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ABSTRACT 

A new numerical method and a solver for the two-phase two-fluid model are developed using an innovative 

high-resolution, Total Variation Diminishing (TVD) scheme. The new scheme is derived first for scalar 

hyperbolic problems using the method of flux limiters, then extended to the two-phase two-fluid model. 

A hybridization of the monotone 1st-order upwind scheme and the Quadratic Upstream Interpolation 

scheme (QUICK) is implemented using a new flux limiter function.  The new function is derived in a 

systematic manner by imposing conditions necessary to ensure the TVD properties of the resulting scheme.  

For temporal discretization, the theta method is used, and values for the parameter 𝜃 are chosen such that 

the scheme is unconditionally stable (1/2 ≤ 𝜃 ≤ 1).  Finite volume techniques with staggered mesh are 

then used to develop a solver for the one-dimensional two-phase two-fluid model based on different 

numerical schemes including the new scheme developed here.  Linearized equations of state are used as 

closure relations for the model, with linearization derivatives calculated numerically using water properties 

based on the IAPWS IF-97 standard. 

Numerical convergence studies were conducted to verify, first, the new numerical scheme and then, the 

two-phase two-fluid solver.  Numerical scheme results are presented for one-dimensional pure advection 

problem with smooth and discontinuous initial conditions and compared to those of other classical and 

high-resolution numerical schemes.  Convergence rates for the new scheme are examined and shown to be 

higher compared to those of other schemes. For smooth solutions, the new scheme was found to exhibit a 

convergence rate of 1.3 and a convergence rate of 0.82 for discontinuous solutions.  The two-phase two-

fluid model solver is implemented to analyze numerical benchmark problems for verification and testing 

its abilities to handle discontinuities and fast transients with phase change.  Convergence rates are 

investigated by comparing numerical results to analytical solutions available in literature for the case of the 

faucet flow problem.  The new solver based on the new TVD scheme is shown to exhibit higher-order 

accuracy compared to other numerical schemes with convergence rate of 0.8.  Mass errors are also examined 

when phase change occurs for the shock tube problem, and compared to those of the 1st-order upwind 

scheme implemented in common nuclear thermal-hydraulics codes like TRACE and RELAP5.  The solver 

is shown to exhibit numerical stability when implemented to problems with discontinuous solutions and 

results of the new solver were free of spurious oscillations. 
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CHAPTER 1. INTRODUCTION 

As a subject of intense interest in many engineering systems, the study of two-phase flow is of great 

importance in applied research because it is involved in many industrial applications.  In the nuclear 

industry the phenomenon of two-phase flow plays a crucial role, because water in its liquid and gaseous 

phases is used as both a coolant and a moderator in many types of reactor cores.  It also appears in other 

mechanical parts of the nuclear reactor, such as heat exchangers, condensers and turbines.  Consequently, 

achieving the optimal design for both operation and safety requires a solid understanding of the fundamental 

aspects of two-phase flow physics and its mathematical models.  Modeling of two-phase flows entails 

several difficulties; difficulties in the mathematical model used to govern the evolution of different 

properties in space and time, difficulties in physical models describing interfacial interactions, difficulties 

in the numerical methods used to solve the model and the algebraic equation solver itself used for strongly 

non-linear discrete equations. 

In the last few decades, many researchers dedicated significant effort to overcome the problems associated 

with modeling of two-phase flow.  Because most of the legacy nuclear thermal-hydraulics codes were based 

on one-dimensional models, the majority of the work targeting the nuclear industry was in that area [1] [2] 

[3].  Other work was performed in terms of multidimensional analysis (2D, 3D) [4] [5].  Multidimensional 

analysis of the two-phase flow allows solving for different flow regimes.  This entails interface capturing 

between the two phases using different techniques, such as the Level-Set (LS) method, the Front-Tracking 

(FT) method and the Volume-Of-Fluid (VOF) method. 

This research is aimed at investigating the one-dimensional two-fluid model; its mathematical and 

numerical problems.  For the numerical simulation of the problem, high-order schemes are investigated as 

a potential replacement for the first-order schemes, and a new high-order scheme is developed.  Analysis 



2 

 

for numerical properties is carried out, and a numerical solver based on this analysis is developed, tested 

and verified using numerical benchmarks and analytical solutions. 

The work presented in this research suggests some solutions to the problems associated with numerical 

modeling of the two-phase two-fluid model.  There are other sources of errors and uncertainties in the 

modeling of two-phase flows.  For the two-fluid model, for example, errors in the closure relations can be 

up to 20% [6].  It is important to mention that these aspects of the problem should be tackled intensively to 

achieve better modeling of two-phase flows. 

This Chapter provides a brief description of two-phase flows; classification and mathematical models.  It 

also discusses the numerical approaches used to simulate the two-phase flow in two of the most common 

codes used in nuclear industry; TRACE and RELAP5. 

 

1.1 Two-Phase Flow: Classification and Mathematical Models 

1.1.1 Two-Phase Flow Classification  

The difficulty of physical modeling of the two-phase flow arises from the existence of moving and 

deforming interfaces between the two phases.  Fluid properties near these interfaces are discontinuous and 

flow fields are complicated.  Two-phase flow can be classified into different categories based on the nature 

of the interface.  Each category can have different flow regimes (i.e. two-phase interface topology). 

Three main categories were identified:  Separated flows, mixed or transitional flows and dispersed flows.  

This classification is shown in Table 1.1. 
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Table 1.1 Classification of two-phase flow 

Class 
Typical 

regimes 
Geometry Configuration Examples 

Separated 

flows 

Film flow 

 

 

Film of one phase in 

another phase 

Film condensation 

Film boiling 

Annular 

flow 
 

Core of one phase and a 

film of another film 

Film boiling 

Boilers 

Jet flow 

 

Jet of one phase in 

another phase 

Atomization 

Jet condenser 

Dispersed 

flows 

Bubbly 

flow 
 

Gas bubbles in liquid Chemical reactors 

Droplet 

flow 
 

Liquid droplets in gas Spray cooling 

Particulate 

flow 
 

Solid particles in gas or 

liquid 

Transportation of 

powder 

Mixed or 

Transitional 

Flows 

 Cap, Slug 

or Churn-

turbulent 

flow  

Gas pocket in liquid 
Sodium boiling in 

forced convection 

Bubbly 

annular 

flow  

Gas bubbles in liquid 

film with gas core 

Evaporators with wall 

nucleation 

Droplet 

annular 

flow  

Gas core with droplets 

and liquid film 
Steam generator 

Bubbly 

droplet 

annular 

flow 
 

Gas core with droplets 

and liquid film with gas 

bubbles 

Boiling nuclear reactor 

channel 
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1.1.2 Balance Equations and Mathematical Models 

In general, the evolution of a measurable scalar quantity 𝑊 in a medium of velocity �⃗�  is governed by the 

conservation relation: 

 𝜕𝑊

𝜕𝑡
+ �⃗� . (𝑊�⃗� ) = 𝑆 (1.1) 

and for a vector quantity �⃗⃗⃗�  the conservation relation becomes: 

 𝜕�⃗⃗⃗� 

𝜕𝑡
+ �⃗� . (�⃗⃗⃗� × �⃗� ) = 𝑆 (1.2) 

Terms on the left-hand side of the equation represent the evolution of the quantity in space and time, and 

terms on the right-hand side account for the sources and sinks of the measurable quantity. 

In a two-phase flow, conservation relations (1.1) and (1.2) are applied to mass, momentum and energy of 

different phases to obtain a mathematical model.  The two-phase model equations used by Yeom and Chang 

[7] are given by: 

 𝜕(𝛼𝑔𝜌𝑔)

𝜕𝑡
+ �⃗� (𝛼𝑔𝜌𝑔𝑢𝑔⃗⃗ ⃗⃗ ) = 𝛤 (1.3) 

 𝜕(𝛼𝑙𝜌𝑙)

𝜕𝑡
+ �⃗� (𝛼𝑙𝜌𝑙𝑢𝑙⃗⃗  ⃗) = −𝛤 (1.4) 

 𝜕(𝛼𝑔𝜌𝑔𝑢𝑔⃗⃗ ⃗⃗ )

𝜕𝑡
+ �⃗� (𝛼𝑔𝜌𝑔𝑢𝑔⃗⃗ ⃗⃗ × 𝑢𝑔⃗⃗ ⃗⃗ ) + 𝛼𝑔�⃗� 𝑝 = 𝐹𝑔⃗⃗  ⃗ (1.5) 

 𝜕(𝛼𝑙𝜌𝑙𝑢𝑙⃗⃗  ⃗)

𝜕𝑡
+ �⃗� (𝛼𝑙𝜌𝑙𝑢𝑙⃗⃗  ⃗ × 𝑢𝑙⃗⃗  ⃗) + 𝛼𝑙�⃗� 𝑝 = 𝐹𝑙⃗⃗  ⃗ (1.6) 

 𝜕(𝛼𝑔𝑒𝑔)

𝜕𝑡
+ �⃗� (𝛼𝑔𝑒𝑔𝑢𝑔⃗⃗ ⃗⃗ ) + 𝛼𝑔�⃗� (𝑝𝑢𝑔⃗⃗ ⃗⃗ ) = 𝐸𝑔

𝑔𝑒𝑛
+ 𝐸𝑔

𝑒𝑥𝑐 (1.7) 
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 𝜕(𝛼𝑙𝑒𝑙)

𝜕𝑡
+ �⃗� (𝛼𝑙𝑒𝑙𝑢𝑙⃗⃗  ⃗) + 𝛼𝑙�⃗� (𝑝𝑢𝑙⃗⃗  ⃗) = 𝐸𝑙

𝑔𝑒𝑛
+ 𝐸𝑙

𝑒𝑥𝑐 (1.8) 

The subscripts “𝑔” and “𝑙” refer to the gas and liquid phases, respectively.  

 𝛼 is the void fraction. 

 𝜌 is density. 

 𝑝 is pressure. 

 𝑒 is the specific internal energy. 

As for the source terms on the right-hand side: 

 𝛤 is the phase change rate, for example due to evaporation and condensation. 

 𝐹 ⃗⃗  ⃗accounts for all external forces acting on the fluid, including interfacial forces. 

 𝐸𝑔𝑒𝑛 is the net energy generation and 𝐸𝑒𝑥𝑐 is the net energy exchange with surrounding 

environment. 

In addition to the equations above, there is also the conservation of volume equation: 

 𝛼𝑔 + 𝛼𝑙 = 1 (1.9) 

The 7 equations above, along with two equations of state (one for each phase) yield a closed mathematical 

system of 9 equations and 9 unknowns (𝑝, 𝛼𝑔, 𝛼𝑙 , 𝑢𝑔, 𝑢𝑙 , 𝑒𝑔, 𝑒𝑙 , 𝜌𝑔, 𝜌𝑙). 

A range of approximations is possible to simplify the two-phase model.  One possible approximation is to 

assume the velocities and internal energies of the two phases are equal.  This assumption yields the 

Homogeneous Equilibrium Model (HEM), which simplifies the 9 initial equations into 4 equations.  A more 

general approximation is the drift flux model, where the velocities of the two phases are allowed to be 
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different.  Even more general is the two-fluid model. In this model only pressure is assumed to be equal for 

the two phases, and all of the 9 equations above are retained.  Some researchers consider the closure 

problems of two-fluid model to be a disadvantage, and favor the drift-flux model to analyze two-phase flow 

[8].  Yet, the two-fluid model is used in most nuclear thermal-hydraulic codes to date. 

 

1.2 Existing Nuclear Codes and the Semi-Implicit Numerical Method 

1.2.1 Existing Nuclear Codes 

There are many thermal-hydraulics codes used in the nuclear industry that have the capability to simulate 

two-phase flows.  Two of the most common codes are the Reactor Excursion and Leak Analysis Program, 

version 5 (RELAP5), and TRAC/RELAP Advanced Computational Engine (TRACE).  Both codes employ 

the two-fluid model, and use finite volume techniques to solve the partial differential equations. 

RELAP5 was developed for the U.S. Nuclear Regulatory Commission (NRC) to simulate the transients of 

boiling and pressurized water reactors, and analyze large- and small-break Loss-Of-Coolant Accidents 

(LOCAs).  For two-phase flow simulations, RELAP5 uses a one-dimensional, transient, two-fluid model.  

It can also invoke simpler models like the homogeneous flow and thermal equilibrium models [9].  RELAP5 

is probably the most widely used thermal-hydraulics code in the nuclear industry, yet it is expected to be 

phased out and replaced by TRACE. 

TRACE was designed to extend and combine the capabilities of the USA Nuclear Regulatory Commission 

(USNRC) main system codes; TRAC-P, TRAC-B, RELAP5 and RAMONA.  It is capable of analyzing 

transient and steady-state coupled neutronics/thermal-hydraulics in pressurized and boiling water reactors.  

It is also designed to perform best-estimate analysis of LOCAs in light water reactors.  Models used in 
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TRACE include three-dimensional two-fluid two-phase flow, non-equilibrium thermodynamics, 

generalized heat transfer, re-flood, level tracking and reactor kinetics [10]. 

In terms of two-phase flow physics and numerics, TRACE and RELAP5 have a lot in common.  The main 

similarity is the same two-fluid model and semi-implicit-based numerical methods used in both codes for 

solving the two-fluid model.  A brief discussion of the semi-implicit method is presented in the following 

section.   

In addition, both codes use staggered spatial mesh, where scalar properties (densities, pressure, energies 

and void fraction) are calculated at cell centers, and vector quantities (velocities) are calculated at the cell 

boundaries.  The mass and energy equations are derived at mesh centers, whereas the momentum 

conservation equations are derived at mesh interfaces.  More on the staggered mesh configuration is 

discussed in Chapter 5. 

Although there are many similarities between the two codes, they differ in some important aspects.  One 

example is the multidimensional capabilities of both codes; RELAP5 has the capability to model 1D flows, 

while TRACE can be used for 1D and 3D modeling.  Another difference is the method used in both codes 

to improve on the stability of the semi-implicit method.  RELAP5 uses the Nearly-Implicit method, while 

TRACE uses the Stability-Enhancing Two-Step (SETS) method. 

The non-linear equations of state are also handled differently in both codes.  RELAP5 replaces these 

equations by a linearized approximation, which is used as a part of the numerical discretization, while 

TRACE uses an iterative method to utilize the non-linear equations of state directly.  RELAP5 uses flow-

regime maps for closure relations, TRACE, on the other hand, does not identify specific flow regimes, the 

constitutive relations are smoothly interpolated for all flow conditions. 
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1.2.2 The Semi-Implicit Method 

This section gives a brief discussion about the Semi-Implicit method used in RELAP5 and TRACE.  More 

numerical fundamentals and concepts will be discussed in Chapter 3. 

When explicit methods are used for modeling, the maximum size of the time-step is limited by the time 

needed for a perturbation (material or pressure wave) to travel along one mesh cell.  This is known as the 

Courant, Friedrichs and Lewy (CFL) limit [10]. Mathematically, the relation between the temporal (𝛥𝑡) and 

the spatial (𝛥𝑥) steps is given by [16]: 

 𝛥𝑡 <  𝑘
𝛥𝑥

|𝑢| + 𝑐
 (1.10) 

Where: 

 𝑢 is flow velocity. 

 𝑐 is speed of sound in the medium. 

 𝑘 is a parameter that depends on the method used, for example k=1 for the 1st-order explicit upwind 

method in one-dimension. 

The semi-implicit method relaxes this restriction on the time step by evaluating some terms at new time 

levels (implicitly).  The key ideas of the semi-implicit method implemented in RELAP5 are: 

1- The numerical scheme should be consistent and conserve mass and energy, so that both are 

convected from the same cell, and each is evaluated at same time level, that is to say, both of them 

are evaluated at old time (𝑛). 

2- Implicit evaluation (at time level 𝑛 + 1) is only used for terms involved in pressure propagation 

and other phenomena that is known to have small time constants.  This means pressure gradient 

term in the momentum equation, and velocities involved in the mass and energy fluxes. 
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To illustrate the two concepts above we consider one-dimensional versions of Eqs. (1.3) and (1.5) given 

by: 

 
𝜕(𝛼𝑔𝜌𝑔)

𝜕𝑡
+
𝜕(𝛼𝑔𝜌𝑔𝑢𝑔⃗⃗ ⃗⃗ )

𝜕𝑥
= 𝛤 (1.11) 

 
𝜕(𝛼𝑔𝜌𝑔𝑢𝑔⃗⃗ ⃗⃗ )

𝜕𝑡
+
𝜕(𝛼𝑔𝜌𝑔𝑢𝑔

2)

𝜕𝑥
+ 𝛼𝑔

𝜕𝑝

𝜕𝑥
= 𝐹𝑔⃗⃗  ⃗ (1.12) 

Following the two guidelines above, the two equations are discretized as follows: 

 (𝛼𝑔𝜌𝑔)𝑖
𝑛+1

− (𝛼𝑔𝜌𝑔)𝑖
𝑛

𝛥𝑡
+

(�̇�𝑔�̇�𝑔)𝑖+1
2

𝑛
𝑢𝑔𝑖+1/2

𝑛+1 − (�̇�𝑔�̇�𝑔)𝑖−1
2

𝑛
𝑢𝑔𝑖−1/2

𝑛+1

𝛥𝑥
= 𝛤𝑖

𝑛 
(1.13) 

 
𝛼𝑔𝜌𝑔̅̅ ̅̅ ̅̅ ̅

𝑢𝑔𝑖+1/2
𝑛+1 − 𝑢𝑔𝑖+1/2

𝑛

𝛥𝑡
+
(𝛼𝑔𝜌𝑔)𝑖+1

𝑛
�̇�𝑔
2
𝑖+1

𝑛
− (𝛼𝑔𝜌𝑔)𝑖

𝑛
�̇�𝑔
2
𝑖

𝑛

𝛥𝑥
+ 𝛼𝑔̅̅ ̅

𝑝𝑖+1
𝑛+1 − 𝑝𝑖

𝑛+1

𝛥𝑥

= 𝐹𝑔𝑖
𝑛 

(1.14) 

In the previous equations “𝑖” is the index for spatial mesh and “𝑛” is the index for temporal time step.  

Because scalar properties (pressure, energies, densities and void fraction) are defined at the cell centers, a 

value for these properties is needed at the cell interfaces to calculate numerical fluxes (this will be discussed 

in Chapter 3).  These are variables with a “dot” in Eq. (1.13) (called donored quantities in RELAP5 

nomenclature).  TRACE uses values from adjacent volumes along with a weighting function to calculate 

the cell interface values.  RELAP5 uses the value of the cell center upstream (this is called the upwind 

method).  The same process holds for the momentum equations, where velocities are needed at the cell 

centers. 
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CHAPTER 2. CONSERVATION LAWS AND 

SOLUTIONS OF HYPERBOLIC PROBLEMS 

Conservation laws are an important and well known class of hyperbolic problems.  They appear in the 

majority of engineering fields and other scientific disciplines.  In this Chapter we will discuss some forms 

of linear and non-linear conservation laws, their properties and associated problems.  Some important 

concepts are also discussed to get a better understanding of the solution for conservation laws. 

Conservation laws arise from the requirement that a measurable property of a closed system (which does 

not interact with its surroundings) has to remain constant as the system changes.  A general form of 

conservation laws in one dimension is given by: 

 

𝜕𝑄

𝜕𝑡
+
𝜕𝐹(𝑄)

𝜕𝑥
= 0         𝑥 ∊ ℝ, 𝑡 > 0 

𝑄(𝑥, 0) = 𝑄0(𝑥)                    𝑥 ∊ ℝ 

(2.1) 

For a system of m equations: 

𝑄 = (

𝑞1
𝑞2
:
𝑞𝑚

) , 𝐹(𝑄) = (

𝑓1(𝑄)

𝑓2(𝑄)
:

𝑓𝑚(𝑄)

) 

If the flux function 𝐹(𝑄) is differentiable, this equation can be written in a quasi-linear form as follows: 

 
𝜕𝑄

𝜕𝑡
+ 𝐹′(𝑄)

𝜕𝑄

𝜕𝑥
= 0          (2.2) 
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𝐹′(𝑞) is called the Jacobian matrix, and can be written as: 

 𝐴(𝑄) = 𝐹′(𝑄) =

(

 
 
 
 
 

𝜕𝑓1
𝜕𝑞1

𝜕𝑓1
𝜕𝑞2

. .
𝜕𝑓1
𝜕𝑞𝑚

𝜕𝑓2
𝜕𝑞1

𝜕𝑓2
𝜕𝑞2

. .
𝜕𝑓2
𝜕𝑞𝑚

⋮ ⋮ ⋱ ⋮
𝜕𝑓𝑚
𝜕𝑞1

𝜕𝑓𝑚
𝜕𝑞2

. .
𝜕𝑓𝑚
𝜕𝑞𝑚)

 
 
 
 
 

 (2.3) 

For the system in Eq. (2.2), there are m eigenvalues (𝑧𝑘) of the Jacobian matrix (𝐴).  These are solutions 

of the characteristic polynomial resulting from the determinant of the matrix (𝐴 − 𝑧𝐼), where 𝐼 is the 

identity matrix.  Physically, these eigenvalues represent propagation speeds of information, as will be 

described later. 

A right eigenvector of the matrix 𝐴 corresponding to an eigenvalue 𝑧𝑘 of 𝐴 is a vector 𝑟(𝑘) =

[𝑟1
(𝑘), 𝑟2

(𝑘), … , 𝑟𝑚
(𝑘)] satisfying 𝐴𝑟(𝑘) = 𝑧𝑘𝑟

(𝑘).  Similarly, a left eigenvector of the matrix 𝐴 corresponding 

to an eigenvalue 𝑧𝑘 is a vector 𝑙(𝑘) = [𝑙1
(𝑘), 𝑙2

(𝑘), … , 𝑙𝑚
(𝑘)] satisfying 𝑙(𝑘)𝐴 = 𝑧𝑘𝑙

(𝑘). 

The system in Eq. (2.2) is said to be hyperbolic at any point (𝑥, 𝑡) if the Jacobian matrix 𝐴 has m real 

eigenvalues and a corresponding set of m linearly independent eigenvectors.  A special case is a strictly 

hyperbolic system, where eigenvalues are all distinct.  The two-fluid model does not always satisfy the 

condition of all real eigenvalues, hence, cannot be assumed hyperbolic for all flow conditions 

[11][12][13][14]. 
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2.1 Linear Hyperbolic Problems 

The advection problem is the simplest case of Eq. (2.2) where 𝑚 = 1.  In this problem the vector of 

variables 𝑄 reduces to one variable 𝑞, and the flux function 𝐹(𝑄) = 𝑓(𝑞) = �̅�𝑞, where �̅� is some constant 

velocity.  The quasi-linear form of this problem is: 

 

𝜕𝑞

𝜕𝑡
+ �̅�

𝜕𝑞

𝜕𝑥
= 0       − ∞ < 𝑥 < ∞, 𝑡 > 0   

𝑞(𝑥, 0) = 𝑞0(𝑥)                  − ∞ < 𝑥 < ∞ 

(2.4) 

This equation represents a pure convection of the scalar property 𝑞 in a moving fluid of velocity �̅�.  Because 

no other forces exist in this problem, one expects the property 𝑞 to move unchanged in the same direction 

as  �̅�.  With this conclusion, the solution can be written as: 

 𝑞(𝑥, 𝑡) = 𝑞0(𝑥 − �̅�𝑡) (2.5) 

Equation (2.5) shows that the solution remains constant along the parallel lines 𝑥 = 𝑥0 + �̅�𝑡, also called 

characteristic curves (see Figure 2.1). 

