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ABSTRACT

This report covers the last 2 years of a 3.5-year research project dealing
with the evaluation of weather modification operations. A collection of
statistical-physical evaluation techniques was compared through a series of
simulation studies using 5 data sets covering a broad range of weather regimes.
Rainfall enhancement and hail suppression experiments were simulated by
superimposing seeding-induced changes onto designated 'target' seed observations.
Several past operational weather modification projects were selected for testing
the evaluation techniques developed. Meteorological covariates were studied for
their usefulness in aiding the evaluation; however, because of reduced funding
from NSF during the last 2 years the meteorology covariate studies were only
partially completed. Relevant issues to the operational projects, including
historical comparison, piggyback experiments, and operational criteria, were also

investigated.

KEYWORDS

Weather modification; precipitation enhancement; rainfall; METROMEX;
evaluation; statistics; operational (commercial) project; hail suppression; power
of test; principal component regression; trend; piggyback; storm; simulation;
regression; sum of rank power test; two regressions; double ratio; covariates;

historical comparison; operational criteria.
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1. INTRODUCTION

This report summarizes the results of Part II of the NSF-sponsored research
(Grant ATM79-05007) relating to the development of techniques to evaluate
operational weather modification projects. It is the third volume of a 3-volume
set of final reports. Volume 1 (Achtemeier, 1981) contained the results of
research on the surface meteorological covariates not included in this report.
Volume 2 (Hsu, 198la) contained the results of a literature search on the general
issues of evaluation, statistical techniques, and designs of weather modification
efforts. This report (Volume 3) addresses the development of
statistical-physical evaluation techniques, their testing on a number of
operational projects, and other topics related to the evaluation of operational
projects. The project was a 2-year effort starting in June 1979, and is a
continuation of research carried out earlier under an 18-month grant (NSE ENV
77-01103) spanning the period from June 1977-December 1978. A final report on
the earlier work was submitted to NSF in January 1979.

It is important to recognize that an enormously complex, multi-faceted
problem was faced in this research on f£perational Seeding evaluation techniques
(referred to hereafter as OSET). With the limitations imposed by funding, it was
not possible to address all of the issues nor to solve all the problems in
weather modification evaluation in the 3.5 years devoted to this project.
Therefore, an early decision supported by our Advisory Panel (Schickedanz et al.,
1978) was to limit our investigation to the development and testing of
statistical-physical evaluation techniques that are applicable to the
modification of convective precipitation (rain and hail) during the warmer part
of the year. Agriculture is the major beneficiary of weather modification, so
that demands for rain enhancement and hail suppression are normally greatest in
the May-September period over much of the country.

1.1 Objectives of Research

The primary objective of OSET has been to develop statistical-physical
evaluation techniques for future operational projects, including both the usual
non-randomized operations (commercial type) and those employing some degree of
randomization, such as the piggyback type recommended by the Weather Modification
Advisory Board in their 1978 reports. Enhancement of growing season rainfall and
suppression of hail are the two major applications of weather modification over
much of the country. These present a greater evaluation problem than orographic
precipitation. Consequently, the utility of weather modification in convective
precipitation is not as well-defined as orographic seeding, which has been
employed largely for snowpack augmentation in the western part of the U.S.

In developing the statistical-physical evaluation techniques, a strong
effort has also been devoted to evaluating the utility of meteorological
covariates (predictor variables), both in the verification of seeding results and
as forecasting aids in scheduling and carrying out seeding operations. That 1is,
the role of covariates for both evaluation and prediction has been assessed.
Because of the size of the task and the restricted NSF funding, this phase of the
research was limited to storm rainfall enhancement. However, results should also
help determine the use of meteorological covariates in hail suppression
operations.



The third objective of the OSET research has been the testing of the
statistical-physical techniques developed under the project. This has been done
by application to several past seeding projects of the commercial type which were
considered suitable for this purpose in terms of available data and information.

The fourth major objective of this research has been the development of
operational criteria. These involve design of the seeding operations,
determination of seeding criteria, conduct of seeding missions, and the
collection and recording of data for subsequent evaluation of project results.
Without satisfactory operational criteria, assessment of seeding effects is
severely hampered and sometimes impossible. This has been a major problem in
attempting to assess past seeding operations. Results of this phase of the
research have been covered in a separate OSET report (Huff and Changnon, 1980).

The fifth objective involves the transfer of the results from the various
phases of the research to the scientific community and to the user community
interested in weather modification. This has been and continues to be
accomplished primarily through technical reports, papers presented at scientific
meetings dealing with weather modification, and published papers in professional
journals which have a large audience among those interested in weather
modification.

Some changes in emphasis on objectives resulted not only from the findings
of the first 18 months and available fundings, but also from input from the
project's advisory team (Schickedanz et al., 1978), and from the recommendations
of the national Weather Modification Advisory Board (1978a) and its Statistical
Task Force (WMAB, 1978b). These groups pointed to specific informational needs
and desirable operational approaches for the evaluation of operational weather
modification efforts. These were incorporated into our research to the extent
feasible with existing funding.

1.2 General Approach to Problem

The development of statistical-physical techniques involved two highly

coordinated investigations. The first and more important of the two was the
testing of numerous statistical evaluation techniques to ascertain which are the
most applicable for verification of operational projects. Those tested were

initially selected from a large number of statistical candidates as having
characteristics which make them potentially useful in evaluating weather
modification. The second part of the investigation involved the selection and
testing of various meteorological factors which were considered potentially
useful as covariates (predictor variables) in the evaluation of operations and/or
the prediction of weather conditions for seeding operations. These two
investigations were aimed towards providing the best combination of verification
reliability and minimum sample size requirements in the evaluation of operational
projects.

Following recommendations received from consultation with our Advisory Panel
members, the evaluation of statistical techniques was accomplished primarily
through extensive simulation testing of assumed weather modification effects
superimposed upon natural precipitation distributions. This was done for both
rain and hail. The hail simulations utilized crop-hail insurance records which
provide data on annual hail liability and loss-cost values by county. The rain
simulations involved storm, 48-hour, monthly, and seasonal rainfall. The



simulation testing was restricted to warm season and convective precipitation.
Fixed target and control areas were used in the hail simulations and for 48-hour,
monthly and seasonal rainfall analyses. A moving target-control approach was
used in the storm rainfall simulations, in which individual storm motions could
be taken into account.

Three areas were originally selected for the simulation studies. Selection
was based upon absence of any past weather modification efforts in these areas,
their potential for future application of weather modification, and the
availability of reliable data over a sufficient period of time to permit
effective simulation testing. The areas selected were a 10-county region in west
central Kansas (Fig. 1.1), a 1l6-county area in western Montana (Fig. 1.2), and an
area encompassing a dense raingage network in southwestern Illinois and eastern
Missouri (Fig. 1.3), which was operated as part of the Metropolitan
Meteorological Experiment commonly referred to as METROMEX (Changnon et al.,
1977) .

After simulation studies of various statistical evaluation techniques had
been partially completed, results suggested the need to test the spatial
stability of the 'best' techniques. For example, is the technique which proved
best for warm-season rainfall evaluations in Kansas the best throughout the
Midwest where the precipitation climate is generally similar during
May-September? In order to clarify this situation, an area in east central
Illinois was selected (Fig. 1.4), and the Kansas simulation studies were
repeated. The Illinois test area was similar in size to the Kansas area, and the
same period of precipitation records was used in the monthly and seasonal
simulations. Also, the same target-control tests were used.

The role of meteorological covariates was investigated using data collected
in the METROMEX studies. Potentially, covariates can lead to improvement of
predictions for seeding operations and can expedite the evaluation of seeding
results. The integration of the meteorological covariates into the statistical
evaluation of seeding effects must be done on a storm or daily basis, since the
covariates must be determined from existing synoptic weather conditions which
vary greatly in time and space. Hence, the covariate research was carried out
only in conjunction with the METROMEX network simulations. Furthermore, because
of the size of the task and the funds allotted for this phase of the work, the
covariate research had to be limited to the evaluation of surface meteorological
variables.

Past seeding projects of the commercial type were reviewed to determine
which were most suitable for testing of the statistical-physical techniques
developed under the OSET research. Suitability was based upon location
(climatically), length of project, goal of seeding (rain enhancement and/or hail
suppression), and adequacy and availability of data. For testing of the hail
techniques developed from the Montana study, a hail suppression project carried
out in the Texas Panhandle during 1970-1976 was selected. Rain enhancement
projects selected for testing included several small-scale Illinois seeding
projects operated within the past 5 years. Also, a combined hail suppression and
rain enhancement project during the warm seasons of 1975-1979 (the Muddy Road
Project) in southwestern Kansas was evaluated. This relatively large-scale
project encompassed 15 target counties.

Originally, it had been intended to evaluate the results of the Whitetop
experimental project in Missouri during 1961-1965 (Braham, 1966), based on
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techniques evolving from the METROMEX network simulations. Later, it was decided
to omit this task, because some of our Advisory Panel members questioned the
value of this undertaking, and a need arose to carry out more simulation work to
define the spatial representativeness of the statistical-physical techniques
developed during the research.

This report deals with statistical evaluation techniques, meteorological
covariates, historical comparison, and other relevant evaluation issues. The
sections on statistical techniques include a description of the techniques, a
discussion of statistical power evaluation, summaries of simulation studies,
summaries of the evaluations of several operational projects, and studies of
principal component regression. The following sections summarize the studies on "
the meteorological covariates, studies on the validity of historical comparisons,
piggyback experiments, and operational criteria for successful evaluation.



2. STATISTICAL EVALUATION TECHNIQUES

Many statistical-physical techniques have been used to evaluate weather
modification projects in the past (Hsu, 198la). The number of techniques used
has become so large and diversified that there is a need to choose among them the
most appropriate to use under different weather regimes and various precipitation
response variables.

A number of statistical techniques were selected for simulation studies to
compare their performance in assessing modification effects of both rainfall-
enhancement and hail suppression. Techniques investigated included multiple
regression (MR), two simple regressions (2Reg), principal component regression
(PCR), double ratio (DR), sum of rank power tests (SRP), and, to a lesser extent,
factor analysis (FA) and canonical correlation analysis (CC). Detailed
descriptions and relevant issues of these techniques appear in Appendix A.

For multiple regression, principal component regression, and canonical
correlation analysis, the following statistics were used:

D = mean of differences between observed and predicted seeded values
W = positive rank sum statistic computed from differences
T = t-statistics derived from differences

These techniques were compared through simulation studies by using five data
sets, which cover various weather regimes and precipitation response variables.

2.1 Power of Statistical Tests and Its Evaluation

The evaluation of power of statistical tests was confronted in carrying out
the simulation studies. The need to find an appropriate method of computation
required that the topic be studied in greater detail. 1In the following sections
two methods of evaluating statistical power will be discussed and compared
through numerical examples as well as approximation formulas.

R. A. Fisher(1935) introduced the idea of a permutation test (or
randomization test) as an alternative technique to the ordinary t-test for two
sample problems. Since then it has been used in various applications, but its
properties and its comparison with other statistical techniques have not yet been
as widely explored as they should have been. One probable reason for this delay
is the excessive computation effort involved in calculating permutation
significance values. Available literature usually deals only with data of small
sample sizes. Examples can be found in Kempthorne (1952), who discussed usage of
permutation tests, in addition to the F-test, for several designs. Cox and
Kempthorne (1963) applied permutation tests to compare survival curves.
Kempthorne and Doerfler (1969) gave a detailed description of the methodology of
permutation tests and compared them with the sign test and the Wilcoxon test. In
the same paper, they also demonstrated using re-randomization to compute power.
Renewed interest in the permutation tests, coupled with lowered computer costs in
recent years, have accelerated study of this useful technique.
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Evaluation of Power. The exact method to compute power, herein called
Method II, is as follows: First compute from the raw observations an observed
value of a certain test statistic. Next, by permuting observations, new values
of the test statistic are computed. This can be achieved either through a
reference set of all possible permutations, or a randomly selected subset of
permutations (Dwass, 1957). A p-value is then computed as the proportion of
those new values which are larger than or equal to the observed value (l-sided
testing). In testing between certain null and alternative hypotheses, power is
then computed as follows. The observations are first adjusted by the effect of
alternative hypotheses through a permutation in the reference set. A p-value is
then computed from these adjusted observations as described above. This process
is repeated for each permutation in the reference set, so that a distribution of
p-values is obtained. Power is then the proportion of p-values which are larger
than or equal to a (given) nominal significance level.

An alternative method to compute power, herein called Method I, for the same
null and alternative hypotheses is as follows. From the raw observations, wvalues
of test statistics are computed according to permutations in the reference set,
so that a 'null' distribution of the test statistic is obtained. Next,
observations are adjusted by the effect of alternative hypotheses for each
permutation in the reference set, and values of the test statistics are computed
accordingly, so that an 'alternative' distribution of the test statistic is
obtained. A critical point is determined from the null distribution at a (given)
nominal significance level. Power is then the proportion of values in the
alternative distribution which are greater than or equal to the critical point
(as in a parametric one-sided test).

