion dynamics is a crucial first step towards designing e�cient algorithms

for controlling the evolution of such dynamics. Most dynamical epidemio-

logical models, including the n-intertwined Markov model studied here, can

possess two equilibrium points, under certain conditions: an all-healthy state

at which the network is cured, and an endemic state at which the infection

persists in the network [11,26,88,89]. A threshold called the basic reproduc-

tion number, whose value depends on the curing and infection rates across

the network as well as the network topology, determines to which equilibrium

point the state of the network will converge [88].

For the n-intertwined Markov model, the basic reproduction number, in-

troduced as a critical threshold in [41, 82], characterizes this threshold phe-

nomenon. In particular, when the basic reproduction number is less than

or equal to 1, the unique equilibrium is the all-healthy state; otherwise, the

endemic state emerges. Our aim in this chapter is to fully characterize the

stability properties of this model over networks with directed topologies.
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A su�cient condition for the stability of the all-healthy state over strongly

connected digraphs has been established in [36]. For compartmental SIS

models, a necessary and su�cient condition for the global asymptotic stabil-

ity of this equilibrium was presented in [26] using a linear Lyapunov function.

For the same model, the global asymptotic stability of the endemic state over

strongly connected directed graphs has been studied in [26,89,90]—see [89] for

a summary of other approaches to establish this result. The results in [26,90]

rely on the assumption that the state of the model will evolve in the strictly

positive quadrant when the state of the network is initialized away from

the origin. The result in [89] was established using a non-quadratic Lya-

punov function. In contrast, in this chapter, using the theory of positive

systems, we establish the global asymptotic stability of the endemic state

using a quadratic Lyapunov function. This allows us to provide novel re-

sults for the stability properties of epidemic dynamics over weakly connected

topologies; in all the aforementioned results, the underlying graphs were as-

sumed to be strongly connected (or connected when the graph is undirected).

Nonetheless, weakly connected directed graphs are common in practice, and

characterizing the equilibrium points as well as their stability properties over

these graphs present new challenges in studying epidemiological networks.

5.2 Main Results

The main contributions of this chapter are as follows. First, using tools from

the theory of positive systems, we fully characterize the stability properties

of the all-healthy and endemic state equilibrium points of the n-Intertwined

Markov model over strongly connected digraphs. In particular, we show

that the all-healthy state is globally asymptotically stable (GAS) if and only

if the basic reproduction number is less than or equal to one. When the

basic reproduction number is greater than one, we show that the endemic

state is locally exponentially stable, and when the network is not initialized

at the all-healthy state, we show that the endemic state is GAS. Unlike

[26, 90], the proof we present here does not make any assumption on the

evolution of the state, and unlike [89], the stability properties are established

using a quadratic Lyapunov function. Using this key construction, our next

contribution is to study the existence, uniqueness, and stability properties
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of the all-healthy and endemic states over weakly connected digraphs. By

studying the input-to-state stability of the network, we provide conditions

for a GAS endemic state to emerge over weakly connected digraphs. Unlike

endemic states over strongly connected digraphs, we show that at the endemic

states emerging over weakly connected graphs a subset of the nodes could be

healthy while the rest become infected.

Finally, we provide a game-theoretic framework that can prescribe more

general classes of infection dynamics. Using this model, we show that the

n-Intertwined Markov model prescribes the best-response dynamics of a con-

cave game. This allows us to provide a new condition for the stability of the

all-healthy state, which can be checked in a distributed way by the nodes.

Organization

In Section 5.3, we recall the n-intertwined Markov model, and discuss a con-

nection with a game-theoretic formulation. Sections 5.4 and 5.5 contain our

results on the stability of the n-intertwined Markov model over, respectively,

strongly and weakly connected digraphs. Numerical studies are provided in

Section 5.6. We collect our conclusions in Section 5.7. Section 5.8 contains

technical results that are used in proving some of our main results.

5.3 The n-Intertwined Markov Model

In this section, we recall the heterogeneous n-intertwined Markov model that

has recently been proposed [41, 82]. This model is related to the so-called

multi-group SIS model that was proposed earlier in [11]; see also [26, 89].

We prescribe the infection model over a directed graph G = (V , E) with n

nodes, where V is the set of nodes, and E is the set of edges. Each node

in the network has two states: infected or cured. The curing and infection

of a given node i 2 V are described by two independent Poisson processes

with rates �
i

and �
i

, respectively. Throughout the chapter, we assume that

�
i

> 0 and �
i

> 0. The transition rates between the healthy and infected

states of a given node’s Markov chain depend on its curing rate as well as the

infection probabilities among its neighbors. A mean-field approximation is

introduced to “average” the e↵ect of infection probabilities of the neighbors
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on the infection probability of a given node. This approximation yields a

dynamical system that describes the evolution of the probability of infection

of node i 2 V and is central to our upcoming developments. We briefly

review this dynamical system next.

Let p
i

(t) 2 [0, 1] be the infection probability of node i 2 V at time t 2 R�0

,

and let p(t) = [p
1

(t), . . . , p
n

(t)]T . Also, let D = diag(�
1

, . . . , �
n

), P (t) =

diag(p(t)), and B = diag(�
1

, . . . , �
n

). The n-intertwined Markov model is

prescribed by the mapping � : Rn ! Rn, where

ṗ(t) = �(p(t))

:= (ATB � D)p(t) � P (t)ATBp(t). (5.1)

It can be shown that when p(0) 2 [0, 1]n, p(t) 2 [0, 1]n, for all t 2 R
>0

[41]. Hereinafter, for most parts, we will drop the time index for notational

simplicity.

5.3.1 Equilibrium States of the n-Intertwined Markov Model

We next focus on characterizing the set of equilibria of the dynamical sys-

tem (5.1). We give this characterization using the so-called basic reproduction

number, denoted by R
o

, which is defined as the expected number of infected

nodes produced in a completely susceptible population due to the infection

of a neighboring node [88]. For the n-intertwined Markov model, the ba-

sic reproduction number was found in [82], where it was called the “critical

threshold”, to be equal to

R
o

= ⇢(D�1ATB).

For connected undirected graphs, it is shown in [82] that the all-healthy

state is the unique equilibrium for the n-intertwined Markov model when

R
o

 1. When R
o

> 1, in addition to the all-healthy equilibrium, an endemic

equilibrium, denoted by p?, emerges. In fact, it is shown that p? � 0. We

call a strictly positive endemic state strong. When p? � 0, we call it a weak

endemic state. A recursive expression for the endemic state p? is provided

in [82], which is shown to depend on the problem parameters only: A, �
i

, �
i

,
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i 2 V . To arrive at this expression, consider the steady-state equation

0 = (ATB � D)p � PATBp. (5.2)

Define ⇠
i

:=
P

j 6=i

a
ji

�
j

p
j

and ⇠?
i

:=
P

j 6=i

a
ji

�
j

p?
j

, i 2 V . We can then write

p?
i

as

p?
i

=
⇠?
i

�
i

+ ⇠?
i

= 1 � �
i

�
i

+ ⇠?
i

, i 2 V . (5.3)

Since we assumed that �
i

> 0, we conclude that p?
i

< 1, for all i 2 V . We

can then re-write (5.2), evaluated at p?, in the following form:

ATBp? = (I � P ?)�1Dp?, (5.4)

where P ? = diag(p?).

5.3.2 The n-Intertwined Markov Model as a Concave Game

In this subsection, we demonstrate that the n-intertwined Markov model can

be cast as the best response dynamical system associated with a noncoop-

erative game. An important by-product of this study is the development

of a larger class of infection dynamics with reasonable convergence prop-

erties. Further, our exposition provides a decision-based interpretation to

virus spread models, which are often based on the theory of Markov chains.

Although our focus here is the study of virus spread, our model can be ap-

plied to other di↵usion phenomena such as the spread of spam in computer

networks.

To this end, consider a digraph G = (V , E) with n nodes, and let 0  x
i

 1

be the rate with which node i sends messages. We associate an objective

function, denoted by f
i

: Rn ! R, to node i that is comprised of a local

utility function U
i

: [0, 1] ! R, and a component that encapsulates the

influence of the neighboring nodes. The influence of node j on node i is

described via the function g̃
ji

: [0, 1] ⇥ [0, 1] ! R, where g̃
ji

⌘ 0 if and only

if (j, i) /2 E . We can then write the objective function of node i as

f
i

(x
i

, x�i

) = U
i

(x
i

) +
X

j 6=i

g̃
ji

(x
i

, x
j

). (5.5)
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Each node is interested in maximizing its own objective function f
i

. For-

mally, we can write the problem of the i-th agent as

max
0xi1

f
i

(x
i

, x�i

), for each fixed x�i

. (5.6)

When f
i

is concave in x
i

, and because the objective function of each player

depends also on the actions of other players, problem (5.6) describes a con-

cave game [63,91].

The solution concept we are interested in studying here is the pure-strategy

Nash equilibrium (PSNE).

Definition 5.1 ([63]). The vector x? 2 [0, 1]n constitutes a PSNE if, for all

i 2 V, the inequality

f
i

(x?

i

, x?

�i

) � f
i

(x
i

, x?

�i

)

is satisfied for all x
i

2 [0, 1].

Note that under the PSNE, no agent has any incentive to unilaterally

deviate from the solution x?. The next proposition establishes the existence

and uniqueness of the PSNE for the game in (5.6), when the game is concave.

Proposition 5.1 ([91]). For each i 2 V, let f
i

(x
i

, x�i

) in (5.5) be strictly

concave in x
i

2 [0, 1], for every x
j

2 [0, 1], j 2 V , j 6= i. Then the resulting

concave game in (5.6) admits a unique PSNE under the following diagonal

dominance condition:

2

����
@2

@x2

i

U
i

(x
i

)

���� >
X

j 6=i

����
@

@x
j

@

@x
i

g̃
ij

(x
i

, x
j

) +
@

@x
j

@

@x
i

g̃
ji

(x
j

, x
i

)

���� . (5.7)

The following lemma establishes a relationship between virus spread in

networks and concave games. In the virus spread case, the probability of

infection p
i

plays the role of the transmission rate x
i

.