The Riemann problem 

Now, we consider a special case of the advection problem in Eq.(2.4), with a piecewise constant initial 

condition, given by: 

 𝑞0(𝑥) = {
𝑞𝐿         𝑥 < 0
𝑞𝑅         𝑥 > 0

 (2.6) 

Equations (2.4) and (2.6) are called the Riemann problem.  This kind of problems is very important for 

understanding different numerical schemes for hyperbolic equations. 
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Figure 2.1 Schematic for the characteristic curves. 

 

In this problem the discontinuity appearing in the initial condition is expected to propagate along the 

characteristic curves.  This can be expressed mathematically as: 

 𝑞(𝑥, 𝑡) = {
𝑞𝐿         𝑥 − �̅�𝑡 < 0
𝑞𝑅         𝑥 − �̅�𝑡 > 0

 (2.7) 

The advection problem discussed above can be extended to a system of linear equations.  Here, we consider 

a linear case of Eq. (2.2), where A = F′(Q) is a matrix of constant entries, independent of Q.  Assuming a 

strictly hyperbolic system, i.e. distinct real eigenvalues, the system can be diagonalized and can be 

expressed in a form of decoupled system of equations.   
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If we consider the matrix 𝑅 with its columns consisting of eigenvectors  𝑟(𝑘), 𝑘 = 1,2, . . , 𝑚 of 𝐴, then we 

can write: 

 𝐴 = 𝑅𝐷𝑅−1 (2.8) 

where 𝐷 is a diagonal matrix, and its diagonal entries are the eigenvalues of 𝐴.  We can define a new set 

of characteristic variables 𝑊: 

 𝑊 = 𝑅−1𝑄 (2.9) 

Using Eqs. (2.8) and (2.9) we can write the linear system (Eq. (2.2)) as: 

 
𝜕𝑊

𝜕𝑡
+ 𝐷

𝜕𝑊

𝜕𝑥
= 0 (2.10) 

The system above is a decoupled system of 𝑚 scalar equations, with each equation given by: 

 
𝜕𝑤𝑘

𝜕𝑡
+ 𝑧𝑘

𝜕𝑤𝑘

𝜕𝑥
= 0 (2.11) 

where 𝑤𝑘 is the characteristic variable corresponding to the 𝑘𝑡ℎ characteristic.  The solution of the equation 

above is a wave traveling at characteristic speed 𝑧𝑘 (similar to the simple advection problem).  These speeds 

define the characteristic curves 𝑥(𝑡) = 𝑥0 + 𝑧𝑘𝑡.  Along these curves solution of Eq. (2.11) is constant, so 

if we have: 

𝑊0(𝑥) = 𝑅
−1𝑄0(𝑥) 

The solution for 𝑤𝑘 at any point (𝑥, 𝑡) is given by: 

𝑤𝑘(𝑥, 𝑡) = 𝑤𝑘(𝑥 − 𝑧𝑘𝑡, 0) = 𝑤0
𝑘(𝑥 − 𝑧𝑘𝑡) 
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Finally, the solution of the original system is a linear combination of the solutions of the decoupled system, 

given as: 

 𝑄 = 𝑅𝑊 (2.12) 

Now we consider the Riemann problem for the case of a linear hyperbolic system, with a piecewise constant 

initial condition, given by: 

 𝑄0(𝑥) = {
𝑄𝐿          𝑥 < 0
𝑄𝑅         𝑥 > 0

 (2.13) 

If we use the notation of characteristic variables, we can define (compare with Eq. (2.12)): 

 𝑄𝐿 = ∑ 𝑤𝐿
𝑘𝑟𝑘𝑚

𝑘=1      and     𝑄𝑅 = ∑ 𝑤𝑅
𝑘𝑟𝑘𝑚

𝑘=1  (2.14) 

so we obtain an initial condition for the characteristic variables as: 

 𝑤0
𝑘(𝑥) = {

𝑤𝐿
𝑘         𝑥 < 0

𝑤𝑅
𝑘         𝑥 > 0

 (2.15) 

and the solution for the decoupled system in Eq. (2.11) becomes (compare with Eq. (2.7)): 

 𝑤𝑘(𝑥, 𝑡) = {
𝑤𝐿
𝑘         𝑥 < 𝑧𝑘𝑡

𝑤𝑅
𝑘         𝑥 > 𝑧𝑘𝑡

 (2.16) 

To obtain a solution for the original variables of Riemann’s problem, we need to consider waves that satisfy 

the upper and lower conditions of Eq. (2.16) separately.  This can be expressed mathematically as follows: 

 𝑄(𝑥, 𝑡) = ∑ 𝑤𝑅
𝑘𝑟𝑘

𝑘:𝑧𝑘<𝑥/𝑡

+ ∑ 𝑤𝐿
𝑘𝑟𝑘

𝑘:𝑧𝑘>𝑥/𝑡

 (2.17) 
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Figure 2.2 shows the construction of the solution 𝑄𝑟
∗  for a linear system of three equations at a point (𝑥′, 𝑡′) 

given by: 𝑄𝑟
∗ = 𝑤𝑙

1𝑟1 + 𝑤𝑟
2𝑟2 +𝑤𝑟

3𝑟3.  Similarly, we calculate 𝑄𝑙
∗ = 𝑤𝑙

1𝑟1 + 𝑤𝑙
2𝑟2 +𝑤𝑟

3𝑟3. 

There are two main observations we can conclude from Eq. (2.17): 

1- Solution at any point between the lines 𝑥 = 𝑧𝑘𝑡 and 𝑥 = 𝑧𝑘+1𝑡 is constant and has the same 

combination of characteristic variables. 

2- Once it crosses the 𝑘𝑡ℎ characteristic, the solution corresponding to 𝑤𝑘 jumps from 𝑤𝐿
𝑘 to 𝑤𝑅

𝑘, the 

other characteristic variables remain constant.  This causes a jump in the solution 𝑄, and this jump 

is given by (𝑤𝑅
𝑘 − 𝑤𝐿

𝑘)𝑟𝑘. 

From the second observation, we notice that the jump in the solution is an eigenvector of matrix 𝐴, because 

it is a scalar multiple of 𝑟𝑘.  A generalization of this conclusion is useful for solving the Riemann problem 

for non-linear cases, as we will see later.  This is referred to as the Rankine-Hugoniot jump condition [15]. 

 

 

Figure 2.2 Construction of the solution for Riemann problem of a three-equation system. 
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2.2 Non-Linear Hyperbolic Problems 

Before we move to non-linear systems, we shall start with a simple case of one equation (𝑚 = 1), in 

quasilinear form: 

 

𝜕𝑞

𝜕𝑡
+ 𝑎(𝑞)

𝜕𝑞

𝜕𝑥
= 0       − ∞ < 𝑥 < ∞, 𝑡 > 0 

𝑞(𝑥, 0) = 𝑞0(𝑥)                           − ∞ < 𝑥 < ∞ 

(2.18) 

where  𝑎(𝑞) = 𝑓′(𝑞).  It can be shown that the solution 𝑞 is constant along the curves satisfying  
𝑑𝑥

𝑑𝑡
=

𝑎(𝑞), 𝑥(0) = 𝑥0.  This means the slopes of characteristic curves are constants, and yield straight lines of 

the form 𝑥 = 𝑥0 + 𝑎(𝑞(𝑥0))𝑡.  The slopes (being dependent on the solution) will not be the same for 

different characteristic curves, which causes a deformation of the solution.  This is different from the linear 

case where information was moving along the characteristics unchanged. 

The fact that characteristic curves have different slopes implies either an intersection or a divergence in the 

x-t plane.  The possibility of intersection means multiple values of the solution at some points; hence, the 

solution will be discontinuous at these points, even for a smooth initial condition.  Equation (2.1) in its 

conservative form ceases to be valid at points of discontinuity, and we need to admit the integral form of 

the conservation law to allow for discontinuities to exist. 

Let us assume discontinuity exists at 𝑥𝑠 = 𝑥𝑠(𝑡) in the x-t plane, and the solution 𝑞(𝑥, 𝑡) and the flux 𝑓(𝑞) 

are continuous and smooth elsewhere.  If we zoom into that point and consider the rectangle shown in 

Figure 2.3, we can apply the integral form of the conservation law and obtain weak solutions that satisfy 

the integral form rather than differential form: 
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∫ 𝑞(𝑥, 𝑡1 + 𝛥𝑡)𝑑𝑥 − ∫ 𝑞(𝑥, 𝑡1)𝑑𝑥 =
𝑥1+𝛥𝑥

𝑥1

𝑥1+𝛥𝑥

𝑥1

 

∫ 𝑓(𝑞(𝑥1, 𝑡))𝑑𝑡
𝑡1+𝛥𝑡

𝑡1

−∫ 𝑓(𝑞(𝑥1 + 𝛥𝑥, 𝑡))𝑑𝑡
𝑡1+𝛥𝑡

𝑡1

 

(2.19) 

Carrying out the integration above and assuming constant values of 𝑞 and 𝑓(𝑞) on the wedges (see Figure 

2.3), we get: 

𝛥𝑥(𝑞𝑟 − 𝑞𝑙) = 𝛥𝑡(𝑓(𝑞𝑙) − 𝑓(𝑞𝑟)) 

If we define the propagation speed of discontinuity 𝑠 = −𝛥𝑥/𝛥𝑡, we get: 

 𝑠(𝑞𝑟 − 𝑞𝑙) = 𝑓(𝑞𝑟) − 𝑓(𝑞𝑙) (2.20) 

In general, this speed is not constant because the solution to the left and the right of the discontinuity 

changes with time.  A generalization of this result for a system of equations yields the Rankine-Hugoniot 

jump condition discussed before, namely: 

 𝐴(𝑞𝑟 − 𝑞𝑙) = 𝑠(𝑞𝑟 − 𝑞𝑙) (2.21) 

where 𝐴 is the Jacobian matrix, and the shock speed s is an eigenvalue of 𝐴. 
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Figure 2.3 Infinitesimal rectangular region in the x-t plane near discontinuity. 

 

An example of non-linear conservation law is the Inviscid Burger equation, namely: 

 
𝜕𝑞

𝜕𝑡
+ 𝑞

𝜕𝑞

𝜕𝑥
= 0   (2.22) 

In this equation, 𝑞 is fluid velocity.  Now, we consider the Riemann problem of Burger’s equation (Eq. 

(2.22)) with the piecewise constant initial condition (Eq. (2.6)). 

We discussed before, that solutions of non-linear hyperbolic equations depend on initial conditions.  This 

is due to the fact that slopes of the characteristic curves depend on the solution, which in turn is a 

propagation of initial conditions.  
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In case of Eq. (2.22) these slopes are given by 𝑞(𝑥0).  Because of this, we need to consider two different 

cases for the solution: 

1- 𝑞𝐿 > 𝑞𝑅 

In this case the slopes for 𝑥 < 0 are greater than those for 𝑥 > 0.  As a result characteristic curves will 

intersect at time 𝑡 = 0 causing the creation of a shock wave at 𝑥 = 0.  This wave propagates with a speed 𝑠.  

The solution anywhere away from this shock is piecewise and is given by: 

 𝑞(𝑥) = {
𝑞𝐿          𝑥 < 𝑠𝑡
𝑞𝑅          𝑥 > 𝑠𝑡

 (2.23) 

The propagation speed 𝑠 is calculated using Eq. (2.20) to be: 𝑠 = (𝑞𝐿 + 𝑞𝑅)/2.  We notice this is simply 

the average of characteristic speeds on the two sides. 

2- 𝑞𝐿 < 𝑞𝑅 

We know the solution is constant along characteristic curves, thus we conclude the following about the 

solution: 

 𝑞(𝑥) = {
𝑞𝐿          

𝑥

𝑡
< 𝑞𝐿

𝑞𝑅            
𝑥

𝑡
> 𝑞𝑅

 (2.24) 

 

This solution is missing the part for 𝑞𝐿 <
𝑥

𝑡
<  𝑞𝑅.  In this region two different scenarios are possible for 

the characteristic curves: 

a- An expansion shock is forming between the two sets of characteristics, with a speed: 𝑠 = (𝑞𝐿 +

𝑞𝑅)/2.  This scenario yields the same solution as in Eq. (2.23). 
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b- A formation of a family of characteristics with slopes ranging between slope values of the left and 

right sides.  This kind of solution is called a rarefaction wave and the complete solution in this 

case is given by: 

 𝑞(𝑥) =

{
 
 

 
 𝑞𝐿                  

𝑥

𝑡
< 𝑞𝐿

 
𝑥

𝑡
        𝑞𝐿 < 

𝑥

𝑡
< 𝑞𝑅

𝑞𝑅                  
𝑥

𝑡
> 𝑞𝑅

 (2.25) 

Figure 2.4 shows the three different solutions discussed above.  We can see from the example of Burger’s 

equation, that a weak solution for the conservation law is not a unique solution.  To be able to decide which 

solution is more sensible, additional conditions have to be imposed, these conditions are known as the 

entropy conditions. 

 

Figure 2.4 Characteristic curves for different solutions of the Riemann problem 

(a) Shock wave (b) Expansion shock (c) Rarefaction wave 
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One entropy condition is the Lax entropy condition [15].  For Eq. (2.22), a discontinuity propagating with 

speed 𝑠 should satisfy: 

 𝑓′(𝑞𝐿) > 𝑠 > 𝑓
′(𝑞𝑅) (2.26) 

This condition rules out the expansion shock in the solution of Burger’s equation. 

In many numerical methods, solving the Riemann problem for a non-linear system is a crucial part of the 

numerical algorithm.  Leveque [15] describes a three steps strategy for solving the Riemann problem for 

such systems: 

1- Determination whether each of the 𝑚 waves is a shock wave or a rarefaction wave, a 

proper entropy condition has to be used. 

2- Calculation for intermediate states between different waves. 

3- Determination of the solution structure through any rarefaction wave. 

To solve for shock waves, Leveque uses the Rankine-Hugoniot jump condition in Eq. (2.20) on the speed 

of propagation.  For rarefaction waves Leveque uses the property that they are similarity solutions of the 

equations (constant along every line 𝑥 𝑡⁄ = constant).  For more details on how to solve the Riemann 

problem of a non-linear system of equations we suggest the reader to consult Leveque’s book [15]. 
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CHAPTER 3. REVIEW OF NUMERICAL METHODS 

FOR HYPERBOLIC PROBLEMS 

Developing stable numerical schemes for modeling hyperbolic problems has been an intense research area 

for decades.  This field of study poses several challenging difficulties.  One of the most important 

difficulties is the existence of discontinuities and the formation of different types of shocks in the solution.  

As discussed in Chapter 2, discontinuities appear in the solution of non-linear equations, even with smooth 

initial conditions. 

Special attention should be paid to the treatment of discontinuous solutions and shock propagation.  There 

have been many approaches for dealing with these discontinuities, one of which is adding artificial viscosity 

term to the scheme.  Addition of artificial viscosity can be achieved by either explicitly adding additional 

differential terms or implicitly within the numerical scheme used, such as first-order schemes which are 

known to be dissipative and able to smear the solution around discontinuities.  Other approaches consider 

these dissipative schemes only at the regions of discontinuities, and adopt higher order schemes elsewhere.  

Another approach that has been developed for high-order accurate schemes is the Godunov’s scheme, where 

the Riemann problem (exact or approximate) is solved at the cell interfaces at each time step.  This Chapter 

includes a brief discussion on these different approaches and other numerical schemes. 

There have been many classifications for the numerical methods used for hyperbolic problems.  In this 

Chapter we will consider the classification based on the linearity of the scheme.  The first section of this 

Chapter will be a brief discussion of some crucial concepts necessary for understanding of numerical 

schemes.  The second part includes a discussion of linear and non-linear numerical schemes, and methods 

of temporal discretization. 
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3.1 Numerical Notations 

Eq. (2.1) can be written in a scalar form: 

 
𝜕𝑞

𝜕𝑡
+
𝜕𝑓(𝑄)

𝜕𝑥
= 0         − ∞ < 𝑥 < ∞, 𝑡 > 0 (3.1) 

To allow for discontinuities along a discretized spatial and temporal domain, we need to admit weak 

solutions for Eq. (3.1).  To explain this, we consider the control volume 𝐶𝑖 = [𝑥𝑖−1/2, 𝑥𝑖+1/2], with 𝛥𝑥𝑖 =

(𝑥𝑖+1/2 − 𝑥𝑖−1/2).  Similarly we define 𝑇𝑛+1/2 = [𝑡𝑛, 𝑡𝑛+1], and 𝛥𝑡 = (𝑡𝑛+1 − 𝑡𝑛).  Integrating Eq. (3.1) 

over 𝐶𝑖 ×  𝑇𝑛+1/2 and dividing by 𝛥𝑥𝑖 we obtain: 

 

1

𝛥𝑥𝑖
∫ 𝑞(𝑥, 𝑡𝑛+1)𝑑𝑥 −

1

𝛥𝑥𝑖
∫ 𝑞(𝑥, 𝑡𝑛)𝑑𝑥
𝑥𝑖+1/2

𝑥𝑖−1/2

𝑥𝑖+1/2

𝑥𝑖−1/2

 

+
𝛥𝑡

𝛥𝑥𝑖
(
1

𝛥𝑡
∫ 𝑓 (𝑞(𝑥𝑖+1 2⁄ , 𝑠)) 𝑑𝑠
𝑡𝑛+1

𝑡𝑛

−
1

𝛥𝑡
∫ 𝑓 (𝑞(𝑥𝑖−1 2⁄ , 𝑠)) 𝑑𝑠
𝑡𝑛+1

𝑡𝑛

) = 0 

(3.2) 

If we define the following: 

 𝑞𝑖
𝑛 ≈

1

𝛥𝑥𝑖
∫ 𝑞(𝑥, 𝑡𝑛)𝑑𝑥
𝑖+1/2

𝑖−1/2

 (3.3) 

 ℱ𝑖+1/2
𝑛 ≈

1

𝛥𝑡
∫ 𝑓 (𝑞(𝑥𝑖+1 2⁄ , 𝑠))𝑑𝑠
𝑡𝑛+1

𝑡𝑛

 (3.4) 

 𝜆 =
𝛥𝑡

𝛥𝑥𝑖
 (3.5) 

we can write a general numerical scheme in its conservative form as: 

 𝑞𝑖
𝑛+1 = 𝑞𝑖

𝑛 − 𝜆(ℱ𝑖+1/2
𝑛 −ℱ𝑖−1/2

𝑛 ) (3.6) 
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Different ways of calculating the numerical fluxes ℱ𝑖±1/2
𝑛  yield different numerical schemes.  This will be 

discussed in the following sections. 

3.1.1 Forms of Numerical Schemes 

In addition to the conservative form of Eq. (3.6), there are many other forms to represent numerical schemes 

for solving Eq. (3.1).  Some of these forms are: 

 the general form: 

 𝑞𝑖
𝑛+1 = 𝐻(𝑞𝑖−𝑘

𝑛 , 𝑞𝑖−𝑘+1
𝑛 , … , 𝑞𝑖

𝑛, … , 𝑞𝑖+𝑘
𝑛 ) (3.7) 

 

 the incremental form: 

 𝑞𝑖
𝑛+1 = 𝑞𝑖

𝑛 − 𝐷𝑖−1/2𝛥𝑞𝑖−1/2 + 𝐶𝑖+1/2𝛥𝑞𝑖+1/2 (3.8) 

 

 the viscous form: 

 𝑞𝑖
𝑛+1 = 𝑞𝑖

𝑛 −
1

2
𝜆[𝑓(𝑞𝑖+1

𝑛 ) − 𝑓(𝑞𝑖−1
𝑛 )] +

1

2
(𝑑𝑖+1/2𝛥𝑞𝑖+1/2 − 𝑑𝑖−1

2
𝛥𝑞𝑖−1/2) (3.9) 

where 

𝛥𝑞𝑖−1/2 = 𝑞𝑖 − 𝑞𝑖−1 

𝛥𝑞𝑖+1/2 = 𝑞𝑖+1 − 𝑞𝑖 

𝐷𝑖−1/2 = 𝐷(𝑞𝑖−𝑘 , … , 𝑞𝑖+𝑘) 

𝐶𝑖+1/2 = 𝐶(𝑞𝑖−𝑘, … , 𝑞𝑖+𝑘) 

and 𝑑𝑖±1/2 is called the viscosity coefficient.  These forms will be useful when we discuss the properties of 

different numerical schemes. 
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3.1.2 Local Truncation Error 

For a numerical scheme, the local truncation error is a measure of the quality of approximating a partial 

differential equation (PDE) by a difference equation at a single time step.  If we consider a scheme in its 

general form (Eq. (3.7)), we can write the numerical operator (𝐿𝑎) that satisfies the difference equation as 

follows: 

 𝐿𝑎(𝑞𝑖) = 𝑞𝑖
𝑛+1 −𝐻(𝑞𝑖−𝑘

𝑛 , 𝑞𝑖−𝑘+1
𝑛 , … , 𝑞𝑖

𝑛, … , 𝑞𝑖+𝑘
𝑛 ) = 0 (3.10) 

If 𝐿𝑎 is applied to the exact solution 𝑞(𝑥, 𝑡)  of the PDE at time 𝑡𝑛 and location 𝑥𝑖, the value on the right-

hand side of Eq. (3.10) will be different from zero.  This value quantifies the local truncation error (𝜏𝑖
𝑛) of 

the scheme, namely: 

 𝜏𝑖
𝑛 =

1

𝛥𝑡
𝐿𝑎(𝑞(𝑥𝑖, 𝑡𝑛)) ≠ 0 (3.11) 

Assuming the solution 𝑞(𝑥, 𝑡) of Eq. (3.1) to be smooth, we can use Taylor series expansion about the point 

 (𝑥𝑖 ,  𝑡𝑛), and substitute in Eq. (3.11).  With some algebraic manipulation we can solve for the truncation 

error of the scheme. In general: 

 𝜏𝑖
𝑛 =

𝜕𝑞(𝑖𝛥𝑥, 𝑛𝛥𝑡)

𝜕𝑡
+
𝜕𝑓(𝑞(𝑖𝛥𝑥, 𝑛𝛥𝑡))

𝜕𝑥
+ 𝑂(𝛥𝑡)𝑘 + 𝑂(𝛥𝑥)𝑚 (3.12) 

𝑘 and 𝑚 are integers based on the scheme used.  The first two terms on the right-hand side of Eq. (3.12) 

vanish, because 𝑞(𝑥, 𝑡) is a solution of the original PDE. Therefore, the truncation error is given by: 

 𝜏𝑖
𝑛 = 𝑂(𝛥𝑡)𝑘 + 𝑂(𝛥𝑥)𝑚 (3.13) 
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Equation (3.13) implies that the numerical scheme is of the order of accuracy 𝑘 in time and 𝑚 in space.  It 

also implies that the numerical scheme is consistent with Eq. (3.1) if and only if 𝜏𝑖
𝑛 → 0 as both the spatial 

and temporal mesh sizes approach zero. 