Use of Method II to compute power requires a two-stage randomization: first

for computing p-values, and second for deriving powers. On the other hand,
Method I requires only a one-stage randomization. The saving factor of Method I
over Method II is thus M/2, where M is the number of permutations in the
reference set (see also Gabriel, 1979). If M is large, say 1000, this would
represent roughly a 500-fold saving of computation cost. This kind of saving is
certainly desirable for large scale and complex simulation studies, such as those
in weather modeling or weather modification. Desire to reduce this tedious

effort of computation was also reflected by many efforts to derive efficient
computer programs.

Permutation Test and Weather Modification. It has been noted by many that
weather events, such as precipitation, have considerably more irregular
variability in both space and time than observations obtained in physics,
chemistry, agriculture, or medical laboratories (Changnon and Huff, 1967). Due
to the difficulties encountered in applying parametric inferences and the largely
unknown variability of weather events (in terms of physical and meteorological
relationships), earlier attempts to evaluate weather modification contained some
examples utilizing permutation tests. Those using ratio as test statistics
included Adderley (1961), Gabriel and Feder (1969), and Elliott and Brown (1971).
Those using nonparametric techniques included Adderley (1961), Gabriel and Feder
(1969), and Dennis (1975). Those using regressions included Adderley (1961), and
Smith et al. (1977).

A report by the Statistical Task Force to the Weather Modification Advisory
Board (1978b) urged the usage of permutation tests to evaluate weather
modification projects. Gabriel (1979) discussed the advantages of using
permutation tests over classical parametric tests. Unless a major breakthrough
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in understanding weather processes occurs, so that better models of the
precipitation process are available, permutation tests are likely to be. used more
frequently in evaluating weather modification. However, the excessive efforts
required in carrying out Method II to compute power are a hindrance to their
wider usage. In the following, powers computed by Method I will be compared with
those computed by Method II.

Monte Carlo Studies. The numerical example mimics a rainfall-enhancing
weather modification project by randomly superimposing mutiplicative seeding
effects (se = 1.1, 1.2, 1.3, and 1.4) onto 5 rainfall totals in west-central
Kansas out of the 35 summers (1936-1970) during which no weather modification
activity was reported. 1In statistical terms, the null hypothesis to be tested is
Hy : se = 1.0, and the alternative hypothesis is H; : se = 1.1, 1.2, 1.3, or 1.4,
respectively. The data consisted of monthly (May to September) and seasonal
average rainfall for 10 counties in west central Kansas (Fig. 1.1). The middle
two counties were designated as 'targets' and the rests as 'controls'. For each
month, 5 of the 35 summers were selected according to a permutation in the
reference set as 'seeded,' and the other 30 as 'nonseeded.' A hypothetical
seeding effect was superimposed onto these 'seeded' target rainfall. Results
using double ratio as a test statistic were reported by Hsu (1979b), and
additional results using multiple regression and sum of rank power test were
reported in Gabriel and Hsu (1981).

A 'restricted' reference set of 100-500 permutations, instead of all
possible permutations, was used. This reference set of permutations was randomly
selected at the beginning of the Monte Carlo studies, and then used in all
subsequent randomizations, whether using Method I or II.

Findings indicated that both at the 5% and 10% nominal significance levels,
powers computed by Method I were slightly larger than powers computed by Method
II. Discrepancies were small, usually less than or equal to .05. When the
target average was used, discrepancies were even smaller.

Approximation for Power. Gabriel and Hsu (1981) derived normal
approximations for the power computations of both Method I and Method II. It was
shown from these approximations that Method I tended to overestimate power more
than Method II. However for large samples, the difference approached zero.
Moreover, for larger seeding-induced effects, the convergence to zero was faster.
In addition, a number of theoretical and empirical re-randomization distributions
were explored to justify the use of these approximations. It was shown that
approximation of Method II usually overestimated the exact power slightly and the
approximation of Method I was even a little higher. It was concluded that for
all but very small experiments both approximations come reasonably close to true
power.
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3. SIMULATION STUDIES

To achieve the objective of comparing the performance of numerous
statistical evaluation techniques, extensive simulation studies were carried out
by superimposing assumed weather modification effects upon natural precipitation
distributions. Five data sets were used (Table 3-D.

Table 3.1 Data and Evaluation Elements Used in
the Simulation Studies

Evaluation
Element Kansas. ILL-EC* Montana ILL-48* ILL-ST*
Precipitation
Type rain rain hail rain rain
No. Years
Seeded 5 5 3 or 6 1 1
Unseeded 30 30 26 or 23 4 4
Unit month month year 48-hr storm
Design (T-C) fixed fixed fixed fixed moving
Target Area 2000~ 2000~ 5000~ 800 800
(sg. km) 4000 4000 25000
Seeding Effect const. const. const. const, const./
Model varying
Predictor no no no no yes/no
No. Runs 500 500 1000 500 500

* TILL-EC : east central Illinois; ILL-48 : 48-hour
rainfall; ILL-ST : storm rainfall

These sets represent a broad range of data commonly employed in the
evaluation of weather modification projects. Two of them (Kansas and
Illinois-East Central) mimicked long-term (5 years) summer operational rainfall
enhancement projects. Another data set (Montana) simulated a hail suppression
project. The fourth (ILL-48) mimicked a short-term (1 year) operational project,
and the last one (ILL-Storm) represented an experimental project with
observations from a dense raingage network as well as surface meteorological
covariates. Table 3»1 also shows various evaluation elements used in the
simulation studies.
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3.1 Simulation Procedure

For each data set, the simulation investigation was carried out for 500-1000
runs (Table 3.1). A fraction of the observations was set aside as 'seeded'
according to a permutation out of a pre-chosen reference set of 500-1000
permutations, and the rest as 'unseeded.' The Cyber Fortran function, RANF, was
the main random number generator used in creating the reference sets. In each
run, assumed multiplicative weather modification effects, either constant or
varying, were superimposed onto the 'seeded' target rainfall to form a changed
sample. Test statistics were calculated for the unchanged sample (Null), and for
each of. the superimposed samples (Alternative). A null distribution, and four
alternative distributions of the test statistics (eight in the ILL-ST study) were
then obtained. Power values were then derived by comparing the null distribution
with the alternative distribution using Method I.

Next the test statistics were ranked by their powers at the 5% or 10%
nominal significance levels, respectively, for each seeding effect imposed, each
target-control setup, and/or each month. Findings of the simulation studies are
described below.

3.2 [Kansas Results

Monthly and seasonal rainfall totals, May to September, from 1935 to 1970
for a 10-county area in western Kansas (Fig. 1.1) were obtained from the National
Weather Service (NWS). During this period, there was no cloud seeding being
conducted in this area. The county rainfall value was computed by averaging the
rains of available NWS stations. There are no missing values in this data set.
Each county rainfall was used as a variable. The ten counties consist of Finney,
Gove, Greeley, Hamilton, Kearny, Lane, Logan, Scott, Wallace and Wichita. This
area 1is located in the Great Plains, and is typically in need of more rain than
nature can supply during the growing season. None of the monthly rainfall
distributions was significantly different from normal distribution at the 5%
level by the Komogorov-Smirnov goodness-of-fit test.

The Kansas study utilized fixed target-control and historical data from a
35-year period (1936-1970). Fixed target-control and historical data are
important sources of information that are most applicable in evaluating the
commercial-type, non-randomized operation in which efforts are usually made to
seed every situation considered amenable to rain enhancement. Monthly and
seasonal seeding-induced changes (enhancement or suppression) have been most
commonly used in the past in evaluating non-randomized seeding operations. This
type of evaluation will continue to have much usage in the future, since
precipitation increases over monthly and seasonal periods, rather than in
specific storms, are of prime interest in agriculture and municipal water supply
applications of weather modification. The two center counties (Scott and
Wichita) were designated as 'targets,' and the other surrounding counties as
'controls.' Three counties - Kearny (county 1), Finney (county 3), and Hamilton
(county 7) - are located in the upwind sector of this area in the summer season
with respect to prevailing winds.

Findings from the simulations indicated that principal component regression
was one of the most powerful techniques for various summer months and for
target-control designs (Hsu, 197%9a; Changnon et al., 1979). Table 3.2 summarizes
the Kansas simulation results. For each simulation, 1if the powers of other
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techniques were within a few (1 to 5) percent from the highest power, these were
also listed. Power curves of the highest power test statistics in the Kansas
simulations can be found in an earlier report by Changnon et al. (1979).

Table 3.2. Summary of High Power Statistics for Simulated Rain
Modification, Kansas, 5% Nominal Significance Level

Average Target Target Month-
Month Target West East wise
May PCR[1],DR, 2Reg PCR[1],SRP PCR[1],DR PCR [1;,-];;
June DR, PCR[1] PCR[1] PCR[1] PCRI[1]
July PCR[1] PCR[1],DR,MR SRP PCR[1],SRP
August PCR[1] PCR[1],2Reg PCRI[1] PCRI[1]
September PCR[1],2Reg PCR[1],SRP PCR[1],MR PCRI[1]
Sea. Avg. DR, PCR[1], SRP, PCR[1] MR, 2Reg PCR[1],MR,

MR, 2Reg 2Reg

— - —— - -

Target-wise PCR[1],DR, 2Reg PCR[1],SRP PCR[1],SRP,MR PCR[1]

3.3 Illinois Results - Month as Unit (ILL-EC)

An area similar in shape and size to those of Kansas was selected in east
central Illinois (Fig. 1.4). Identical target-control configuration (Figs. 1.1
and 1.4), time period (1936-1970), and sampling units (month and season) were
used to repeat the Kansas simulation; and ten statistics which were found to be
most powerful in the Kansas simulation were ranked (Table 3.3). They included D,
the average of differences of MR (multiple regression) and PCR[1l] (principal
component regression with the first component retained), double ratio (DR), T,
and T3 of the two regressions (2Reg), and A;, A, Az, C,, and C; (see Appendix A
for details) of the sum of rank power test (SRP). Power curves for high power
statistics in the ILL-EC simulation are shown in Appendix B. A summary of high
power statistics at the 5% nominal significance level is shown in Table 3.4. The
techniques of double ratios and principal component regression were generally the
most powerful. The technique of two regressions was the next most powerful. The
technique of principal component regression still worked well in the ILL-EC
simulation in all months except June and August, when the technique of double
ratio worked better.



A2 A3 c2  C3

A

T3

T2

15

MRT

PCcRETTT DR

Ranks of Test Statistics by Powers, at 5% Nominal Significance
se

Level, ILL-CE*

County 9 as Target

ot

Month

Table 3.3.
.

3N aNialtal

o OO O It O —r— —— | I — e vt~ O 1w O e
- - = — | ] ] » ~— | -
1 ! 1 uw 1 O =
! “ “ " &
g L e Gy = 1ol Talealon NN BN el MmN O nBHoO o 10N [ExT ol IRV )
- tm . | |\ - L ' . A
] = t ™M 1 [l t M o w
4 "-l "3
- - W o= oA oA o© QWU od OO0 Y [Ta) N Mo = e (WO
-— — L8] L . - 1 .
oy o uw [Ty
Ll | -
1
- - L d - - - L Ll
! = [ AT - 1o o)
— -— — —1
1 \
[Tal R TR Ta] o - -0 W NN o [Za WAl a Tl o nunmMmar 1O N 2 O WO
[aY] — (4] LI ) 1 & - —
t— “ L=}
1

=R Ta W gl o O AU WUy =) t~— 0 00 O — W h O (=] WO 1O [Tl TR RN =]
. b [41] - (18] » — (2] - . | = - ¥
Ul D ! Lo o 5_" o Lo~

1 1
' i i '

Inel TSN Ea T B I ~ —~ b~ - o) - t—= o [ e JRV- B TR TN BT e warMmu oD [TalTaNTaRtel
LI 1 [al] Od « 1 v . . 1 . »
o \ [ W Le} u o o =

o - ]
t 1
i ' ;
O OheD I~ = MM~ 70D O 0N WO D t— W O OV U D W' v~ "t M - N = e
— . "y t - . +« MM * Yy -
] ] o - 1 o — 1
“ “ “ i
D oD t— o O 0o un 1 O i O -0 vy WD Lo = O WD
- o — ™ ¢ — ™ — DO D Y - .
=3 (=] t—- 1M [aal-a i ol en o
1o t &
v 1
! 1

w0 oo b O WD WO WD o W O N | g =t 1 W L w W b= N0

— — M (4N ] . (22l * L o% LI | »
' o [=al [t =1 o ol b= | =
1 o

! ]

“ :

— oM o A — O Mar — — O N A ~ = 0N M A ) - — A e — T
« ¢+ + +» 1 LI 1] r s @ [a1] +» ¢« ¢« « | ™ LI J o . LI ]

= - D o -+ — o F) Lol A - | P Lanii ol ool ol

1 O O [=) 1 O 1 0
1 B B = [ = 1 &
Q¢ L o+

- = — o o,

[l = =] =] QO =X

Z b - = 2] 2

29 27.5

24 29.5 20.5 13

6 18

31.5

21

Total



16

(continued)

3.3.