Lemma 5.1. The dynamics of the n-intertwined Markov model are best-

response dynamics of a concave game among the nodes, where the decision

variable of node i 2 V is p
i

2 [0, 1], and its objective function is given by

f
i

(p
i

, p�i

) = ��
i

2
p2
i

+ p
i

⇣
1 � p

i

2

⌘X

j 6=i

a
ji

�
j

p
j

. (5.8)
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Proof. Recall the objective functions defined in (5.5). Let U
i

(p
i

) = � �i
2

p2
i

and g̃
ji

(p
i

, p
j

) = p
i

(1 � pi

2

)a
ji

�
j

p
j

, i 2 V . We then obtain

@2

@p2
i

f
i

(p
i

, p�i

) = ��
i

�
X

j 6=i

a
ji

�
j

p
j

< 0, i 2 V ,

which shows that the f
i

’s are strictly concave in self-variables. It is now

not hard to see that the dynamics of the n-intertwined Markov model (5.1)

correspond to the gradient flow dynamics when the agents aim at maximizing

their own objective functions (5.8).

5.4 Stability of Epidemic Dynamics over Strongly
Connected Graphs

We start by studying the stability properties of the n-intertwined model over

directed graphs with strongly connected topologies.

5.4.1 Stability of the All-Healthy State

As a stepping stone, we first provide an alternative proof for the necessary

and su�cient condition for the global asymptotic stability of the all-healthy

state, see [26,36], using the theory of positive systems. As we will see shortly,

the proof strategy provided here is essential in some of our upcoming results.

Proposition 5.2. Suppose G = (V , E) is a strongly connected digraph. The

origin is GAS if and only if R
o

 1.

Proof. Note that the matrix ATB�D is Metzler, because the entries of ATB

are nonnegative. Using the convergent regular splitting property of Metzler

matrices, it can be shown that R
o

< 1 if and only if µ(ATB � D) < 0, and

R
o

= 1 if and only if µ(ATB � D) = 0 [43, Theorem 2.3].

As a result, when R
o

< 1, the matrix ATB � D is Hurwitz. Since it is

also Metzler, by Proposition 1.1(iv), there exists a positive diagonal matrix

R
1

satisfying (ATB � D)TR
1

+ R
1

(ATB � D) = �K, where K is a positive

definite matrix. Consider the Lyapunov function V
1

(p) = pTR
1

p. Using (5.1),
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we have

L
�

V
1

(p) = pT ((ATB � D)TR
1

+R
1

(ATB � D))p

� 2pTR
1

PATBp

 pT ((ATB � D)TR
1

+R
1

(ATB � D))p

= �pTKp  �
1

(�K)kpk2

2

< 0, p 6= 0, (5.9)

where the first inequality follows because pTR
1

PATBp � 0, for all p 2 [0, 1]n,

and (5.9) follows because K is positive definite. This implies that the all-

healthy state is GAS.

When R
o

= 1, we have µ(ATB � D) = 0. Since G is strongly connected,

it follows that ATB � D is irreducible [43]. Recalling that ATB � D is also

Metzler, we conclude from Lemma 5.2 that there exists a positive diagonal

matrix R
2

such that (ATB�D)TR
2

+R
2

(ATB�D) is negative semidefinite.

Using the Lyapunov function V
2

(p) = pTR
2

p, we can write

L
�

V
2

(p) = pT ((ATB � D)TR
2

+R
2

(ATB � D))p

� 2pTR
2

PATBp

 �2pTR
2

PATBp.

We next prove that pTR
2

PATBp = 0 if and only if p = 0. Since R
2

is a

positive diagonal matrix, we have that pTR
2

PATBp = 0 if and only if

p2
i

X

j 6=i

a
ji

�
j

p
j

= 0, (5.10)

for all i 2 V . Assume that there is a solution p that satisfies pTR
2

PATBp = 0

at some time t
0

2 R�0

, and let p
i

(t
0

) 6= 0 for some i 2 V . Then, by continuity

of the state p, there exists an interval ⌧ = [t
0

, t
0

+�], � > 0, such that p
i

(t) 6= 0,

for all t 2 ⌧ . Using (5.10), we hence conclude that for all j 2 V that are

neighbors of i, i.e., a
ji

6= 0, we must have that p
j

(t) = 0 and ṗ
j

(t) = 0

for all t 2 ⌧ , for all j 2 V with a
ji

6= 0. Then, for some j 2 V such that

a
ji

6= 0, we have ṗ
j

(t) =
P

k 6=j

a
kj

�
k

p
k

(t) = 0, for all t 2 ⌧ . This implies that

p
k

(t) = 0 for all t 2 ⌧ and for all k 2 V such that a
kj

6= 0. By repeating this

argument, we conclude that p
l

(t) = 0 for all t 2 ⌧ for any node l 2 V from

which there is a directed path to node j. Since G is strongly connected, there
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is a directed path from node i to node j, and we must then have p
i

(t) = 0

for all t 2 ⌧ , which contradicts our initial hypothesis. It then follows that

pTR
2

PATBp = 0 if and only if p ⌘ 0. Hence, the all-healthy state is GAS.

This proves the su�ciency part.

We will show necessity by proving the contrapositive. The Jacobian matrix

of the vector field in (5.1) evaluated at the origin is given by J(0) = ATB�D.

If R
o

> 1, we have µ(ATB�D) > 0, and we conclude by Lyapunov’s indirect

method that the original nonlinear system is not stable. This proves that

R
o

 1 is also necessary for the origin to be asymptotically stable.

It is worth noting that, when R
0

< 1, the proof of the global asymptotic

stability of the all-healthy state does not rely on the strong connectivity

assumption. This is also true for the instability proof, when R
0

> 1. We

only used the strong connectivity of the graph to prove global asymptotic

stability when R
o

= 1.

5.4.2 Existence and Stability of an Endemic State

In this section, we use notions from positive systems theory to prove the local

and global asymptotic stability of an endemic state over strongly connected

digraphs. We first note that the existence of a unique endemic state for (5.1)

over strongly connected digraphs can be concluded from [26, Section 2.2], as

stated next.

Proposition 5.3. Let G = (V , E) be a strongly connected digraph. Then, a

unique strong endemic state p? � 0 exists if and only if R
o

> 1.

Next, we compute the Jacobian of �, given by (5.1), at p?. Note that

J
ii

(p?) =
@

@p
i

�
i

(p?) = �(�
i

+ ⇠?
i

), i 2 V ,

J
ij

(p?) =
@

@p
j

�
i

(p?) = (1 � p?
i

)a
ji

�
j

, j 6= i, j 2 V ,

where �
i

(p?) is i-th entry of f(p?). Using the definition of p? in (5.3), we

realize that J
ii

(p?) = ��
i

/(1 � p?
i

), i 2 V . As a result, we conclude that

J(p?) = �(I � P ?)�1D + (I � P ?)ATB.
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Our first result establishes the local stability of p?.

Theorem 5.1. Suppose that G = (V , E) is a strongly connected digraph and

that R
o

> 1. Then, the strong endemic state p? is locally exponentially stable.

Proof. We invoke Lyapunov’s indirect method. Since G is strongly connected,

A is irreducible. From (5.4), we deduce that Dp? = (I �P ?)ATBp?. We can

then write

J(p?)p? = �ATBp? + (I � P ?)ATBp?

= �P ?ATBp? ⌧ 0,

where the last strict inequality follows because p? � 0, B is a positive di-

agonal matrix, and A is irreducible. The matrix J(p?) is Metzler, because

its o↵-diagonal entries are nonnegative. Then, using Proposition 1.1(ii), we

conclude that J(p?) is Hurwitz.

We are now in a position to state the following result.

Theorem 5.2. Let G = (V , E) be a strongly connected digraph, and assume

that p(0) 6= 0. If R
o

> 1, then the strong endemic state p? is GAS.

Proof. Recall that p(t) 2 [0, 1]n for all t 2 R�0

. When R
o

> 1, Proposi-

tion 5.2 implies that the origin is unstable. Therefore, under this condition,

the set W = [0, 1]n\{0} is invariant under the evolutions of (5.1).

Next, define the state p̃ = p�p?. Let P̃ = diag(p̃). The dynamics of p̃ can

then be written as follows:

˙̃p = (ATB � D)(p̃+ p?) � (P̃ + P ?)ATB(p̃+ p?)

= (�D + (I � P ?)ATB)p̃ � P̃ATBp.

Define the matrix ⇤(p?) := �D+(I�P ?)ATB, and note that the o↵-diagonal

entries of ⇤(p?) are nonnegative; hence, ⇤(p?) is a Metzler matrix. Since G
is strongly connected, the matrix ⇤(p?) is also irreducible. From (5.4), it

follows that ⇤(p?)p? = 0, and since p? is strictly positive, it follows from

Theorem 1.1 that µ(⇤(p?)) = 0. Thus, it follows from Lemma 5.2 that there

exists a positive diagonal matrix R such that the matrix ⇤(p?)TR + R⇤(p?)

is negative semidefinite.
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Consider the Lyapunov function V (p̃) = p̃TRp̃. We have

L
�

V (p̃) = p̃T (⇤(p?)TR +R⇤(p?))p̃ � 2p̃T P̃RATBp

 �2p̃TRP̃ATBp = �2p̃T P̃RATBp,

where the inequality follows because ⇤(p?)TR+R⇤(p?) is negative semidefi-

nite, and the last equality follows because P̃ and R commute, since they are

both diagonal matrices.

We next prove that pTRPATBp = 0 if and only if p = p?. Since R is a posi-

tive diagonal matrix, we have p̃T P̃RATBp = 0 if and only if p̃2
i

P
j 6=i

a
ji

�
j

p
j

=

0, for all i 2 V . Assume that there is a vector p that satisfies p̃T P̃RATBp = 0

while p
i

6= p?
i

, for some i 2 V . We then must have
P

j 6=i

a
ji

�
j

p
j

= 0, which

implies that p
j

= 0 for all j 2 V such that a
ji

6= 0. Then, for some j 2 V for

which a
ji

6= 0, we must also have
P

k 6=j

a
kj

�
k

p
k

= 0, because p
j

= 0 < p?
j

.

By repeating this argument, we conclude that p
l

= 0 for any node l 2 V
from which there is a directed path to node j. Since G is strongly connected,

there is a directed path from node i to node j, and we must have p
i

= 0.

This implies that p = 0, which contradicts our initial assumption. Therefore,

since the set W is invariant under (5.1), we have that V̇ (p̃) = 0 if and only

if p = p?.

Remark 5.1. The novelty of our proof lies in its use of notions from positive

systems theory, which enables us to construct a quadratic Lyapunov function.