3.1.3 The Courant, Friedrichs and Lewy (CFL) Condition 

The CFL condition is a stability condition that was first derived by Courant et al. [16].  The condition 

dictates that the numerical method should be used in such a way that the information can propagate at the 

correct physical speeds.  In other words: 

“For a numerical method to be convergent, the numerical domain of dependence for the difference 

equation has to contain the true domain of dependence of the partial differential equation, at least 

in the limit as 𝛥𝑡 and 𝛥𝑥 go to zero” 

To illustrate the statement above, we study the scalar advection case of Eq. (2.4).  We already know the 

exact solution of this equation is given by  𝑞(𝑥, 𝑡) = 𝑞0(𝑥 − �̅�𝑡).  This implies that at any point (𝑥𝑖, 𝑡𝑛) the 

solution depends on the initial data at the spatial location  𝑥𝑖 − �̅�𝑡𝑛, which is referred to as the domain of 

dependence of the point (𝑥𝑖, 𝑡𝑛). 

Let’s consider a three point numerical method, where the solution at any time step depends on the previous 

solution at the same cell and two neighboring cells.  This is illustrated in Figure 3.1. 
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Figure 3.1 Numerical domain of dependence for a three-point numerical method. 

 

One observation from Figure 3.1 is that the solution at any point (𝑥𝑖 , 𝑡𝑛) in the numerical domain depends 

on the solutions at all points between (𝑥𝑖 −
𝑡𝑛

𝛥𝑡
𝛥x) and (𝑥𝑖 +

𝑡𝑛

𝛥𝑡
𝛥x).  If we apply the CFL condition above 

we require: 

𝑥𝑖 −
𝑡𝑛
𝛥𝑡
𝛥x ≤ 𝑥𝑖 − �̅�𝑡𝑛 ≤ 𝑥𝑖 +

𝑡𝑛
𝛥𝑡
𝛥x 

By defining the Courant number 𝑣, this can be simplified into: 

 𝑣 = |
�̅�𝛥𝑡

𝛥𝑥
| ≤ 1 (3.14) 

For a system of equations the CFL condition is dictated by the maximum eigenvalue of the Jacobian matrix 

discussed in Chapter 2. 
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3.1.4 Total Variation and Monotonicity 

A numerical scheme of the general form (Eq. (3.7)) is called a monotone scheme if the operator 𝐻 is non-

decreasing for all its arguments, namely: 

 
𝜕

𝜕𝑞𝑘
𝑛𝐻(𝑞𝑖−𝑙

𝑛 , 𝑞𝑖−𝑙+1
𝑛 , … , 𝑞𝑖

𝑛 , … , 𝑞𝑖+𝑟
𝑛 ) ≥ 0 (3.15) 

for any 𝑘 in the spatial domain.  According to Harten [17], a weak solution for a scalar version of Eq. (3.1) 

has the following monotonicity property: 

1- No new local extrema in 𝑥 direction may be created. 

2- The value of a local minimum is non-decreasing and the value of the local maximum is 

non-increasing. 

Based on the two properties above monotone schemes are desired because they have the property of not 

introducing oscillations with new extrema, particularly near discontinuities. 

Another important notion that gives a measure for oscillations due to a numerical scheme is the Total 

Variation (TV).  For a differentiable function 𝑞(𝑥, 𝑡), the total variation at a given time (𝑡0) is defined as 

[15]: 

 𝑇𝑉(𝑞(𝑥, 𝑡0)) = ∫ |
𝜕𝑞(𝑥, 𝑡0)

𝜕𝑥
|

∞

−∞

𝑑𝑥 (3.16) 

If we consider the simple advection problem with flux function given by: 

 𝑓(𝑞) = �̅�𝑞 (3.17) 
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the exact solution for this problem moves unchanged with a constant speed �̅�.  This dictates the total 

variation to be constant in time, namely: 

𝑇𝑉(𝑞(𝑥, 𝑡1)) = 𝑇𝑉(𝑞(𝑥, 𝑡2)) 

for any 𝑡1 and 𝑡2 > 0.  For a given piecewise grid function 𝑞(𝑖, 𝑛) that approximates the exact solution 

 𝑞(𝑥, 𝑡), the total variation is given by: 

 𝑇𝑉(𝑞𝑛) = ∑ |𝑞𝑖
𝑛 − 𝑞𝑖−1

𝑛 |

∞

𝑖=−∞

 (3.18) 

A numerical method is called Total Variation Diminishing (TVD) if the total variation does not increase 

due to the numerical operator 𝐻 in Eq. (3.7), i.e.: 

 𝑇𝑉(𝑞𝑛+1) ≤ 𝑇𝑉(𝑞𝑛) (3.19) 

For a numerical scheme in the incremental form (Eq. (3.8)), this condition is satisfied if [18]: 

 𝐷𝑖−1/2 ≥ 0,  𝐶𝑖+1/2 ≥ 0 𝑎𝑛𝑑 0 ≤ 𝐷𝑖−1/2 + 𝐶𝑖+1/2 ≤ 1 (3.20) 

On the relation between monotonicity and total variation, Harten suggests that a monotone scheme has a 

non-increasing TV, and a scheme with non-increasing TV preserves monotonicity [17]. 
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3.2 Linear Numerical Schemes 

A linear scheme for solving the linear advection equation can be written in the form: 

 𝑞𝑖
𝑛+1 = ∑ 𝑐𝑘𝑞𝑖+𝑘

𝑛

𝑘=𝑑

𝑘=−𝑏

 (3.21) 

The coefficients 𝑐𝑘 in Eq. (3.21) are constants and do not depend on the solution.  There are many classical 

linear schemes available in literature to solve hyperbolic equations.  These schemes can be classified into 

monotone first-order schemes and non-monotone high-order schemes.  In this section we will present the 

main schemes of the two families. 

3.2.1 First-Order Accurate Schemes 

In this section we shall discuss some linear numerical schemes that are first-order accurate.  These schemes 

are constructed by choosing different expressions for the numerical flux ℱ𝑖+1/2
𝑛  in the conservative form 

(Eq. (3.6)).  Most of these schemes are known to be dissipative and cause smearing in the solution for 

hyperbolic problems.  This dissipation is shown mathematically for the next two example schemes. 

The Lax-Friedrichs method 

The Lax-Friedrichs method is a three-point scheme with first-order accuracy in space and time.  The 

numerical flux for this scheme given by: 

 ℱ𝑖+1/2
𝑛 =

1

2
[𝑓(𝑞𝑖

𝑛) + 𝑓(𝑞𝑖+1
𝑛 )] −

𝛥𝑥

2𝛥𝑡
(𝑞𝑖+1
𝑛 − 𝑞𝑖

𝑛) (3.22) 

If we substitute this flux into the conservative form (Eq. (3.6)) we obtain the following scheme: 

 𝑞𝑖
𝑛+1 =

1

2
(𝑞𝑖+1
𝑛 + 𝑞𝑖−1

𝑛 ) −
𝛥𝑡

2𝛥𝑥
[𝑓(𝑞𝑖+1

𝑛 ) − 𝑓(𝑞𝑖−1
𝑛 )] (3.23) 
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The Lax-Friedrichs scheme is known to be diffusive.  It has an implicit numerical viscosity that is useful 

for solving problems with discontinuities.  To quantify the numerical viscosity of the Lax-Friedrichs scheme 

we use the modified equation approach.  In this approach we seek a PDE for which the numerical 

approximation 𝑞𝑖
𝑛 due to the numerical scheme is an exact solution.  The resulting equation is called the 

Modified Differential Equation (MDE) for the numerical scheme of interest.  For the simple advection case 

(Eq. (2.4)), we can use this approach to find the modified equation for the Lax-Friedrich scheme to be: 

 
𝜕𝑞

𝜕𝑡
+ �̅�

𝜕𝑞

𝜕𝑥
= (

𝛥𝑥2

2𝛥𝑡
−
𝛥𝑡

2
�̅�2)

𝜕2𝑞

𝜕𝑥2
 (3.24) 

If we use the definition of Courant number in Eq. (3.14), we obtain: 

 
𝜕𝑞

𝜕𝑡
+ �̅�

𝜕𝑞

𝜕𝑥
=
𝛥𝑥�̅�

2
(
1

𝑣
− 𝑣)

𝜕2𝑞

𝜕𝑥2
 (3.25) 

This is an advection-diffusion equation with the diffusion coefficient 
𝛥𝑥�̅�

2
(
1

𝑣
− 𝑣).  This coefficient vanishes 

as the mesh size is refined.  The interpretation here is that the Lax-Friedrich scheme is at least second-order 

accurate for the advection-diffusion equation (Eq. (3.24)).  The scheme has an implicit numerical viscosity 

when used to solve the advection equation, this causes the smearing of the solution near discontinuities. 

The first-order upwind method 

As discussed before, hyperbolic problems have the property that the initial data propagates along the 

characteristic curves.  The upwind method uses this property to construct a numerical scheme that is 

dependent on the direction of the flow velocity.  If we consider the non-linear advection equation: 

 

 
𝜕𝑞

𝜕𝑡
+
𝜕𝑓(𝑞)

𝜕𝑥
= 0 (3.26) 
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The information will propagate along the characteristic curves with a speed 𝑎(𝑞) =
𝜕𝑓

𝜕𝑞
.  Based on that, the 

numerical flux for the first-order upwind scheme is given by: 

 ℱ𝑖+1/2
𝑛 = {

𝑓(𝑞𝑖
𝑛)    𝑖𝑓  𝑎𝑖+1/2 > 0

𝑓(𝑞𝑖+1
𝑛 )  𝑖𝑓  𝑎𝑖+1/2 < 0

 (3.27) 

and the characteristic speed 𝑎𝑖+1/2 is defined as: 

 𝑎𝑖+1/2  =

{
 
 

 
 
𝑓(𝑞𝑖+1

𝑛 ) − 𝑓(𝑞𝑖
𝑛)

𝑞𝑖+1
𝑛 − 𝑞𝑖

𝑛     𝑖𝑓  𝑞𝑖+1
𝑛 ≠ 𝑞𝑖

𝑛

              
𝜕𝑓

𝜕𝑞
|
𝑞=𝑞𝑖

𝑛
       𝑖𝑓  𝑞𝑖+1

𝑛 = 𝑞𝑖
𝑛

 (3.28) 

The numerical flux above yields the following scheme: 

 

𝑞𝑖
𝑛+1 = 𝑞𝑖

𝑛 −
𝛥𝑡

2𝛥𝑥
[𝑓(𝑞𝑖+1

𝑛 ) − 𝑓(𝑞𝑖−1
𝑛 ) − |𝑎𝑖+1/2|(𝑞𝑖+1

𝑛 − 𝑞𝑖
𝑛)

+ |𝑎𝑖−1/2|(𝑞𝑖
𝑛 − 𝑞𝑖−1

𝑛 )] 

(3.29) 

For a simple advection problem with positive speed  �̅� > 0, the scheme is simply: 

𝑞𝑖
𝑛+1 = 𝑞𝑖

𝑛 −
�̅�𝛥𝑡

𝛥𝑥
[𝑞𝑖
𝑛 − 𝑞𝑖−1

𝑛 ] 

The first-order upwind method is a dissipative method and it has an implicit numerical viscosity.  To 

quantify this viscosity we can apply the modified equation approach as we did for the Lax-Friedrichs 

method.  The modified differential equation for the case of simple advection with positive speed is: 

 
𝜕𝑞

𝜕𝑡
+ �̅�

𝜕𝑞

𝜕𝑥
=
𝛥𝑥�̅�

2
(1 − 𝑣)

𝜕2𝑞

𝜕𝑥2
 (3.30) 
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We can see that the numerical viscosity term vanishes as the mesh is refined, assuming that the Courant 

number is a fixed constant.  We can also see that the viscosity coefficient for the first-order upwind method 

is less than that of the Lax-Friedrichs method, which means less dissipation. 

The first-order upwind method is based on the original work of Courant et. al [19], where the authors 

developed the Courant-Isaacson-Rees (CIR) methods.  These methods can be used for a system of 

equations, and the upwind direction is chosen based on the signs of the eigenvalues of the Jacobian matrix 

of the system. 

The Godunov’s method 

This method was first proposed by Godunov [20] as a first-order accurate method.  The idea behind this 

method is to reconstruct a piecewise constant function for the solution in each cell based on the average 𝑞𝑖
𝑛 

at the cell centers.  Then, the solution is evolved to the next time step by solving the resulting Riemann 

problem at each cell interface.  The method, as discussed by Leveque [15] has three main steps: 

1- Solving the Riemann problem at 𝑥𝑖±1/2 to find 𝑞𝑖±1/2
𝑛 . 

2- Defining the numerical fluxes ℱ𝑖±1/2
𝑛 = 𝑓(𝑞𝑖±1/2

𝑛 ). 

3- Applying the conservative form (Eq. (3.6)) of the numerical scheme to evolve the solution in time. 

For a simple advection problem (Eq. (2.4)), Godunov’s method simplifies into the first-order upwind 

method.  For non-linear equations, the solution depends on the type of discontinuity and its speed  𝑠.  Figure 

3.2 shows five different possibilities for the solution at the cell face 𝑥𝑖+1/2.  For cases (a) and (c), the 

discontinuity is moving to the left, and 𝑞𝑖+1/2
𝑛 = 𝑞𝑖+1

𝑛 .  For the cases (b) and (e) the discontinuity is moving 

to the right, and 𝑞𝑖+1/2
𝑛 = 𝑞𝑖

𝑛.  For the case (d), the rarefaction wave spreads on the two sides of 𝑥 = 𝑥𝑖+1/2, 

and the solution at the interface is given by the solution for the rarefaction wave 𝑞𝑠
𝑛. 
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Based on this discussion, the flux function can be given as: 

 ℱ𝑖+1/2
𝑛 = {

𝑓(𝑞𝑖
𝑛)          𝑖𝑓  𝑞𝑖

𝑛 > 𝑞𝑠
𝑛    𝑎𝑛𝑑 𝑠 > 0

𝑓(𝑞𝑖+1
𝑛 )      𝑖𝑓  𝑞𝑖+1

𝑛 < 𝑞𝑠
𝑛 𝑎𝑛𝑑 𝑠 < 0

𝑓(𝑞𝑠
𝑛)             𝑖𝑓  𝑞𝑖

𝑛 < 𝑞𝑠
𝑛  < 𝑞𝑖+1

𝑛     

 (3.31) 

 

 

Figure 3.2 Possible solutions for the non-linear scalar Riemann problem 

 

The piecewise constant reconstruction used in Godunov’s method yields a first-order accurate scheme.  

Other schemes use higher order piecewise polynomials for reconstruction, which results in higher order 

schemes.  Some of these schemes will be discussed later. 
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3.2.2 High-Order Accurate Schemes 

Second-order upwind method 

The second-order upwind method is also called the Linear Upwind Differencing method (LUD).  It is 

similar to the 1st-order upwind method in the sense that it uses numerical fluxes based on the direction of 

the characteristic speeds.  On the other hand, this method uses information of two neighboring cells instead 

of one, which results in a second-order accurate scheme.  

The flux for this method is simply ℱ𝑖+1/2
𝑛 =  𝑓(𝑞𝑖+1/2

𝑛 ), and the solution approximation 𝑞𝑖+1/2
𝑛  at the cell 

interface is given by: 

 𝑞𝑖+1/2
𝑛 = {

3

2
𝑞𝑖
𝑛 −

1

2
𝑞𝑖−1
𝑛     𝑖𝑓  𝑎𝑖+1/2 > 0

3

2
𝑞𝑖+1
𝑛 −

1

2
𝑞𝑖+2
𝑛   𝑖𝑓  𝑎𝑖+1/2 < 0

 (3.32) 

This method is known to be dispersive.  This dispersion can be shown by studying the modified differential 

equation for the scheme as follows. 

Consider the test wave function 𝑞𝑡𝑒𝑠𝑡 = 𝑒
𝑖(𝜔𝑡+𝛽𝑥), where 𝜔 is the frequency and 𝛽 is the wave number.  If 

we substitute this into Eq. (2.4) we obtain the relation: 

𝜔

𝛽
= −�̅� 

This is known as the dispersion relation for the partial differential equation.  It shows that for any wave-

like solution, all waves travel with the same constant speed (−�̅�) regardless of their wave number.  The 

modified differential equation for the LUD scheme is: 

𝜕𝑞

𝜕𝑡
+ �̅�

𝜕𝑞

𝜕𝑥
= �̅�

𝛥𝑥2

3

𝜕3𝑞

𝜕𝑥3
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If we substitute the test wave function into this equation and simplify, we get the dispersion relation: 

𝜔

𝛽
= −�̅� + �̅�

𝛥𝑥2

3
𝛽2 

This means that the wave speed is no longer constant and depends on the wave number and a coefficient 
𝛥𝑥2

3
, 

which vanishes as the mesh size is refined.  This causes short waves (waves with large wave numbers) to 

travel with a speed less than the one expected from Eq. (2.4). 

The Lax-Wendroff method 

This method is a result of Lax and Wendroff’s work [21].  It is second-order accurate in both space and 

time, and it is based on a Taylor series expansion in time.  The scheme is given by: 

 𝑞𝑖
𝑛+1 = 𝑞𝑖

𝑛 −
𝛥𝑡𝐴

2𝛥𝑥
(𝑞𝑖+1
𝑛 − 𝑞𝑖−1

𝑛 ) +
𝛥𝑡2𝐴2

2𝛥𝑥2
(𝑞𝑖+1
𝑛 − 2𝑞𝑖

𝑛 + 𝑞𝑖−1
𝑛 )   (3.33) 

This scheme can be regarded as a finite volume scheme in a conservative form with the numerical flux: 

 ℱ𝑖+1/2
𝑛 =

𝐴

2
[𝑞𝑖+1
𝑛 + 𝑞𝑖

𝑛] −
𝛥𝑡𝐴2

2𝛥𝑥
(𝑞𝑖+1
𝑛 − 𝑞𝑖

𝑛) (3.34) 

For a system of non-linear equations this scheme can be extended in different ways, one of which is the 

Richtmyer Two-Step Lax-Wendroff method.  The first step in this approach is to calculate the solution 

approximation at the interface after half a time step (at 𝑡𝑛+1/2 ), and the second step is to use the numerical 

flux 𝑓 (𝑞𝑖+1/2
𝑛+1/2

) in the conservative form (Eq. (3.6)).  This is defined as follows: 

𝑞𝑖+1/2
𝑛+1/2

=
1

2
(𝑞𝑖+1
𝑛 + 𝑞𝑖

𝑛) −
𝛥𝑡

2𝛥𝑥
[𝑓(𝑞𝑖+1

𝑛 ) − 𝑓(𝑞𝑖
𝑛)] 

ℱ𝑖+1/2
𝑛 = 𝑓 (𝑞𝑖+1/2

𝑛+1/2
) 
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𝑞𝑖
𝑛+1 = 𝑞𝑖

𝑛 −
𝛥𝑡

𝛥𝑥
(ℱ𝑖+1/2

𝑛 −ℱ𝑖−1/2
𝑛 ) 

It can be shown that the Richtmyer Two-Step Lax-Wendroff method reduces to the standard Lax-Wendroff 

method for a system of linear equations.  

 

The Quadratic Upstream Interpolation for Convective Kinematics (QUICK) method 

This scheme was introduced by Leonard [22] as a stable scheme based on quadratic upstream interpolation 

of the approximate solution at neighboring cells.  In his paper he found that stability cannot be guaranteed 

with a scheme based on central difference, so he suggested upstream difference methods for problems with 

convection terms.  Hence, the QUICK scheme is meant to possess both good accuracy and the stable 

property of upstream schemes. 

The flux for this method is ℱ𝑖+1/2
𝑛 =  𝑓(𝑞𝑖+1/2

𝑛 ), and the solution approximation 𝑞𝑖+1/2
𝑛  at the cell interface 

is given by: 

 𝑞𝑖+1/2
𝑛 = {

1

2
(𝑞𝑖
𝑛 + 𝑞𝑖+1

𝑛 ) −
1

8
(𝑞𝑖−1
𝑛 + 𝑞𝑖+1

𝑛 − 2𝑞𝑖
𝑛)    𝑖𝑓  𝑎𝑖+1/2 > 0

1

2
(𝑞𝑖

𝑛 + 𝑞𝑖+1
𝑛 ) −

1

8
(𝑞𝑖+2
𝑛 + 𝑞𝑖

𝑛 − 2𝑞𝑖+1
𝑛 )  𝑖𝑓  𝑎𝑖+1/2 < 0

 (3.35) 

This can be interpreted as the unstable central difference method with a correction term corresponding to 

the upstream-weighted curvature.  This kind of interpolation yields a third-order accuracy in space. 
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3.3 Non-Linear Schemes 

Godunov proved that monotonicity cannot be achieved with linear schemes of order higher than one when 

they are used to solve the advection equation.  This is referred to as Godunov’s order barrier theorem, and 

it states that [20]: 

“Linear numerical schemes for solving the advection equation, having the property of not generating 

new extrema (monotone scheme), can be at most first-order accurate.” 

This implies that the only high-order accurate monotone schemes possible are non-linear schemes, where 

the coefficients 𝑐𝑘 in Eq. (3.21) are not constant, and depend on the solution itself.  In this section we 

present two families of non-linear schemes used to overcome the contradiction between high-order accuracy 

and monotonicity of Godunov’s theorem: the reconstruction-based methods and the flux limiter methods. 

3.3.1 Reconstruction-Based Methods 

To better understand this family of schemes we recall the first-order Godunov’s scheme.  With this scheme, 

we used a constant piecewise reconstruction for the solution in each cell based on the averages 𝑞𝑖
𝑛 at cell 

centers.  A better approximation can be achieved by higher-order piecewise polynomial 𝑝𝑖(𝑥) in spatial cell 

[𝑥𝑖−1/2, 𝑥𝑖+1/2].  This kind of reconstruction achieves a better recovery of the information lost in the 

averaging process done in Eq. (3.2).  The choice of such polynomial is restricted by two conditions: 

1- It has to be conservative, meaning it satisfies the definition:  𝑞𝑖
𝑛 =

1

𝛥𝑥𝑖
∫ 𝑞(𝑥, 𝑡𝑛)𝑑𝑥
𝑖+1/2

𝑖−1/2
. 

2- It has to maintain the non-oscillatory property.  This can be attained by either imposing a TVD 

condition or imposing an Essentially Non-Oscillatory (ENO) property. 

Based on the two requirements above, numerical methods can be constructed in many ways depending on 

the choice of the polynomial 𝑝𝑖(𝑥).  Some of the methods are discussed next. 
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One of the ways of constructing the polynomial 𝑝𝑖(𝑥) is called the TVD slopes method or the slope limiter 

method.  For such methods the polynomial 𝑝𝑖(𝑥) is given by: 

 𝑝𝑖(𝑥) = 𝑞𝑖
𝑛 + (𝑥 − 𝑥𝑖)𝛥𝑖 (3.36) 

A limitation is prescribed on the slope 𝛥𝑖 such that the resulting numerical scheme is TVD.  There are many 

TVD slopes in literature; here we list two of them. 

The minmod slope 

If we define 𝛥𝑖+1/2 =
𝑞𝑖+1
𝑛 −𝑞𝑖

𝑛

𝛥𝑥
 and 𝛥𝑖−1/2 =

𝑞𝑖
𝑛−𝑞𝑖−1

𝑛

𝛥𝑥
, the minmod slope is given by: 

𝛥𝑖
𝑚𝑖𝑛𝑚𝑜𝑑 = 𝑚𝑖𝑛𝑚𝑜𝑑(𝛥𝑖−1/2, 𝛥𝑖+1/2) 

with the minmod function defined as 

𝑚𝑖𝑛𝑚𝑜𝑑(𝑥, 𝑦) = {

𝑥    𝑖𝑓 |𝑥| ≤ |𝑦| 𝑎𝑛𝑑 𝑥𝑦 > 0

𝑦    𝑖𝑓 |𝑥| > |𝑦| 𝑎𝑛𝑑 𝑥𝑦 > 0
0                 𝑖𝑓 𝑥𝑦 < 0             

 

The Monotonized Central-difference (MC) slope 

𝛥𝑖
𝑀𝐶 = 𝑚𝑖𝑛𝑚𝑜𝑑 (

1

2
(𝛥𝑖+1/2 + 𝛥𝑖−1/2), 2𝛥𝑖+1/2, 2𝛥𝑖−1/2) 

Many numerical methods are based on the concept of slope limiters, for example the MUSCL family of 

numerical schemes [23]. 