Table

county 10 as Targeb -

bl

C3

c2

se PCcrRE1]T DR MRT T2 T3 A1 A2 A3

Month

10

18

Total

b

28.5 22.5 20.5 12.5 7.5

30.5.

36

40

N~ = N
L

O NN

—

Ch 0 o

W Moy

oo O

15 10.5

21

23 25 21.5 14

31 32

21

Total

wad h=r
ol [
oA N
- 0 OO

w0 U -
.

W N0
L] -

27 18.5 e 21 22

18

36 38.5 5.5 23.5

Total

— = 0 o

o 0 — 08

= W oar

[3a 0 ea BTl

O WD M0

Ot~ e N
-

O Qo €O N

DD WY

—

32.5

e e L T

Total

15 18

18

27.5

20

37.5 37.5

N -

Ll At I VR a Y}

MMM

W = Ir &

=D W N

N

OO WD D

" b b

19 17 12

35.5 32.5 ug 24 28

Total

w0 U N
LI

= u

& = N
>

- T RYs Tt
*

— 0N o
L

™A = 1N
-

= N OO Dy
. .
0 [Ep]

t— = O N
*

- 0 MM
» - . 's

—— pm

34

Total

17

30 13.% 11.5 21.5 11.5

27.5

2y

29 35.5



17

(continued)

3.3.

Table

ivg. of Counties 9 and 10 as Target

Q.

C3

ca

T2 T3 Al A2 A3

Mrt

se

Month

pcr{1]t DR

NN
— e
[saNsaNoalogl
Lo i Ty}
FaiaRtalts]

TaY= R Ta =Y
- -
W =

o0 o Yoo
-

May

k. 2 o

37 23 31.5 30 22 17 12

37

Total

Nl OO
~— -
N ™ - -

o0 hOn Oy

(TR Ta R TR T
- * -
=t~ b~

Do u N
L I |

E AT I
[ = Tl T
- -

b~ t—

— Oy D
. .
[a Ut}

— Mo
LI R L}

o e -

June

28

29

35

8 30 15.5 2k.5 15 30

Total

LAVIR= AV AT

— e -

M 0d oM

- il b e i o i kel e A

30.5 23.5 16.5

10

1

38 38 19.5 29.5

Total

[To Rl aVR AV BE Y]

— o e p—

LW O W
. 2T s

o W [=2

&/ oenonon
LTa BT o Tl

= W WY Uy
- L]
o o

O I W
-

e I
—

uy Wy O LN
.« . .
[~ o = (=)

(g W Tg X ol o)
- L]
L= =

— {0J 0N
. = = @

o e

sug

e e il e e e e b ek A e ek

34 36.5

8.5

13 28.5 y

22

25

20.5

28

Total

LAV AL I ot B AT
—_— -
Ma & N
Tl Ta ey

W e~ b
& *
VgV

s LS WO WD
. -
Do

o W O

18 16 1 4 8

25 27

33

36

39

Total

2
6
5
5.5
5

— = = "
325_.0
hu..ﬂ.sqo..
535_.0

w o W
L * -
- On un

wouh N
Ll o T4

WD W W
-

(=R N Ta ]
- . .
(=21 [Fal

[sa R In eyl
- -
~ 'a]

- o e
- - - L]

— = = -

SA

27.5 18.5 18.5 15.5 8.5 18.

27 30 21.5  25.5

Total

A ———— .

*: Most powerful statistic was assigned rank 10 and so on.

+: D was used as the test statistic.



18

Table 3.4. Summary of High Power Statistics for Simulated Rain
Modification, ILL-EC, 5% Nominal Significance Level
Average Target Target Month-
Month Target West East wise
May PCR[1],DR, PCR[1],DR, PCR[1],DR, PCRI[1],DR
2Reg MR 2Reg 2Reg
June DR, SRP DR, SRP DR, MR DR, SRP
July PCR[1],DR, PCR[1],DR PCR[1],DR PCR[1],DR
2Reg 2Reg 2Reg
August PCR[1],DR MR, DR, PCR[1],DR, DR, PCR[1]
2Reg 2Reg 2Reg
September PCR[1],DR, PCR[1],DR PCR[1],MR PCRI[1],DR
MR MR
Sea. Avg. DR, PCR[1], DR, PCR[1] DR,PCR[1] DR,PCR[1],
2Reg 2Reg, SRP 2Reg 2Reg
Target- PCR[1],DR, DR, PCR[1], PCR[1],DR DR,PCR[1]
wise (2Req) (2Req) (2Req) 2Reg

Comparison of Kansas and ILL-EC Simulations. The results of the ILL-EC
simulation were compared with those of the Kansas simulation. Statistics which
had high powers in both simulations are shown in Table 3.5. The technique of
principal component regression had high powers in both simulations in every month
except in June, when only the double ratio had high power in the average target
simulation. Table 3.6 further summarizes the comparison. For each month, if the
statistic appeared in 2 or more testing categories, it was listed. More
comparisons on the PCR and DR can be found in the subsequent sections, where
several short-term Illinois operational projects are evaluated.
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Table 3.5. High Power Statistics Common to Both
Kansas and ILL-CE Simulations

Average Target Target
Month Target West East
May TPCR[1],0R | PCR(1]  PCR(1]
June DR —* —*
July PCR[1] PCR[1],DR -*
August PCR[1] 2Reg PCR[1]
September PCR[1] PCR[1] PCR[1],MR
Sea. Avg. PCR[1l],DR, PCR[1] 2Reg

2Reg

-

* In June, PCR[1] had high power in the Kansas
simulation; while DR had high power
in the ILL-EC simulation;
In July (Target West), SRP had high power in the
Kansas simulation; while PCR[1] and DR had
high power in the ILL-EC simulation.

Table 3.6. High Power Statistics in the Long-Term Rainfall
Enhancement Simulation, 5% Significance Level

Month Kansas ILL-EC

May PCR[1],DR PCR[1],DR, 2Reg
June PCR[1] DR, SRP

July PCR[1], SRP PCR[1],DR, 2Reg
August PCR[1] DR, PCR[1], 2Reg
September PCR[1] PCR[1],DR,MR
Sea. Avg. __PCR[1],MR,2Reg __PCR[1],DR,2Reg_
Overall PCR PCR, DR, 2Reg

3.4 Montana Results

Hail suppression simulation was carried out in a 1l6-county area of western
Montana (Fig. 1.2) through use of annual crop loss data. The test period was
1948-1976, for which suitable crop-hail loss data were available, and during
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which no evidence of weather modification activity was found. This area is
subject to relatively large crop losses from hail damage. Annual values of
liability and loss—-cost ratios (100 x loss/liability) were furnished by the
Crop-Hail Insurance Actuarial Association.

Three counties with high liability (Chouteau, Fergus, and. Judith Basin) were
designated as targets, and the 13 surrounding counties as controls (Fig. 1.2).
Variances of the hail loss-cost are generally higher than those of the rainfall
variables. One target area 25,000 sgq km in size and three smaller target areas
(A, B, C) 5,000 sg km in size were used (see footnotes in Table 3.7). Because
the correlation coefficients of loss-cost between counties decrease more rapidly
as a function of distance than those of rainfall, closeness becomes a critical
factor. Therefore, only immediate neighboring counties were used as controls.
Either 3 or 6 years were randomly selected to form a seeded sub-sample. The
corresponding non-seeded sub-sample had sizes of 26 and 23 years respectively.
Because of the larger variation in the loss-cost values, 1000 runs were carried
out. Ranks of the more powerful test statistics are summarized in Table 3.7 for
a simulation of 3 seeded years, and in Table 3.8 for 6 seeded years. Power
curves of high power statistics are shown in Appendix B.
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Table 3.7. Ranks of Test Statistics by Powers, at 5% Significance
Level, Montana, Hail Loss-Cost, 3 Seeded Years*

T-C se rpcvit or mtt PC[3] PCi6] a1 A2 h3 c2 €3
9999*% 0.8 8 5 7. 10 "9 3 1.5 1.5 y 6
0.6 8 3.5 T 10 9 3.5 2 1 5 6

0.4 8 45 3 9 10 6 2 1 45 7

0.2 2 y 1 8 ) 8 8 8 8 y

Total 26 17 18 37 32 20.5 13.% 11.5 21.5 23

1499 0.8 8 L T 10 9 6 1.5 1.5 L) i
0.6 8 6 7 10 9 5 3 3 3 1

0.4 8 6 T 10 9 5 3 L 1.5 1.5

0.2 6 8.5 1 10 8.5 7 5 y 3 2

Total 30 24.8 22 40 35.5 23 12.5 11.5 12.5 8.5

1599 0.8 9 6 7.5 10 7.5 4.5 2. 4,5 2.5 1
0.6 8 6 7 10 9 5 2.5 2.5 2.5 2.5

0.4 8 T 1 10 9 6 2 3 5 y

0.2 2 5.5 1 h 3 g 9 9 T 5.5

Total 27 2U.5 16.5 34 28.5 2W.5 16 19 17 13

1699 0.8 9 2 T 8 10 3.5 3.5 2 5.5 5.5
0.6 9 h T 8 10 3 1.5 1.5 5 6

0.4 9 6 7 8 10 4 1,5 1.% 5 3

0.2 3.5 5 1 10 9 8 7 3.5 6 2

Total 30.5 17 22 34 39 18.5 13.5 8.5 21.5 16.5

1894 0.8 9 6 8 10 - 4y 2.5 2.5 6 6
0.6 9.5 7 8 9.5 - 5 3 2 5 5

0.4 9 T 8 10 - 6 3 3.5 4,85 2

0.2 5 10 2 T.5 - 6 7.5 g b 3

Total 32.5 30 26 37 - 19 16 18 19.5 16

159% 0.8 9.5 T 8 9.5 - 4,5 3 2 6 u.,5
0.6 9 T 8 10 6 3 2 S i}

0.4 8 g 3.5 10 - T 6 2 5 3.5

0.2 3 8 2 y - 8 8 5 8 8

Total 29.5 31 21.5 33.5 - 25.5 20 1 2y 20

006 10 T B 9 - 5-5 5-5 305 305 2

0.4 9 T 8 10 - 6 4.5 3 4.5 2

Total 37.5 28.5 30 38.5 - 22 17 10.5 18 14
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Table 3.7. (continued)

*: The most powerful statistic was assigned rank 10 and so on.
A varying number of components was used.
W was used as the test statistic.
**: First 2 digits refer to target, the next 2 digits to controls.
They denote respectively
Target : 99 = (14+15+16)/3,
Control : 99 = Average of 1, 2,
94 = (142+3+5+6+7+15+16)/8
95 = (7+8+9+10+11 + 12+14+16V8
96 = (1+12+13+14+15)/5

tt.

’ 13,

Table 3.9 further summarizes the simulation findings. For the larger
target, the principal component regression with 3 components (PCR[3]) was the
most powerful. For smaller targets, PCR[3] worked well in the 3 seeded years
study. DR was most powerful in the 6 seeded years study, followed closely by
PCR[3] and SRP. The technique of two regressions was not compared in the 3-year
study, but was compared in the 6-year study. Its powers were rather poor
relative to other techniques. The technique of SRP had poor powers in the 3-year
study except when the assumed seeding effect was large.
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Table 3.8. Ranks of Test Statistics by Powers, at 5% Significance
Leve, Montana, Hail Loss-Cost, 6 Seeded Years.*

TaC se pclviT bpr  MRTT PcI3] PCl6] a1 a2 A3 c2 3
9999*# 0.8 8 7 3 10 3 3 1 3 5 6
0.6 5 9.5 1 8 9.5 y 2 3 6 T

a.4 2 9 i 10 5 3.5 3.5 T 7 T

0.2 2 7 1 7 3 707 1 7T 1

Total 17 32.5 5 3% 26.5 17.5 13.5 20 25 27

1499 0.8 9 1 10 5 3.5 6.5 6.5 3.5 e
0.6 5] 1 10 5 4 7 8 3 2

0.4 5 10 1 T 3 6 3 9 Y4 2

0.2 1} 2 6 1 7 9 9 5- 3

Total 24 36 5 33 14 20.5 30.5 32.5 15.5 9

1599 0.8 ~ 7 10 1 8.5 8.5 3.5 3.5. 6 3.5 3.9
0.6 2 10 1 9 7 7 5 3 7 y

0.4 2 10 1 q 3 6.5 6.5 6,5 g 6.5

0.2 2 7.5 1 3 4 7.5 7.5 7.5 7.5 7.5

Total 13 37.5 y 2h.5 22,5 24,5 22.5 23 27 21.5

1699 0.8 8 10 3.5 2 g 6.5 3.5 1 6.5 5
0.6 8 10 2.5 2.5 g 5 4 1 6.5 6.5

0.4 6 10 1 9 7.5 5 L 2 7.5 3

0.2 2 1 4 3 8 8 6.5 6.5 ]

Total 24 38 8 17.5 28.5 24.5 19.5 10.5 27 19.5

0.6 6 10 2 3 - 7 8 9 5 y

0.4 ! 10 2 3 7 8 9 6 5

0.2 B Ll 2.5 2.5 7 9 9 6 5

Total 24 37 8.5 13 - 27 32 36 21.5 17

1595 0.8 T.5 10 3 7.5 ~ T.5 3 3 7.5 5
6.6 4.5 10 2 7 9 Y.,5 6 8 3

0.4 3 10 2 4 - 9 8 5 T 6

0.2 3 705 2 "4 - 7 5 ?-5 7-5 705 ?05

Total 18 37.5 9 22.5 - 33 23 21.5 30 21.5

1696 O-B 10 2 9 - 7 505 3o5 5-5 305
0-“ 8 5 10 3 8-5 - 5 u 2 605 6.5

0.2 3.5 2 3.5 - T T 5 9.% 9.5

Total 31 33 0 31 - 26 20.5 12.5 27.5 24.5

—————

See Table 3.7 for footnotes.