A proof for a weaker statement is established in [26,90], where it is assumed

that for p(0) 6= 0, there exists a time T 2 R
>0

such that p(t) 2 (0, 1]n for

all t � T . An alternative proof that utilizes a logarithmic Lyapunov function

has recently appeared in [89].

In addition to the useful characteristics of using a quadratic Lyapunov

function for studying additional properties such as convergence rates, our

proof allows for establishing the stability properties of the equilibrium points

over weakly connected digraphs in the next section. •
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5.4.3 A Simplified Stability Condition through a
Game-Theoretic Perspective

The game-theoretic connection we established in Lemma 5.1 enables us to

provide a simplified condition for the global asymptotic stability of the all-

healthy state. In particular, by applying the diagonal dominance condition

in (5.7) to (5.8), we obtain the following su�cient condition:

1

2

X

j 6=i

a
ij

�
j

< �
i

, for all i 2 V . (5.11)

Recall that the conditions R
0

< 1 and µ(ATB � D) < 0 are equivalent.

Note the similarities between the conditions µ(ATB�D) < 0 and (5.11). The

two conditions are related by the Gershgorin Circle Theorem. While (5.11)

is more restrictive than µ(ATB �D) < 0, it is linear and easier to compute.

More importantly, condition (5.11) can be checked in a distributed fashion,

which makes it more suitable for the design of distributed algorithms.

5.5 Stability of Epidemic Dynamics over Weakly
Connected Graphs

In this section, we study the stability properties of the n-intertwined Markov

model over weakly connected graphs. This class is of great importance,

since it is conceivable that in many practical scenarios there exist connected

components that collectively serve as an infection source, but are not a↵ected

by the rest of the nodes. Such scenarios cannot be captured by strongly

connected topologies.

We start by introducing some notations. When the graph G is weakly

connected, its adjacency matrix can be transformed into an upper triangular

form using an appropriate labeling of the nodes. Assuming that G = (V , E)
contains N 2 Z�1

strongly connected components, we can write

A =

2

66664

A
11

A
12

. . . A
1N

0 A
22

A
23

. . .
...

. . . . . . . . .

0 . . . 0 A
NN

3

77775
,
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where A
ii

are irreducible for all i 2 [N ], and, hence, correspond to SCCs

in G [43]. For notational simplicity, we will use A
i

instead of A
ii

. The

matrices A
ij

, j 6= i are not necessarily irreducible. We denote an SCC of

G by G
i

= (V
i

, E
i

), i 2 [N ], where [N

i=1

V
i

= V and [N

i=1

E
i

= E . For each

i 2 [N ], we introduce the positive diagonal matrices D
i

, B
i

which contain,

respectively, the curing and infection rates of the nodes in V
i

along their

diagonals. We introduce the partial order ’�’ among SCCs, and we write

G
i

� G
j

, for some i, j 2 [N ], if there is a directed path from G
i

to G
j

but not

vice versa.

For a given i 2 [N ], we denote the state of the nodes in G
i

by q
i

2 R|Vi| and

the state of the k-th node in V
i

by q
i,k

2 R. The state, p, of the entire network
is given by p = [qT

1

, . . . , qT
N

]. Let c
i

=
P

j 6=i

AT

ji

B
j

q
j

2 R|Vi|, i 2 [N ], be the

input infection from the nodes in G\G
i

. We can now write the dynamics of

the nodes in G
i

, i 2 [N ], given by the mapping �̃
i

: R|Vi| ⇥ R|Vi| ! R|Vi|, as

q̇
i

= �̃
i

(q
i

, c
i

)

:= (AT

i

B
i

� D
i

)q
i

� Q
i

AT

i

B
i

q
i

+ (I � Q
i

)c
i

, (5.12)

where Q
i

= diag(q
i

). When an SCC comprises a single node, AT

i

B
i

� D
i

is

equal to ��
i

. In what follows, we say G
i

is stable to mean that the dynamics

(5.12) are stable. When an endemic state p? emerges over the graph G,
we call the steady-state of q

i

an endemic state of G
i

, and we denote it by

q?
i

. Hence, the endemic state emerging over the entire network is given by

p? = [q?T
1

, . . . , q?T
N

]T .

We first state some results about the special case where the network topol-

ogy is given by a DAG.

Proposition 5.4. Let G = (V , E) be a DAG and suppose �
i

> 0 for all i 2 V.
Then the origin is the unique equilibrium. Moreover, this equilibrium is GAS.

Proof. Let us denote the steady-state of (5.1) by p(1). The steady-state

equation for the source nodes of the DAG is of the form 0 = ��
i

p
i

(1),

i 2 S
source

, which implies that p
i

(1) = 0 for all source nodes. For a node

i 2 S
N-source

, its steady-state equation can be written as 0 = ��
i

p
i

(1)+ (1�
p
i

(1))
P

j2S
source

a
ij

�
j

p
j

(1). The sum evaluates to zero, and again we obtain

p
i

(1) = 0. By repeating this argument, we conclude that p
i

(1) = 0, for all

i 2 S
N-source

. By propagating this argument all the way to the sink nodes,

106



we conclude that zero is the unique solution of the steady-state equation.

Next, we prove the second statement. In a DAG, the dynamics of the

source nodes become ṗ
i

= ��
i

p
i

, i 2 S
source

. Hence, all source nodes are

globally exponentially stable. Let v
i

:=
P

j2S
source

a
ij

�
j

p
j

, and define the

following linear dynamical system for all i 2 S
N-source

˙̄p
i

= ��
i

p̄
i

+ v
i

, p̄
i

(0) = p
i

(0).

Then, we have from (5.1) that ṗ
i

 ˙̄p
i

, for all i 2 S
N-source

. By the comparison

lemma, it follows that p
i

 p̄
i

, for all t and all i 2 S
N-source

. It is well-known

that if the input of an exponentially stable linear system converges to zero,

its state converges to zero. Thus, since v
i

converges to zero, p̄
i

must also

converge to zero, for all i 2 S
N-source

. Since p
i

� 0, we conclude that p
i

converges to zero for all i 2 S
N-source

. The proposition follows by repeating

this argument for the remaining nodes in the graph.

We begin by studying the existence, uniqueness, and the stability proper-

ties of an endemic state over a weakly connected digraph consisting of two

SCCs; the generalization to multiple SCCs is straightforward.

Proposition 5.5. Let G
i

= (V
i

, E
i

) be an SCC, i 2 [N ], and let q?
i

be its

endemic state equilibrium. If q?
i,i

1

> 0 for some i
1

2 V
i

, then q?
i

� 0.

Proof. Let i
1

2 V
i

be a node with q?
i,i

1

> 0. Since G
i

is strongly connected,

for any node i
m

2 V
i

, where m is an integer satisfying m  |V
i

|, there exists

a directed path from node i
1

to node i
m

. Let i
2

2 V
i

be a node along this

path such that (i
1

, i
2

) 2 E
i

. It follows from (5.3), that q?
i,i

2

> 0. By the same

argument, it follows that q?
i,ik

> 0 for every node i
k

2 V
i

along the directed

path from i
1

to i
m

, including i
m

. Since nodes i
1

and i
m

were arbitrary, the

proof is complete.

Let Ri

o

:= ⇢(D�1

i

AT

i

B
i

) be the basic reproduction number corresponding

to G
i

. We have the following existence and uniqueness result.

Theorem 5.3. Let G = (V , E) be a weakly connected digraph consisting of

two SCCs G
1

, G
2

such that G
1

� G
2

. Assume that q
i

(0) 6= 0 for all i 2 [2].

Then the following statements hold:
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(i) If R1

o

> 1, and R2

o

being arbitrary, then p = 0 and p? = [q?T
1

, q?T
2

]T are

the only possible equilibrium points over G, where q?
1

and q?
2

are unique

strong endemic equilibrium points over G
1

and G
2

, respectively.

(ii) If R1

o

 1 and R2

o

> 1, then p = 0 and p? = [0T , q?T
2

]T are the only

possible equilibrium points over G, where q?
2

is a unique strong endemic

equilibrium point over G
2

.

(iii) If Ri

o

 1, i 2 [2], then p = 0 is the only possible equilibrium over G.

Proof. In all the cases, the fact that p = 0 is an equilibrium point follows

directly from the structure of the dynamics. Since G
1

� G
2

, we have c
1

= 0,

i.e., the dynamics of the nodes in G
1

are not a↵ected by those in G
2

.

We first prove (i). First, consider the case when R2

o

> 1. Since R1

o

> 1

and G
1

is an SCC, we conclude by Theorems 5.3 and 5.2 that there exists a

strong endemic state q?
1

� 0 over G
1

, which is GAS, assuming that q
1

(0) 6= 0.

Hence, c
2

converges to c?
2

:= AT

12

B
2

q?
1

, which is a nonnegative vector. We can

now write the steady-state equation for G
2

as

(AT

2

B
2

� D
2

)q
2

� Q
2

AT

2

B
2

q
2

+ (I � Q
2

)c?
2

= 0, (5.13)

or

AT

2

B
2

q
2

� diag(AT

2

B
2

q
2

)q
2

� (D
2

+ C?

2

)q
2

+ c?
2

= 0,

where C?

2

= diag(c?
2

). Define G
2

= D
2

+C
2

, and note that this is an invertible

diagonal matrix because D
2

is a strictly positive diagonal matrix. We then

conclude that

G�1

2

AT

2

B
2

q
2

� (I + diag(G�1

2

AT

2

B
2

q
2

))q
2

+G�1

2

c?
2

= 0,

or

q
2

= (I + diag(G�1

2

AT

2

B
2

q
2

))�1G�1

2

(AT

2

B
2

q
2

+ c?
2

). (5.14)

Since G
2

is an SCC, A
2

is irreducible, and therefore G�1

2

AT

2

B
2

is irreducible

as well. Furthermore, we have G�1

2

c?
2

⌧ 1 by construction. It then follows by

Theorem 5.5 in Section 5.8 that there exists a unique strong endemic state

q?
2

over G
2

. From (5.4), it follows that the steady-state of any node in G
2

that is connected to a node in G
1

is strictly positive. Then, it follows from

Proposition 5.5 that [q?
1

, 0] cannot be an equilibrium over G, and [q?T
1

, q?T
2

]T

is the unique equilibrium over G in this case.
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When R2

o

 1, it follows from (5.4) that the steady-state of any node in G
2

that is connected to a node in G
1

is strictly positive. Hence, by Proposition

5.5, there exists a strong endemic state q?
2

over G
2

. Finally, and because the

steady-state equation over G
2

is given by (5.14), it follows from Proposition

5.7 in Section 5.8 that q?
2

must be unique.