Another way of reconstructing the polynomial 𝑝𝑖(𝑥) is called the non-linear reconstruction.  This type of 

reconstruction uses polynomials of order higher than one.  One example of numerical methods that use the 

non-linear reconstruction is the Piecewise Parabolic Method (PPM) [24]. 
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Another type of reconstruction-based methods suggested by Harten and Osher [25] [26] is called the 

Essentially Non-Oscillatory (ENO) method.  This method does not necessarily maintain a TVD property; 

instead it diminishes the number of local extremas.  Consequently the values of local extremas are not 

required to be damped at each time step. 

ENO methods are reconstruction based methods, for which piecewise polynomials are reconstructed for 

each individual cell based on the average value of the solution in the cell of interest and its neighboring 

cells, all together are called the numerical stencil.  The more cells contained in the numerical stencil the 

higher the order of the reconstructed polynomial and, consequently, the higher the order of the numerical 

scheme.  The idea of the method is to choose among all candidate stencils so that discontinuous cells are 

excluded from the stencil as long as that is possible.  The chosen stencil is then used for the reconstruction 

process. 

Another method based on the ENO method is called the Weighted Essentially Non-Oscillatory (WENO) 

method [27].  In this method a convex combination of all the candidate stencils is used for the reconstruction 

process.  This combination is based on a weighted average of candidate stencils, in which the weighting 

factors depend on the smoothness of the solution in each candidate stencil.  Because a combination of all 

candidate stencils is used rather than one stencil, the WENO method improves the order of accuracy of the 

ENO method in smooth regions.  Different numerical schemes for temporal discretization can be used with 

the ENO and WENO methods.  One popular way is to use the Runge-Kutta method [28]. 

3.3.2 Flux Limiter Methods 

The flux limiter approach is a non-linear scheme based on a combination of a dissipative 1st-order scheme 

and a higher-order accurate scheme [29].  The idea is to combine the monotonicity of first-order accurate 

schemes and the accuracy of higher-order linear schemes by using the former near discontinuities and the 
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latter in smooth regions.  Examples of this approach are the works done by Harten [17], Sweby [30] and 

Kadalbajoo [31].  The numerical scheme in a conservative form is given by: 

 𝑞𝑖
𝑛+1 = 𝑞𝑖

𝑛 − 𝜆(ℱ𝑇𝑉𝐷𝑖+1/2
𝑛

−ℱ𝑇𝑉𝐷𝑖−1/2
𝑛

) (3.37) 

The TVD numerical flux in Eq. (3.37) is given by: 

 ℱ𝑖±1/2
𝑇𝑉𝐷 = ℱ𝑖±1/2

𝐿𝑂 + 𝜑𝑖±1/2[ℱ𝑖±1/2
𝐻𝐼 − ℱ𝑖±1/2

𝐿𝑂 ] (3.38) 

where ℱ𝑖±1/2
𝐿𝑂  is the numerical flux associated with a first-order scheme and ℱ𝑖±1/2

𝐻𝐼  is the numerical flux 

associated with a higher order scheme.  For 𝜑𝑖±1/2 = 0 this reduces to the first-order accurate scheme, and 

for 𝜑𝑖±1/2 = 1 it reproduces the high-order accurate scheme.  The limiter function 𝜓𝑖±1/2 is chosen such 

that the scheme in Eq. (3.37) is TVD 

To illustrate this method we consider the numerical flux ℱ𝑖±1/2
𝐿𝑂  associated with the 1st-order upwind 

scheme, and the numerical flux ℱ𝑖±1/2
𝐻𝐼  associated with the Lax-Wendroff scheme.  Both are taken for the 

case of a scalar advection equation: 

 ℱ𝑖+1/2
𝐿𝑂 = {

�̅�𝑞𝑖
𝑛      𝑖𝑓 �̅� > 0

�̅�𝑞𝑖+1
𝑛     𝑖𝑓 �̅� < 0

 (3.39) 

 ℱ𝑖+1/2
𝐻𝐼 =

�̅�

2
(1 + 𝑣)𝑞𝑖

𝑛 +
�̅�

2
(1 − 𝑣)𝑞𝑖+1

𝑛  (3.40) 

where 𝑣 is the courant number defined in Eq. (3.14).   
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The next step is to find the TVD region for the limiter function 𝜑𝑖+1/2 that depends on the smoothness of 

the solution, i.e. 𝜑𝑖+1/2 = 𝜑(𝑟𝑖+1/2).  We define the smoothness parameter: 

 𝑟𝑖+1/2 =

{
 
 

 
 
𝛥𝑞𝑖−1/2

𝛥𝑞𝑖+1/2
=
𝑞𝑖
𝑛 − 𝑞𝑖−1

𝑛

𝑞𝑖+1
𝑛 − 𝑞𝑖

𝑛       𝑖𝑓 �̅� > 0

𝛥𝑞𝑖+3/2

𝛥𝑞𝑖+1/2
=
𝑞𝑖+2
𝑛 − 𝑞𝑖+1

𝑛

𝑞𝑖+1
𝑛 − 𝑞𝑖

𝑛     𝑖𝑓 �̅� < 0

 (3.41) 

If we substitute Eqs. (3.39) and (3.40) into Eq. (3.38), then into Eq. (3.37), we can use the definition of the 

smoothness parameter in Eq. (3.41) to rewrite the scheme into an incremental form.  We can use the 

conditions in Eq. (3.20) to find the TVD region shown in Figure 3.3 

 

 

Figure 3.3 TVD region based on the 1st-order upwind and Lax-Wendroff methods 

 

Any limiter function contained within the shaded TVD region in Figure 3.3 yields a TVD numerical scheme, 

yet not all TVD limiters are good limiters.  
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Some flux limiter functions shown by other researchers to work well are listed below: 

The SUPERBEE limiter 

𝜑(𝑟)𝑆𝑈𝑃𝐸𝑅𝐵𝐸𝐸 =

{
 
 
 
 

 
 
 
 
0       𝑖𝑓 𝑟 ≤ 0      

2𝑟    𝑖𝑓 0 ≤ 𝑟 ≤
1

2

1    𝑖𝑓 
1

2
≤ 𝑟 ≤ 1

𝑟     𝑖𝑓 1 ≤ 𝑟 ≤ 2

2        𝑖𝑓 𝑟 ≥ 2     

 

 

The VANLEER limiter 

𝜑(𝑟)𝑉𝐴𝑁𝐿𝐸𝐸𝑅 = {

   0            𝑖𝑓 𝑟 ≤ 0 

2𝑟

1 + 𝑟
       𝑖𝑓 𝑟 ≥ 0 

 

 

The VANALBADA limiter 

𝜑(𝑟)𝑉𝐴𝑁𝐴𝐿𝐵𝐴𝐷𝐴 = {

      0                 𝑖𝑓 𝑟 ≤ 0 

𝑟(1 + 𝑟)

1 + 𝑟2
       𝑖𝑓 𝑟 ≥ 0 

 

 

The MINBEE limiter 

𝜑(𝑟)𝑀𝐼𝑁𝐵𝐸𝐸 =

{
 
 

 
 
0        𝑖𝑓 𝑟 ≤ 0 

𝒓      0 ≤ 𝑟 ≤ 1

𝟏       𝑖𝑓 𝑟 ≥ 1 
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All the limiter functions above share the property that 𝜑(1) = 1.  This means that for smooth regions the 

scheme reduces to the second-order Lax-Wendroff scheme.  Figure 3.4 shows the four different limiter 

functions in the TVD region for a Courant number of 0.3. 

 
Figure 3.4 Different choices for flux limiters in a TVD region 

with Courant number = 0.3 

 

Another family of flux limiters was suggested by Kadalbajoo and Kumar [31].  Their limiter was based on 

a first-order upwind scheme and second-order upwind scheme.  The limiter is given by: 

𝜑(𝑟)𝐾𝑈𝑀𝐴𝑅 = {

0        𝑖𝑓 𝑟 ≤ 0 

min (2,
2

𝑟
,
1 + 𝛾

𝑟 + 𝛾
)
 

where 𝛾 ∊ [0,∞]. 
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Flux limiter methods can be based on other first-order accurate schemes, such as the Lax-Friedrich scheme, 

rather than the 1st-order upwind scheme.  The same approach is followed to define the TVD region. More 

on this can be found in [23]. 

The analysis above was made for a scalar conservation equation.  For non-linear system of equations the 

problem is more complicated, however the concept of flux limiters can be extended in an empirical way, as 

suggested by Toro [23]. 

 

3.4 Temporal Discretization 

Most of the numerical schemes discussed so far are based on a first-order explicit discretization in time.  

Many options are available to obtain higher accuracy in time.  In this section we discuss some of these 

options. 

3.4.1 The Theta Method 

This method is also called the generalized Crank-Nicolson method.  It is based on a weighted average of 

explicit and implicit terms in the difference equation.  For the simple advection equation (Eq. (2.4)) with 

the definitions in Eqs. (3.3), (3.4) and (3.5) the theta method is given by: 

 𝑞𝑖
𝑛+1 = 𝑞𝑖

𝑛 − 𝜆[𝜃(ℱ𝑖+1/2
𝑛+1 − ℱ𝑖−1/2

𝑛+1 ) + (1 − 𝜃)(ℱ𝑖+1/2
𝑛 − ℱ𝑖−1/2

𝑛 )] (3.42) 

𝜃 is a positive number, 𝜃 ∊ [0,1], and the numerical fluxes ℱ𝑖±1/2 in Eq. (3.42) are calculated using one of 

the numerical schemes discussed before. 

Equation (3.42) represents a family of schemes characterized by 𝜃.  Different schemes can be obtained for 

different values of 𝜃.  Explicit scheme is obtained for 𝜃 = 0, the implicit scheme for 𝜃 = 1 and the Crank-
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Nicolson scheme for 𝜃 = 1/2.  The theta method is unconditionally stable for any choice of 𝜃 ∊ [1/2,1] 

[32][33]. 

Attributes of the theta method can be studied by carrying out the modified equation analysis.  Such analysis 

reveals information about the order of accuracy of the method, its dissipation and dispersion properties.  

Here, the modified equation analysis was done for the cases of first-order upwind scheme and second-order 

upwind scheme.  Analysis was conducted for the scalar advection problem with positive velocity.  Details 

for this analysis are presented in Appendix A. 

The modified equation for the theta method with the first-order upwind space discretization is given by: 

 
𝜕𝑞

𝜕𝑡
+ �̅�

𝜕𝑞

𝜕𝑥
= (

�̅�𝛥𝑥

2
+ �̅�2𝛥𝑡 (𝜃 −

1

2
))
𝜕2𝑞

𝜕𝑥2
 (3.43) 

and for the case of second-order upwind scheme: 

 
𝜕𝑞

𝜕𝑡
+ �̅�

𝜕𝑞

𝜕𝑥
= �̅�2𝛥𝑡 (𝜃 −

1

2
)
𝜕2𝑞

𝜕𝑥2
+ (

�̅�𝛥𝑥2

3
−
�̅�3𝛥𝑡2

2
(𝜃 −

1

3
))
𝜕3𝑞

𝜕𝑥3
 (3.44) 

The first observation to notice about the modified differential equations above is that all terms involving 

𝛥𝑡 exist for any choice of 𝜃 except for the case of Crank-Nicolson method (𝜃 = 1/2).  This means that the 

theta method is first-order in time except for the case of Crank-Nicolson method, which is second-order in 

time. 

Another observation is the dissipation properties of the two schemes shown by terms on the right-hand side 

with second derivative in space.  The dissipation coefficient for the first-order upwind scheme can be 

presented as two parts: due to the spatial discretization given by (
�̅�𝛥𝑥

2
), and due to temporal discretization 

given by �̅�2𝛥𝑡 (𝜃 −
1

2
).  For the second-order upwind scheme, dissipation occurs only due to temporal 
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discretization with the coefficient �̅�2𝛥𝑡 (𝜃 −
1

2
).  Therefore, for both schemes dissipation due temporal 

discretization ceases to exist with 𝜃 = 1/2 (Crank-Nicolson method). 

Equation (3.44) shows that the second-order upwind scheme poses dispersion properties as well, with a 

dispersion coefficient of (
�̅�𝛥𝑥2

3
−
�̅�3𝛥𝑡2

2
(𝜃 −

1

3
)). 

3.4.2 Semi-Discrete Methods 

All numerical schemes considered up to this point are fully discretized in both space and time.  Another 

way to handle time discretization is the semi-discrete method.  In this method the problem is discretized in 

space only and is left continuous in time.  This leads to a system of ordinary differential equations in time 

called the semi-discrete equations.  This system of ordinary differential equations can be solved using any 

standard numerical method, including the implicit, explicit and Crank-Nicolson method discussed before.  
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CHAPTER 4. HIGH-RESOLUTION TVD SCHEME 

FOR HYPERBOLIC PROBLEMS 

In this Chapter we propose a new high-resolution scheme for hyperbolic problems.  The main idea is to use 

a combination of the first-order accurate upwind scheme and the third-order QUICK scheme using a flux 

limiter function derived in a systematical approach.  The generalized Crank-Nicolson method (theta 

method) is used for temporal discretization.  Bounds for the high-order TVD region are given for the limiter 

function such that the resulting scheme is TVD.  The scheme is applied to a simple advection problem with 

smooth and discontinuous solutions, and convergence rates are analyzed and compared to those obtained 

from well-known classical and high-resolution schemes.  

First, we consider Eq. (2.4) and implement the numerical scheme in Eq. (3.42) with a numerical flux 

 ℱ𝑖±1/2 = ℱ𝑖±1/2
𝑇𝑉𝐷 , where: 

 ℱ𝑖±1/2
𝑇𝑉𝐷 = ℱ𝑖±1/2

1𝑠𝑡 + 𝜑𝑖±1/2[ℱ𝑖±1/2
𝑄𝑈𝐼𝐶𝐾 − ℱ𝑖±1/2

1𝑠𝑡 ] (4.1) 

ℱ𝑖±1/2
1𝑠𝑡  is the numerical flux associated with a 1st-order upwind scheme and ℱ𝑖±1/2

𝑄𝑈𝐼𝐶𝐾
 is the numerical flux 

associated with 3rd-order QUICK scheme.  Both numerical fluxes depend on the direction of characteristic 

speeds and consequently obey the hyperbolicity property of the problem.  The limiter function 𝜑𝑖±1/2 is  

chosen such that the scheme is TVD. 
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4.1 Bounds of the TVD Region 

To find the bounds of the TVD region of the scheme we consider the explicit formulation of the theta method 

(𝜃 = 0), and we apply it to the linear scalar equation, namely: 

𝜕𝑞

𝜕𝑡
+ 𝑢

𝜕𝑞

𝜕𝑥
= 0 

For this equation the numerical flux due to the 1st-oder upwind scheme is defined as: 

 ℱ𝑖+1/2
1𝑠𝑡 = {

𝑢𝑞𝑖         𝑢 > 0
𝑢𝑞𝑖+1    𝑢 < 0

 (4.2) 

and for the 3rd-order QUICK scheme: 

 ℱ𝑖+1/2
𝑄𝑈𝐼𝐶𝐾

= {

𝑢

8
(6𝑞𝑖 + 3𝑞𝑖+1 − 𝑞𝑖−1)        𝑢 > 0

𝑢

8
(6𝑞𝑖+1 + 3𝑞𝑖 − 𝑞𝑖+2)        𝑢 < 0

 (4.3) 

For the case 𝑢 > 0, if we substitute the numerical fluxes into Eq. (4.1) and then into Eq. (3.42), and 

using 𝜃 = 0 , we obtain the following scheme: 

 

𝑞𝑖
𝑛+1 = 𝑞𝑖

𝑛 − 𝑣 [(𝑞𝑖 − 𝑞𝑖−1) + 𝜑𝑖+1/2 [
1

8
(6𝑞𝑖 + 3𝑞𝑖+1 − 𝑞𝑖−1) − 𝑞𝑖]

− 𝜑𝑖−1/2 [
1

8
(6𝑞𝑖−1 + 3𝑞𝑖 − 𝑞𝑖−2) − 𝑞𝑖−1]] 

(4.4) 

where 𝑣 = (𝑢∆𝑡/∆𝑥) is the Courant number. 
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With additional algebraic manipulation, this can be written as: 

 𝑞𝑖
𝑛+1 = 𝑞𝑖

𝑛 − 𝑣 [1 +
𝜑𝑖+1/2

8
[
3

𝑟𝑖
+ 1] −

𝜑𝑖−1/2

8
[3 + 𝑟𝑖−1]] 𝛥𝑞𝑖−1/2 (4.5) 

where 𝑟𝑖 =
𝛥𝑞𝑖−1/2

𝛥𝑞𝑖+1/2
 is referred to as the smoothness parameter.  This is a numerical scheme written in an 

incremental form (Eq. (3.8)) with the following parameters: 

 𝐷𝑖−1/2 = (𝑣 [1 +
𝜑𝑖+1/2

8
[
3

𝑟𝑖
+ 1] −

𝜑𝑖−1/2

8
[3 + 𝑟𝑖−1]]),   𝐶𝑖+1/2 = 0 (4.6) 

Implementing the conditions for the scheme to be TVD (Eq. (3.20)), we obtain the following inequality: 

 −8 ≤ 𝜑𝑖+1/2 [
3

𝑟𝑖
+ 1] − 𝜑𝑖−1/2[3 + 𝑟𝑖−1] ≤ 8 (

1 − 𝑣

𝑣
) (4.7) 

At this point we impose another restriction to our scheme by requiring 0 ≤ 𝑣 ≤ 1/2.  This yields the 

following: 

 |𝜑𝑖+1/2(3 + 𝑟𝑖)/𝑟𝑖 − 𝜑𝑖−1/2(3 + 𝑟𝑖−1)| ≤ 8 (4.8) 

For our scheme to be TVD at the extreme points in the solution, we must have 𝜑(𝑟) = 0 for 𝑟 < 0.  This 

condition, along with Eq. (4.8) can be satisfied within the bounds: 

 0 ≤ (𝜑𝑖+1/2(3 + 𝑟𝑖)/𝑟𝑖 , 𝜑𝑖−1/2(3 + 𝑟𝑖−1)) ≤ 8 (4.9) 

Eq. (4.9) defines the TVD region shaded in grey in Figure 4.1.  This region is bounded by the function 

𝜑(𝑟) = min [
8𝑟

3+𝑟
,
8

3+𝑟
].  The same TVD region can be obtained for the case of negative advection velocity 



52 

 

(details for the case of 𝑢 < 0 can be found in Appendix B).  For the numerical scheme to be TVD, the 

limiter function has to be bounded by the TVD area of Figure 4.1.  

 

 

Figure 4.1 Schematic of the TVD region for the new high-order scheme 

 

 

4.2 High-Order of Accuracy 

Equation (4.1) suggests that maximizing the flux limiter increases the anti-diffusivity of the scheme 

(because the 1st-order scheme is the diffusive one).  This means that a flux limiter function corresponding 

to the upper boundary of the TVD region yields the least diffusive scheme possible.  Nevertheless, choosing 
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such a limiter does not guarantee the highest possible order of accuracy.  To ensure high-order of accuracy 

we require one additional condition; the limiter function should be chosen such that the scheme in Eq. (4.5) 

is 3rd-order accurate whenever possible.  To impose this constraint, we investigate another numerical 

scheme; the 3rd-order upwind scheme.  Due to this scheme, the numerical fluxes for Eq. (2.4) are defined 

as: 

 ℱ𝑖+1/2
𝑈 = {

𝑢

6
(5𝑞𝑖 − 𝑞𝑖−1 + 2𝑞𝑖+1)         𝑢 > 0

𝑢

6
(5𝑞𝑖+1 − 𝑞𝑖+2 + 2𝑞𝑖)         𝑢 < 0

 (4.10) 

The discretization for the advection equation (Eq. (2.4)) due to this scheme (for 𝑢 > 0) is given by: 

 𝑞𝑖
𝑛+1 = 𝑞𝑖

𝑛 −
∆𝑡

∆𝑥
𝑢 [
5𝑞𝑖 − 𝑞𝑖−1 + 2𝑞𝑖+1

6
−
5𝑞𝑖−1 − 𝑞𝑖−2 + 2𝑞𝑖

6
] (4.11) 

With algebraic manipulation (details can be found in Appendix B), it can be shown that this scheme is 

equivalent to the scheme in Eq. (4.5) when the flux limiter function is chosen to be 𝜑 =
4(2+𝑟)

3(3+𝑟)
.  Hence, we 

define the region shaded with dark gray in Figure 4.1 as the desired 3rd-order TVD region for our scheme. 

To guarantee all the imposed conditions are satisfied, we derive a family of flux limiters lying in the 3rd-

order TVD region whenever possible.  Any flux function in that region can be expressed as an arithmetic 

average of two limiter functions:  

1- 𝜑 = 1, corresponding to the QUICK scheme. 

2- 𝜑 =
4(2+𝑟)

3(3+𝑟)
, corresponding to the 3rd-order upwind scheme, namely: 

 𝜑∗ = 1 +
𝛿(𝑟 − 1)

3(3 + 𝑟)
,        0 <  𝛿 < 1 (4.12) 
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Intersection points 𝑟1
∗ and 𝑟2

∗ are found to be  𝑟1
∗ =

9−𝛿

21−𝛿
 and 𝑟2

∗ =
𝛿+15

𝛿+3
 (see Figure 4.2).  We can see that 

for any chosen value of 𝛿, the limiter function satisfies our condition for smooth regions 𝜑∗(1) = 1.  The 

arithmetic average and the intersection points are shown in Figure 4.2. 

 

 

Figure 4.2 Arithmetically averaged limiter function 
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Based on the above, we propose the following new family of flux limiters characterized by the parameter 𝛿: 

 𝜑(𝑟) =

{
 
 
 

 
 
 

       0                            𝑟 < 0      

            
8𝑟

3 + 𝑟
                   0 < 𝑟 < 𝑟1

∗       

1 +
𝛿(𝑟 − 1)

3(3 + 𝑟)
          𝑟1

∗ < 𝑟 < 𝑟2
∗

8

3 + 𝑟
                        𝑟2

∗ < 𝑟  

 (4.13) 

Equation (4.13) shows that the proposed limiter function is continuous and bounded for any value of the 

smoothness parameter 𝑟.  It also satisfies the condition for smooth regions 𝜑(1) = 1.  The flux limiter 

functions in Eq. (4.13) lie in the TVD region for any choice of 𝛿, hence, the resulting numerical scheme is 

TVD. 

 

4.3 Numerical Results 

In this section we present two sets of numerical results, one for the case of smooth solutions, and the other 

for discontinuous solutions.  Both sets of results are shown for the case of pure advection with positive 

velocity.  Results from the proposed scheme are also compared to those from well-known numerical 

schemes. 