—
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Table 3.9. High Power Statistics in the Montana Hail
Suppression Simulation, 5% Significance Level

Target Size No. of Seeded and Unseeded Years
(sg km) 3 vs 26 6 vs 23
25,000 PCR[3],PCR[6] PCR[3],DR
5,000:
A PCR[3],DR DR, SRP, PCR[3]
B PCR[3],DR DR, SRP
C PCR[3],MR DR, PCR[3]

3.5 1Illinois Results - Storm as Unit (ILL-ST)

The third data set used for simulation involved an area of approximately
5200 sqg km centered on St. Louis, Missouri, which contained a network of 225
recording raingages during the 5-year period, 1971-1975 (Fig. 3.1). This was the
site of comprehensive research on urban effects on precipitation known as
METROMEX (Changnon et al., 1977) and, consequently, provided a large sample of
analyzed, high-quality, meteorological data for use in the OSET studies.
Simulation studies were undertaken to ascertain the best statistical techniques
for use in evaluating seeding-induced effects in individual storms, as well as in
units of 48 hours, which might include several individual storms, but usually
involved a single synoptic weather situation.

Moving target-control areas, dictated by storm motion, were employed in the
ILL-ST simulations. This approach permits more accurate assessment of seeding
effects than fixed target-control areas, since it minimizes contamination of
designated controls by the seeding agent. Simulation was performed on summer
data (June-August), because this is the period of greatest need for weather
modification by agriculture, the major beneficiary in the central and eastern
parts of the country (WMAB, 1978a). Although users may be primarily interested
in the net effect of rain enhancement or hail suppression over an extended period
of time (months, seasons), seeding success is dependent upon what can be
accomplished in specific seeding situations: that is, on a storm (rain event) or
daily basis under various types of synoptic weather conditions.

For each storm, a target was defined as the area in the downwind side of the
network according to the storm motion (Fig. 3.1). Upwind controls were similarly
defined. A smaller circular area centered at the network center was used as a
buffer, and, thus, not used in the simulations. In addition, for a storm to be
included in the simulation, it must also satisfy a minimum rainfall condition,
that is, the maximum raingage storm rainfall in the target and in at least one of
the three opposite controls must be equal to or greater than 0.10 inch. The
reason for imposing this condition is that there were a considerable number of
storms during the 5-year period that either just grazed the METROMEX network or
were stationary storms, which either did not produce rains over the target area
or rendered the target-control comparison difficult. In all there were 132 storm
units which had an identifiable storm motion and satisfied the minimum rainfall
condition. The rainfall totals of these 132 storms indicated that at most 15% of
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Figure 3.1 lllinois-Storm  Simulation Study Area
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rain was deleted from all rains falling in the network each year (Table 3.10).

In other words, approximately 200 storms which did not satisfy the minimum
rainfall condition contributed very little to the rains falling over the METROMEX
network during the 1971-1975 period.

Table 3.10. Percentage of June-August Rainfall for Selected Subsets
of Storms with Identifiable Motion, METROMEX
(Number of storms in parentheses)

Year

Subset 71 72 73 74 75 71-75
All Storms 100.00 100.00 100.00 100.00 100.00 100.00
(47) (69) (65) (80) (69) (330)
Max. rains in at least 98.21 99.59 99.91 93.60 99.66 98.23
one control greater than 0" (38) (53) (50) (65) (52) (258)
Max. rains in at least 96.50 97.50 99.34 90.83 98.52 96.63
one control and target (3D (34) (39) (38) (39) (181)

greater than 0"
Max. rains in at least 90.77 95.12 90.99 87.96 96.45 92.44
one control and target (21) (24) (24) (28) (35) (132)

greater than 0.1"

Three rainfall variables were used in the simulation: total storm rainfall
volume over the area (Total Rains), maximum point (storm) rainfall total over the
area (Max. Rains), and mean point (storm) rainfall total over the area
(Avg. Rains). The correlation coefficients between the target and controls for
Total Rains were in the range of 0.7 to 0.9 with the exception of 18971, when it
was .54. There were fewer storms in 1971 than other years (Table 3-10) which
might render a smaller correlation coefficient. A similar range of correlation
coefficients was found for Avg. Rains. However, for Max. Rain the correlation
coefficients were generally lower. The goodness-of-fit tests for these rainfall
variables in each area revealed that Max. Rains and Avg. Rains in the 3 controls
fitted the lognormal distribution well but Total Rains in the controls fitted the
gamma distribution better. Max. Rains in the target fitted the gamma
distribution well, but Total Rains and Avg. Rains fitted the lognormal
distribution better than the gamma distribution.

Approximately one-fifth, 26 out of 132 units, were randomly selected to form
a 'seeded' sample. Both constant and varying seeding-induced changes were used
in the simulations. Results of simulations incorporating meteorological
covariates are reported later. Powers at the 5% and 10% nominal significance
levels of MR, PCR[1], and DR, the high power statistics, are shown in Tables 3.11
and 3.12. Ranks of the more powerful test statistics are shown in Table 3.13.
Their power curves are shown in Appendix B.
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Powers at 5% Significance

ILL-ST Simulation

- v b v e

Total Rains

.128
.238
372
.462
.404
.692
.110
.240

Max. Rains

.108
.218
.368
472
.534
.828
.078
.212

Avg. Rains

Table 3.11.
Level,
MR

se W D T

1.1 .108 .152 .144
1.2 .180 .300 .282
1.3 .236 .486 .458
1.4 .318 .650 .622
A .324 .356 .322
E .640 .654 .622
C .072 .034 .034
M 174 .344  .320
1.1 .118 .170 .148
1.2 .234 .352 .306
1.3 .358 .588 .544
1.4 .468 .786 .722
A .498 .646 .582
E .834 .924 .890
C .098 .106 .090
M 226 .386 .334
1.1 .138 .134 .132
1.2 .248 .300 .282
1.3  .344 .49 .476
1.4 .492 .698 .662
A .558 .438 .400
E .868 .772 .746
C .125 .030 .036
M 236 .342 .328

.136
.270
.436
.578
.568
.858
.150
274

.130
.288
.450
.602
.332
.608
.028
.316

.162
.338
.582
.750
.640
.904
.086
.370

.134
.300
.510
.682
.430
774
.030
.354

.128
2772
.436
.584
.302
.574
.032
.302

.148
.300
.548
.720
.588
.882
.080
.342

.132
.294
.496
.656
.412
.738
.036
.330

DR

.118
.226
.344
.516
.274
.508
.072
.262

.160
.308
.484
.654
.528
.800
.110
.322

.130
.262
.482
.642
.402
.730
.058
.298



Table 3.12.

Level,

MR

se W D T
1.1 .190 .264 .244
1.2 .274 .454 .426
1.3 .384 .628 .610
1.4 .478 .784 .758
A .464 .528 .506
E 772 .826 .7786
C .138 .086 .080
M .276 .508 .476
1.1 .238 .232 .240
1.2 .400 .470 .458
1.3 .542 .682 .674
1.4 .662 .832 .828
A .696 .746 .730
E .926 .964 .962
C .204 .le6 .172
M .398 .492 .490
1.1 216 .246 .242
1.2 .326 .464 .444
1.3  .478 .662 .640
1.4 .620 .814 .79
A .672 .608 .588
E .924 .906 .892
C .188 .100 .096
M .322 .500 .484

28

Powers at 10% Significance

ILL-ST Simulation

B R e e ]

Total Rains

.220
.332
.472
.586
.504
.792
.186
.344

Max. Rains

.220
.374
.558
.694
L7112
.922
.186
.372

Avg. Rains

.222
.396
.572
.710
.704
.924
.238
.390

.254
.438
.608
.736
.488
L7170
.088
.486

.264
.478
.700
.840
.758
.956
176
.516

.246
.474
.646
.788
.614
.888
.100
.510

.228
.422
.574
.716
.470
.744
.086
.460

.256
.464
.678
.826
.738
.948
172
.486

.242
.464
.634
772
.598
.880
.104
.502

DR

-

.208
.332
.524
.678
.392
.682
.104
.388

.244
.404
.598
.758
.634
.882
.182
.428

.232
.444
.634
.778
.584
.832
.122
.500
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Table 3.13. Ranks of Test Statistics by Powers at 5%
ILL-ST Simulation,

Significance Level,

Total Rain*

variable se  PCRI41T DR MRt T2 T3 A1 A2 A3 €2 c3
Total 1.1 9 6 10 2.5 2.5 6 6 6 6 1
Rain 1.2 9 6 10 8 T 5 3 2 % 1
1.3 9 6 10 7.5 7.5 2 3.5 3.5 5 1

1.4 g 6 10 7.5 7.5 4 5 3 2 1

Total 36 2% 40 25.5 24.5 17 17.5 18.5 17

A 4 1 5 2. 25 10 9 7 8 6

E 4y 1 5 3 2 10 8 T 9 6

c 2.5 5 2.5 2.5 2.5 9 6 7 10 8

M 9 6 10 7.5 7.5 & 3 2 85 1

Total 20.5 13 22.5 15.5 4.5 33 26 23 32 21

Max 1.1 8 6 10 6 6 9 3.5 1 3.5 2
Rain 1.2 9 8 10 6.5 6.5 4 2 1 5 3
1.3 9 6 10 8 7T 2 ¥ 3 1 s

1.4 9 6 10 7 8 4 s 2 3 1

Total 3% 26 40 27.5 27.5 19 14.5 7 12.5 1

A 5 1 6 3.5 3.5 10 T 2 9 8

E 5 1 9 6.5 6.5 10 2 6 8

C 1 3 2 45 45 8 10 7 9 6

M 9 "6 10 7.5 7.5 3 § 2 4 1

Total 20 11 27 22 22 31 24 17 30 21

Avg 1.1 9.5 7 9.5 3.5 5.5 3.5 2 8 5.5 1
Rain 1.2 9.5 5 9.5 7.5 7.5 2 4 6 3 1
1.4 9 6 10° 7 8 2.5 5 2.5 & 1

Total 38 25 38 24 29 10.5 13.5 21 17 4

A 3 1t 5 3 3 10 7T 6 9 8

E 3 1 2 k.5 4,8 49,5 T 6 9.5 8

c .5 5 1.5 3.5 3.5 10 7 &4 9 8

M 10 6 9 7 8 1 4 5 3 2

Total 17.5 13 17.5 19 30.5 25 21 30.5 26

e o . o

*: Most powerful statistic was assigned rank 10 etc.
T: D was used as the test statistic.
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Results for constant seeding-induced increases indicated that MR and PCR[1]
were the most powerful techniques (Table 3.14).

Table 3.14. High Power Statistics in the Illinois Short-Term
Rainfall Enhancement Simulation, 5% Significance
Level, Constant Seeding Effect Assumed

Rainfall Response Unit

Variable Storm 48-Hr
Total Rain MR, PCR[1] MR, PCR[1]
Max. Rain MR, PCR[1] MR, PCR[1],DR
Avg. Rain MR, PCR[1] MR, DR, 2Reg

In addition to constant seeding-induced changes, four models (A, E, C, M) of
varying seeding-induced changes (Table 3.15) were used in the ILL-ST simulation.