For (ii), since c
1

= 0 and R1

o

 1, it follows by Proposition 5.2 and Theorem

5.3 that the only valid equilibrium over G
1

is q
1

= 0, which is GAS. Hence,

in steady-state, G
2

can be viewed as an isolated irreducible graph, and it

follows from Theorems 5.3 and 5.2 that there exists a unique strictly positive

equilibrium q?
2

over G
2

.

Finally, for (iii), and similar to (ii), the only possible equilibrium over G
1

is

q
1

= 0, which is GAS. This in turn leads to having c?
2

= 0, and since R2

o

 1,

the only possible equilibrium over G
2

is q
2

= 0.

From (ii), we conclude that a weak endemic state could emerge over weakly

connected graphs. A strong endemic state could emerge in case (i), and the

all-healthy state is the only possible equilibrium in case (iii). It is impor-

tant to note that the endemic state q?
2

resulting in cases (i) and (ii) are not

necessarily the same.

Next, we study the stability properties of weak and strong endemic equi-

libria.

Theorem 5.4. Let G = (V , E) be a weakly connected digraph consisting of

two SCCs G
1

, G
2

such that G
1

� G
2

. Assume that q
i

(0) 6= 0 for all i 2 [2].

Then, G
2

is input-to-state stable (ISS). Further, the equilibrium over G is

GAS.

Proof. First, note that the dynamics over G
1

are not a↵ected by G
2

. Hence,

the global asymptotic stability of the equilibrium (all-healthy or strong en-

demic, depending on the value of R1

o

) over G
1

follows immediately. We will

start by proving that G
2

is ISS for di↵erent values of R1

o

and R2

o

. Consider

the following cases.

(i) R2

o

< 1: In this case, we have µ(AT

2

B
2

� D
2

) < 0, and therefore

the matrix AT

2

B
2

� D
2

is Hurwitz. Since it is also Metzler, it follows from

Proposition 1.1 that there exists a positive diagonal matrix R which satisfies

(AT

2

B
2

� D
2

)TR +R(AT

2

B
2

� D
2

) = �K,
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where K is a positive definite matrix. Similar to the proof of Proposition

5.2, consider the Lyapunov function V
R

(q
2

) = qT
2

Rq
2

. We have

L
˜

�

2

V
R

(q
2

) = qT
2

((AT

2

B
2

� D
2

)TR +R(AT

2

B
2

� D
2

))q
2

� 2qT
2

RQ
2

AT

2

B
2

q
2

+ 2qT
2

R(I � Q
2

)c
2

 �qT
2

Kq
2

+ 2qT
2

Rc
2

,

where the inequality follows because qT
2

RQ
2

AT

2

B
2

q
2

� 0, for all q
2

2 [0, 1]n,

and qT
2

RQ
2

c
2

� 0, for all c
2

, q
2

2 [0, 1]n. Let 0 < ✏ < 1. We can then write

L
˜

�

2

V
R

(q
2

)  �(1 � ✏)qT
2

Kq
2

� ✏qT
2

Kq
2

+ 2qT
2

Rc
2

.

We will prove that there exists a class K1 function, �, such that �✏qT
2

Kq
2

+

2qT
2

Rc
2

 0 for kq
2

k
2

� �(kc
2

k
2

). To this end, note that qT
2

Rc
2

 kRk
2

·
kq

2

k
2

· kc
2

k
2

. Also, because K is positive definite, we can write qT
2

Kq
2

�
�
n

(K)kqk2

2

> 0. Define �(r) := 2kRk
2

·r
✏�n(K)

, where r 2 R. We then have

�✏qT
2

Kq
2

+ 2qT
2

Rc
2

 0 for kq
2

k
2

� �(kc
2

k
2

), and hence

L
˜

�

2

V
R

(q
2

)  �(1 � ✏)qT
2

Kq
2

, kq
2

k
2

� �(kc
2

k
2

).

This implies that the system G
2

is ISS when R2

o

< 1 and R1

o

is arbitrary.

(ii) R2

o

= 1: Following the same reasoning in the proof of Proposition

5.2, we conclude that there exists a positive diagonal matrix S such that

(AT

2

B
2

� D
2

)TS + S(AT

2

B
2

� D
2

) is negative semidefinite. Then, using the

Lyapunov function V
S

(q
2

) = qT
2

Sq
2

, we can write

L
˜

�

2

V
S

(q
2

)  �2qT
2

Q
2

SAT

2

B
2

q
2

+ 2qT
2

Sc
2

 �qT
2

Q
2

SAT

2

B
2

q
2

+ 2
p
nkSk

2

· kc
2

k
2

,

where the second inequality follows by using the bound kq
2

k
2

 p|V
2

|  p
n.

Define the function ⇢ : R ! R as ⇢(kc
2

k
2

) = 2
p
nkSk

2

· kc
2

k
2

, and note that

⇢ 2 K1 since it is linear in kck
2

. Define the function g : Rn

�0

! R as

g(q
2

) = 2qT
2

Q
2

SAT

2

B
2

q
2

. Following similar steps to those in the proof of

Proposition 5.2, we can show that g(q
2

) = 0 if and only if q
2

= 0. Note that

g(q
2

) > 0 for all q
2

2 Rn

�0

such that q
2

6= 0. Furthermore, the function g

is continuous and radially unbounded. Hence, it follows by [92, Lemma 4.3]
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that there exists a class K1 function ↵ : R ! R such that g(q
2

) � ↵(kq
2

k
2

).

We therefore have

L
˜

�

2

V
S

(q
2

)  �↵(kq
2

k
2

) + ⇢(kc
2

k
2

).

As a result, it follows from [93, Remark 2.4] that the system G
2

is ISS when

R2

o

= 1 and R1

o

is arbitrary.

(iii) R2

o

> 1: Define the state q̃
2

= q
2

�q?
2

, and the control input c̃
2

= c
2

�c?
2

,

where c?
2

was defined in the proof of Theorem 5.3 as the steady-state of c
2

.

Let Q̃
2

= diag(q̃
2

), Q?

2

= diag(q?
2

), and C?

2

= diag(c?
2

). The dynamics of q̃
2

can then be written as

˙̃q
2

= (AT

2

B
2

� D
2

)(q̃
2

+ q?
2

) � (Q̃
2

+Q?

2

)AT

2

B
2

(q̃
2

+ q?
2

)

+(I � Q̃
2

� Q?

2

)(c̃
2

+ c?
2

)

= (�D
2

+ (I � Q?

2

)AT

2

B
2

)q̃
2

� Q̃
2

AT

2

B
2

q
2

+(I � Q
2

)c̃
2

� Q̃
2

c?
2

(5.15)

= (�D
2

� C?

2

+ (I � Q?

2

)AT

2

B
2

)q̃
2

� Q̃
2

AT

2

B
2

q
2

+(I � Q)c̃
2

, (5.16)

where (5.15) follows from the steady-state equation in (5.13) evaluated at

q
2

= q?
2

, and (5.16) follows because Q̃
2

c?
2

= C?

2

q̃
2

.

Next, define the matrix ⇤̃(q?
2

) = �D
2

� C?

2

+ (I � Q?

2

)AT

2

B
2

, which is

Metzler since its o↵-diagonal entries are nonnegative. Since G
2

is an SCC,

the matrix ⇤̃(q?
2

) is also irreducible. We wish to study the sign of µ
⇣
⇤̃(q?

2

)
⌘
.

Using the steady-state equation in (5.13) evaluated at q
2

= q?
2

, it follows

that ⇤̃(q?
2

)q?
2

= �c?
2

, where we recall that c?
2

⌫ 0. Consider the following two

cases.

(iii.a) R1

o

 1 and R2

o

> 1: In this case, the all-healthy state is GAS over

G
1

; see Proposition 5.2. Then, c?
2

= 0, and ⇤̃(q?
2

)q?
2

= 0. Since q?
2

is strictly

positive, it follows from Theorem 1.1 that µ
⇣
⇤̃(q?

2

)
⌘
= 0. Thus, it follows

from Lemma 5.2 that there exists a positive diagonal matrix R such that the

matrix ⇤̃(q?
2

)TR + R⇤̃(q?
2

) is negative semidefinite. Consider the Lyapunov
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function V
R

(p̃) = p̃TRp̃. We have

L
˜

�

2

V
R

(p̃) = q̃T
2

(⇤̃(q?
2

)TR +R⇤̃(q?
2

))q̃
2

� 2q̃T
2

Q̃
2

RAT

2

B
2

q
2

+2q̃T
2

R(I � Q
2

)c̃
2

 �2q̃T
2

Q̃
2

RAT

2

B
2

q
2

+ 2q̃T
2

R(I � Q
2

)c̃
2

 �2q̃T
2

Q̃
2

RAT

2

B
2

q
2

+ 4
p
nkRk

2

· kc̃
2

k
2

, (5.17)

where the last inequality follows from kq̃
2

k
2

 kq
2

k
2

+ kq?
2

k
2

 2
p
n, and the

fact that kI � Q
2

k
2

 1. Define the scalar function ⇢(kc̃
2

k
2

) := 4
p
nkRk

2

·
kc̃

2

k
2

, and note that ⇢ 2 K1, since it is linear in kc̃
2

k
2

. Following similar steps

to those in the proof of Theorem 5.2, one can show that q̃T
2

Q̃
2

RAT

2

B
2

q
2

= 0 if

and only if q̃
2

= 0. Then, using the same reasoning as in the proof of Theorem

5.4, we conclude that there exists a class K1 function ↵ : R ! R such that

2q̃T
2

Q̃
2

RAT

2

B
2

q
2

� ↵(kq̃
2

k
2

). We therefore have L
˜

�

2

V
R

(p̃)  �↵(kq̃
2

k
2

) +

⇢(kc̃
2

k
2

), and it follows from [93, Remark 2.4] that the system G
2

is input-

to-state-stable when R1

o

 1 and R2

o

> 1.

(iii.b) R1

o

> 1 and R2

o

> 1: In this case, the endemic state is GAS over

G
1

; see Theorem 5.2. Then, c?
2

� 0, and ⇤̃(q?
2

)q?
2

� 0. Since q?
2

is strictly

positive, it follows from [26, Theorem 2.4] that µ
⇣
⇤̃(q?