4.3.1 Smooth Initial Conditions 

For this set of results we consider the simple advection equations (Eq. (2.4)) with a smooth initial condition 

given by: 

 𝑞0(𝑥) = 0.5 + 0.3sin (2𝜋𝑥) (4.14) 
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Boundary conditions for this problem are periodic with a convection velocity 𝑢 = 1 𝑚/𝑠 on a 1 𝑚 domain.  

Total time of the simulation was set to 1 sec, so that the exact solution at the end of the simulation is the 

same as the initial condition. 

Figure 4.3 shows a comparison of the new scheme with other classical schemes and existing high-resolution 

schemes for the case of implicit time discretization (𝜃 = 1).  Comparison was made for a grid size of 0.05 

m and a Courant number of 0.2.  

Excessive dissipation of the 1st-order upwind scheme can be observed and the solution is smeared out due 

to the inherent numerical viscosity of the scheme.  For the two higher order linear schemes (2nd-order 

upwind and Lax-Wendroff schemes) dissipative errors were minimized, but the signal in the numerical 

solution was either leading or lagging due to the dispersion errors.  This dispersive nature of the error was 

discussed in terms of the modified equation analysis in the previous Chapter (see Section 3.4.1). 

On the other hand, more satisfactory results can be observed when implementing high-resolution schemes 

with different flux limiters.  The new scheme with 𝛿 = 0 resulted in the best numerical solution as compared 

to other schemes. 

Figure 4.4 shows a comparison of the same set of schemes for the case of Crank-Nicolson time 

discretization (𝜃 = 1/2).  By examining the modified equation in Eq. (3.44), one can notice that the 

dissipative error terms cease to exist for the case of 𝜃 = 1/2.  This explains the reduction in dissipation for 

the high-order linear schemes (2nd-order upwind and Lax-Wendroff).  On the other hand, our new scheme 

continues to produce the best results as compared to other schemes.  
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Figure 4.3 Numerical results for smooth solutions with θ=1 
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Figure 4.4 Numerical results for smooth solutions with θ=1/2 
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The exact solution was used to determine the accuracy and convergence rate of considered numerical 

schemes.  Accuracy was assessed on the basis of the 𝐿1 norm, defined as: 

 𝐿1 =
1

𝑁
∑|𝑞𝑁(𝑥𝑖) − 𝑞𝐸(𝑥𝑖)|

𝑁

𝑖=1

 (4.15) 

where 𝑁 is the number of cells and 𝑞𝑁(𝑥𝑖) is the numerical solution at the 𝑖𝑡ℎ cell.  Convergence rate is 

represented by a log-log plot of the norm of the error versus mesh size. 

Figure 4.5 shows results of the spatial convergence for the case 𝜃 = 1/2.  Convergence rates for several 

considered schemes are listed in Table 4.1.  The results show competitive rate of convergence for the new 

scheme as compared to the other schemes. 

 

Figure 4.5 Spatial convergence rates of the new scheme for smooth solutions 
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Table 4.1 Spatial convergence rates of different schemes for smooth solution 

Numerical Scheme Convergence Rate 

1st-order upwind 0.86 

Minbee limiter 1.1 

Superbee 0.99 

Kumar limiter 1.3 

New limiter with 𝛿 = 0 1.3 

 

4.3.2 Discontinuous Initial Conditions 

For this set of results we consider Eq. (2.4) with a discontinuous initial condition given by: 

 𝑞0(𝑥) = {

0.3      𝑓𝑜𝑟   0.0 < 𝑥 < 0.4
0.8      𝑓𝑜𝑟   0.4 < 𝑥 < 0.6
   0.3      𝑓𝑜𝑟   0.6 < 𝑥 < 1.0   

 (4.16) 

Boundary conditions for this problem are periodic with a convection velocity 𝑢 = 1 𝑚/𝑠 on a 1 𝑚 domain, 

and the time of the simulation is 1 sec. 

Two sets of results are shown: implicit time discretization (𝜃 = 1) is shown in Figure 4.6, and Crank-

Nicolson time discretization is shown in Figure 4.7.  Comparison is made for a grid size of 0.0125 m and 

Courant number of 0.2. 

Results show significantly more dissipation for the case of implicit discretization.  For the 2nd-order upwind 

scheme and the Lax-Wendroff scheme, dispersion error appears in the form of overshoots and undershoots. 

For the Lax-Wendroff scheme, these oscillations were damped for the case of 𝜃 = 1 due to dissipation.  

High-resolution schemes, including the new scheme, give better results capturing the discontinuity, 

especially for the case with 𝜃 = 1/2 where dissipation is reduced. 
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Figure 4.6 Numerical results for discontinuous solutions with θ=1 
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Figure 4.7 Numerical results for discontinuous solutions with θ=1/2 
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Figure 4.8 shows results of the spatial convergence study for the considered schemes.  Results of this study 

are listed in Table 4.2.  We can observe better rate of convergence for the new scheme compared to other 

schemes. 

 

Figure 4.8 Spatial convergence rates for discontinuous solutions 

 

Table 4.2 Spatial convergence rates of different schemes for discontinuous solution 

Numerical Scheme Convergence Rate 

1st-order upwind 0.40 

Minbee limiter 0.56 

Superbee limiter 0.52 

Kumar limiter 0.70 

New limiter with 𝛿 = 0 0.82 
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We can see that the proposed scheme exhibits the best convergence rate compared to other considered 

schemes.  High-resolution schemes based on 2nd-order Lax-Wendroff discretization exhibit a convergence 

rate of about 1.0 for smooth solutions and 0.5 for discontinuous solutions.  On the other hand, the new 

scheme based on the 3rd-order QUICK discretization exhibits a convergence rate of about 1.3 for smooth 

solutions and 0.8 for discontinuous solutions.  In the case of discontinuous solutions, the new method 

derived in this thesis shows the best convergence rate of all schemes investigated here and more importantly 

exhibits no spurious oscillations. 
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CHAPTER 5. A SOLVER FOR THE TWO-FLUID 

MODEL 

In this Chapter we implement the numerical techniques discussed in Chapters 3 and 4 to the six equation 

two-fluid model employed by RELAP5 and TRACE.  We present the discrete equations of the model along 

with its closure relations.  Temporal discretization is based on the theta method with different techniques 

implemented for spatial discretization including the new scheme developed in Chapter 4.  Numerical results 

due to different schemes are presented and compared for three benchmark problems. 

 

5.1 Mathematical Model 

The two-phase flow mathematical model is obtained by applying conservation relations to mass, 

momentum and energy of different phases separately.  The model employed by RELAP5 and TRACE is 

based on the standard one-dimensional two-fluid model [9].  This model exhibits a single pressure for both 

phases.  The following two equations represent the conservation of mass for gas and liquid phases 

respectively: 

 
𝜕(𝛼𝑔𝜌𝑔)

𝜕𝑡
+
𝜕(𝛼𝑔𝜌𝑔𝑢𝑔)

𝜕𝑥
= 𝛤𝑔 (5.1) 

 
𝜕(𝛼𝑙𝜌𝑙)

𝜕𝑡
+
𝜕(𝛼𝑙𝜌𝑙𝑢𝑙)

𝜕𝑥
= −𝛤𝑔 (5.2) 

In these equations: 

 𝛼𝑔 and 𝛼𝑙 are void fractions for gas and liquid phases, respectively. 

 𝜌𝑔and 𝜌𝑙, are gas and liquid densities. 
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 𝑢𝑔 and 𝑢𝑙are gas and liquid velocities. 

 𝛤𝑔 is the interfacial mass transfer, and it is equal in magnitude and opposite in sign between the two 

phases.  𝛤𝑔 is given by [1]: 

 𝛤𝑔 = −
𝐻𝑖𝑔𝑎𝑖𝑛𝑡(𝑇𝑠 − 𝑇𝑔) + 𝐻𝑖𝑙𝑎𝑖𝑖𝑛𝑡(𝑇𝑠 − 𝑇𝑙)

ℎ𝑔
∗ − ℎ𝑙

∗  (5.3) 

 

In this equation: 

 𝑎𝑖𝑛𝑡 is the interfacial area between the two phases. 

 𝑇𝑔 and 𝑇𝑙 are gas and liquid temperatures, respectively. 

 𝑇𝑠 is saturation temperature. 

 𝐻𝑖𝑔 and  𝐻𝑖𝑙 are the heat transfer coefficients of gas and liquid phases with the interface. 

The phasic mass transfer enthalpies of the two phases (ℎ𝑔
∗  and ℎ𝑙

∗) are calculated as follows: 

 

ℎ𝑔
∗ = {

ℎ𝑔𝑠        𝑖𝑓 𝛤𝑔 > 0 

ℎ𝑔       𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

ℎ𝑙
∗ = {

ℎ𝑙         𝑖𝑓 𝛤𝑔 > 0 

ℎ𝑙𝑠       𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(5.4) 

 

ℎ𝑔 and ℎ𝑙 are the phasic enthalpies of gas and liquid, respectively.  ℎ𝑔𝑠 and ℎ𝑙𝑠 are the phasic saturation 

enthalpies. 
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Conservation of momentum is also applied to each phase separately, to obtain the following two 

equations for the gas and liquid phases, respectively: 

 

𝛼𝑔𝜌𝑔𝜕(𝑢𝑔)

𝜕𝑡
+ 𝛼𝑔𝜌𝑔𝑢𝑔

𝜕(𝑢𝑔)

𝜕𝑥
+ 𝛼𝑔

𝜕𝑝

𝜕𝑥
− 𝛼𝑔𝜌𝑔G

= −𝑎𝑖𝑛𝑡FI|𝑢𝑔 − 𝑢𝑙|(𝑢𝑔 − 𝑢𝑙) − 𝛤𝑔(𝑢𝑖𝑛𝑡 − 𝑢𝑔) 

(5.5) 

 

𝛼𝑙𝜌𝑙𝜕(𝑢𝑙)

𝜕𝑡
+ 𝛼𝑙𝜌𝑙𝑢𝑙

𝜕(𝑢𝑙)

𝜕𝑥
+ 𝛼𝑙

𝜕𝑝

𝜕𝑥
− 𝛼𝑙𝜌𝑙G

= 𝑎𝑖𝑛𝑡FI|𝑢𝑔 − 𝑢𝑙|(𝑢𝑔 − 𝑢𝑙) + 𝛤𝑔(𝑢𝑖𝑛𝑡 − 𝑢𝑙) 

(5.6) 

In the equations above G is the gravity acceleration and 𝑝 is the pressure of the system. The term with the 

interfacial friction coefficient (𝐹𝐼) accounts for momentum losses due to interfacial friction.  These losses 

are equal in magnitude and opposite in sign for the two phases.  Terms including 𝛤 in the momentum 

equations account for the momentum lost or gained by the new mass appearing at the interfacial 

velocity (𝑢𝑖𝑛𝑡).  

Conservation of energy is also applied to each phase separately.  This yields the following two equations 

for gas and liquid phases, respectively: 

 
𝜕(𝛼𝑔𝜌𝑔𝑒𝑔)

𝜕𝑡
+
𝜕(𝛼𝑔𝜌𝑔𝑒𝑔𝑢𝑔)

𝜕𝑥
+ 𝑝

𝜕𝛼𝑔

𝜕𝑡
+ 𝑝

𝜕(𝛼𝑔𝑢𝑔)

𝜕𝑥
= 𝐻𝑖𝑔𝑎𝑖(𝑇𝑠 − 𝑇𝑔) + 𝛤𝑔ℎ𝑔

∗  (5.7) 

 
𝜕(𝛼𝑙𝜌𝑙𝑒𝑙)

𝜕𝑡
+
𝜕(𝛼𝑙𝜌𝑙𝑒𝑙𝑢𝑙)

𝜕𝑥
+ 𝑝

𝜕𝛼𝑙
𝜕𝑡

+ 𝑝
𝜕(𝛼𝑙𝑢𝑙)

𝜕𝑥
= 𝐻𝑖𝑙𝑎𝑖(𝑇𝑠 − 𝑇𝑙) − 𝛤𝑔ℎ𝑙

∗ (5.8) 

In these equations, 𝑒𝑔 and 𝑒𝑙 are the specific energies for gas and liquid phases, respectively.  Finally, 

conservation of volume is applied: 

 𝛼𝑔 + 𝛼𝑙 = 1 (5.9) 
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and as a closure for the system, we use two additional equations of state for both phases in the form: 

 𝜌𝑗 = 𝑓(𝑝, 𝑒𝑗) (5.10) 

𝑗 =“𝑔” for gas and “𝑙” for liquid.  The 7 equations above, along with the two equations of state yield a 

closed mathematical system of 9 equations and 9 unknowns: 𝑝, 𝛼𝑗, 𝜌𝑗 , 𝑒𝑗, 𝑢𝑗, where 𝑗 ∈ {𝑔, 𝑙}. 

 

5.2 Discretized Equations 

In this section we introduce the discrete equations for the two-fluid model presented in previous section.  

Numerical methods used to obtain the discrete equations are finite volume based on a staggered mesh.  In 

this configuration scalar properties (pressure, energies, densities and void fraction) are defined at cell 

centers and the vector properties (velocities) are defined at cell faces.  Figure 5.1 shows a schematic of the 

cell configuration for this type of discretization.  

 

Figure 5.1 Schematic of the staggered cell configuration 

 

 

Based on the above, we use the formulation of the theta method to write discrete equations in a residual 

form similar to Mousseau’s work [1].  In the following set of equations superscripts “𝑛” and “𝑛 + 1” 
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represent the old and new time steps, respectively.  The temporal discretization depends on the value of 𝜃 

as discussed in Chapter 3.  The subscripts containing “𝑖”determine the spatial position. 

1- Residuals from the conservation of mass:  calculated at cell centers and given as: 

 𝑟𝑒𝑠𝑐𝑔 =
∆𝑥

∆𝑡
(𝛼𝑔,𝑖

𝑛+1𝜌𝑔,𝑖
𝑛+1 − 𝛼𝑔,𝑖

𝑛 𝜌𝑔,𝑖
𝑛 ) + (1 − 𝜃)𝐹𝑐𝑔

𝑛 + 𝜃𝐹𝑐𝑔
𝑛+1 (5.11) 

 𝑟𝑒𝑠𝑐𝑙 =
∆𝑥

∆𝑡
(𝛼𝑙,𝑖

𝑛+1𝜌𝑙,𝑖
𝑛+1 − 𝛼𝑙,𝑖

𝑛 𝜌𝑙,𝑖
𝑛 ) + (1 − 𝜃)𝐹𝑐𝑙

𝑛 + 𝜃𝐹𝑐𝑙
𝑛+1 (5.12) 

where 𝐹𝑐𝑔 and  𝐹𝑐𝑙 are the mass numerical fluxes given by: 

 𝐹𝑐𝑔
𝑛+1 = ((𝜌𝛼)̇ 𝑔,𝑖+1/2

𝑛+1 𝑢𝑔,𝑖+1/2
𝑛+1 − (𝜌𝛼)̇ 𝑔,𝑖−1/2

𝑛+1 𝑢𝑔,𝑖−1/2
𝑛+1 ) − ∆𝑥𝛤𝑔,𝑖

𝑛+1 (5.13) 

 𝐹𝑐𝑙
𝑛+1 = ((𝜌𝛼)̇ 𝑙,𝑖+1/2

𝑛+1 𝑢𝑙,𝑖+1/2
𝑛+1 − (𝜌𝛼)̇ 𝑙,𝑖−1/2

𝑛+1 𝑢𝑙,𝑖−1/2
𝑛+1 ) + ∆𝑥𝛤𝑔,𝑖

𝑛+1 (5.14) 

2- Residuals from the conservation of momentum:  calculated at cell faces, and given as: 

 𝑟𝑒𝑠𝑚𝑔 =
∆𝑥

∆𝑡
(𝛼𝜌)̅̅ ̅̅ ̅̅

𝑔,𝑖+1/2
𝑛+1/2

(𝑢𝑔,𝑖+1/2
𝑛+1 − 𝑢𝑔,𝑖+1/2

𝑛 ) + (1 − 𝜃)𝐹𝑚𝑔
𝑛 + 𝜃𝐹𝑚𝑔

𝑛+1 (5.15) 

 𝑟𝑒𝑠𝑚𝑙 =
∆𝑥

∆𝑡
(𝛼𝜌)̅̅ ̅̅ ̅̅

𝑙,𝑖+1/2
𝑛+1/2

(𝑢𝑙,𝑖+1/2
𝑛+1 − 𝑢𝑙,𝑖+1/2

𝑛 ) + (1 − 𝜃)𝐹𝑚𝑙
𝑛 + 𝜃𝐹𝑚𝑙

𝑛+1 (5.16) 

where 𝐹𝑚𝑔 and  𝐹𝑚𝑙 are the momentum numerical fluxes given by: 

 

𝐹𝑚𝑔
𝑛+1 = (𝛼𝜌)̅̅ ̅̅ ̅̅

𝑔,𝑖+1/2
𝑛+1 𝑢𝑔,𝑖+1/2

𝑛+1 (�̇�𝑔,𝑖+1
𝑛+1 − �̇�𝑔,𝑖

𝑛+1) + �̅�𝑔,𝑖+1/2
𝑛+1 (𝑝𝑖+1

𝑛+1 − 𝑝𝑖
𝑛+1)

− ∆𝑥(𝛼𝜌)̅̅ ̅̅ ̅̅
𝑔,𝑖+1/2
𝑛+1 G + ∆𝑥�̅�𝑔,𝑖+1/2

𝑛+1 (𝑢𝑖𝑛𝑡,𝑖+1/2
𝑛+1 − 𝑢𝑔,𝑖+1/2

𝑛+1 )

+ ∆𝑥(�̅�𝑖𝑛𝑡
𝑛+1FIn+1)(𝑢𝑔,𝑖+1/2

𝑛+1 − 𝑢𝑙,𝑖+1/2
𝑛+1 )|𝑢𝑔,𝑖+1/2

𝑛+1 − 𝑢𝑙,𝑖+1/2
𝑛+1 | 

(5.17) 
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𝐹𝑚𝑙
𝑛+1 = (𝛼𝜌)̅̅ ̅̅ ̅̅

𝑙,𝑖+1/2
𝑛+1 𝑢𝑙,𝑖+1/2

𝑛+1 (�̇�𝑙,𝑖+1
𝑛+1 − �̇�𝑙,𝑖

𝑛+1) + �̅�𝑙,𝑖+1/2
𝑛+1 (𝑝𝑖+1

𝑛+1 − 𝑝𝑖
𝑛+1)

− ∆𝑥(𝛼𝜌)̅̅ ̅̅ ̅̅
𝑙,𝑖+1/2
𝑛+1 G − ∆𝑥�̅�𝑔,𝑖+1/2

𝑛+1 (𝑢𝑖𝑛𝑡,𝑖+1/2
𝑛+1 − 𝑢𝑙,𝑖+1/2

𝑛+1 )

− ∆𝑥(�̅�𝑖𝑛𝑡
𝑛+1FIn+1)(𝑢𝑔,𝑖+1/2

𝑛+1 − 𝑢𝑙,𝑖+1/2
𝑛+1 )|𝑢𝑔,𝑖+1/2

𝑛+1 − 𝑢𝑙,𝑖+1/2
𝑛+1 | 

(5.18) 

3- Residuals from the conservation of energy:  calculated at cell centers and given as: 

 
𝑟𝑒𝑠𝑒𝑔 =

∆𝑥

∆𝑡
(𝛼𝑔,𝑖

𝑛+1𝜌𝑔,𝑖
𝑛+1𝑒𝑔,𝑖

𝑛+1 − 𝛼𝑔,𝑖
𝑛 𝜌𝑔,𝑖

𝑛 𝑒𝑔,𝑖
𝑛 ) +

∆𝑥 𝑝𝑖
𝑛+1/2

∆𝑡
(𝛼𝑔,𝑖

𝑛+1 − 𝛼𝑔,𝑖
𝑛 )

+ (1 − 𝜃)𝐹𝑒𝑔
𝑛 + 𝜃𝐹𝑒𝑔

𝑛+1 

(5.19) 

 
𝑟𝑒𝑠𝑒𝑙 =

∆𝑥

∆𝑡
(𝛼𝑙,𝑖

𝑛+1𝜌𝑙,𝑖
𝑛+1𝑒𝑙,𝑖

𝑛+1 − 𝛼𝑙,𝑖
𝑛 𝜌𝑙,𝑖

𝑛 𝑒𝑙,𝑖
𝑛 ) +

∆𝑥 𝑝𝑖
𝑛+1/2

∆𝑡
(𝛼𝑙,𝑖

𝑛+1 − 𝛼𝑙,𝑖
𝑛 )

+ (1 − 𝜃)𝐹𝑒𝑙
𝑛 + 𝜃𝐹𝑒𝑙

𝑛+1 

(5.20) 

where 𝐹𝑒𝑔 and  𝐹𝑒𝑙 are the energy numerical fluxes given by: 

 

𝐹𝑒𝑔
𝑛+1 = ((𝜌𝛼𝑒)̇ 𝑔,𝑖+1/2

𝑛+1 𝑢𝑔,𝑖+1/2
𝑛+1 − (𝜌𝛼𝑒)̇ 𝑔,𝑖−1/2

𝑛+1 𝑢𝑔,𝑖−1/2
𝑛+1 )

+ 𝑝𝑖
𝑛+1(�̇�𝑔,𝑖+1/2

𝑛+1 𝑢𝑔,𝑖+1/2
𝑛+1 − �̇�𝑔,𝑖−1/2

𝑛+1 𝑢𝑔,𝑖−1/2
𝑛+1 )

− ∆𝑥𝐻𝑖𝑔
𝑛+1𝑎𝑖𝑛𝑡

𝑛+1(𝑇𝑠,𝑖
𝑛+1 − 𝑇𝑔,𝑖

𝑛+1) − ∆𝑥𝛤𝑔,𝑖
𝑛+1ℎ∗𝑔,𝑖

𝑛+1
 

(5.21) 

 

𝐹𝑒𝑙
𝑛+1 = ((𝜌𝛼𝑒)̇ 𝑙,𝑖+1/2

𝑛+1 𝑢𝑙,𝑖+1/2
𝑛+1 − (𝜌𝛼𝑒)̇ 𝑙,𝑖−1/2

𝑛+1 𝑢𝑙,𝑖−1/2
𝑛+1 )

+ 𝑝𝑖
𝑛+1(�̇�𝑙,𝑖+1/2

𝑛+1 𝑢𝑙,𝑖+1/2
𝑛+1 − �̇�𝑙,𝑖−1/2

𝑛+1 𝑢𝑙,𝑖−1/2
𝑛+1 )

− ∆𝑥𝐻𝑖𝑙
𝑛+1𝑎𝑖𝑛𝑡

𝑛+1(𝑇𝑠,𝑖
𝑛+1 − 𝑇𝑙,𝑖

𝑛+1) + ∆𝑥𝛤𝑔,𝑖
𝑛+1ℎ∗𝑙,𝑖

𝑛+1
 

(5.22) 

A quantity with an over-bar is an arithmetically averaged quantity: 

 �̅�𝑖+1/2 =
𝛷𝑖 + 𝛷𝑖+1

2
 (5.23) 
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Because scalar properties (pressure, energies, densities and void fraction) are defined at cell centers, a value 

for these properties is needed at cell interfaces in order to calculate numerical fluxes.  These are the variables 

with a “dot” in Eqs. (5.13), (5.14), (5.21) and (5.22).  These quantities are called donored quantities in 

RELAP5 nomenclature.  Same thing holds for momentum numerical fluxes in Eqs. (5.17) and (5.18), where 

velocities are needed at cell centers. 