Table 3.15. Varying Seeding Effect Model

Gage Average Model

(inches) A B C M
0.00-0.09 100 150 50 10
0.10-0.25 50 75 20 15
0.26-0.50 50 75 . 20 20
0.51-1.00 20 30 0 25
greater than 1.00 0 10 -10 25

Simulation results using varying changes were different from those using constant
changes. Power at the 5% and 10% nominal significance levels are shown in Tables
3.11 and 3.12. Ranks of the more powerful test statistics are shown in Table
3.13. Their power curves are shown in Appendix B. The SRP was the most powerful
when seeding effect models A, E, and C were assumed (Table 3.16); while MR and
PCR[1] were the most powerful when model M was assumed. A distinction among the
four models is that in models A, E, and C seeding-induced rainfall changes were
inversely proportional to rainfall amounts; but, in model M they were
proportional to rainfall amounts. As a matter of fact, model M is rather similar
to the constant-effect models.
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Table 3.16. High Power Statistics in the Illinois Short-Term
Rainfall Enhancement Simulation, 5% Significance
Level, Varying Seeding Effect Assumed , Storm as Unit

Rainfall Response Model

Variable A E C M
Total Rain SRP SRP SRP MR, PCR[1]
Max. Rain SRP SRP, MR SRP MR, PCR[1]
Avg. Rain SRP SRP SRP PCR[1],MR

The means and standard deviations of precipitation changes of 500 'seeded'
samples for each model are shown in Table 3.17. Not surprisingly, model E
generated the greatest precipitation increases in all rainfall response
variables, model A generated the next greatest precipitation increases, and model
C generated very small precipitation increases, which explained its rather poor
powers in the simulation. Model M generated precipitation increases with
magnitude similar to those of model A. Interestingly, model M had a smaller
standard deviation than models A, E, or C. In addition, mean precipitation
increases of each model (Table 3.17) corresponded roughly to the changes between
the category of .26-.50 and the category of .51-1.00 (Table 3.15).

Table 3.17. Mean and Standard Deviation of Imposed
Precipitation Changes, 500 Runs

Model

A E C M

Total Rain 1.242 1.400 1.003 1.225
.060 .077 .049 .008

Max. rain 1.325 1.510 1.0066 1.212
.053 .072 .041 .009

Avg. rain 1.272 1.441 1.025 1.220
.061 .080 .049 .009

3.6 Illinois Results - 48-hour as Unit (ILL-48)

In evaluating an operational project, generally one does not have
precipitation data in the historical period which would contain as much detail as
the METROMEX project raingage data. Most frequently only the daily or monthly
precipitation data from the National Weather Service stations are available.
Therefore, one has to use daily values or multi-day values. The unit of 48 hour
was selected over the unit of 24 hour mainly to avoid splitting a natural storm
(rain event) into 2 units (Huff and Semonin, 1960).
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The 48-hour unit was derived from the same basic METROMEX data as in the
ILL-ST simulation study. In order that as many storms as possible be included in
one unit, the number of rain events occurring at each clock hour, 0, 1, ---, 23,
was tallied (Fig. 3.2). Rains occurred with least frequency at both 0200 and
1000. A secondary minimum was at 0700. Because of the NWS practice of taking
observations at either 0700 or 1900, it was decided to use 0700 as the starting
time of a 48-hour unit. The 48-hour unit was defined to be the period starting
at 0700 under the condition that there must be rain in the first 24-hour period
of the unit. There were 129 units thus defined during the period 1971-1975. A
fixed target in the general downwind direction and five fixed control areas were
defined (Fig. 1.3). Each has an area of 800 sq kms. Furthermore, units which
did not have a minimum of .0l inch rain in the target were excluded from the
simulation. In all, there were 122 units used in the ILL-48 simulation.

Three rainfall variables were used in the simulation. They were: total
rainfall volume over the area (Total Rains), maximum point rainfall total over
the area (Max. Rains), and the mean point rainfall total over the area
(Avg. Rains). The distributions of these rainfall variables were highly skewed.
The goodness-of-fit tests for these variables in each area revealed that all
rainfall variables were well fitted by the gamma distribution, but were badly
fitted by the normal distribution, and fitted marginally by the lognormal
distribution.

Approximately one-fifth, 24 of 122 units, were randomly selected to form a
'seeded' sample. The evaluation design used is historical continuous
target-control. Powers at the 5% and 10% nominal significance levels of MR,
PCR[1], PCR[3], and DR, the high power statistics, are shown in Table 3.18.
Ranks of the more powerful test statistics are shown in Table 3.19. Their power
curves are shown in Appendix B. A summary of simulation when constant
seeding-induced increases (10-40%) were assumed is shown in Table 3-14. The
multiple regression was the most powerful technique in all cases; the principal
component regression with 1 component (PCR[1]) was a close second. The double
ratio performed well, too.
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Table 3.18. Powers at 5% and 10% Significance Levels,
ILL-48 Simulation

Seeding MR PCR[1] PCR[3] DR
Effect W D T W D T W D T

—— - e ———— o

Total Rains, 5%

1.1 .150 .198 .200 142 .166 .164 .150 192 174 .164
1.2 298 466 .458 296 .360 .334 294 462 .408 .338
1.3 472 .700 .686 486 .560 .522 .502 .688 .648 .528
1.4 .638 .866 .856 .608 .734 .710 .680 .842 804 .720
Max. Rains, 5%
1.1 .184 .190 .170 .166 .162 .158 .180 172 162 .188
1.2 416 446 .388 364 412 362 414 .398 .350 .390
1.3 .622 706 .682 546 .658 .622 .598 .684 630 .642
1.4 776 .846 .828 674 820 .792 .746 .830 .804 .788
Avg. Rains, 5%
1.1 144 .236 .230 .138 .182 .152 .158 .204 .190 212
1.2 .310 .534 .510 .316 .388 .364 .364 470 .448 424
1.3 508 772 .752 534 .600 .574 .572 722 .692 .654
1.4 .708 .908 .894 666 786 .748 .762 .874 .866 .826
Total Rains, 10%
1.1 244 294 .292 238 246 .236 .266 274 254 278
1.2 438 .590 .572 460 468 .456 .504 .554 .526 484
1.3 .622 798 .788 .638 .678 .656 .674 756 .740 .686
1.4 778 900 .894 790 .810 .800 .836 .886 .868 .854
Max. Rains., 10%
1.1 292 292 274 296 292 270 .326 256 244 .270
1.2 560 .588 .560 .528 .568 .546 .576 .540 512 516
1.3 .748 784 .770 680 .786 .762 .738 780 .762 .740
1.4 .878 .902 .886 .812 .882 .864 .864 .886 .870 .854
Avg. Rains, 10%
1.1 254 320 314 236 276 .260 .292 300 .306 .290
1.2 492 644 .638 484 520 .512 .554 .600 .594 .520
1.3 .698 .844 .846 .680 .728 .708 .752 .816 .806 .742
1.4 .852 .934 .930 .820 .872 .852 .878 916 .908 .886
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Table 3.19. Ranks of Test Statistics by Powers at 5%
Significance Level, ILL-48 Simulation,
Total Rain*

Seeding
Variable Effect wect pr MRt T2 T3 A1 a2 a3 c2 3
Total 1.1 9 8 10 6 T 5 3 2 1 &
Rain 1.2 9 8 10 6,5 6.5 4 5 3 1 2
1.3 9 6 1 T 8 5 3 kK 1 2
1.4 9 6 10 7.5 7.5 3 S5 4 1 2
Total 36 28 4 27 29 17 16 13 4 10
Max 1.1 8 10 9 6.5 6.5 2.5 4.5 4.5 2.5 1
Rain 1.2 9 8 7 4 3 1 6 18 5 2
1.3 9 7 10 4 55 155 8 3 2
1.4 9 10 4 5 1 6 8 2 3
Total 35 32 36 18.5 20 5.5 22 30.5 12.5 8
Avg 1.1 7 9 10 8 6 2 35 5 3.5 1
Rain 1.2 7 9 1 8 6 1 4 5 3 2
1.3 6 9 10 8 7 1 4 5 3 2
1.4 55 9 10 8 7 1 255 3 &
Total 25.5 36 40 32 26 5 13.5 20.5 12.5 9

v e = . =

Most powerful statistic was assigned rank 10 ete.
D was used as the test statistie.
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4. TESTING OF THE TECHNIQUES

A number of past seeding projects of the commercial type were selected for
testing of the statistical-physical techniques developed. They included a
large-scale combined hail suppression and rain enhancement project in
southwestern Kansas (the Muddy Road Project), several small-scale rainfall
enhancement projects in Illinois, and a hail suppression project carried out in
the Texas Panhandle.

4.1 The Muddy Road Project

The evaluation of operational projects which extend over relatively large
areas (10,000 sg km or more) produces complex spatial and temporal control
problems relating to climatic homogeneity and temporal variability. Large-area
seeding projects have become more common and will undoubtedly contine to be so in
the future as weather modification becomes more widely accepted. Such a
large-area seeding project, the Muddy Road Project, was selected for statistical
evaluation to address the objective of testing the techniques developed.

The Muddy Road Project was conducted in southwestern Kansas and encompassed
a target area of 12-15 counties (Fig. 4.1). The project was for both rainfall
enhancement and hail suppression during the warm season, April to September, from
1975 to the present. The period of 1975-1979 was selected for evaluation. Data
sets employed consisted of (1) monthly and seasonal rainfall totals, 1931-1971,
and 1975-1979, derived from the observations of the National Weather Service
stations; and (2) annual hail insurance loss-cost ratios (L/C), defined as 100 x
hail damage / insurance liability, 1948-1971, and 1975-1979, furnished by the
Crop Hail Insurance Actuarial Association. The years 1972-1974 were excluded
from consideration mainly for the reason that there existed cloud seeding
activities performed by other operators during this period either inside or to
the south of the target area.

Neighboring counties were used as area controls and were grouped into areas
of roughly the same size as the west and east sub-targets (Fig. 4.1). The
controls were further divided into near-upwind (N-U), mid-upwind (M-U),
far-upwind (F-U), and downwind (D) regions according to their distances from the
target area.

Evaluation of Hail Suppresion. The correlation coefficients between the
sub-targets and controls varied from 0.0 to 0.7 according to the distances (Hsu
and Chen, 198la). Ratios of seeded average L/C (1975-1979) to historical average
L/C (1948-1971) show that most of the target ratios were less than 0.5. Controls
to the south and west also were less than 0.5 (Fig. 4.2). The target ratios were
all less than 1.0 except the northwestern and southeastern corners, where the
ratios were between 1.0 and 2.0. A portion of this low in the target was
significant at the .10 level using a 2-sample Wilcoxon test. Some control ratios
were also significant at the .10 level.

The techniques of multiple regresion (MR) and principal component with 3
components (PCR[3]) were applied to the L/C data. The mean differences between
the estimated and observed seeded values, and their permutational significances
are shown in Table 4.1. All the estimated mean differences were negative with
the east sub-target showing more reduction than the west sub-target. When the
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near-upwind and mid-upwind controls were used, the estimated seeding effects were
more pronounced and significant at higher level. Generally the multiple
regression values showed slightly more reduction in hail loss-cost than did the
principal component regression values. However, the results by PCR were
significant at higher level.

Table 4.1. Mean Difference and 1-Sided Permutational
Significance Level, Hail Loss-Cost

Target Control MR PCR

West N-U -1.09 (.33) -1.70 (.23)
N-U & M-U -1.94  (.30) -1.76  (.206)
All -1.16  (.41) -0.75 (.39)

East N-U -3.79  (.14) -4.39 (.06)
N-U & M-U -6.09  (.09) -3.98 (.09)
All -4.97 (.16) -2.62 (.16)

Evaluation of Rainfall Enhancement. Seasonal average rainfall was computed
as the mean of May-August monthly rains. The correlation coefficients between
the seasonal rains of sub-targets and the controls were in the range of 0.5 to
0.9 (Hsu and Chen, 198la). Ratios of seeded average seasonal rains (1975-1979)
to historical average seasonal rains (1948-1971) show that most of the target
ratios were near 1.0, with the eastern sub-target above 1.0, and the northwestern
corner and southern portion below 1.0 (Fig. 4.3). Larger rain ratios occurred in
Oklahoma and Colorado than in the target area. The rain ratios were generally
not different from 1.0 except one high ratio area in the southeastern corner,
whose ratio was close to 1.4. Ratios in the downwind half of the target area
were higher than those in the other half.