2

)
⌘

< 0; therefore,

⇤̃(q?
2

) is Hurwitz. Thus, it follows from Proposition 1.1(iv) that there exists a

positive diagonal matrix S such that the matrix ⇤̃(q?
2

)TS+S⇤̃(q?
2

) is negative

definite. Hence, using V
S

(p̃) = p̃TSp̃, one can derive the same bound as in

(5.17), with R replaced with S, and by repeating the same steps as above,

one can show that G
2

is input to state stable when R1

o

> 1 and R2

o

> 1.

Since G
1

is GAS, and G
2

is ISS, it follows from [92, Lemma 4.7] that the

equilibrium of the cascaded system is GAS. In particular, when R2

o

 1 and

R1

o

 1, it follows from Theorem 5.3(iii) that the all-healthy state is GAS.

When R2

o

 1 and R1

o

> 1, it follows from Theorem 5.3(i) that the strong

endemic equilibrium [q?T
1

, q?T
2

]T is GAS, assuming that q
i

(0) 6= 0 for all i 2 [2].

When R2

o

> 1 and R1

o

 1, it follows from Theorem 5.3(ii) that the weak

endemic state [0T , q?T
2

]T is GAS, assuming that q
2

(0) 6= 0. Finally, when

when R2

o

> 1 and R1

o

> 1, it follows from Theorem 5.3(i) that the strong

endemic state [q?T
1

, q?T
2

]T is GAS, assuming that q
i

(0) 6= 0 for i 2 [2].

The following corollary is an immediate consequence of Theorems 5.3 and

5.4.
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Corollary 5.1. Let G = (V , E) be a weakly connected digraph consisting of

N SCCs ordered as G
1

� . . . � G
N

. Assume that q
i

(0) 6= 0 for all i 2 [n].

(i) If Ri

o

 1 for all i 2 [N ], then the all-healthy state is GAS.

(ii) If Rk

o

> 1 for some k 2 [N ], and Ri

o

 1 for i 2 [k � 1], then the

endemic state p? = [0, . . . , 0, q?T
k

, . . . , q?T
N

]T is GAS.

5.6 Numerical Studies

We demonstrate the emergence of a weak endemic state over the Pajek GD99c

network [94], which is a weakly connected directed network shown in Fig.

5.1. The network consists of 105 nodes and it contains 66 SCCs. The nodes

marked “red” in Fig. 5.1 constitute an SCC, which we refer to as G
1

.

Figure 5.1: The Pajek GD99c network. The “red” nodes belong to G
1

for
which R1

o

> 1. The “black” nodes are the only ones with no direct path
from G

1

.

We will select the curing rates over G
1

to be low in order to make R1

o

> 1.

For the remaining nodes, we will set �
i

=
P

j 6=i

a
ji

�
j

+0.5, which is a su�cient

condition to ensure Ri

o

< 1 as per (5.11). The infection rates �
i

and the

weights a
ij

are all selected to be equal to 1. There are only 4 nodes for which
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there is no directed path from G
1

, and they are marked “black” in Fig. 5.1.

The initial infection profile is selected at random.
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Figure 5.2: Infection probabilities of the nodes.

Figure 5.2 plots the state trajectories. By examining the histogram of the

values to which the state converges, which is shown in Fig. 5.3, we notice

that there are 13 nodes with high infection probabilities, and those are the

nodes comprising G
1

. Note that G
1

is asymptotically stable even though it

takes input from other SCCs, as shown in the figure, and R1

o

> 1. There are

4 nodes that become healthy, and those are the “black” nodes which are not

reached by a directed path from G
1

. The remaining nodes all have positive

infection probabilities with varying levels depending on their distance from

G
1

, with the nodes that are farthest from G
1

enjoying the lowest infection

probabilities.

Next, we will demonstrate the global asymptotic stability of p? over con-

nected undirected graphs, which follows from Theorem 5.2. The infection

rates, the edge weights, and the initial infection profile were generated ran-

domly. The curing rates were selected such that R
o

> 1.

Figure 5.4 shows the state of a ring graph with 20 nodes. The figure

also plots the Lyapunov function V (p̃) = 1

2

p̃T p̃. As claimed, the system
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Figure 5.3: A histogram of the endemic state value across the network.

converges to the strictly positive state p?, and the Lyapunov function decays

monotonically to zero.

Figure 5.5 shows the same simulation for a connected undirected random

graph with 100 nodes. The probability that an edge occurs in the graph

was selected to be 3

10

. The specific graph realization used in this experiment

contained 1704 edges. Again, we observe that the state converges to p?. It is

interesting to note that convergence here is faster than the case of the ring

graph.

5.7 Summary

We have utilized tools from positive systems theory to establish the stability

properties of the n-intertwined Markov model over digraphs. For strongly

connected digraphs, we have proved that when the basic reproduction num-

ber is less than or equal to 1, the all-healthy state is GAS. When the basic

reproduction number is greater than 1, however, we have shown that the en-

demic state is GAS, and that locally around this equilibrium, the convergence
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Figure 5.4: Stabilization of a ring graph with 20 nodes.
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Figure 5.5: Stabilization of a random graph with 100 nodes and 1704 edges.
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is exponentially fast. Furthermore, we have studied the stability properties of

weakly connected graphs. By viewing an arbitrary weakly connected graph

as a cascade of SCCs, we were able to establish the existence and unique-

ness of weak and strong endemic states. We have also studied the stability

properties of weakly connected graphs using input-to-state stability. Finally,

we have proposed a dynamical model that describes the interaction among

nodes in an infected network as a concave game and demonstrated that the

n-intertwined Markov model is a special case of our model. This alternative

description provides a new condition, which can be checked collectively by

agents, for the stability of the origin.

5.8 Additional Proofs

In this Section, we collect and prove some results pertinent to the develop-

ment in he main body of the chapter. We start with the next result, which

is key in proving some of the results in Sections 5.4 and 5.5.

Lemma 5.2. Let X 2 Rn⇥n be an irreducible Metzler matrix such that

µ(X) = 0. Then, there exists a positive diagonal matrix R 2 Rn⇥n such

that the matrix XTR +RX is negative semidefinite.

Proof. From Theorem 1.1, it follows that there exists a vector ⌫ 2 Rn⇥n such

that ⌫ � 0 and X⌫ = 0. Since �(X) = �(XT ), we have µ(AT ) = 0. Using

Theorem 1.1 again, we conclude that there exists a vector ⇠ 2 Rn⇥n such that

⇠ � 0 and XT ⇠ = 0. Let R 2 Rn⇥n be a positive diagonal matrix defined

with R
ii

= ⇠
i

/⌫
i

, for all i 2 [n]. Consider now the matrix XTR + RX. The

matrix RX is Metzler, since R is a positive diagonal matrix. For the same

reason, and because X is irreducible, we conclude that RX is irreducible.

By a similar argument, XTR is also an irreducible Metzler matrix. Since the

sum of two Metzler matrices is Metzler, the matrix XTR + RX is Metzler.

Also, because both RX and XTR are Metzler and irreducible, the matrix

XTR + RX is also irreducible. Further, by construction, we have (XTR +

RX)⌫ = XTR⌫ = XT ⇠ = 0. Since XTR + RX is symmetric, it has real

eigenvalues, and since ⌫ is strictly positive, it follows from Theorem 1.1 that

XTR +RX is negative semidefinite.
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Next, we prove an instrumental result, which can be thought of as a non-

homogeneous extension of a result of [26]. We start by providing two key

properties of the continuous mapping T : [0, 1]n ! [0, 1]n defined as

T (p) := (I + diag(Xp))�1(Xp+ y).

Proposition 5.6. Let X 2 Rn⇥n be a nonnegative matrix, and let y 2 Rn be

a vector satisfying 0 � y ⌧ 1. Then, the mapping T is monotonic.

Proof. Let the vectors p, q 2 Rn be such that p � q. For i 2 [n], we have

T
i

(p) =
(Xp)

i

+ y
i

1 + (Xp)
i

= 1 � 1 � y
i

1 + (Xp)
i

 1 � 1 � y
i

1 + (Xq)
i

= T
i

(q),

where the inequality follows because X is nonnegative. This implies that the

mapping T is monotonic.

Proposition 5.7. Let X 2 Rn⇥n be a nonnegative matrix, and let y 2 Rn

be a vector satisfying 0 � y ⌧ 1. If the mapping T has strictly positive fixed

point, then it must be unique.

Proof. We will prove the claim by contradiction. Assume that there are two

fixed points p?, q? 2 Rn, p? 6= q?. We will first show that p? � q?. To this

end, define

⌘ := max
i2[n]

p?
i

q?
i

, k := argmax
i2[n]

p?
i

q?
i

.

Note that p? � ⌘q?. For p? � q? to hold, we must have ⌘  1; assume that,

to the contrary, ⌘ > 1. Then, using Proposition 5.6, we have

p?
k

= T
k

(p?)  T
k

(⌘q?) =
⌘(Xq?)

k

+ y
k

1 + ⌘(Xq?)
k

< ⌘
(Xq?)

k

+ y
k

1 + (Xq?)
k

= ⌘T
k

(q?) = ⌘q?,

where the strict inequality follows from the assumption that ⌘ > 1, and

the last equality follows because q? is a fixed point. By definition, we have

p?
k

= ⌘q?
k

. Hence, if ⌘ > 1 were true, we would have p?
k

< ⌘q?
k

= p?
k

, which

is a contradiction. Hence, we must have ⌘  1 and p? � q?. By switching

the roles of p? and q?, and repeating the above steps with ⌘̂ = max
i2[n]

q

?
i
p

?
i
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instead of ⌘, we conclude that p? ⌫ q?. Thus, p? = q?, and the fixed point is

unique.

We are now ready to prove the main result.

Theorem 5.5. Let X 2 Rn⇥n be a nonnegative irreducible matrix such that

⇢(X) > 1, and let y 2 Rn be a vector satisfying 0 � y ⌧ 1. Then, the map-

ping T : [0, 1]n ! [0, 1]n has a unique fixed point, which is strictly positive.

Proof. We will prove that there exists a closed sub-interval of (0, 1)n which

is invariant under T . By Theorem 1.2, it follows that X has an eigenvector

v � 0 satisfying Xv = ⇢(X)v. Without loss of generality, we assume that

v � 1, which can be achieved by an appropriate scaling of the eigenvector

corresponding to ⇢(X).