Order of accuracy for our discretization depends on the method used to calculate the donored quantities in 

numerical fluxes.  There are many numerical schemes one can apply to calculate these donored quantities.  

For this research, results from 1st-order upwind scheme, second-order upwind scheme and flux limiter 

schemes (including the new scheme developed in Chapter 4) are shown. This will be discussed in next 

sections. 

 

5.3 Closure Equations 

In order to close the discrete system of equations discussed in the previous section, equations of state are 

needed.  These equations relate densities and temperatures of the two phases to other state variables 

(pressure and internal energy).  The linearized equations of state for densities are: 

 𝜌𝑔,𝑖
𝑛+1 = 𝜌𝑔,𝑖

𝑛 + (
𝜕𝜌𝑔

𝜕𝑝
)
𝑛

(𝑝𝑖
𝑛+1 − 𝑝𝑖

𝑛) + (
𝜕𝜌𝑔

𝜕𝑒𝑔
)
𝑛

(𝑒𝑔,𝑖
𝑛+1 − 𝑒𝑔,𝑖

𝑛 ) (5.24) 

 𝜌𝑙,𝑖
𝑛+1 = 𝜌𝑙,𝑖

𝑛 + (
𝜕𝜌𝑙
𝜕𝑝
)
𝑛

(𝑝𝑖
𝑛+1 − 𝑝𝑖

𝑛) + (
𝜕𝜌𝑙
𝜕𝑒𝑙

)
𝑛

(𝑒𝑙,𝑖
𝑛+1 − 𝑒𝑙,𝑖

𝑛 ) (5.25) 

for saturation temperature and phasic temperatures of gas and liquid: 

 𝑇𝑠,𝑖
𝑛+1 = 𝑇𝑠,𝑖

𝑛 + (
𝜕𝑇

𝜕𝑝
)
𝑛

(𝑝𝑖
𝑛+1 − 𝑝𝑖

𝑛) (5.26) 
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 𝑇𝑔,𝑖
𝑛+1 = 𝑇𝑔,𝑖

𝑛 + (
𝜕𝑇

𝜕𝑝
)
𝑛

(𝑝𝑖
𝑛+1 − 𝑝𝑖

𝑛) + (
𝜕𝑇𝑔

𝜕𝑒𝑔
)
𝑛

(𝑒𝑔,𝑖
𝑛+1 − 𝑒𝑔,𝑖

𝑛 ) (5.27) 

 𝑇𝑙,𝑖
𝑛+1 = 𝑇𝑙,𝑖

𝑛 + (
𝜕𝑇

𝜕𝑝
)
𝑛

(𝑝𝑖
𝑛+1 − 𝑝𝑖

𝑛) + (
𝜕𝑇𝑙
𝜕𝑒𝑙

)
𝑛

(𝑒𝑙,𝑖
𝑛+1 − 𝑒𝑙,𝑖

𝑛 ) (5.28) 

for saturation enthalpies and specific enthalpies of the two phases: 

 ℎ𝑔𝑠,𝑖
𝑛+1 = ℎ𝑔𝑠,𝑖

𝑛 + (
𝜕ℎ𝑔𝑠

𝜕𝑝
)
𝑛

(𝑝𝑖
𝑛+1 − 𝑝𝑖

𝑛) (5.29) 

 ℎ𝑙𝑠,𝑖
𝑛+1 = ℎ𝑙𝑠,𝑖

𝑛 + (
𝜕ℎ𝑙𝑠
𝜕𝑝

)
𝑛

(𝑝𝑖
𝑛+1 − 𝑝𝑖

𝑛) (5.30) 

 ℎ𝑔,𝑖
𝑛+1 = 𝑒𝑔,𝑖

𝑛+1 +
𝑝𝑖
𝑛+1

𝜌𝑔,𝑖
𝑛+1 (5.31) 

 ℎ𝑙,𝑖
𝑛+1 = 𝑒𝑙,𝑖

𝑛+1 +
𝑝𝑖
𝑛+1

𝜌𝑙,𝑖
𝑛+1 (5.32) 

All derivatives in the previous equations are calculated numerically using water properties.  Water 

properties used in this research are based on the International Association for Properties of Water and Steam 

Industrial Formulation 1997 (IAPWS IF-97) standard.  XSteam, an implementation MatLab code of the 

IAPWS IF-97 standard formulation by Magnus Holmgren [34], is used to obtain all necessary water 

properties. 

The closure relations discussed here can be substituted directly into Eqs. (5.11) - (5.22) to reduce the number 

of unknown variables to six, namely: pressure, void fraction, gas and liquid velocities and internal energies 

of the two phases. 
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5.4 Calculation of Donored Quantities 

As mentioned before, the order of accuracy of our discretized equations depends on the numerical scheme 

used to calculate donored quantities in the numerical fluxes.  There are many numerical schemes one can 

apply to calculate these donored quantities.  In this research, results for the 1st-order upwind scheme, 

second-order upwind scheme and flux limiter schemes (including the new scheme developed in Chapter 4) 

are shown. 

5.4.1 First-Order Upwind 

For a scalar quantity 𝛷 (this can be 𝜌, 𝑒, 𝑝 or 𝛼) calculated at the center of the 𝑖𝑡ℎ cell, donored quantities 

at cell faces are defined as follows: 

 �̇�𝑖+1/2 =
1

2
[(𝛷𝑖 +𝛷𝑖+1) +

|𝑢𝑖+1/2|

𝑢𝑖+1/2
(𝛷𝑖 −𝛷𝑖+1)] (5.33) 

Similarly, for a velocity 𝑢 calculated at the face of the 𝑖𝑡ℎ cell, the donored quantity at the cell center is 

defined as: 

 �̇�𝑖 =
1

2
[(𝑢𝑖−1/2 + 𝑢𝑖+1/2) +

|𝑢𝑖+1/2|

𝑢𝑖+1/2
(𝑢𝑖−1/2 − 𝑢𝑖+1/2)] (5.34) 

As an example, donored gas density (𝜌�̇�𝑖+1
2

), and donored gas velocity (�̇�𝑔𝑖
) are given as: 

𝜌�̇�𝑖+1/2
=
1

2
[(𝜌𝑔𝑖

+ 𝜌𝑔𝑖+1
) +

|𝑢𝑖+1/2|

𝑢𝑖+1/2
(𝜌𝑔𝑖

− 𝜌𝑔𝑖+1
)] 

�̇�𝑔𝑖
=
1

2
[(𝑢𝑔𝑖−1/2

+ 𝑢𝑔𝑖+1/2
) +

|𝑢𝑖+1/2|

𝑢𝑖+1/2
(𝑢𝑔𝑖−1/2

+ 𝑢𝑔𝑖+1/2
)] 
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Since the 1st-order upwind scheme is a monotone scheme, we expect the solution due to this discretization 

to be free of non-physical numerical oscillations.  However, the solution is expected to be smeared due to 

excessive dissipation of the scheme.  

5.4.2 Second-Order Upwind 

For a scalar quantity 𝛷 calculated at the center of the 𝑖𝑡ℎ cell, donored quantities at cell faces are defined 

as follows: 

 

�̇�𝑖+1/2 =
1

4
[(3𝛷𝑖 + 3𝛷𝑖+1 −𝛷𝑖−1 −𝛷𝑖+2)

+
|𝑢𝑖+1/2|

𝑢𝑖+1/2
(3𝛷𝑖 − 3𝛷𝑖+1 −𝛷𝑖−1 +𝛷𝑖+2)] 

(5.35) 

Similarly, for a velocity 𝑢 calculated at the face of the 𝑖𝑡ℎ cell, the donored quantity at the cell center is 

defined as: 

 

�̇�𝑖 =
1

4
[(3𝑢𝑖−1/2 + 3𝑢𝑖+1/2 − 𝑢𝑖−3/2 − 𝑢𝑖+3/2)

+
|𝑢𝑖+1/2|

𝑢𝑖+1/2
(3𝑢𝑖−1/2 − 3𝑢𝑖+1/2 − 𝑢𝑖−3/2 + 𝑢𝑖+3/2)] 

(5.36) 

As an example, the donored quantity (𝛼𝜌)̇ 𝑔,𝑖+1/2, and the donored gas velocity (𝑢)̇ 𝑔,𝑖 are given as: 

(𝛼𝜌)̇ 𝑔𝑖+1/2
=
1

4
[(3(𝛼𝜌)𝑔𝑖

+ 3(𝛼𝜌)𝑔𝑖+1
− (𝛼𝜌)𝑔𝑖−1

− (𝛼𝜌)𝑔𝑖+2
)

+
|𝑢𝑖+1/2|

𝑢𝑖+1/2
(3(𝛼𝜌)𝑔𝑖

− 3(𝛼𝜌)𝑔𝑖+1
− (𝛼𝜌)𝑔𝑖−1

+ (𝛼𝜌)𝑔𝑖+2
)] 
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�̇�𝑔𝑖
=
1

4
[(3𝑢𝑔𝑖−1/2

+ 3𝑢𝑔𝑖+1/2
− 𝑢𝑔𝑖−3/2

− 𝑢𝑔𝑖+3/2
)

+
|𝑢𝑖+1/2|

𝑢𝑖+1/2
(3𝑢𝑔𝑖−1/2

− 3𝑢𝑔𝑖+1/2
− 𝑢𝑔𝑖−3/2

+ 𝑢𝑔𝑖+3/2
)] 

The 2nd-order upwind scheme is expected to yield more accurate results as compared to 1st-order upwind. 

However, the scheme is non-monotone, and according to Godunov’s barrier theorem it is expected to 

exhibit non-physical oscillations near discontinuities.  

5.4.3 Flux Limiter Schemes 

The flux limiter approach is based on a combination of a monotone 1st-order scheme and a higher-order 

accurate scheme.  The two schemes are combined in a way such that the 1st-order scheme is used near 

discontinuities to prevent spurious oscillations, and the high-order scheme is used elsewhere to obtain the 

highest order of accuracy possible.  The weighted interpolation between the two schemes depends on the 

smoothness of the solution.  Because the smoothness parameter is calculated for a given variable, and 

depends on the characteristics of the solution, it is harder to implement the flux limiter approach to a system 

of non-linear equations like the two-fluid model.  One way to implement flux limiter methods to a system 

of non-linear equations is to approach the problem in an empirical manner.  In this research we consider 

the empirical approach suggested by Torro [23].  His approach for a system of 𝑚 variables is based on 

calculating the smoothness parameters for each variable (𝑞 = 𝑞𝑘 , 𝑘 = 1, 2, . . , 𝑚) in the system: 

 𝑟𝑖+1/2
𝐿 =

𝛥𝑞𝑖−1/2

𝛥𝑞𝑖+1/2
=
𝑞𝑖 − 𝑞𝑖−1
𝑞𝑖+1 − 𝑞𝑖

 (5.37) 

 𝑟𝑖+1/2
𝑅 =

𝛥𝑞𝑖+3/2

𝛥𝑞𝑖+1/2
=
𝑞𝑖+2 − 𝑞𝑖+1
𝑞𝑖+1 − 𝑞𝑖

 (5.38) 
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Then, the value for the flux limiter function is calculated as follows: 

 𝜑(𝑟) = mink [min (𝜑(𝑟𝑖+1/2
𝐿 ), 𝜑(𝑟𝑖+1/2

𝑅 ))] (5.39) 

The flux limiter 𝜑 in Eq. (5.39) is a function of the smoothness parameter.  There are many different forms 

of flux limiters.  In this Chapter we investigate the new scheme developed in Chapter 4 along with three 

other limiters discussed in Chapter 3:  the Minbee limiter function, the Superbee limiter function and 

Kumar’s limiter function.   

Results from Eq. (5.39) are then applied to all 𝑚 flux components.  For the two-phase problem we have the 

following variables: 

 𝑞 =

(

  
 

𝛼𝑔
𝑝
𝑢𝑔
𝑢𝑙
𝑒𝑔
𝑒𝑙)

  
 

 (5.40) 

The residual form discussed in Section 5.2 can be written using the following form for the flux terms: 

 𝐹 = 𝐹1𝑠𝑡 + 𝜑(𝑟)(𝐹𝐻𝑖𝑔ℎ − 𝐹1𝑠𝑡 ) 

𝐹1𝑠𝑡 is the numerical flux using the monotone 1st-order upwind scheme, 𝐹𝐻𝑖𝑔ℎ is the numerical flux using 

the higher order accurate scheme. 

 

5.5 Non-Linear Solver 

For a discrete domain of N cells, Eqs. (5.11), (5.12), (5.15), (5.16), (5.19) and (5.20) form a system of 6N 

non-linear algebraic equations with 6N unknowns.  The unknowns are 𝛼𝑔,𝑖
𝑛+1, 𝑝𝑖

𝑛+1, 𝑢𝑔,𝑖+1/2
𝑛+1 , 𝑢𝑙,𝑖+1/2

𝑛+1 , 𝑒𝑔,𝑖
𝑛+1 
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and 𝑒𝑙,𝑖
𝑛+1 for 𝑖 ∈ [1,2,3, . . , 𝑁].  These equations need to be solved simultaneously by non-linear algebraic 

equations solver.  In this research, a solver by Kelley [35] is used.  The solver uses Newton’s method with 

a direct factorization of the Jacobian.  Because the goal of this research is improvement of the numerical 

method rather than the non-linear solver, we use the non-linear solver without any modifications.  More 

information about this solver can be found in [35]. 

 

5.6 Numerical Results and Discussion 

In this section we implement the new high-order numerical method derived in this thesis to numerically 

solve the two-fluid model. The solver is then employed to different benchmark problems that entail two-

phase flows.  Numerical results are presented for three types of problems: the faucet flow problem, 

Edward’s pipe problem and the shock tube problem.  The solver was developed in MatLab computing 

language.  More details on the structure of the code can be found in Appendix C. 

5.6.1 The Faucet Flow Problem 

The faucet flow benchmark problem has been used for decades as a tool for verification of numerical 

methods for two-phase problems.  In this problem, the fluid accelerates through the spatial domain under 

the effect of gravity, and the initial profile of the void fraction is moved out of the domain under this 

acceleration.  With this convection of the void fraction profile, there is also a moving discontinuity in the 

profile.  This feature of the void fraction profile makes it a very good test for the dissipative properties of 

the numerical scheme and its stability near discontinuities.  This problem has an analytical solution for the 

case of negligible pressure variation and no interfacial and wall interactions.  This analytical solution is 

compared to numerical solutions for verification purposes. 
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The spatial domain of this problem consists of a vertical tube of length 𝐿 m.  This tube contains a uniform 

column of liquid moving with initial velocity  𝑢𝑙 m/s in a vapor annulus with initial velocity 𝑢𝑔 m/s.  The 

initial volume fraction of water is 𝛼𝑙
0.  Initial pressure (𝑝0) is uniform at saturation temperature.  At the 

tube inlet the liquid volume fraction ( 𝛼𝑙
𝑖𝑛), liquid velocity ( 𝑢𝑙

𝑖𝑛 m/s), and vapor velocity (𝑢𝑔
𝑖𝑛 m/s) are kept 

constant.  Outlet pressure is maintained constant at 𝑝0, and a gravity field (𝐺) is applied at the start of the 

simulation.  The problem is illustrated in Figure 5.2. 

The analytical solution for the void fraction is given by [36]: 

 𝛼𝑔(𝑥, 𝑡) = {
1 −

𝛼𝑙
0𝑢𝑙

√2𝐺𝑥 + 𝑢𝑙
2
                𝑥 ≤ 𝑢𝑙𝑡 +

𝐺𝑡2

2

1 − 𝛼𝑙
0                                    𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

              (5.41) 

 

The numerical schemes discussed earlier are applied to discretize the two-fluid model as presented in 

previous sections of this Chapter.  The analytical solution in Eq. (5.41) assumes no phase transfer between 

the two phases, hence 𝛤𝑔 in the model was set to zero.  Table 5.1 contains the list of initial and boundary 

conditions for the problem. 

Numerical results from this simulation are shown for three types of schemes:  1st-order upwind scheme, 2nd-

order upwind scheme and flux limiter schemes, including the new flux limiter scheme derived in this thesis. 
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Figure 5.2 Illustration of the faucet flow problem 

 

 

Table 5.1 Initial and boundary conditions of the faucet flow problem 

Tube length 𝐿 1m 

Initial and boundary liquid velocities  𝑢𝑙 ,  𝑢𝑙
𝑖𝑛 10 m/s 

Initial and boundary gas velocities 𝑢𝑔,  𝑢𝑔
𝑖𝑛 10 m/s 

Initial and boundary volume fraction  of liquid 𝛼𝑙
0,  𝛼𝑙

𝑖𝑛 0.8 

Initial and boundary pressure 𝑝0, 𝑝0
𝑜𝑢𝑡 1.5 bars 

Gravity acceleration G 9.8 𝑚/𝑠2 
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1st-Order and 2nd-Order Upwind Schemes 

For this set of results we consider two cases:  the implicit discretization (𝜃 = 1) and the Crank-Nicolson 

discretization (𝜃 = 1/2).  Simulation time was set to 0.045 seconds with a time step of size 10−4 seconds.  

All results for the first-order upwind scheme are characterized by a lack for any spurious oscillations.  

However, the solution is smeared as compared to the second-order upwind scheme.  Figure 5.3 shows 

results for the first-order upwind scheme with implicit method for different mesh sizes:  N=40, 80,160 and 

320.  Figure 5.4 shows results for the Crank-Nicolson method with the same mesh sizes.  It can be observed 

that Crank-Nicolson method is less dissipative than the implicit method.  This result was expected from the 

modified equation analysis discussed in Chapter 3.  The numerical solution for the two methods is compared 

for N=320 in Figure 5.5. 

 
Figure 5.3 Results for the 1st-order-upwind with implicit temporal discretization 
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Figure 5.4 Results for the 1st-order-upwind with Crank-Nicolson temporal discretization 

 

 

 

Figure 5.5 Comparison between Implicit and Crank-Nicolson for (N=320) 
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For the 2nd-order upwind scheme, spurious oscillations appear in the numerical solution for any choice of 

𝜃, even fully implicit (𝜃 = 1).  Figure 5.6 shows the numerical solution for the implicit case (𝜃 = 1) with 

different mesh sizes.  Figure 5.7 shows the numerical solution for the Crank-Nicolson case (𝜃 = 1/2).  It 

is observed that dissipation causes a reduction in the oscillation amplitudes for implicit discretization, which 

is not the case for Crank-Nicolson, where dissipation is negligible. 

 

 
Figure 5.6 Results for the 2nd-order-upwind with implicit temporal discretization 

 
 

 

 



83 

 

 
Figure 5.7 Results for the 2nd-order-upwind with Crank-Nicolson temporal discretization 

 

Flux-Limiter Schemes 

As discussed earlier, application of this method for a system of non-linear equations is based on an empirical 

approach.  The smoothness parameters defined in Eq. (5.37) and Eq. (5.38) were calculated for all the 

variables in Eq. (5.40), and it was found that using smoothness parameters based on void fraction (𝛼) leads 

to the best results.  Hence all results from flux limiter schemes shown in this section are based on void 

fraction being used to calculate the smoothness parameters.  

Different combinations of limiters and 𝜃 values were investigated to reach the best numerical solution.  In 

practice, different limiters led to results with little qualitative difference.  A scheme based on the Minbee 

limiter was found to be the most dissipative among flux limiter schemes.  Changing the value of 𝜃 resulted 

in slightly different results, with implicit method (𝜃 = 1) more dissipative than the Crank-Nicolson method 

(𝜃 = 1/2).  The numerical solutions were free of spurious oscillations for all cases, as expected.  Figure 
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5.8 shows numerical results due to the new scheme with 𝛿 = 1 for different choices of 𝜃.  It shows better 

results for the Crank-Nicolson method (𝜃 = 1/2), where dissipation is minimal. 

Figure 5.9 shows numerical results for four different schemes:  1st-order upwind scheme, Minbee flux 

limiter scheme, Superbee flux limiter scheme and the new scheme with 𝛿 = 1.  All results are shown with 

𝜃 = 1/2.  Results from the 1st-order upwind scheme are the most smeared as compared to other schemes.  

Results from the Minbee limiter seem to be more smeared than the other two limiters, and the new scheme 

yields numerical solution that is the closest to the exact one. 

The exact solution in Eq. (5.41) was used to determine the accuracy of numerical schemes.  Accuracy was 

assessed on the basis of the 𝑳𝟏 norm, discussed in Section 4.3.1.  Convergence rate is represented by a log-

log plot of the norm of the error versus the mesh size.  Figure 5.10 shows the results of the space 

convergence study.  The 1st-order upwind scheme converges with the order of 0.52, the Minbee limiter 

converges with the order of 0.67 and the new scheme with 𝜹 = 𝟎 converges with the order of 0.80.  The 

complete results are shown in Table 5.2. 
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Figure 5.8 Numerical results for new scheme with delta=1 using different values of θ, N=320 

 

Table 5.2 Convergence of numerical solution for schemes with different limiters 

Numerical Scheme Convergence Rate 

1st-order upwind 0.52 

Minbee limiter 0.67 

Superbee limiter 0.74 

Kumar limiter 0.73 

New limiter with 𝛿 = 1 0.78 

New limiter with 𝛿 = 0 0.80 
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Figure 5.9 Numerical results for different flux limiter functions θ=1/2  and N=320 

 
 

 
Figure 5.10 Convergence of numerical solution for schemes with different limiters 
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5.6.2 Edward’s Pipe Problem 

Another benchmark that has been used for safety studies of nuclear reactors is the Edward’s pipe problem 

[37].  This problem mimics an accident where sudden depressurization of water happens.  When the 

pressure of liquid water drops below the saturation value in a sudden manner, it leads to an instantaneous 

phase change in the form of evaporation, this phenomenon is called flashing [38]. 

The setup for this problem consists of a 1 m pipe containing liquid water and steam at a saturation pressure 

of 10 MPa.  The left end of the pipe is closed, and the right end is opened to atmospheric pressure at the 

beginning of the simulation.  Initial gas void fraction in the pipe is set to 0.01.  The spatial domain of the 

problem was divided into 50 cells and the size of the time step used was set to 10−5 seconds. A schematic 

of the Edward’s pipe problem is shown in Figure 5.11. 

 
Figure 5.11 Schematic of the Edward's pipe problem 

 

Solution profiles for pressure, void fraction and gas velocity at different time instances are presented in 

Figure 5.12, Figure 5.13 and Figure 5.14, respectively.  Figure 5.15 shows the predicted values for the 

pressure history at the closed end.  

A rarefaction wave propagates during the first 5 ms of the transient starting from the open end of the pipe 

towards the closed end, resulting in a rapid depressurization of water as shown in Figure 5.12.  As a 

consequence of this depressurization, flashing happens leading to an increase in void fraction as shown in 

Figure 5.13.  



88 

 

 

Figure 5.12 Pressure profiles at different times for Edward's pipe problem 

 

 

 

Figure 5.13 Gas void fraction at different times for Edward's pipe problem 
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Figure 5.14 Gas velocity profiles at different times for Edward's pipe problem 

 

 
Figure 5.15 Left end pressure for Edward's pipe problem 
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Solution profiles for different variables were investigated for different mesh sizes (N=10, 20, 40 and 80).  

Solution profiles at t=0.0022 seconds for pressure, void fraction, gas velocity and pressure history at the 

closed end are shown in Figure 5.16, Figure 5.17, Figure 5.18 and Figure 5.19 respectively. 