The techniques of multiple regresion (MR) and principal component with 3
components (PCR[3]) were applied to the seasonal and monthly rains. The mean
differences between the estimated and observed seasonal seeded values, and their
permutational significances are shown in Tables 4.2 and 4.3. All the estimated
mean differences were negative, but not statistically significant. The smallest
rain decrease in the west sub-target, -0.10, amounted to 4% of the 1931-1971 mean
(2.54 inches); while that in the east sub-target, -0.08, amounted to 3% of the
historical mean (2.54 inches).
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Table 4.2. Mean Difference and 1-Sided Permutational
Significance Level, Seasonal Rainfall

Target Control MR PCR[3]

West M-U -.14  (.79) -.11 (.706)
N-U & M-U -.10  (.68) -.14  (.79)
All -.28  (.88) -.12  (.73)

East N-U -.18 (.7¢) -.21 (.85)
N-U & M-U -.08 (.61) -.24 (.84)
All -.19  (.82) -.24 (.88)

Results for the monthly rainfall are shown in Table 4.3. Most estimated
rain changes were small and statistically non-significant except for April in the
Fast sub-target (rain increase), April in the West sub-target (rain decrease),
and May in the East sub-target (rain decrease). In general, the technique of PCR
indicated more increases or less decreases than the MR, except in the months of
July and August. Overall, the East sub-target received more rainfall increases
than the West sub-target except in the months of May and September. When using
PCR as an evaluation technique, the utilization of both near- and mid-upwind
controls produced more favorable results than using only near-upwind controls.
However, the comparison of using near- and mid-upwind controls with using all
controls revealed no preference.

In conclusion, the evaluation on the hail suppression indicated that there
was a reduction of hail loss-cost values during the 1975-1979 seeded period;
however, only the reduction in the East sub-target was significant at the 10%
level. This example also demonstrated that the principal component regression
(PCR) 1is a better technique for evaluating hail suppression than the multiple
regression (MR). On the other' hand, the statistical evaluation on the rainfall
observations indicated that there was a non-significant reduction of rainfall in
the target area during the seeded period.
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Table 4.3. Mean Differences and One-Sided Permutational
Significance Level, Monthly Rainfall.

West Sub-Target East Sub-Target
Vs Vs
Month N-U N-U & M-U All N-U N-U & M-U All

Multiple Regression

Rpril -.54 -.65 -.80 .58 .27 .07
(.95) (.94) (.96) (.02) (.16) (.36)
May -.03 .02 -.08 -.76. -1.09 -.83
(.54) (.49) (.58) (.96) (1.00) (.97)
June -.10 -.30 -.40 .19 -.03 -.07
(.60) (.76) (.84) (.32) (.55) (.63)
July -.28 -.07 .03 -.15 -.07 11
(.82) (.61) (.47) (.61) (.57) (.41)
Aug .07 .09 .32 .32 .13 .22
(.39) (.35) (.16) (.31) (.32) (.21)
Sept -.19 -.13 -.43 -.19 -.24 -.47
(.72) (.67) (.93) (.70) (.71) (.94)
Principal Component Regression
April -.34 -.11 -.03 .63 .83 .84
(.87) (.59) (.47) (.00) (.00) (.00)
May .02 .23 .23 -.75 -.50 -.44
(.50) (.25) (.25) (.97) (.86) (.82)
June .09 .10 .06 .13 .14 .01
(.40) (.42) (.47) (.35) (.34) (.49)
July  -.48 -.36 -.33 -.23 -.10 -.03
(.92) (.89) (.87) (.69) (.57) (.50)
Aug .03 -.06 -.16 .30 .16 -.04
(.44) (.55) (.67) (.30) (.32) (.50)
Sept -.19 -.18 -.15 -.27 -.21 -.13
(.73) (.69) (.67) (.74) (.67) (.61)

* N-U, M-U denote repspectively near- and raid-upwind
controls, All denotes all controls.
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4.2 1Illinois Projects

During the 1976-1980 period, there were eight 1-summer weather modification
projects in east and central Illinois, each attempting to increase summer
rainfall through cloud seeding with silver iodide. Basically they utilized the
same seeding approaches and facilities (Changnon and Hsu, 1981). They included a
five-county project centered on Coles County (1975 and 1976), a project in
Vermilion County (1977), operations in McLean County (1977 and 1978), and a
project in southeastern Illinois (1978 to 1980). These projects did not extend
for long periods of time, all being two months or less. Over the past several
years there have been preliminary, statistically-focused studies on five of these
projects (Changnon and Towery, 1977, Changnon, Hsu, and Towery, 1979; Changnon
and Hsu, 1980; and Hsu and Changnon, 198la, 1981b).

In four of the five projects evaluated, specialized networks of
non-recording raingages were installed and operated by resident observers during
the projects. Also, in all of the projects the cloud seeding firms routinely
traced and/or photographed the radar scope to provide a source of echo data.
However, the quality of the radar data was frequently poor, limiting the extent
of the radar analyses (Changnon and Hsu, 1981). The daily and monthly rainfall
values from the weather stations of the National Weather Service became the main
data sources used in the evaluations. The basic approach used in the evaluations
of these Illinois projects involved a target vs control evaluation design, plus a
seeding period vs historical period comparison in two of the projects. Control
areas equivalent in size to the target area were defined to the north, west,
south, and east of the target area before the projects began. The techniques of
PCR, MR, and DR were used to evaluate these projects, and their permutational
significance levels were derived. Results revealed that the PCR gave the most
significant results among the three techniques compared.

The general tendencies found in the target rainfall and echo characteristics
are summarized in Table 4.4.

Table 4.4. General Effects of Seeding on Rainfall
in the Target Area, Illinois

Year Target Rainfall Target Radar Echoes

1976 not studied +

1977 0 to weak + poor data
1978

1979 + not studied
1980 0 to weak + poor data

In general, the results are mixed and inconclusive. Two of the projects
(years) indicated increases, signified by pluses (1976 and 1979), in the target
rainfall and/or echoes. One year (1978) indicated a rain decrease. The target
echo results are also mixed. In all instances, the l-year (usually one or two
months) projects were too short, regardless of the apparent increases or
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decreases of rainfall or echo in the target areas, to draw any conclusions that
have statistical or physical significance when taken alone.

4.3 Texas Panhandle Hail Suppression Project

A third operational project which dealt with hail suppression was selected
for evaluation. The project was located in the Texas Panhandle with a target
5,000 sq kms in size (Fig. 4.4) during the May-October periods of 1970-1976. The
project has been evaluated by Henderson and Changnon (1972) and by Schickedanz
(1974; 1975; 1977). These results used either hailfall data or crop-hail
insurance data. Results reported herein were obtained using approaches different
from the ones in these previous studies.

The data employed consisted of the annual crop-hail insurance data on a
county basis, and were furnished by the Crop-Hail Insurance Actuarial Association
(CHIAA). The annual loss-cost (losses divided by liability times 100) was
obtained for each county. The period of 1947-1969 was used as the historical
control. This was the period when the annual liability was greater than $100,000
in both target counties. During the seeded period, five of the control counties
(Swisher, Hockley, Lubbock, Floyd, and Crosby) had liabilities that were at least
2555 of those during the historical period. This set of counties was designated
as high liability control counties. Castro County was seeded during 1975-1976.

The technique of factor analysis was applied to the 12-county data set of
1947-1976. The rotation Varimax was used and 7 factors were retained (Morrison,
1976) . The resulting factor loading matrix is shown in Table 4.5. The seven
factors explained 91% of the total hail loss-cost variance. From the loading
matrix it 3hows that the target counties, Hale and Lamb, were both heavily loaded
on Factor 4. Factor 1 represented counties in the northwestern corner, and
Factor 3 represented counties in the southeastern corner. Both Welch's t-test
and Mann-Whitney tests show that only Factor 2 and Factor 4 (target) display
significant differences at the 5% level between the historical and seeded scores
(Table 4.6). Factor 2 represented Cochran County and Lubbock County, both
located south of the target. This indicated that the two target counties
together showed a significant change of hail loss-cost between the historical and
seeded period. Except for part of the southern counties, most control counties
did not show any significant difference of loss-cost values between the two
periods.
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Mann-Whitney test

Q

% sig.

Table 4.5. Factor Loading Matrix, Varimax Rotation,
7 Factors Retained, Texas Hail Loss-Cost
Factor
County 1 2 3 4 5 6 7
Bailey
Brisco .956
Castro .863
Cochran .934
Crosby .924
Floyd .839
Hale .782
Hockley .871
Lamb .691
Lubbock .758
Parmer .866
Wt EREE mmmm o i e e e 937 —
Variance 2.084 1.809 1.783 1.423 1.361 1.357 1.154
Explained
Table 4.6. Testing of Factor Scores
Factor
1 2 3 4 5 6 7
. Mean, 1947-1969 -.01 .16 .03 .17 .07 -.13 -.15
Mean, 1970-1976 .03 -.52 -.04 -.57 -.24 .41 -.49
t-test -.06 2.41 .03 2.90 72 -1.28 .97
5% sig. * *
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5. PRINCIPAL COMPONENT REGRESSION

The technique of principal component regression (PCR) was found generally to
be one of the most powerful in various simulation studies. Because PCR was so
useful, it was examined further in more detail. In the previous simulation
studies, the target was surrounded by controls from four sides, and usually
principal component regression retaining only the first principal component
(PCR[1]) would be as powerful as other techniques. In the following it is shown
that when only the upwind controls were used, regression using the first 3
principal components performs better than using just the first component. Next,
the possibility of improving the prediction of principal component regression by
retaining and shrinking the components with smaller eigenvalues, instead of
discarding them, is explored. 1In other words, the regression coefficient vector
was estimated by the so-called biased method. The results were then compared
with those obtained from the least squares method.

5.1 Number of Components

The selection of data for this study was motivated by the evaluation of
weather modification projects, 1in which there usually was a 'seeded' period and
an 'historical unseeded' period. Observations, usually precipitation or closely
related meteorological variables, were taken during both periods and were
compared to assess seeding effect, if any. Monthly and seasonal rainfall totals,
May to September, during the period from 1935 to 1970 for a ten-county area in
western Kansas (Fig. 1.1) were used. Among the ten counties, Scott and Wichita
are located in the center and surrounded by the other eight counties; Gove County
is located in the northeast corner; and Wallace County is located in the
northwest corner. The latter two counties are located in the general downwind
side during the summer season.

Depending on the analysis, either (1) the center two counties, Wichita and
Scott, were used as dependent variables, and the other eight counties as
independent wvariables; (2) the NW corner county, Wallace, was used as the
dependent variable, and the other eight counties (except Gove) as the independent
variables; or (3) the NE corner county, Gove, was used as the dependent variable,
and the other eight counties (except Wallace) were used as the independent
variables. A preliminary Kolmogorov-Smirnov test for each variable revealed no
significant departure from normality. When the two center counties were used as
the dependent variables, the correlation coefficients (for the 1936-1970 data)
among the independent variables were high, mostly between 0.5 to 0.8 (Hsu, 1978);
when the corner county was used as the dependent variable, the correlation
coefficients were also high, mostly between 0.6 to 0.8. The eigenvalues of the
corresponding independent variables are shown in Table 5.1. The first (and the
largest) eigenvalue accounts for more than 60% of the variance in all months.

The first eigenvalues with corner counties as the dependent variables were
generally greater than those with center counties as the dependent variables;
however, the reverse was true for the other eigenvalues except the sixth.
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Table 5.1. Eigenvalues of the Covariance Matrix of Independent
Variables, 1936-1970, Kansas

Eigenvalues

Month 1 2 3 4 5 S 7 8

- e - e

Center County as Dependent Variable

May 16.833 3.133 2.008 .874 .734 .413 -313 .206
June 34.357 2.854 1.795 1.385 -958 .604 .447 -367
July 18.716 2.501 2.313 1.253 1.069 .628 .513 .386
Aug. 10.597 2.943 1.272 .954 .646 .479 .452 .353
Sep. 8.991 2.098 .807 .649 =397 .281 .242 .108
S.A. 5.192 .726 .429 .185 .156 .116 .084 .071

Corner County as Dependent Variable

May 19.405 2.211 1.584 .799 .723 .576 .290 .195
June 34.595 3-050 1.231 1.042 .751 .633 .456 .347
July 21.489 2.222 1.723 1.163 .714 .668 .497 .240
Aug. 10.837 1.714 1.057 .937 .678 .522 .448 .252
Sep. 8.653 1.344 .818 .437 .376 .276 .159  .087
S.A. 5.187 .526 .289 .189 .135 .118 .093 .072

Five out of the 35 years were randomly chosen as 'seeded' with the other 30
years as 'unseeded.' The CDC CYRER Fortran function RANF was the basic random
number generator used. Assumed (multiplicative) seeding effects of 10, 20, 30,
and 40 percent, respectively, were superimposed on the 'seeded' rains of the
dependent variable. For each month (including seasonal average) the principal
component regression retaining either 1 principal component (PCR[1]), or 3
principal components (PCR[3]), was fitted to the 30-year 'unseeded' data set
depending on whether the two center counties or the corner counties were used as
dependent variables. The fitted regression equation was then used to predict the
five 'seeded' observations of the dependent variable. The average (D) of the
five differences between the changed and predicted observations was used as test
statistics.