Define  :=
q

⇢(X)+y

max

1+⇢(X)

, and note that  < 1. Let us choose ✏ > 0 such

that   ✏v
min

. Note that with such a choice of ✏, we can guarantee, for all

i 2 [n], that ✏v
i

< 1, since v
i

 1 and  < 1. This choice of ✏ implies that

✏v
i

�  or (✏v
i

)2 � ⇢(X)+y

max

1+⇢(X)

, for all i 2 [n]. This in turn implies, for i 2 [n],

✏v
i

� 1

✏v
i

· ⇢(X) + y
i

1 + ⇢(X)
>

✏⇢(X)v
i

+ y
i

1 + ✏v
i

⇢(X)
= T

i

(✏v
i

), (5.18)

where the last inequality follows since ✏v
i

< 1. We therefore have T (✏v) < ✏v.

Define  := ⇢(X)+y

min

�1

1+⇢(X)

, and note that  < 1, as y
min

< 1. Let us choose

✏ > 0 such that 0 < ✏v
max

 . Then, for all i 2 [n], we have

✏v
i

 ⇢(X) + y
i

� 1

⇢(X) + 1
<

⇢(X) + y
i

� 1

⇢(X)
.

We thus have ✏⇢(X)v
i

+ 1 < ⇢(X) + y
i

, for all i 2 [n]. Equivalently, for all

i 2 [n], we can write

✏v
i

< ✏v
i

⇢(X) + y
i

✏⇢(X)v
i

+ 1
<

✏⇢(X)v
i

+ y
i

✏⇢(X)v
i

+ 1
= T

i

(✏v), (5.19)

where the second strict inequality holds since ✏v
i

<  < 1. We therefore have

T (✏v) > ✏v.
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Since v � 0 and ✏ > 0, we have ✏v � 0. We also have that ✏ > ✏ because

✏ � 

v
min

>
2

v
min

=
⇢(X) + y

max

v
min

(1 + ⇢(X))

>
⇢(X) + y

min

� 1

v
max

(1 + ⇢(X))
=



v
max

� ✏,

where the first strict inequality follows because  < 1. This implies that

✏v ⌧ ✏v. Further, by construction, we have ✏v
i

< 1, for all i 2 [n], and

therefore ✏v ⌧ 1. To summarize, we have the following bounds: 0 ⌧ ✏v ⌧
✏v ⌧ 1.

We can now define the closed and bounded set

K := {p 2 [0, 1]n | ✏
1

v � p � ✏
2

v} ⇢ (0, 1)n.

By (5.18) and (5.19), and since T is monotonic as proved in Proposition

5.6, we conclude that T : K ! K. Since T is continuous, it follows from

Brouwer’s fixed-point theorem that there exists a strictly positive fixed point

p? 2 K such that T (p?) = p?. Finally, it follows from Proposition 5.7 that

p? must be unique.
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CHAPTER 6

VIRUS SPREAD IN NETWORKS:
CONTROL DESIGN

6.1 Background

In this chapter, we focus on control design problems for networks whose

dynamics are given by the n-intertwined Markov model described in Chapter

5. To this end, we view the curing rates as control inputs, and we investigate

the design of stabilizing and optimal control laws.

We have seen in the previous chapter that stabilizing the all-healthy state

requires allocating high curing rates across the network. However, for net-

works that contain a large number of nodes, allocating a high curing rate to

each and every node could incur a high cost. Motivated by this challenge, we

investigate the possibility of stabilizing the all-healthy state when the curing

rates of only a limited number of nodes can be controlled.

A common approach in the literature to stabilize the all-healthy state has

been to assign constant curing rates across the network [32, 36–38, 95–98].

This approach seems to be quite wasteful, especially if the infection proba-

bility of a given node approaches the healthy state, in which case that node

would not need a high rate of curing. Here, using nonlinear control designs,

we study the behavior of dynamic controllers that are able to exploit the state

of the network. Moreover, we study multiple optimal control problems that

are designed to yield controllers capable of minimizing the total infection in

the network at a low cost.

6.2 Main Results

The main contributions of this chapter are as follows. When the curing rates

of a limited number of nodes can be controlled, we identify conditions un-
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der which the network can be stabilized to the origin, and we identify graph

classes that can be stabilized using a limited number of controllers. Further,

we propose a dynamic optimization framework that allows the network de-

signer to design an optimal controller that minimizes the total infection in the

network at minimum cost. We show that this controller is of the bang-bang

type, and that it may exhibit multiple switches. In addition, we propose

two static control laws: one is obtained by optimizing the vaccination levels

at time zero, and the other one is based on a second-order approximation.

We demonstrate that the optimal dynamic controller and the static control

laws exhibit similar performances over sparse graphs. Finally, we transform

the network dynamics into a form that is linear in controls, and we study

an optimal control problem subject to these dynamics. We show that the

optimal controller of this problem exhibits at most one switch. By analyzing

the switching behavior of the dynamic controllers, we observe that optimal

controllers reduce the curing rates of those nodes that are approaching the

healthy state, which matches our intuition.

Organization

Section 6.3 contains our results on the design of stabilizing controllers for

infected networks. An optimal control problem is formulated and studied in

Section 6.4. In Section 6.5, we propose a static optimization framework and

compare the performances of dynamic and static control laws. In Section 6.6,

we study another optimal control problem subject to a transformed version

of the n-intertwined Markov model. The main results of the chapter are

summarized in Section 6.7.

6.3 Stabilization

Consider a network of n nodes described by a connected undirected graph

G = (V , E), where V is the set of vertices, and E 2 V ⇥ V is the set of edges.

Recall the n-intertwined Markov model introduced in the previous chapter:

ṗ = (AB � D)p � PABp, p(0) = p
0

, (6.1)
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where A is the adjacency matrix of G, P = diag(p), B = diag(�
1

, . . . , �
n

),

and D = diag(�
1

, . . . , �
n

).

In this section, we will investigate the possibility of reducing the infection

by altering the curing rates at a limited number of nodes belonging to a

set S
control

⇢ V , and we define r := |S
control

|. For this reason, throughout

this section, we replace �
i

with u
i

(t), where i 2 S
control

. Given the necessary

conditions presented in the recent paper [99], we will use the assumption that

there exists a small curing rate of ↵
i

at any node in F = V\S
control

. This

amount of self-healing may, however, not be enough to stabilize the system

to the origin. Recall from Proposition 5.2 that R
o

 1 is a necessary and

su�cient condition for the all-healthy state to be GAS; we are interested in

answering the following question: When the condition R
o

 1 is initially

violated, can we stabilize the system to the origin by controlling the nodes in

S
control

only?

By construction, we have S
control

\ F = ; and S
control

[ F = V . Let U(t)

be a diagonal matrix such that U
ii

(t) = u
i

(t) if and only if i 2 S
control

, and

zero otherwise. Similarly, let � be a diagonal matrix such that �
ii

= ↵
i

if

and only if i 2 F , and zero otherwise. The n-intertwined Markov model

dynamics introduced in Chapter 5 can then be written as:

ṗ = (AB � � � U)p � PABp.

Note that this system is a�ne in controls. To see this, define h(p) = (AB �
�)p�PABp and g

i

(p) := �p
i

e
i

, where {e
1

, . . . , e
n

} is the fundamental basis.

We can then write

ṗ = h(p) +
X

i2S
control

g
i

(p)u
i

.

In what follows we consider two special cases for which a limited number

of controllers can stabilize the system.

Lemma 6.1. In a star graph, the all-healthy state can be stabilized by placing

an appropriate controller at the root node and arbitrarily small ↵-self-loops

everywhere else.

Proof. We will proceed by showing that the function V (p) = 1

2

pTp is a control

Lyapunov function (CLF). Without loss of generality, let node 1 be the root.

The dynamics of all other nodes is then given by ṗ
i

= �↵
i

p
i

+(1�p
i

)a
i1

�
1

p
1

.
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A necessary and su�cient condition for V (p) to be a CLF is

@

@p
V (p)Tg

1

(p) = �p2
1

= 0 =) @

@p
V (p)Th(p) < 0, p 6= 0.

But when p
1

= 0, we have

@

@p
V (p)Th(p) = pT (AB � �)p � pTPABp = �pT�p,

which is negative. Hence, V (p) is indeed a CLF, and we can stabilize the

system using Sontag’s universal controller [100].

Note that Sontag’s controller requires the controlling node to have knowl-

edge of the entire state. In the above, the root node is connected to all the

nodes, and hence it has access to the state vector p.

Lemma 6.2. In an odd (or even) length path graph, a maximum of (n�1)/2

(or n/2) controllers are required to stabilize the all-healthy state, provided that

all other nodes implement arbitrarily small ↵-self-loops.

Proof. The proof is similar to the star graph case. We will show that V (p) =
1

2

pTp is a CLF. Let us place the controllers at nodes {2, 4, . . .}. Then, from the

structure of A, it follows that pTABp = 0 when @

@p

V (p)T (g
2

(p), g
4

(p), . . .) =

�P
i2S

control

p2
i

= 0. This implies that @

@p

V (p)Th(p) = �pT�p, and V (p) is a

CLF. The size of S
control

follows from the way we have placed the controllers.

This concludes the proof.

Similar results can be obtained for other classes of graphs. The key idea

behind the above results is to place the controllers in such a way that no

path can be drawn between two nodes in F without passing through a node

in S
control

. For example, in a tree with an even number of levels, stabilization

can be achieved by controlling the nodes in every other level, and placing

arbitrarily small ↵-self-loops everywhere else. The following corollary is im-

mediate.

Corollary 6.1. In a binary tree with an even number of levels, `, it su�ces

to control 1

3

(2` � 1) nodes to stabilize the all-healthy state.

The above results characterize the number of controllers that would be suf-

ficient to stabilize the network. For the nodes in S
control

, there is a variety of
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choices for the specific control law to be implemented. We will next compare

the performance of Sontag’s universal controller [100] to that of a constant

controller based on the cost of control as given by
R

T

0

u
i

(t)dt. Sontag’s uni-

versal controller is a state-feedback controller that is used to stabilize systems

that are a�ne in controls. It relies on deriving a control Lyapunov function

V : Rn⇥n ! R for the system under study, and it is given by the following

universal formula:

u
Sontag

(p)=

8
<

:
� ⇠+

p
⇠

2

+k⌘k4
2

k⌘k2
2

b, ⌘ 6= 0

0, ⌘ = 0
,

⇠(p)=
@

@p
V (p)Th(p), (6.2)

⌘(p)=


@

@p
V (p)T g

1

(p), . . . ,
@

@p
V (p)T g

r

(p)

�
T

. (6.3)

Consider a star graph with 10 nodes. By Lemma 6.1, we know that it

su�ces to control the root node to stabilize the network. Let node 1 be at

the root. Recalling from the proof of Lemma 6.1 that V = 1

2

pTp is a CLF for

the n-intertwined model over star graphs, and the gains ⇠, ⌘ in (6.2), (6.3)

in this case become

⇠(p) = pT (AB � �)p � pTPABp,

⌘(p) = � ⇥
p2
1

, 0, . . . , 0
⇤
T

.