Time convergence was also investigated by changing the time step of the simulation.  Three time steps were 

considered (𝑑𝑡 = 10−4, 2.5 ∗ 10−5 𝑎𝑛𝑑 6.25 ∗ 10−6 seconds).  Results for pressure, void fraction, gas 

velocity and pressure history at the closed end are shown in Figure 5.20, Figure 5.21, Figure 5.22 and Figure 

5.23 respectively.  

 

 

Figure 5.16 Pressure profile at t=0.0022 sec for different mesh sizes, 𝑑𝑡 = 10−5 
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Figure 5.17 Void fraction profile at t=0.0022 sec for different mesh sizes, 𝑑𝑡 = 10−5 

 

 

Figure 5.18 Gas velocity profile at t=0.0022 sec for different mesh sizes, 𝑑𝑡 = 10−5 
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Figure 5.19 Pressure history at closed end for different mesh sizes, 𝒅𝒕 = 𝟏𝟎−𝟓 

 

 

Figure 5.20 Pressure profile at t=0.0022 sec for different time steps, N=40 
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Figure 5.21 Void fraction profile at t=0.0022 sec for different time steps, N=40 

 

 

Figure 5.22 Gas velocity profile at t=0.0022 sec for different time steps, N=40 
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Figure 5.23 Pressure history at closed end for different time steps, N=40 

 

At this point, it is important to mention that a quantitative comparison between the results of the new solver 

developed in this research and those of the nuclear thermal-hydraulic codes (TRACE and RELAP5) is not 

a fair comparison.  This conclusion can be related to many reasons, which are basically differences between 

the two solvers.  For example, some coefficients like the interfacial area between the two phases (𝑎𝑖𝑛𝑡) and 

the interfacial friction coefficient (𝐹𝐼) are assumed constant in this research.  On the other hand, TRACE 

and RELAP5 use some correlations to calculate these coefficients.  Another important difference is the 

definition and implementation of the closure relations and the equations of state.  Based on this, a 

quantitative comparison between the results of the new solver and those of the nuclear thermal-hydraulic 

codes (TRACE and RELAP5) should not be expected to yield a good level of quantitative agreement. 
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5.6.3 The Shock Tube Problem 

This Riemann problem for the two-phase flow poses an example of shock formation during fast transients 

in the presence of phase change.  Results from this problem are aimed to show the solver is able to handle 

large differences between temperatures of the two phases.  The setup of this problem is a pipe containing 

water in its two different phases (gas and liquid).  Initially the left and right halves of the tube have two 

different states at saturation and separated by a diaphragm.  Different variations of this problem has been 

used for testing numerical methods by changing the initial left and right states of the fluid [39] [40].  The 

left and right states for this problem are defined in Table 5.3.  Both ends of the pipe are kept closed, and 

the diaphragm is removed at the beginning of the simulation to start the transient.  The domain of the 

problem was divided into 40 cells, and a time step of 10−5 seconds was used.  Results from this simulation 

are compared to those from the nuclear thermal-hydraulics code TRACE. A schematic of the shock tube 

problem is shown in Figure 5.24. 

 

 

Figure 5.24 Schematic of the shock tube problem 

 

 

 

 



96 

 

Table 5.3 Initial conditions of the shock tube problem 

Left side of the pipe Right side of the pipe 

𝛼𝑔
𝐿 = 0.25 𝛼𝑔

𝑅 = 0.10 

𝑝𝐿 = 20 𝑀𝑃𝑎 𝑝𝑅 = 10 𝑀𝑃𝑎 

𝑒𝑔
𝐿 = 2824 𝐾𝐽/𝐾𝑔 𝑒𝑔

𝑅 = 2836 𝐾𝐽/𝐾𝑔 

𝑒𝑙
𝐿 = 1311 𝐾𝐽/𝐾𝑔 𝑒𝑙

𝑅 = 1330 𝐾𝐽/𝐾𝑔 

𝑣𝑔
𝐿 = 0.0 𝑚/𝑠 𝑣𝑔

𝑅 = 0.0 𝑚/𝑠 

𝑣𝑙
𝐿 = 0.0 𝑚/𝑠 𝑣𝑙

𝑅 = 0.0 𝑚/𝑠 

 

Figure 5.25 shows the pressure profile in the pipe after 0.5 ms of the transient.  A formation of a new 

constant state in the middle of the pipe can be observed.  This constant state corresponds to an increasing 

pressure in the right half of the pipe, and decreasing pressure in the left half.  Consequently, phase change 

happens in both halves, resulting in increasing gas void fraction in the left half, and decreasing gas void 

fraction in the right half, this is shown in Figure 5.26.  Velocities and internal energies of the two phases 

are shown in Figure 5.27 and Figure 5.28, respectively. For both variables (velocity and internal energy), 

the gas phase is shown to have larger values than the liquid phase as expected.  It can be seen that the results 

in these figures show a good quantitative agreement between the new solver and TRACE.  This level of 

agreement is considered fortuitous and should not be expected for other types of problems as discussed in 

the previous section. 

Results for gas density from the new solver is not as close to TRACE results as other variables.  The 

transition between the two intermediate states of density is not as smooth as it is for the TRACE’s solution.  

One reason behind this can be related to the implementation of closure relations in the new solver.  The 

density of the gas phase, being highly compressible, is sensitive to any small change in pressure or 

temperature.  The way this relation between density and other state variables (pressure and temperature) is 

implemented in the solver is based on a first-order linearization as discussed earlier. 
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Figure 5.25 Pressure profile for shock tube problem at time=0.5 ms 

 

 
Figure 5.26 Gas void fraction profile for shock tube problem at time=0.5 ms 
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Figure 5.27 Velocity profiles for shock tube problem at time=0.5 ms 

 

 
Figure 5.28 Internal energy profiles for shock tube problem at time=0.5 ms 
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Figure 5.29 Gas density for shock tube problem at time=0.5 ms 

 

 

 

Solution profiles for different variables were investigated for different mesh sizes (N= 20, 40 and 80).  

Solution profiles at t = 0.5 ms for pressure, void fraction and gas density are shown in Figure 5.30, Figure 

5.31 and Figure 5.32 respectively. 

Time convergence was also investigated by changing the time step of the simulation.  Three time steps were 

considered (𝑑𝑡 = 10−4, 2.5 ∗ 10−5 𝑎𝑛𝑑 6.25 ∗ 10−6 seconds).  Results for pressure, void fraction and gas 

density are shown in Figure 5.33, Figure 5.34 and Figure 5.35 respectively. 
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Figure 5.30 Pressure profile for shock tube problem at time=0.5 ms for different mesh sizes 

 

 
Figure 5.31 Void fraction profile for shock tube problem at time=0.5 ms for different mesh sizes 
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Figure 5.32 Gas density profile for shock tube problem at time=0.5 ms for different mesh sizes 

 

 

 
Figure 5.33 Pressure profile for shock tube problem at time=0.5 ms for different time steps 
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Figure 5.34 Void fraction profile for shock tube problem at time=0.5 ms for different time steps 

 

 
Figure 5.35 Gas density profile for shock tube problem at time=0.5 ms for different time steps 
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The two-phase shock tube problem is also used to compare the 1st-order upwind scheme to the new scheme 

developed in Chapter 4.  This is done by comparing the mass error of the solver due to each scheme.  

Because both ends of the pipe are kept closed, the total mass of the system is ideally constant.  Any change 

in the total mass of the system is considered a type of error.  This error can be related to many sources, like 

the numerical scheme, the non-linear solver, or any other source in modeling the problem.  To account for 

the error due to the numerical scheme, the mass error was observed by changing only the mesh size for the 

simulation.  Three mesh sizes were examined: 40, 80 and 160 cells, corresponding to spatial step sizes of: 

0.025, 0.0125 and 0.00625 m, respectively.  Accuracy was assessed by calculating the percentage mass 

error as follows: 

 𝑀𝑎𝑠𝑠𝐸𝑟𝑟𝑜𝑟 = 100 ∗
|𝑀𝑓 −𝑀𝑖|

𝑀𝑖
 (5.42) 

where 𝑀𝑓 is the total mass of the system at the end of the transient and 𝑀𝑖 is the total mass of the system 

at the beginning of the transient.  The convergence rate is represented by a log-log plot of the mass error 

versus mesh size.  Figure 5.36 shows the results of the spatial convergence of both schemes.  We can 

observe that the solver with the new scheme exhibits better rate of convergence as compared to the 1st-order 

upwind scheme. 
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Figure 5.36 Convergence rate for the shock tube problem 
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CHAPTER 6. CONCLUSIONS AND 

RECOMMENDATIONS FOR FUTURE WORK 

6.1 Summary and Conclusions 

Modeling two-phase flows is a crucial topic in terms of safety and operation of nuclear reactors.  There 

continues to be a significant amount of research dedicated to improvement of current methods and models 

for such simulations.  Some of this work targets the ill-posed two-fluid model used in most nuclear thermal-

hydraulics codes.  Other work is targeted towards the numerical schemes used to discretize the 

mathematical model and the solvers used for the discretized non-linear system of equations.  The scientific 

contribution presented in this dissertation is a new and original numerical method for the two-fluid model 

used in 1D system codes, with improved accuracy and stability relative to the currently available numerical 

schemes used in the two-phase simulation. 

By adapting the flux limiters approach, a new high-resolution total variation diminishing scheme was 

derived by implementing a hybridization of the monotone 1st-order upwind scheme and the Quadratic 

Upstream Interpolation scheme (QUICK).  The combination of the 1st-order upwind scheme and QUICK 

scheme was done by means of a flux limiting function, which depends on the smoothness of the solution.  

Constraints were imposed to make the resulting scheme TVD and high-order in smooth regions of the 

solution.  For temporal discretization, the generalized Crank-Nicolson method characterized by the 

parameter 𝜃 was used. 

Results from the proposed scheme were compared for the one-dimensional linear advection equation to 

classical and other popular high-resolution schemes.  Convergence rate for the new scheme was investigated 

for smooth and discontinuous solutions.  The new scheme was shown to exhibit better results as compared 

to other schemes.  It is shown that high-resolution schemes based on 2nd-order Lax-Wendroff discretization 

(with Minbee and Superbee limiters) exhibit a convergence rate of about 1.0 for smooth solutions and 0.5 
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for discontinuous solutions.  The new scheme developed in this thesis exhibits a convergence rate of about 

1.3 for smooth solutions and 0.8 for discontinuous solutions.  In the case of discontinuous solutions, the 

new method derived here showed better convergence rate compared to all schemes investigated in this 

research.  In general, the parameter 𝜃 = 1/2 (Crank-Nicolson method) yielded better results than the case 

of 𝜃 = 1 (implicit method), with less numerical dissipation. 

Finite volume techniques based on staggered mesh and different numerical schemes (including the new 

numerical scheme) were used to develop a high-order solver for the two-phase two-fluid model.  Numerical 

derivatives for the linearized closure relations were calculated using water properties based on the IAPWS 

IF-97 standard.  A numerical solver based on Newton’s method with direct factorization of the Jacobian 

was used to solve the system of non-linear discrete equations.  The new two-phase two-fluid model solver 

was tested for three benchmark problems: the faucet flow problem, Edward’s pipe problem and the shock 

tube problem. 

The analytical solution for the void fraction in the faucet flow problem exhibits propagation of a 

discontinuity.  This is useful to test the solver for its abilities to handle discontinuities in realistic flow 

conditions.  For the 1st-order upwind scheme, the results were smeared due to excessive numerical 

dissipation; this dissipation was minimum for the case of 𝜃 = 1/2 (Crank-Nicolson method).  For the 2nd-

order upwind scheme, the results exhibited spurious oscillations near the discontinuity, as expected by the 

Godunov’s theorem.  Numerical results for the flux limiters schemes showed better agreement with the 

analytical solution and improved rate of convergence.  Numerical solutions were less smeared and exhibited 

no oscillations near the discontinuity.  Results due to the new scheme showed the best agreement with the 

analytical solution and the best convergence rate relative to the other schemes considered in this research. 
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The Edward’s pipe problem was meant to examine the solver’s abilities of handling fast transients with 

phase change.  Results showed flashing of liquid water starting at the open end, and propagating towards 

the closed end in a form of a rarefaction wave.  

The shock tube problem showed the solver’s capability to handle fast transients with discontinuities and 

phase change.  Results from this test were compared to those from the USNRC TRACE code, and good 

qualitative agreement between the two sets of results was observed.  Errors in the system’s total mass were 

calculated for two numerical schemes: 1st-order upwind scheme and the new scheme developed in this 

research.  The new scheme showed better reduction in mass error as compared to the 1st-order upwind 

scheme. 

 

6.2 Future Work 

The effort done in this research can be improved and extended in different ways to tackle complicated 

problems associated with simulating two-phase flows in nuclear reactors in its multiple aspects.  The first 

important improvement is conducting further testing of the numerical method and the solver by applying it 

to different benchmark problems.  This provides better verification for the new numerical scheme and the 

solver, and serves as a tool to examine its capabilities to handle different types of physics and transients 

under a wide-range of conditions.  This kind of work can be specific to nuclear reactor systems by choosing 

benchmark problems that mimic two-phase flows in operational and accident conditions of nuclear reactors.  

Results from this work can also be compared to those of the Loss-Of-Fluid Tests (LOFT) for validation. 

The second important extension to this work is a multidimensional analysis of the problem (2D and 3D).  

As sufficient as 1D analysis is for many nuclear reactor systems, higher dimensions have to be considered 

to capture different physics and flow regimes.  In this case one can account for interface tracking between 

the two phases and explicitly solve for different flow regimes rather than assuming a mixture of the two 
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phases at each cell.  The new numerical scheme developed in this research can be combined with different 

interface tracking or capturing methods such as the front tracking method and the level set method to 

develop a high-order multidimensional solver.  Before such implementation can be done, a study has to be 

carried out to prove the feasibility of the new scheme in terms of stability and accuracy if implemented in 

higher dimensions. 

The third extension is to include core neutronics modeling in the solver.  This means adding the neutron 

diffusion or transport equation to the model as well as the point kinetics model and performing proper 

coupling with the energy equation.  By doing so, the solver will be able to handle a wider variety of 

problems and physics related to nuclear reactor systems, and coupling with external neutronics codes would 

not be needed.  However, one should pay attention for the large difference in the time scales of the two 

physics. Neutronics physics occur at much smaller time scales than those of the thermal-hydraulics ones.  
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APPENDIX A. 

MODIFIED EQUATION ANALYSIS FOR THETA 

METHOD 

Taylor’s series expansion: 

𝑞(𝑧) = 𝑞(0) + 𝑧
𝜕𝑞

𝜕𝑧
+ 𝑧2

𝜕2𝑞

𝜕𝑧2
+
𝑧3

6

𝜕3𝑞

𝜕𝑧3
 

We first assume: 

𝑥 = 𝑥0 + 𝛼0𝑧 →  𝛼0 = (𝑥 − 𝑥0)/𝑧 

𝑡 = 𝑡0 + 𝛼1𝑧 →  𝛼1 = (𝑡 − 𝑡0)/𝑧 

𝑞(𝑥, 𝑡) = 𝑞(𝑧) 

Using the chain rule: 

𝜕𝑞

𝜕𝑧
=
𝜕𝑥

𝜕𝑧

𝜕𝑞

𝜕𝑥
+
𝜕𝑡

𝜕𝑧

𝜕𝑞

𝜕𝑡
= (𝛼0

𝜕𝑞

𝜕𝑥
+ 𝛼1

𝜕𝑞

𝜕𝑡
) 

𝜕2𝑞

𝜕𝑧2
= (𝛼0

2
𝜕2𝑞

𝜕𝑥2
+ 2𝛼0𝛼1

𝜕2𝑞

𝜕𝑥𝜕𝑡
+ 𝛼1

2
𝜕2𝑞

𝜕𝑡2
) 

𝜕3𝑞

𝜕𝑧3
= (𝛼0

3
𝜕3𝑞

𝜕𝑥3
+ 3𝛼0

2𝛼1
𝜕3𝑞

𝜕𝑥2𝜕𝑡
+ 3𝛼0𝛼1

2
𝜕3𝑞

𝜕𝑥𝜕𝑡2
+ 𝛼1

3
𝜕3𝑞

𝜕𝑡3
) 
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Now plugging the derivatives from the chain rule into Taylor’s series, and using the definitions above, 

one can expand: 

 

𝑞(𝑥0 + 𝛥𝑥, 𝑡0 + 𝛥𝑡)

= 𝑞(𝑥0, 𝑡0) + (𝛥𝑥
𝜕𝑞

𝜕𝑥
+ 𝛥𝑡

𝜕𝑞

𝜕𝑡
)

+
1

2
(𝛥𝑥2

𝜕2𝑞

𝜕𝑥2
+ 2𝛥𝑥𝛥𝑡

𝜕2𝑞

𝜕𝑥𝜕𝑡
+ 𝛥𝑡2

𝜕2𝑞

𝜕𝑡2
)

+
1

6
(𝛥𝑥3

𝜕3𝑞

𝜕𝑥3
+ 3𝛥𝑥2𝛥𝑡

𝜕3𝑞

𝜕𝑥2𝜕𝑡
+ 3𝛥𝑥𝛥𝑡2

𝜕3𝑞

𝜕𝑥𝜕𝑡2
+ 𝛥𝑡3

𝜕3𝑞

𝜕𝑡3
) 

(A.1) 

 

 

𝑞(𝑥0 − 𝛥𝑥, 𝑡0 + 𝛥𝑡)

= 𝑞(𝑥0, 𝑡0) − 𝛥𝑥
𝜕𝑞

𝜕𝑥
+ 𝛥𝑡

𝜕𝑞

𝜕𝑡
+
1

2
𝛥𝑥2

𝜕2𝑞

𝜕𝑥2
− 𝛥𝑥𝛥𝑡

𝜕2𝑞

𝜕𝑥𝜕𝑡

+
1

2
𝛥𝑡2

𝜕2𝑞

𝜕𝑡2
−
1

6
𝛥𝑥3

𝜕3𝑞

𝜕𝑥3
+
1

2
𝛥𝑥2𝛥𝑡

𝜕3𝑞

𝜕𝑥2𝜕𝑡
−
1

2
𝛥𝑥𝛥𝑡2

𝜕3𝑞

𝜕𝑥𝜕𝑡2

+
1

6
𝛥𝑡3

𝜕3𝑞

𝜕𝑡3
 

(A.2) 

 

 

𝑞(𝑥0 − 2𝛥𝑥, 𝑡0 + 𝛥𝑡)

= 𝑞(𝑥0, 𝑡0) + (−2𝛥𝑥
𝜕𝑞

𝜕𝑥
+ 𝛥𝑡

𝜕𝑞

𝜕𝑡
)

+
1

2
(4𝛥𝑥2

𝜕2𝑞

𝜕𝑥2
− 4𝛥𝑥𝛥𝑡

𝜕2𝑞

𝜕𝑥𝜕𝑡
+ 𝛥𝑡2

𝜕2𝑞

𝜕𝑡2
)

+
1

6
(−8𝛥𝑥3

𝜕3𝑞

𝜕𝑥3
+ 12𝛥𝑥2𝛥𝑡

𝜕3𝑞

𝜕𝑥2𝜕𝑡
− 6𝛥𝑥𝛥𝑡2

𝜕3𝑞

𝜕𝑥𝜕𝑡2

+ 𝛥𝑡3
𝜕3𝑞

𝜕𝑡3
) 

(A.3) 

 

 𝑞(𝑥0, 𝑡0 + 𝛥𝑡) = 𝑞(𝑥0, 𝑡0) + 𝛥𝑡
𝜕𝑞

𝜕𝑡
+
1

2
𝛥𝑡2

𝜕2𝑞

𝜕𝑡2
+
1

6
𝛥𝑡3

𝜕3𝑞

𝜕𝑡3
 

(A.4) 
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 𝑞(𝑥0 − 𝛥𝑥, 𝑡0) = 𝑞(𝑥0, 𝑡0) − 𝛥𝑥
𝜕𝑞

𝜕𝑥
+
1

2
𝛥𝑥2

𝜕2𝑞

𝜕𝑥2
−
1

6
𝛥𝑥3

𝜕3𝑞

𝜕𝑥3
 

(A.5) 

 

 𝑞(𝑥0 − 2𝛥𝑥, 𝑡0) = 𝑞(𝑥0, 𝑡0) − 2𝛥𝑥
𝜕𝑞

𝜕𝑥
+ 2𝛥𝑥2

𝜕2𝑞

𝜕𝑥2
−
4

3
𝛥𝑥3

𝜕3𝑞

𝜕𝑥3
 

(A.6) 

 

A.1 Modified equation for theta method with 1st-order upwind (positive velocity): 

Starting with the conservative form of the numerical scheme: 

 𝑞𝑖
𝑛+1 = 𝑞𝑖

𝑛 − 𝜆(ℱ
𝑖+
1
2

𝑛 − ℱ
𝑖−
1
2

𝑛 )  (A.7) 

Using the definition of the numerical flux of 1st-order upwind scheme in Eq. (3.27): 

 𝑞𝑖
𝑛+1 = 𝑞𝑖

𝑛 −
�̅�𝛥𝑡

𝛥𝑥
[𝜃(𝑞𝑖

𝑛+1 − 𝑞𝑖−1
𝑛+1) + (1 − 𝜃)(𝑞𝑖

𝑛 − 𝑞𝑖−1
𝑛 )] (A.8) 

This can be written as: 

 
𝑞(𝑥, 𝑡 + 𝛥𝑡) = 𝑞(𝑥, 𝑡) −

�̅�𝛥𝑡

𝛥𝑥
[𝜃(𝑞(𝑥, 𝑡 + 𝛥𝑡) − 𝑞(𝑥 − 𝛥𝑥, 𝑡 + 𝛥𝑡))

+ (1 − 𝜃)(𝑞(𝑥, 𝑡) − 𝑞(𝑥 − 𝛥𝑥, 𝑡))] 

(A.9) 

Using the expansion: 

 

𝜕𝑞

𝜕𝑡
+ �̅�

𝜕𝑞

𝜕𝑥
=
�̅�𝛥𝑥

2

𝜕2𝑞

𝜕𝑥2
− �̅�𝛥𝑡𝜃

𝜕2𝑞

𝜕𝑥𝜕𝑡
−
1

2
𝛥𝑡
𝜕2𝑞

𝜕𝑡2
−
�̅�𝛥𝑥2

6

𝜕3𝑞

𝜕𝑥3
+
�̅�𝛥𝑡𝛥𝑥𝜃

2

𝜕3𝑞

𝜕𝑥2𝜕𝑡

−
�̅�𝛥𝑡2𝜃

2

𝜕3𝑞

𝜕𝑥𝜕𝑡2
−
1

6
𝛥𝑡2

𝜕3𝑞

𝜕𝑡3
 

(A.10) 
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From the original equation: 

 𝜕𝑞

𝜕𝑡
= −�̅�

𝜕𝑞

𝜕𝑥
 (A.11) 

 𝜕2𝑞

𝜕𝑡2
= −�̅�

𝜕

𝜕𝑡
(
𝜕𝑞

𝜕𝑥
) = −�̅�

𝜕

𝜕𝑥
(
𝜕𝑞

𝜕𝑡
) = −�̅�

𝜕

𝜕𝑥
(−�̅�

𝜕𝑞

𝜕𝑥
) = �̅�2

𝜕2𝑞

𝜕𝑥2
 (A.12) 