Five hundred runs were executed to form a null and four alternative
distributions of the statistic D. Power curves were then derived by comparing
the null and the alternative distributions. Powers corresponding to the five
percent and the ten percent nominal significance levels were the main indexes
used in comparing the usage of PCR[1] with PCR[3], as well as comparing the usage
of center counties or corner counties as dependent variables.
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Table 5.2. Differences of Power, PCR[1]-PCR[3], D as Test Statistic

5% 10%
Center* Corner Center Corner
Month se 1 2 Avg 1 2 1 2 Avg 1 2
May 1.1 -.07 .03 .01 -.060 -.03 -.09 .02 .02 -.02 -.04
1.2 -.11 .06 .05 -.08 -.06 -.06 .06 .02 -.05 -.14
1.3 .00 .09 .07 -.09 -.13 .00 .06 .06 -.07 -.16
1.4 .01 .09 .16 -.09 -.14 .05 .04 .09 -.07 -.16
June 1.1 .04 .01 .02 .02 .02 .01 . .03 -.03 .03 .01
1.2 .06 .01 .00 .03 .03 .06 -.01 .12 .04 .03
1.3 .03 -.03 .08 .03 .04 .02 -.02 .04 .05 .05
1.4 .02 -.04 .02 .05 .06 -.02 .00 .01 .04 .03
July 1.1 -.03 -.03 -.05 -.07 .00 -.08 -.06 -.07 .02 -.03
1.2 -.07 -.03 -.04 -.08 -.01 -.06 .01 .01 -.03 -.01
1.3 -.05 .03 -.01 -.13 -.01 -.07 -.03 -.02 -.08 -.03
1.4 -.00 .01 -.02 -.16 -.01 -.06 -.04 .00 -.08 -.01
Aug. 1.1 .00 .07 .03 -.02 -.03 .02 .02 .06 -.02 .02
1.2 .00 .04 .10 -.04 -.04 .03 .04 .05 -.10 .02
1.3 .05 .07 .06 -.10 -.03 .08 .03 -.01 -.11 .00
1.4 .03 .05 .01 -.12 -.04 .05 -.01 .01 -.11 .00
Sep. 1.1 .01 .00 .04 -.01 -.03 .03 -.02 .07 -.01 -.03
1.2 .01 -.08 .00 -.04 -.04 -.060 -.03 .05 -.01 -.08
1.3 -.10 -.09 .00 -.03 -.07 -.07 -.06 -.04 -.03 -.08
1.4 -.08 -.09 -.01 -.04 -.11 -.12 -.11 -.02 -.05 -.11
S.A. 1.1 -.03 .01 .07 -.13 -.01 -.05 .09 .15 -.11 -.05
1.2 -.02 .04 -.01 -.23 -.05 -.01 -.02 -.01 -.14 -.08
1.3 .02 -.04 -.01 -.15 -.10 -.01 -.03 -.02 -.08 -.05
1.4 -.01 .00 .00 -.05 -.05 .00 .00 .00 -.02 -.04
Mo. Neg. 11 8 7 20 19 13 11 7 19 16 -
No. Abs.
>0.2 14 18 10 21 18 14 6 9 13 10
No. -.2 9 8 2 17 15 10 3 1 12 9
Ratio .04 .44 .20 .81 .83 71 .50 .11 .92 .90

* Center 1 denotes Wichita County, Center 2 Scott County, Center Average
the average of Wichita and Scott; Corner 1 denotes Gove County,
Corner 2 Wallace County.
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The differences of power between PCR[1] and PCR[3] are shown in Table 5.2.
When the corner counties (Gove and Wallace) were used as dependent variables,
using three PCs gave larger power than using one PC. For example, the number of
negative differences (meaning that the power of PCR[3] was larger than that of
PCR[1]) when Gove County was used as the dependent variable was 20, with p=0.003.
However, when the center counties (Scott and Wichita) were used as dependent
variables, the differences of power were not as significant.

Some of the small differences may be strictly due to the random fluctuation
of power computation (Gabriel and Hsu, 1980, 1981). Hence, looking only at
larger differences, the ratio of large negative differences (defined as less than
-.02) to the number of large differences (absolute value larger than .02) was
tabulated (Table 5.2). The ratio of large positive differences to large
differences can be obtained similarly. It is clear that when the two center
counties were individually used as dependent variables, power differences between
PCR[1] and PCR[3] were not significantly different from zero; when the averaged
center counties were used as dependent variables, PCR[1] had larger power than
PCR[3] as indicated by the smaller number and smaller magnitude of the negative
differences. However, when the corner counties were used as dependent variables,
PCR[3] had larger power than PCR[1], as indicated by the larger number and larger
magnitude of the negative differences.

5.2 Biased Regression

Meteorological variables of many nearby stations (or variables), because of
the persistence of underlying physical factors, usually contain substantial
amounts of multicollinearity. The effects of multicollinearity of one such
variable, rainfall, over the multiple regression modeling and predicting was
investigated in a study using real-time rainfall data (Hsu, 1978), in which the
least squares method was used.

Alternative methods, other than least squares, to estimate coefficients of
regression models have been proposed and investigated by various authors in the
recent literature. These estimators are biased (i. e., the mathematical
expectation of these estimators is not exactly equal to the population parameter
they estimate), but may possess preferable features to the unbiased least
squares. Some advantages of using biased estimators over the least squares
estimator are smaller mean square error (MSE) of the estimated regression
coefficients, and their correct signs (Hoerl and Kennard, 1970a, 1970b; Gunst
et al., 1976; Gunst and Mason, 1977). Large MSE of the least squares estimator
is partly attributed to the ill-conditioned design matrix, an indication of a
high degree of multicollinearity among the regressors.

It is desirable to discern whether any of the biased estimators would be an
improvement over the least squares in estimating the regression model and
predicting new observations. Besides rainfall of neighboring stations, other
meteorological (predictor) variables can also be used as covariates to further
improve the prediction. These variables may include pressure tendency,
temperature profile, moisture advection, stability, and cloud characteristics
(Hsu, 1981b).

The MSE of an estimator for the regression coefficient vector is defined as
the square distance between the estimator and the 'true' regression coefficient
vector. The MSE of a biased estimator consists of a variance component and a
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bias component (Hoerl and Kennard, 1970a). Through appropriate procedures, the
variance component of certain estimators can be made substantially smaller and
introduce only a small bias component. MSE has been used as the main criterion
to compare various estimators in several simulation studies (Hoerl and Kennard,
1970b; Gunst et al., 1976; Dempster et al., 1977; Gunst and Mason, 1977; Wichern
and Churchill, 1978).

However, their use was primarily restricted to pre-determined models (in
simulation studies) or to a single data set; rarely had independent data been
used to justify the claimed advantages of these biased estimators. The results
presented herein used real-time data to determine how well various biased
estimators perform. Then by setting aside part of the data as a testing sample,
the estimated regression model was used to predict new observations and to
compare them with the actual observations in the testing sample.

Various estimators of regression coefficient vectors include least squares,
principal component, shrinkage estimator, ridge estimator, and generalized ridge
estimator. Hocking et al. (1976) gave a unified description of properties of
these estimators. The method of principal component reduces considerably the
variance component of MSE, but may at the same time enlarge the bias component of
MSE. Marquardt (1970) proposed a modified principal component regression by
shrinking those principal components with small eigenvalues. Hocking et al.
(1976) further modified this estimator. It is this approach of shrinking the
principal components of small eigenvalues that was explored herein (see also
Carmer and Hsieh, 1980).

Numerical Comparison. Twelve biased estimators for the regression
coefficient vector were investigated through Monte Carlo studies. (See Hsu
(1980) for details of these estimators.) A data set consisting of values of
seasonal (May-September) rainfall averages in each of the 10 counties in west
central Kansas from 1936 to 1970 was used (Fig. 1.1). Each county was used as a
variable. The average of the two center counties was used as the dependent
variable and the other eight counties served as independent variables. A
preliminary Kolmogorov-Smirnov test for each variable showed no significant
departure from normality. The correlation coefficients among the independent
variables were high, ranging from .438 to .890 (Hsu, 1978).

The first 30 observations (1936-1965) were used to fit a regression model by
various estimation methods, and the resulting model was used to predict rainfall
averages in the 1966-1970 period. This method of dividing observations was
employed to simulate the evaluation of operational weather modification projects.
A 'target-control' functional relationship was fitted to pre-seed observations.
This was used to predict seed target observations. Predictions were compared
with the actual seed target observations to assess the cloud seeding effects. A
predicted residual mean square (PRMS) was then computed and used as the
comparison index. Findings, as reported in Hsu (1980), revealed the following:

1) The difference of RMS's among all the biased regressions was minor. A
few RMS's of biased regression were smaller than the full-modeled least squares;
RMS's of better subsets of least squares were smaller than those of biased
regression. However, the magnitude of differences among RMS's was negligibly
small, all less than 0.3.

2) The bias component of MSE was larger when the retained principal
components were shrunk, than when the retained principal components were not



52

shrunk and small eigenvalued principal components were shrunk. This indicates an
improvement of overall MSE when the principal components with small eigenvalues
were shrunk over when the principal components with small eigenvalues were
deleted. As more principal components were included in the regression, MSE
became smaller, regardless of whether retained principal components or deleted
principal components were shrunk.

3) Shrinking retained principal components shows improvement of RMS's and
MSE over non-shrinking whenever generalized ridge estimators were employed.

4) The biased methods predict uniformly better than the least squares best
subsets, though the PRMS of biased method did not reach the attainable minimum;
the latter, however, is of little practical use in prediction.

5) The minimum PRMS was .1127 when three principal components (1, 2, 3) were
retained and shrunk. One method of ridge estimator using the same three
principal components was a close second, with PRMS .1137.

Overall, Dbiased methods decreased the coefficient of determination R and
increased the residual mean square error slightly when compared to the least
squares; however, biased methods gained predicting power over least squares.
This predicting power is of more importance than R or RMS in the evaluation of
weather modification. Slight shrinking on retained principal components or on
small eigenvalued principal components shows improvement in terms of predicted
residual mean square (PRMS) over non-shrinking.
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6. METEOROLOGICAL COVARIATES

The development of a relationship between precipitation and meteorological
covariates is important in designing and evaluating weather modification
operations. Good meteorological covariates can be useful in reducing the
unexplained natural variability of precipitation, and hence can lead to a better
estimation of natural precipitation occurring during modification activities.
The value of meteorological covariates in evaluating weather modification has
long been recognized (Spar, 1957; Sax et al., 1975; Biondini, 1977), and research
on their usage has been carried out in a number of weather modification design
studies (Ackerman et al., 1976; Schickedanz and Sun, 1977). An important
objective of OSET has been to investigate the utilization of meteorological
covariates for evaluating weather modification projects.

Meteorological covariates can be classified into two main types according to
when their values were taken. Schickedanz and Sun (1977) called those determined
from soundings, rainfall, radar, surface observations, etc., prior to the
modification attempts as prognostic covariates (PROGSPEC), and those determined
during or after the seeding efforts as synoptic covariates (SYNSPEC). Both
PROGSPECs and SYNSPECs can be used in aiding the evaluation. For instance,
covariates measured in the upwind area are candidate SYNSPECs, although much care
should be exercised in assuring that SYNSPECs are not affected by the seeding.

Meteorological covariates can also be classified according to their uses,
such as:

1) Forecasters; Those used to forecast precipitation, quantitatively or
qualitatively.

2) Evaluators: Those used to quantitatively evaluate modification effects.

3) Stratifiers: Those used to stratify cases categorically.

The classification is not disjoint. Some forecasters can also be used in
evaluation, while others can be used to declare an operational unit. Conversely,
certain evaluators can be used as forecasters, and others not. Stratifiers
include covariates used in forecasting rain/no rain situations as well as those
used in classification of sampling units. The meteorological covariates
discussed herein belong to the PROGSPEC type and can be used as either
forecasters or evaluators.

The usage of covariates to post-stratify precipitation cases has been most
fruitful in delineating situations amenable to modification from non-effective
situations. For example, the cloudtop temperature in the Climax experiment
(Grant and Elliott, 1971) and echo motion in FACE (Simpson and Woodley, 1975)
were found useful. Both the Climax (Colorado) and FACE (Florida) sites have
semi-permanent forcing functions that were important in the development of the
covariates. However, the Midwest has no unique precipitation forcing functions
which can be readily used for the development of covariates or which can be used
to restrict the possible number of candidates (Achtemeier, 1981). It is
necessary to seek a number of possible triggering mechanisms, or forcing
functions, that are related to Midwest convective precipitation.
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There were two main sources of data used in this study.

Precipitation Data.. Rainfall data observed from the dense (1 gage per 20 sqg
km) METROMEX raingage network operated by the Illinois State Water Survey during
1971-1975 were used to identify objective storms (discrete rain events) which
occurred over the network (Changnon, 1975). The starting date and time, the
ending date and time, the general motion, the total rainfall, the maximum gage
rainfall, and the average rainfall (defined similarly as in the ILL-ST simulation
study) of each storm were tabulated. Within the circular METROMEX network, a
target area in the general downwind direction and three control areas in the
upwind direction of each storm were defined, based on the storm motion as in the
ILL-ST study. Only storms which had at least 2.54 mm (0.10 inch) total areal
rainfall both in the target and in any of the three controls were included.