We assume that the rest of the nodes implement a self-loop ↵ = 0.1.

The horizon of the simulation, T , is chosen to be 100. Fig. 6.1 depicts

the performance of a constant controller u
1

= 8, while the performance of

Sontag’s universal controller is shown in Fig. 6.2. We observe that the

stabilization properties of both controllers are similar. However, Sontag’s

universal controller incurs a lower cost compared to the constant controller;

the total cost incurred by the constant controller is 800, while that incurred

by Sontag’s controller is 738.6.
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Figure 6.1: A star graph with a constant controller implemented at the
root. n = 10.
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Figure 6.2: A star graph with Sontag’s universal controller implemented at
the root. n = 10.
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6.4 Optimal Control

We now focus on designing optimal controllers for infected networks. We

assume that the designer can control the curing rates of all nodes. To capture

this, we re-label the matrix D in (6.1) as U , where U = diag(u
1

, . . . , u
n

). We

assume that there are upper and lower bounds on the curing rates: u 
u
i

(t)  u, for all i 2 V and all t 2 R�0

, where u corresponds to the natural

immunity of the node, and u corresponds to the maximum vaccination level

available. The action set of the designer can be written as

W = {w 2 Rn | u  w
i

 u}.

The set of admissible controls, U , consists of all functions that are piecewise

continuous in time and whose range is W . Given a time interval [0, T ], we

can formally write

U = {u : [0, T ] ! W | u is a piecewise continuous function of t} .

The designer aims at reducing the infection probabilities across the network,

while minimizing the cost associated with modifying the curing rates. Let

c 2 Rn

�0

be the cost associated with the state, and let d 2 Rn

�0

be the cost

associated with the control. We can then write the cost functional of the

designer as follows:

J(u) =

Z
T

0

[cTp+ dTu]dt.

In order to minimize the cost associated with the state, the designer must

attempt to stabilize the state to the origin. To this end, we will linearize the

dynamics in (5.1) around the origin to obtain ṗ = (AB � U)p. Noting that

p
i

P
j 6=i

a
ij

�
j

p
j

� 0, for all i 2 V and p 2 [0, 1]n, we conclude that

(AB � U)p � PABp  (AB � U)p.

This serves as a confirmation of the fact that the linear part of the dynamics

is what is important when the focus is stabilization to the origin. We will

therefore work with the linearized dynamics hereinafter.
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Consider the following optimal control problem:

inf
u2U

J(u)

subject to ṗ = (AB � U)p, p(0) = p
0

. (6.4)

Proposition 6.1. The optimal dynamic controller for node i 2 V for the

above optimal control problem is given by

u?

i

=

8
><

>:

u, d
i

� p?
i

q?
i

< 0

u, d
i

� p?
i

q?
i

> 0

{u, u}, otherwise

. (6.5)

where p? is the optimal trajectory and q? is the costate vector provided by

the canonical equations of the MP. Further, su�ciently close to the terminal

time T , the optimal controller is u? = u1.

Proof. The existence of optimal control for this problem follows by a straight-

forward application of Filippov’s existence theorem [58]. The Hamiltonian

associated with this problem is

H(p, q, u) = cTp+ dTu+ qT (AB � U)p,

where q is the costate vector. The MP dictates that there exists a costate

vector q satisfying the following canonical equations along the optimal tra-

jectory:

ṗ? = (AB � U?)p?, p?(0) = p
0

, (6.6)

q̇? = � @

@p
H = �(AB � U?)T q? � c, q?(T ) = 0. (6.7)

Further, the optimal controller minimizes the Hamiltonian:

u? = argmin
u2W

H(p?, q?, u),

which yields the solution in (6.7). Using the continuity of q? and the terminal

condition imposed on it, we conclude that when su�ciently close to the

terminal time T , u? = u1.

Next, we demonstrate that the optimal controller (6.5) can exhibit multiple

128



switches. Consider the network shown in Fig. 6.3, and let d = [1, 1, 10, 1, 1]T

such that node 3 has a high cost on control. Also, let p(0) = [0.1, 0.01, 0.9,

0.01, 0.01]T , where we assigned a high probability of infection to node 3. Let

u = 0.1, u = 1, T = 100, and c = 1. Unity infection rates were assigned to

all the nodes, i.e., �
i

= 1 for all i 2 [6]. The edge weights a
ij

were generated

randomly.

1 2 3

4

5

Figure 6.3: An infected graph with node 3 having high probability of
infection and high cost on control.

Figure 6.4 shows the state of the network above after implementing the

controller given in (6.5). Note that u
3

= u throughout [0, T ], because con-

trolling this node is expensive. Nevertheless, although the neighboring nodes

have low initial probability of infections, the optimal controller intelligently

increases the curing rates of these nodes, which enjoy low control cost, in

order to help cure node 3. It is interesting to note that all the controllers,

except u
3

, exhibit multiple switches between u and u.

Remark 6.1. It is important to note that the designer was able to cure the

entire network without needing to apply the maximum vaccination level to

node 3. This demonstrates that curing the network does not require applying

high vaccination levels to the entire network. •

6.5 Static Approaches

Note from (6.5)-(6.7) that the state, costate, and optimal control are inter-

related and cannot be solved in closed form. Hence, besides simulations, it

is not apparent how one can analytically study the properties of the optimal

controller, such as the number of switches between the bounds u and u.
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Figure 6.4: State and optimal controller of a network with a highly infected
node whose control cost is high.

We have shown above that the optimal controller (6.5) can exhibit multi-

ple switches between the vaccination levels, which may not be practical for

certain scenarios. For scenarios where a static controller, i.e., a controller

that does not exhibit any switching, is more appropriate, it is instructive

to compare the performances of static controllers with that of the optimal

controller in (6.5). In this section, we will propose two approaches to obtain

an e�cient static controller.

6.5.1 Optimal Static Controller

Instead of allowing the control input u to change its value dynamically, we

would like to choose the control input at t = 0 and fix it for the remaining

portion of the problem’s horizon. We will denote the static controller by uc

i

,

i 2 V . When the controller is fixed, we can readily obtain the solution of the

linearized dynamics in (6.4) as

p = e(AB�U

c

)tp
0

, (6.8)
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where U c = diag(uc). The objective function of the designer in this case

becomes

J(uc) =

Z
T

0

cT e(AB�U

c

)tp
0

dt+ TdTuc,

and his optimization problem becomes

min
u

c2W
J(uc).

Since J(uc) is continuous in uc, and W is closed and bounded, it follows from

Weierstrass’s Extreme Value Theorem that a globally optimum solution ex-

ists. Hence, although the objective function is not convex for all parameter

values, we can still obtain the global minimum using standard search algo-

rithms. However, in general, it is not possible to obtain the optimal static

controller, uc?, in closed form.

6.5.2 Sub-Optimal Static Controller

When the horizon of the problem is small enough, we can obtain a static con-

troller in closed form. To this end, consider the first order Taylor expansion

of (6.8)

e(AB�U

c

)tp
0

= p
0

+ t(AB � U c)p
0

+ O �
t2
�
.

The objective function, up to second order, can then be written as

Ĵ(uc) = TcTp
0

+
T 2

2
cT (AB � U c))p

0

+ TdTuc.

Using this objective function, an alternative optimization problem for the

designer is

min
u

c2W
Ĵ(uc).

The solution of this problem can be readily obtained, and it is given by

ûc?

i

=

8
><

>:

u, d
i

< T

2

c
i

p
i

(0)

u, d
i

> T

2

c
i

p
i

(0)

{u, u}, otherwise

.
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6.5.3 Performance Comparison

We will now compare the performances of the optimal dynamic controller u?,

the optimal static controller uc?, and the sub-optimal static controller ûc? for

di↵erent graphs. Let p
0

= 0.51, T = 1, c = 51, and d = 1. Also, let B = I,

a
ij

= 1 for all (i, j) 2 E , and u = 0.1. Depending on the graph, the value

of u is chosen to ensure that R
o

is satisfied, and hence that the all-healthy

state is GAS as per Proposition 5.2.

Figure 6.5 compares the cost incurred by the three control laws for a path

graph with a varying number of nodes. The maximum vaccination level

was fixed at u = 2. As expected, the dynamic controller achieves the best

performance, while the static controllers incur the same cost. A similar

scenario arises over a cycle graph as shown in Fig. 6.6, while the performances

of all three control laws are almost identical over a star graph as shown in

Fig. 6.7.
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Figure 6.5: Costs incurred by dynamic and static control laws over a path
graph.

Figure 6.8 illustrates the performances of each of the three control laws

over a complete graph with a varying number of nodes. The value of u

was chosen to be 23. Unlike the above experiments, the performance gap
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Figure 6.6: Costs incurred by dynamic and static control laws over a cycle
graph.
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Figure 6.7: Costs incurred by dynamic and static control laws over a star
graph.
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between the dynamic controller and the static ones is quite large. Further, the

performance gap between the optimal and the sub-optimal static controllers

is also large.
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Figure 6.8: Costs incurred by dynamic and static control laws over a
complete graph.

Remark 6.2. The performances of the dynamic and static control laws is

comparable over sparse networks such as paths and stars. However, the per-

formance gap becomes significant in graphs with many connections as in the

complete graph case. It is worth noting that the sub-optimal static controller

ûc? achieved a performance comparable to that of the optimal static controller

uc?, although in the derivation of ûc? we relied on second-order terms only.

Future work will focus on characterizing these gaps analytically. •

6.6 Linear Transformation

The fact that the system we are studying is a�ne in controls makes the

canonical equations provided by the MP intractable. As a sub-optimal ap-
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proach, consider instead the following linear-in-control dynamics:

ṗ
i

= ��
i

p
i

+
X

j 6=i

a
ij

�
j

p
j

� u
i

,

or in matrix form

ṗ = (AB � D)p � u. (6.9)

Note that the dynamics in (6.9) provide a lower bound to those in (5.1).