 
𝜕3𝑞

𝜕𝑡3
=
𝜕

𝜕𝑡
(�̅�2

𝜕2𝑞

𝜕𝑥2
) = �̅�2

𝜕2

𝜕𝑥2
(
𝜕𝑞

𝜕𝑡
) = �̅�2

𝜕2

𝜕𝑥2
(−�̅�

𝜕𝑞

𝜕𝑥
) = −�̅�3

𝜕3𝑞

𝜕𝑥3
 (A.13) 

If we substitute Eqs. (A.11)-(A.13) into Eq. (A.10), we get: 

 

𝜕𝑞

𝜕𝑡
+ �̅�

𝜕𝑞

𝜕𝑥
= (

�̅�𝛥𝑥

2
+ �̅�2𝛥𝑡 (𝜃 −

1

2
))
𝜕2𝑞

𝜕𝑥2

+ (
�̅�3𝛥𝑡2

6
−
�̅�𝛥𝑥2

6
−
�̅�2𝛥𝑡𝛥𝑥𝜃

2
−
�̅�3𝛥𝑡2𝜃

2
)
𝜕3𝑞

𝜕𝑥3
 

(A.14) 

 

A.2 Modified equation for theta method with 2nd-order upwind (positive velocity): 

Using the definition of the numerical flux of 2nd-order upwind scheme (Eq. (3.32)) into Eq. (A.7): 

 

𝑞𝑖
𝑛+1 = 𝑞𝑖

𝑛 − 𝜆�̅� [𝜃 ((
3

2
𝑞𝑖
𝑛+1 −

1

2
𝑞𝑖−1
𝑛+1) − (

3

2
𝑞𝑖−1
𝑛+1 −

1

2
𝑞𝑖−2
𝑛+1))

+ (1 − 𝜃)((
3

2
𝑞𝑖
𝑛 −

1

2
𝑞𝑖−1
𝑛 ) − (

3

2
𝑞𝑖−1
𝑛 −

1

2
𝑞𝑖−2
𝑛 ))] 

(A.15) 

This can be rearranged and written as: 

 

𝑞(𝑥, 𝑡 + 𝛥𝑡) = 𝑞(𝑥, 𝑡)

− 𝜆�̅� [𝜃 (
3

2
𝑞(𝑥, 𝑡 + 𝛥𝑡) − 2𝑞(𝑥 − 𝛥𝑥, 𝑡 + 𝛥𝑡)

+
1

2
𝑞(𝑥 − 2𝛥𝑥, 𝑡 + 𝛥𝑡))

+ (1 − 𝜃)(
3

2
𝑞(𝑥, 𝑡) − 2𝑞(𝑥 − 𝛥𝑥, 𝑡) +

1

2
𝑞(𝑥 − 2𝛥𝑥, 𝑡))] 

(A.16) 
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Using the expansion we get: 

 

𝛥𝑡
𝜕𝑞

𝜕𝑡
+
1

2
𝛥𝑡2

𝜕2𝑞

𝜕𝑡2
+
1

6
𝛥𝑡3

𝜕3𝑞

𝜕𝑡3

= −𝜆�̅� [𝜃 (
3

2
(𝑞(𝑥, 𝑡) + 𝛥𝑡

𝜕𝑞

𝜕𝑡
+
1

2
𝛥𝑡2

𝜕2𝑞

𝜕𝑡2
+
1

6
𝛥𝑡3

𝜕3𝑞

𝜕𝑡3
)

− 2(𝑞(𝑥, 𝑡) − 𝛥𝑥
𝜕𝑞

𝜕𝑥
+ 𝛥𝑡

𝜕𝑞

𝜕𝑡
+
1

2
𝛥𝑥2

𝜕2𝑞

𝜕𝑥2
− 𝛥𝑥𝛥𝑡

𝜕2𝑞

𝜕𝑥𝜕𝑡

+
1

2
𝛥𝑡2

𝜕2𝑞

𝜕𝑡2
−
1

6
𝛥𝑥3

𝜕3𝑞

𝜕𝑥3
+
1

2
𝛥𝑥2𝛥𝑡

𝜕3𝑞

𝜕𝑥2𝜕𝑡
−
1

2
𝛥𝑥𝛥𝑡2

𝜕3𝑞

𝜕𝑥𝜕𝑡2

+
1

6
𝛥𝑡3

𝜕3𝑞

𝜕𝑡3
)

+
1

2
(𝑞(𝑥, 𝑡) + (−2𝛥𝑥

𝜕𝑞

𝜕𝑥
+ 𝛥𝑡

𝜕𝑞

𝜕𝑡
)

+
1

2
(4𝛥𝑥2

𝜕2𝑞

𝜕𝑥2
− 4𝛥𝑥𝛥𝑡

𝜕2𝑞

𝜕𝑥𝜕𝑡
+ 𝛥𝑡2

𝜕2𝑞

𝜕𝑡2
)

+
1

6
(−8𝛥𝑥3

𝜕3𝑞

𝜕𝑥3
+ 12𝛥𝑥2𝛥𝑡

𝜕3𝑞

𝜕𝑥2𝜕𝑡
− 6𝛥𝑥𝛥𝑡2

𝜕3𝑞

𝜕𝑥𝜕𝑡2

+ 𝛥𝑡3
𝜕3𝑞

𝜕𝑡3
)))

+ (1 − 𝜃)(
3

2
𝑞(𝑥, 𝑡)

− 2(𝑞(𝑥, 𝑡) − 𝛥𝑥
𝜕𝑞

𝜕𝑥
+
1

2
𝛥𝑥2

𝜕2𝑞

𝜕𝑥2
−
1

6
𝛥𝑥3

𝜕3𝑞

𝜕𝑥3
)

+
1

2
(𝑞(𝑥, 𝑡) − 2𝛥𝑥

𝜕𝑞

𝜕𝑥
+ 2𝛥𝑥2

𝜕2𝑞

𝜕𝑥2
−
4

3
𝛥𝑥3

𝜕3𝑞

𝜕𝑥3
))] 

(A.17) 

Equation (A.17) can be further simplified into: 

 

𝛥𝑡
𝜕𝑞

𝜕𝑡
+
1

2
𝛥𝑡2

𝜕2𝑞

𝜕𝑡2
+
1

6
𝛥𝑡3

𝜕3𝑞

𝜕𝑡3

= −𝜆�̅� [𝜃 (𝛥𝑥
𝜕𝑞

𝜕𝑥
+ 𝛥𝑥𝛥𝑡

𝜕2𝑞

𝜕𝑥𝜕𝑡
−
𝛥𝑥3

3

𝜕3𝑞

𝜕𝑥3
+
𝛥𝑥𝛥𝑡2

2

𝜕3𝑞

𝜕𝑥𝜕𝑡2
)

+ (1 − 𝜃)(𝛥𝑥
𝜕𝑞

𝜕𝑥
−
2

6
𝛥𝑥3

𝜕3𝑞

𝜕𝑥3
)] 

(A.18) 
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Rearrange and substitute 𝜆 = 𝛥𝑡/𝛥𝑥 to get: 

 
𝜕𝑞

𝜕𝑡
+ �̅�

𝜕𝑞

𝜕𝑥
=
�̅�𝛥𝑥2

3

𝜕3𝑞

𝜕𝑥3
− 𝛥𝑡�̅�𝜃

𝜕2𝑞

𝜕𝑥𝜕𝑡
− �̅�

𝛥𝑡2𝜃

2

𝜕3𝑞

𝜕𝑥𝜕𝑡2
−
𝛥𝑡

2

𝜕2𝑞

𝜕𝑡2
−
𝛥𝑡2

6

𝜕3𝑞

𝜕𝑡3
 (A.19) 

Using Eqs. (A.11)-(A.13) with some simplification yields the following modified equation: 

 
𝜕𝑞

𝜕𝑡
+ �̅�

𝜕𝑞

𝜕𝑥
= �̅�2𝛥𝑡 (𝜃 −

1

2
)
𝜕2𝑞

𝜕𝑥2
+ (

�̅�𝛥𝑥2

3
−
�̅�3𝛥𝑡2

2
(𝜃 −

1

3
))
𝜕3𝑞

𝜕𝑥3
 (A.20) 
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APPENDIX B. 

ALGEBRAIC WORK FOR THE NEW TVD SCHEME 

B-1. Finding the TVD region for 𝑢 < 0 

For 𝑢 < 0, if we substitute the numerical fluxes of the 1st-order upwind and the QUICK schemes into Eq. 

(4.1) and then into Eq. (3.42), and use 𝜃 = 0 , we obtain the following scheme: 

 

𝑞𝑖
𝑛+1 = 𝑞𝑖

𝑛 −
∆𝑡

∆𝑥
𝑢 [𝑞𝑖+1 − 𝑞𝑖 +

1

8
𝜑
𝑖+
1
2

[3𝑞𝑖 − 3𝑞𝑖+1 + 𝑞𝑖+1 − 𝑞𝑖+2]

−
1

8
𝜑
𝑖−
1
2

[−3𝑞𝑖 + 3𝑞𝑖−1 + 𝑞𝑖 − 𝑞𝑖+1]] 

(B.1) 

 

Equation (B.1) can be rearranged: 

 

𝑞𝑖
𝑛+1 = 𝑞𝑖

𝑛 −
∆𝑡

∆𝑥
𝑢 [1 −

𝜑
𝑖+
1
2

8
[3 +

(𝑞𝑖+2 − 𝑞𝑖+1)

(𝑞𝑖+1 − 𝑞𝑖)
]

+

𝜑
𝑖−
1
2

8
[3
(𝑞𝑖 − 𝑞𝑖−1)

(𝑞𝑖+1 − 𝑞𝑖)
+ 1]] (𝑞𝑖+1 − 𝑞𝑖) 

(B.2) 

No we define the smoothness parameter: 

 𝑟𝑖 =
(𝑞𝑖+2 − 𝑞𝑖+1)

(𝑞𝑖+1 − 𝑞𝑖)
 (B.3) 
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Substituting Eq. (B.3) into Eq. (B.2) yields: 

 𝑞𝑖
𝑛+1 = 𝑞𝑖

𝑛 −
∆𝑡

∆𝑥
𝑢 [1 −

𝜑
𝑖+
1
2

8
[3 + 𝑟𝑖] +

𝜑
𝑖−
1
2

8
[
3

𝑟𝑖−1
+ 1]] (𝑞𝑖+1 − 𝑞𝑖) 

(B.4) 

Let 𝑣 =
−𝑢∆𝑡

∆𝑥
> 0.  This is a numerical scheme written in an incremental form (Eq. (3.8)) with the following 

parameters: 

 𝐶𝑖+1/2 = (𝑣 [1 +
𝜑𝑖+1/2

8
[
3

𝑟𝑖
+ 1] −

𝜑𝑖−1/2

8
[3 + 𝑟𝑖−1]]),   𝐷𝑖−1/2 = 0 (B.5) 

Implementing the conditions for the scheme to be TVD (Eq. (3.20)), we obtain the following inequality: 

 0 ≤ 𝑣 [1 −

𝜑
𝑖+
1
2

8
[3 + 𝑟𝑖] +

𝜑
𝑖−
1
2

8
[
3

𝑟𝑖−1
+ 1]] ≤ 1 (B.6) 

This can be written as: 

 −8 ≤ 𝜑
𝑖−
1
2
[
3

𝑟𝑖−1
+ 1] − 𝜑

𝑖+
1
2

[3 + 𝑟𝑖] ≤ 8 (
1 − 𝑣

𝑣
) (B.7) 

At this point we impose the restriction 0 ≤ 𝑣 ≤ 1/2.  This yields the following: 

 |𝜑𝑖−1/2 [
3

𝑟𝑖−1
+ 1] − 𝜑𝑖+1/2[3 + 𝑟𝑖]| ≤ 8 (B.8) 

One condition we require for the limiter function is: 

𝜑(𝑟) = 0 𝑓𝑜𝑟 𝑟 < 0 
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This condition yields the following: 

 0 ≤ (𝜑
𝑖−
1
2
[
3

𝑟𝑖−1
+ 1] , 𝜑

𝑖+
1
2

[3 + 𝑟𝑖]) ≤ 8 (B.9) 

Form which we obtain the two inequalities: 

 

0 ≤ 𝜑
𝑖−
1
2
≤ [

8𝑟𝑖−1
3 + 𝑟𝑖−1

] → 0 ≤ 𝜑 ≤
8𝑟

3 + 𝑟
 

0 ≤ 𝜑
𝑖+
1
2
≤ [

8

3 + 𝑟𝑖
] → 0 ≤ 𝜑 ≤ [

8

3 + 𝑟
] 

(B.10) 

This is the same result as found for the case with positive velocity. 

 

B-2. Value of limiter function corresponding to 3rd-order upwind scheme  

Starting from Eq. (4.11): 

 𝑞𝑖
𝑛+1 = 𝑞𝑖

𝑛 −
∆𝑡

∆𝑥
𝑢 [
(5𝑞𝑖 − 𝑞𝑖−1 + 2𝑞𝑖+1)

6
−
(5𝑞𝑖−1 − 𝑞𝑖−2 + 2𝑞𝑖)

6
] (B.11) 

This can be written as follows: 

 𝑞𝑖
𝑛+1 = 𝑞𝑖

𝑛 −
∆𝑡

∆𝑥
𝑢 [(𝑞𝑖 − 𝑞𝑖−1) +

(2𝑞𝑖+1 − 𝑞𝑖−1 − 𝑞𝑖)

6
−
(2𝑞𝑖 − 𝑞𝑖−2 − 𝑞𝑖−1)

6
] (B.12) 

On the other side, we simplify Eq. (4.5): 

 𝑞𝑖
𝑛+1 = 𝑞𝑖

𝑛 −
∆𝑡

∆𝑥
𝑢 [1 +

𝜑
𝑖+
1
2

8
[
3

𝑟𝑖
+ 1] −

𝜑
𝑖−
1
2

8
[3 + 𝑟𝑖−1]] (𝑞𝑖 − 𝑞𝑖−1) 

(B.13) 
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Substituting: 𝑟𝑖 =
(𝑞𝑖−𝑞𝑖−1)

(𝑞𝑖+1−𝑞𝑖)
 and 𝑟𝑖−1 =

(𝑞𝑖−1−𝑞𝑖−2)

(𝑞𝑖−𝑞𝑖−1)
 into Eq. (B.13), we obtain: 

 𝑞𝑖
𝑛+1 = 𝑞𝑖

𝑛 −
∆𝑡

∆𝑥
𝑢 [1 +

𝜑
𝑖+
1
2

8
[
3(𝑞𝑖+1 − 𝑞𝑖)

(𝑞𝑖 − 𝑞𝑖−1)
+ 1] −

𝜑
𝑖−
1
2

8
[3 +

(𝑞𝑖−1 − 𝑞𝑖−2)

(𝑞𝑖 − 𝑞𝑖−1)
]] (𝑞𝑖 − 𝑞𝑖−1) (B.14) 

This can be simplified as: 

 

𝑞𝑖
𝑛+1 = 𝑞𝑖

𝑛 −
∆𝑡

∆𝑥
𝑢 [(𝑞𝑖 − 𝑞𝑖−1) +

𝜑
𝑖+
1
2

8
[3𝑞𝑖+1 − 2𝑞𝑖 − 𝑞𝑖−1]

−

𝜑
𝑖−
1
2

8
[3𝑞𝑖 − 2𝑞𝑖−1 − 𝑞𝑖−2]] 

(B.15) 

To find the value for the limiter function that makes the two Eqs. (B.12) and (B.15) equivalent, we require 

the two following equations to hold: 

 𝜑
𝑖+
1
2
[
3𝑞𝑖+1 − 2𝑞𝑖 − 𝑞𝑖−1

8
] =

(2𝑞𝑖+1 − 𝑞𝑖−1 − 𝑞𝑖)

6
 (B.16) 

 𝜑
𝑖−
1
2
[
3𝑞𝑖 − 2𝑞𝑖−1 − 𝑞𝑖−2

8
] =

(2𝑞𝑖 − 𝑞𝑖−1 − 𝑞𝑖−2)

6
 (B.17) 

Solving for the limiter functions in both equations: 

 𝜑
𝑖+
1
2
= [

4(2𝑞𝑖+1 − 𝑞𝑖−1 − 𝑞𝑖)

3(3𝑞𝑖+1 − 2𝑞𝑖 − 𝑞𝑖−1)
] (B.18) 

 𝜑
𝑖−
1
2
= [

4(2𝑞𝑖 − 𝑞𝑖−1 − 𝑞𝑖−2)

3(3𝑞𝑖 − 2𝑞𝑖−1 − 𝑞𝑖−2)
] (B.19) 
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If we consider Eq. (B.18): 

 𝜑
𝑖+
1
2
=

4(𝑞𝑖+1 − 𝑞𝑖) (2 +
𝑞𝑖 − 𝑞𝑖−1
𝑞𝑖+1 − 𝑞𝑖

)

3(𝑞𝑖 − 𝑞𝑖−1) (3 (
𝑞𝑖+1 − 𝑞𝑖
𝑞𝑖 − 𝑞𝑖−1

) + 1)
 (B.20) 

Now we rewrite the expression above in terms of the smoothness parameter 𝑟𝑖 =
(𝑞𝑖−𝑞𝑖−1)

(𝑞𝑖+1−𝑞𝑖)
: 

 𝜑
𝑖+
1
2
=
4(2 + 𝑟𝑖)

3(3 + 𝑟𝑖)
 (B.21) 

Folowing same steps for Eq. (B.19), we obtain: 

 𝜑
𝑖−
1
2
=
4(2 + 𝑟𝑖−1)

3(3 + 𝑟𝑖−1)
 (B.22) 

Dropping the subscripts from both equations (Eq. (B.21) and Eq. (B.22)), we obtain the following: 

 𝜑 =
4(2 + 𝑟)

3(3 + 𝑟)
 (B.23) 
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APPENDIX C.  

CODE STRUCTURE FOR THE TWO-PHASE TWO-

FLUID MODEL SOLVER  

The MatLab code developed for the two-phase two-fluid solver can be divided into 7 main blocks: 

1- Main code: In this block, physical constants (Interface heat transfer coefficients, Interfacial friction 

coefficient, etc.) and numerical parameters (θ, number of spatial cells, time step size, etc.) are defined.  

It also contains declaration for all the variables in the problem (𝑝, 𝛼𝑔, 𝑢𝑔, 𝛤, etc.).  Initial conditions are 

also provided in this block.  This block also is the main block to solve for the variables of the problem 

during the transient.  It passes current variables to the block “Parafun” and receives a function in a 

residual form, then, this function is passed to the solver block “nsold” to solve for the new variables at 

current time step.  After receiving back the solution, post processing is done as a final part of this block. 

2- Parafun: This function receives its arguments from the “Main code”.  It passes different variables and 

arrays to different functions, and returns to the “Main code” a function of the new variables in a residual 

form.  Boundary conditions of the problem are also defined in this function. 

3- Nsold: This function by Kelly [35] receives a residual form from the “Main code” along with an initial 

guess for the solution (Initial guess passed is the solution at previous time step).  It also receives other 

arguments from the “Main code”.  These parameters are the relative and absolute error tolerances (For 

more information about this function refer to Kelly’s book [35]).  It returns to the main code the solution 

for all variables in the residual problem at new time step. 

4- State Variables block: This block covers all functions used to calculate state variables from closure 

relations (Densities, temperatures, and enthalpies).  In this block, there is also the function used to 
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calculate the interfacial mass transfer and the function used to calculate the numerical derivatives used 

in the closure relations. 

5- Numerical Scheme block: This block includes all functions used calculate the numerical scheme 

parameters, like smoothness parameter, the minbee limiter, the superbee limiter, etc. 

6- Donored Quantities block: This block contains all functions used to calculate the donored quantities 

appearing in the discrete equations of the problem. 

7- Numerical Fluxes block:  This block has all the functions used to calculate the numerical fluxes in the 

system of discrete equations (Equations (5.13), (5.14), (5.17), (5.18), (5.21) and (5.22)). 

Tables C.1 – C5 contain a brief description of all functions in each block.  The diagram in Figure C. 

shows the interaction between different blocks of the code. 

 

Table C.1 Main Blocks 

Function name Description 

Main_Code Definition of physical constants, numerical parameters, initial 

conditions and post processing 

ParaFun Formation of the residual form of discrete equations, and 

implementation of boundary conditions 

nsold Solving the non-linear system of discrete equations [35] 

 

Table C.2 Numerical Scheme block 

Function name Description 

Limiter Determines which limiter function to use, and which smoothness 

parameter (𝑟𝑖+1/2
𝑅  𝑜𝑟 𝑟𝑖+1/2

𝐿 ) 

CalSP Calculation of the smoothness parameter (Eq. (5.37) and Eq. (5.38)) 

Minbee Calculation of the Minbee flux limiter function 

Superbee Calculation of the Superbee flux limiter function 

Kumar Calculation of Kumar’s flux limiter function 

Quick Calculation of the new flux limiter function 
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Table C.3 State Variables Block 

Function name Description 

CalRhog Calculation of density of gas (Eq. (5.24)) 

CalRhol Calculation of density of liquid (Eq. (5.25)) 

CalTs Calculation of saturation temperature (Eq. (5.26)) 

CalTg Calculation of gas temperature (Eq. (5.27)) 

CalTl Calculation of liquid temperature (Eq. (5.28)) 

Calhgs Calculation of gas saturation enthalpy (Eq. (5.29)) 

Calhls Calculation of liquid saturation enthalpy (Eq. (5.30)) 

Calhg Calculation of gas enthalpy (Eq. (5.31)) 

Calhl Calculation of liquid enthalpy (Eq. (5.32)) 

CalGStar 
Calculation of interfacial mass transfer and phasic mass transfer 

enthalpies (Eq. (5.3)) 

Rho_ders 
Calculation of numerical derivatives used for densities closure 

relations 

T_ders 
Calculation of numerical derivatives used for temperatures closure 

relations 

h_ders 
Calculation of numerical derivatives used for enthalpies closure 

relations 

XSteam Evaluation of real properties of water [34] 

 

 

 

Table C.4 Donored Quantities Block 

Function name Description 

CalAlphaDotg Calculation of donored gas void fraction (�̇�𝑔) in Eq. (5.21) 

CalAlphaDotl Calculation of donored liquid void fraction (�̇�𝑙) in Eq. (5.22) 

CalAlphaRhoDotg Calculation of the donored quantity (𝜌𝛼)𝑔̇  in Eq. (5.13) 

CalAlphaRhoDotl Calculation of the donored quantity (𝜌𝛼)𝑙̇  Eq. (5.14) 

CalAlphaRhoEtDotg Calculation of the donored quantity (𝜌𝛼𝑒)𝑔̇  in Eq. (5.21) 

CalAlphaRhoEtDotl Calculation of the donored quantity (𝜌𝛼𝑒)𝑙̇  in Eq. (5.22) 
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Table C.5 Numerical Fluxes block 

Function name Description 

CalFcg Calculation of mass numerical fluxes for gas phase (Eq. (5.13)) 

CalFcl Calculation of mass numerical fluxes for liquid phase (Eq. (5.14)) 

CalFeg Calculation of energy numerical fluxes for gas phase (Eq. (5.21)) 

CalFel Calculation of energy numerical fluxes for liquid phase (Eq. (5.22)) 

CalFmg Calculation of momentum numerical fluxes for gas phase (Eq. (5.17)) 

CalFml Calculation of momentum numerical fluxes for liquid phase (Eq. (5.18)) 
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Figure C.1 Interaction between different blocks of the solver code 
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