Hence, using the comparison lemma, the cost associated with the state in

(6.9) provides a lower bound for the cost associated with the state in (5.1).

Moreover, similar transformations have been studied in the literature, where

the control input u
i

is interpreted as extra vaccination provided to node

i 2 V [39]. The problem we want to solve now is

inf
u2U

J(u)

subject to ṗ = (AB � D)p � u,

0  p
i

 1, 8i 2 V ,
u  u

i

 u, 8i 2 V ,

where we have added a constraint on the state p
i

to ensure that it is a valid

probability of infection, for all i 2 V , and all t 2 R�0

. The following theorem

provides the solution to this problem.

Theorem 6.1. For all i 2 V, the optimal controller is given by

u?

i

=

8
><

>:

u, d
i

� q?
i

< 0

u, d
i

� q?
i

> 0

{u, u}, otherwise

. (6.10)

For all i 2 V, the optimal controller u?

i

switches at most once. If u?

i

exhibits

a switch at time t? 2 R�0

, then u?

i

= u for t  t?, and u?

i

= u for t > t?.

Proof. The Hamiltonian in this case becomes

H(p, q, u) = (c � �)Tp+ (d � q)Tu+ qT (AB � D)p,

where � is the Lagrange multiplier associated with the positivity constraint

on p. From the Hamiltonian minimization condition provided by the MP, we
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conclude that the optimal controller is as claimed. In order to completely

characterize the optimal controller, we must find �. By complementary slack-

ness, when p
i

> 0, we have �
i

= 0. When, p
i

= 0, we must have �
i

> 0.

However, optimality dictates that u
i

= u when p
i

= 0; hence, we do not need

to find the explicit value of �
i

in this case.

To determine the switching behavior, we study the costate equation. The

costate equation is given by

q̇ = �(AB � D)T q � c+ �, q(T ) = 0,

whose solution is

q =

Z
T

t

e�(AB�D)

T
(t�⌧)(�(⌧) � c)d⌧.

Note that q is independent of d. When d
i

= 0 for some i 2 V , i.e., there is no
cost on control, optimality dictates that we must have u?

i

= u. This implies

that q?
i

> 0 for all t 2 [0, T ). Using the terminal condition q
i

(T ) = 0, and

since i was arbitrary, we conclude that q
i

is nonnegative for all t 2 [0, T ],

for all i 2 V . Further, from the structure of q, we conclude that q
i

� d
i

can become zero at most once. Also, from the terminal condition and the

continuity of q, it follows that there is an ✏ > 0 such that q(t) = 0 for all

t 2 [T � ✏, T ], and therefore (6.10) implies that u
i

(t) = u for all t 2 [T � ✏, T ].

Using these facts, we conclude that if u
i

exhibits a switch at time t? 2 R�0

,

then u
i

= u for t  t?, and u
i

= u for t > t? as claimed.

Remark 6.3. The fact that the optimal controllers in (6.5) and (6.10) switch

to u towards the end of the horizon demonstrates that applying high curing

rates across the entire horizon of the problem is not required. Most of the

current approaches in the literature require applying constant curing rates

across the entire horizon of the problem; the optimal control framework we

provide here (based on linear approximation) and the one provided in Section

6.4 prove that this is in fact wasteful, and one can switch to low curing rates

once the nodes start approaching the all-healthy state. •
In Fig. 6.9, we repeat the same experiment, but we implement the optimal

controller provided in Theorem 6.1. We observe similar behavior as that

shown in Fig. 6.4; however, each control input switches at most once as

shown.
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Figure 6.9: A demonstration of the optimal controller provided by Theorem
6.1.

6.7 Summary

We derived su�cient conditions for stabilizing the all-healthy state for a

class of graphs using a limited number of controllers. We compared the

performances of constant and nonlinear controllers. Further, we formulated

the infection di↵usion and control of curing in networks as an optimal control

problem and studied the switching behavior of the optimal controller. We

proposed two static control laws: one is based on optimizing the vaccination

levels at time zero, and the other one is based on a second-order expansion of

the objective function. We compared the performances of the dynamic and

static controllers and identified graph classes over which the three control

laws exhibit comparable performances. Finally, we studied an optimal control

problem subject to a transformed version of the n-intertwined dynamics and

showed that the optimal controller in this case exhibits at most one switch.

The optimal controller was shown to switch to the lowest possible vaccination

level when the nodes approach the all-healthy state, which demonstrates that

high levels of vaccination are not required across the entire time horizon of

the problem as previously assumed in the literature.
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CHAPTER 7

OPEN PROBLEMS

The problems we have studied in the previous chapters point to many unex-

plored avenues in the area of control of spread of information. We identify

several potential directions below.

Chapters 2 & 3

• We have assumed that the players know the state and the network

topology completely. An interesting line of research is to derive the

optimal strategies when the knowledge of the players about the state

and the topology is restricted.

• When applying necessary conditions for optimality, e.g., the MP, to the

min–max or the max–min problem, one must first prove the existence

of optimal controllers. Such results can be viewed as existence results

for equilibria in the general framework of Stackelberg games, which are

not available in the literature.

• Other future directions include: removing Assumption 3.1 and show-

ing that Zeno behavior can be ruled out in optimality, formulating the

problems in discrete time, and deriving the optimal randomized strate-

gies for both players.

Chapter 4

• We have assumed that the adversary has already acted on the network

and introduced a modeling uncertainty, and as a result, the system

matrix was time-invariant. The logical next step would be to allow

the system to be time-varying, which would translate to the scenario

where the adversary is continuously attacking the network. Modeling

the adversary as a switching signal, and characterizing the worst-case

switching behavior would add a robustness notion to this problem.
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• Making Condition 4.2 less strict would strengthen the framework. The

problem can also be generalized to tracking of a reference model with

a reference input signal, instead of set-point tracking.

• In the distributed supervisory control framework, game-theoretic no-

tions can be applied to this problem in order to design incentive schemes

to ensure that the majority of the agents identify the underlying net-

work.

Chapters 5 & 6

• We identified the number of controllers required to stabilize a class of

undirected graphs. Finding the optimal set of nodes to control in order

to stabilize the network is the next logical step. However, this problem

might be NP-hard. An alternative approach in this case would be

to construct a polynomial-time algorithm that provides near-optimal

solutions.

• The e↵ort towards stabilizing an infected network using a limited num-

ber of controllers that are bounded starts by quantifying the amount of

control needed to stabilize the network. The first step required to solve

this problem is to find conditions under which a single controller can

make the closed-loop system stable, when arbitrarily small self-loops

are implemented at the remaining nodes.

• When stabilizing the all-healthy state is not possible, finding control

laws capable of minimizing the probability of infection at the endemic

state is an important development.

• Studying the e↵ect of malicious nodes on the evolution of probability of

infections is an important future direction. In such scenarios, a game-

theoretic approach would be appropriate, and di↵erent competitions

between friendly and malicious nodes can be formulated.

• We have focused on the n-intertwined model in our study of infected

networks. However, the proof methods we developed can be applied to

other, more general, epidemiological models.
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CHAPTER 8

CONCLUSION

In this thesis, we focused on designing optimal and stabilizing controllers for

the purpose of controlling spread of information in networks. We considered

two models to describe information spread: linear distributed averaging and

the n-intertwined model. Designing controllers with practical constraints was

the main feature of our designs for both dynamical models.

For distributed averaging networks, we considered two types of adversar-

ial attacks. Both attacks have the common objective of slowing down the

convergence of the computation at the nodes to the global average. We intro-

duced a network designer whose objective is to assist the nodes in reaching

consensus by countering the attacks of the adversary. Attack-I involves an

adversary and a network designer who are capable of targeting links. We have

formulated and solved two problems that capture the competition between

the players in this attack.

We considered practical models for the players by constraining their actions

along the problem horizon. The derived strategies were shown to exhibit a

low worst-case complexity. We also proved that the optimal strategies admit

a potential-theoretic analogy. Finally, we showed that when the link weights

are su�ciently diverse, an SPE exists for the zero-sum game between the

designer and the adversary.

Attack-II, on the other hand, involves an adversary and a network de-

signer who are able to modify the values of the nodes by injecting signals

of bounded power and energy. We utilized the maximum principle to com-

pletely characterize the optimal strategies of the players and showed that an

SPE exists in this case.

When the adversary introduces a large modeling uncertainty in the system,

we have proposed a distributed mechanism for the agents to stabilize the net-

work. We extended the classical centralized supervisory control framework to

a distributed setting, and we provided su�cient conditions for the nodes to
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achieve set-point tracking by relying on local information only, and without

requiring the individual agents to have explicit knowledge of this set-point.

This is particularly useful for distributed computation, distributed optimiza-

tion, and synchronization problems, where agents use local information in

order to compute quantities that are unknown to them a priori.

For infected networks, we borrowed tools from positive systems theory to

characterize the stability properties of the n-intertwined Markov model over

arbitrary networks. For strongly connected digraphs, we proved that when

the basic reproduction number is less than or equal to 1, the all-healthy

state is GAS. When the basic reproduction number is greater than 1, we

proved that the endemic state is globally asymptotically stable, and that

locally around this equilibrium, the convergence is exponentially fast. Fur-

thermore, we studied the stability properties of weakly connected graphs,

and we showed that a weak endemic state could emerge over such networks.

By viewing weakly connected graphs as a cascade of nonlinear systems, and

establishing input-to-state stability for those systems, we proved the global

asymptotic stability of the equilibria that emerge over such graphs.

Moreover, we have proposed a dynamical model that describes the interac-

tion among nodes in an infected network as a concave game and demonstrated

that it subsumes the n-intertwined Markov model. This alternative descrip-

tion provides a new condition, which can be checked collectively by agents,

for the stability of the origin. We have also formulated multiple control de-

sign questions over infected networks. In particular, we provided su�cient

conditions for stabilizing various networks by controlling a limited number of

nodes. Further, we have proposed an optimal control framework that allows

a network designer to minimize the total infection in the network at minimal

cost.

This thesis serves as a demonstration of control and game theoretic ques-

tions that arise in the area of control of spread of information over networks.

We have studied various problems, developed solution methodologies, and

highlighted that this new emerging area leads to interesting theoretical ex-

plorations. We have also identified open problems for research in the longer

term.
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