Total areal rainfall in the target alone was used as the response variable in
this study. When covariate data were missing, the corresponding storms were
excluded from the data set. The number of storms that qualified for the study
was thus reduced from the original total of 330 storms to 115 in the 5-year
period.

Meteorological Covariates. Extensive literature searches (Ackerman et al.,
1976; Westcott, 1979) were made to determine a set of candidate covariates. Then
a subset of covariates related to midwestern convective rainfall was selected for
further study. Generally, they can be grouped into two classes: surface-derived
covariates and upper air-derived covariates. The results herein concentrated
exclusively upon the surface-derived covariates, a situation created by limited
funding. The 24 surface covariates selected describe moisture patterns and
triggering mechanisms of midwestern precipitation (Table 6.1). Detailed
descriptions of these covariates can be found in Ackerman et al. (1976) and
Achtemeier (1980).

The data set of surface covariates was furnished by the National Severe
Storms Forecast Center, and consists of observations for June, July, and August,
1971-1975, from 48 stations located in or near the region shown in Fig. 6.1. The
covariates used in the study were those observed 1-3 hours before the starting
time of each storm. These are likely to be those most highly correlated with
storm rainfall. Covariates measured during 4 to 12 hours prior to storm start
were calculated but were not used in this study. The technique of objective
analysis was applied to the raw data to generate a data set of 252 grid-points
(14 x 18 mesh) with 56 km separation. After all desired covariates were
calculated, the grid density was reduced from 252 points to 63 (7 x 9) points
(Achtemeier, 1981).

6.1 Use as Forecasters

Iund (1971) used stepwise and stagewise regressions to estimate and predict
precipitation in California. Achtemeier (1980, 1981) studied the relation
between the precipitation and the same set of 24 covariates as used here for 1-3,
4-6, 7-9, and 10-12 hours before storms. However, he used a different METROMEX
target area and set of storms than used here. He found that the correlation
coefficients between precipitation and covariates was rather weak; none were
larger than 0.40. He then used a (first-stage) stepwise regression (maximum
R criterion, 0.5 cutoff significance for entry) on each of the covariate fields
(63 points) to regress on the total areal precipitation. This revealed that
among the 24 regressions, three were able to explain more than 30% of the
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Table 6.1. Surface Predictor Variables Selected by
First-Stage Stepwise Regression.

Prin. Comp. Point
No Var R’ Grid* R’

1 MR Mixing Ratio 3 19% .08 17,33 .08
2 GWl Geostr. Wind 90-270 4 15 .22 13,33 12
3 GW2 Geostr. Wind 135-315 - - -

4 GW3 Geostr. Wind 180-360 - -

5 GW4 Geostr. Wind 225-45 9 10 23 12,25,34 .13
6 OWl Obs. Wind 90-270 4 25 16 17,32 .12
7 OW2 Obs. Wind 135-315 4 24 .18 23,39 .16
8 OW3 Obs. Wind 180-360 4 34 .13 12,24 .13
9 0W4 Obs. Wind 225-45 4 17 .18 11,19,32 .15
10 DIV Divergence 9 12 .32 17,19,46 .17
11 VOT Vorticity 4 19 .18 25,32,40 .19
12 GMA Geostr. Moisture Adv. 7 14 .33 12,23,25 .29
13 MA Moisture Advection 9 10 .23 26,27 .10
14 MD Moisture Divergence 4 20 .17 19,27,37 .23
15 WBT Wet B. Potential Temp. - - 18,33 .17
16 CL. Cumulative Lift 4 20 .18 17,19,30 .21
17 PTR Pressure Trough - - 20,26 .25
18 PTN Pressure Tendency - -

19 sC Sky Cover 4 57 .17 33,37,53 .23
20 CH Cloud Height 2 44 .08

21 PR Pressure - - - -

22 TEM Temperature ' - - .07 19,33 .26
23 DP Dew Point - -

24 SI Spot Index 2 16 .12 13,17,25 .27

*See Figure6l for location of grid points
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variance of the total rainfall. He further used a second-stage stepwise
regression on 144 pooled point-covariates to regress on the total areal
precipitation, and was able to explain 53% of the precipitation variance by only
10 point-covariates.

A potential weakness in applying first-stage stepwise regression to
point-covariates in predicting precipitation may result from the way the
variables were selected. In prediction, generally one would like to include as
much relevant information as possible in building up the relationship between
precipitation and predictors. Neighboring points of a point well correlated with
a precipitation variable are usually also well correlated with the same
precipitation variable due to meteorological persistence. However, once a point
was selected for use in the regression equation, the chance of its neighboring
points being selected by the stepwise method is reduced considerably. If
neighboring points were later selected, multi-collinearity could then become a
problem.

One method to handle this difficulty is to use principal components instead
of point-covariates before the first-stage regression. Points, which are well
correlated with the precipitation variable in the same direction and are located
closely, usually appear together in the same principal component. By using only
those few principal components which are most useful in prediction (see below),
one can include in the prediction process as much information as desired, and at
the same time avoid the problem of multi-collinearity. Use of both
point-covariates and PC-covariates 1is demonstrated below.

For each covariate (63 points), a principal component analysis was performed
using a correlation coefficient matrix. These principal components are linear
combinations of point variables with the property that the first component
explains a maximal amount of variance of that covariate, the second component
explains a next maximal amount of variance and is orthogonal to the first
component, etc. These components are then used as independent variables to
regress on the precipitation variable.

Variable Selection Procedure. To compare the performance of the
PC-covariates and the point-covariates in predicting precipitation, both were
investigated and underwent two stages of the variable selection process. For

computational accuracy in deriving the covariates, the boundary points of the 7 x
9 mesh (Fig. 6.1) were excluded from further variable selection, i. e., only 35
candidate point-covariates from each covariate were available for selection into
the regression. This problem is of less severity for the principal components;
hence, all 63 points were used in deriving the principal components.

First-Stage Screening. In the first-stage screening, maximum R2 was used as
a selection criterion for the point-covariates. For the principal components, a
cutoff point of .71 was used for the eigenvalues and a minimum correlation
coefficient of 0.10 between the component and the precipitation variables was
required in order for the component to be included. Additionally, total variance
explained by all the components selected for each covariate had. to be greater
than 10%; otherwise, the covariate was excluded from further consideration.

Examples of loading patterns (eigenvector) for some selected components of
the covariate sky cover are shown in Fig. 6.2. They represent the loadings of
the first, eleventh, fourth, and second principal components, in order of their
correlation with Target total rainfall. The total variance of sky cover
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explained by these four components was 57%, and the variance of the total
precipitation explained by them was 17%. It can be seen that areas north,
northeast, northwest, and southwest of the target area (first eigenvector) loaded
highly with the target area rainfall. The area east of the target area (4th -
eigenvector) also contributed to the target areal rainfall variation. The second
eigenvector represented a north-south gradient pattern. The eleventh component
agreed well with the first component. A physical interpretation of all the
components selected was made to avoid inclusion of dubious components.

After the first-stage screening for the principal components, sixteen
covariates were retained. The number of principal components selected, total
variance explained, and the coefficient of determination are shown in Table 6.1.
Coefficients of determination for the selected covariates were in the range of
0.07 to 0.33. For each covariate, the components selected were combined through
regression on the target rainfall response variable to form a single variable
(PC-covariate) for the second-stage screening.

For point-covariates, the number of points of each covariate selected was
restricted to no more than three. All together, 45 point-covariates were
retained after the first-stage screening (Table 6.1) and their locations are
shown in Fig. 6.1. The range of the coefficients of determination was similar to
those of the PC-covariates. Interestingly, a majority of the selected
point-covariates was located rather close to the target area, with very few
farther than 200 km.

Second-Stage Screening. A second stage screening was then performed using
Cp as a selection criterion (Hsu, 1978). Eight PC-covariates (Fig. 6.3a) and 11
point-covariates were retained (Fig. 6.3b). The number inside the parentheses of

the point-covariates in Fig. 6.3 refers to the grid point in Fig. 6.1. Grid
points are numbered by starting at the lower-left corner (1), across the first
row, across the second row, and so on upward to the upper-right corner (63). For
example, PTR(20) is located southeast of the METROMEX network. These 11
point-covariates selected after the second-stage screening are marked with an

asterisk (*) in Fig. 6.1. Correlation coefficients among the 8 PC-covariates
were mostly in the 0.2 to 0.3 range, except the one between divergence and
moisture divergence which was 0.61. Correlation coefficients among the 11

point-covariates were mostly less than 0.2. Covariates GW4, GMA, MA, MD, and SC
appeared in sets of either 8 PC-covariates or 11 point-covariates; while OW1,
0Ww4, and DIV appeared only in the set of 8 PC-covariates. O0W2, WMB, and PTR
appeared only in the set of 11 point-covariates.

The regression equation using the 8 PC-covariates as independent variables
is

Rain = -16.062 + .385GW4 + .3020Wl1 + .2940wW4
+ .264DIV + .530GMA + .355MA + .397MD
+ .338SC

The F-values for the regression coefficients were all significant at the .10
level. The coefficient of determination of the regression was 0.654.

The regression equation using the 22 point-covariates as independent
variables is
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Rain = -162.816 + .836GW4(25) + .5260W2(39)
+ .515GMA (12) -.342MA(27) -.0145MD(19)

.097MD (37) + 2.082WMB (18)

1.566WBT (33) + 1.920PTR(20)

3.268SC(33) + 2.407SC(53)

+

The F-values for the regression coefficients were all significant at the 0.05
level. The coefficient of determination of the regression was 0.637.

Simulation Study. To test how well the selected point-covariates and
PC-covariates can be used to predict precipitation, a 500-run simulation study
was carried out. In each run, 23 out of 115 storms were randomly set aside as a
testing sample, and the remaining 92 storms as . a build-up sample. From the
build-up sample, four regression equations were obtained by using as independent
variables the 16 PC-covariates, the 45 point-covariates (after the first-stage
screening), the 8 PC-covariates, and the 11 point-covariates (after the
second-stage screening), respectively. The regression equation was then used to
predict storm rainfall for each of the 23 storms in the testing sample.

The key results of this simulation study are shown in Table 6.2. The R?,
when using point-covariates, is higher than the R when using PC-covariates in
both stages of screening. The range (max-min) of the R (when using
point-covariates) is also wider than that when using PC-covariates. And, of
course, the R in the second-stage analysis is lower than that in the
first-stage analysis.

In each run, the average (D) of the 23 differences between the observed and
the predicted storm rainfall was calculated. The results show that the mean of
500 D-values when PC-covariates were used is closer to zero than when
point-covariates were used (Table 6.2). While the second-stage analysis of
PC-covariates did not show improvement over the first-stage analysis, that of
point-covariates did show considerable improvement. The standard deviation of D
values is also smaller when PC-covariates were used.

The advantage of using PC-covariates over point-covariates is most clearly
revealed by comparing the maximum and minimum statistics. The extremes are the
worst possible situations a prediction could obtain. In other words, they
represent the largest possible loss one would encounter by using the above
prediction scheme. Using extremes of smallest magnitude, in our case the 8
PC-covariates, would ensure a prediction with a minimax loss (minimum maximal
loss). The advantage of using a second-stage analysis over a first-stage anaysis
is also obvious by looking at the extremes of D values in Table 6.2.

6.2 Use as Evaluators

In the previous sections, the meteorological covariates were used to predict
storm rainfall. 1In the following sections, the meteorological covariates are
used as evaluators to aid the evaluation, and the resulting statistical powers
are compared with those without using meteorological covariates. The storm total
rains in the 'target' area, as defined in the ILL-ST simulations, were used as
the response variables. The same sets of PC-covariates and point-covariates
obtained after either the first-stage or second-stage screenings (as above) were
used in this study. In addition, rainfall variables in three upwind controls for
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Table 6.2. Descriptive Statistics of Coefficient of
Determination (R?) and Averaged Difference (D), 23
Out of 115 Objective Storm Rainfall Totals
Predicted, 500 Runs.

Prin. Comp. Point-Cov.
16 Cov. 8 Cov. 45 Points 11 Points
R2
Mean .6690 .6548 L7796 .5314
St. Dev. .0435 .0480 .0326 .0490
Max. .7518 .7376 .8617 .6281
Min. .4622 .4475 .5932 .3061
D
Mean - .0087 .0603 .1591 .1016
St. Dev. 1.7737 1.6184 2.4964 1.9567
Max. 5.1553 4.4957 8.9958 6.1245

Min. -4.5347 -4.2833 -8.2113 -4.8924
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each storm, as used in the ILL-ST simulation, were used in the simulation of
evaluator studies.

The simulation was carried out similar to that in the predictor study (in
the prior sections) except that seeding-induced precipitation changes were
superimposed onto the randomly selected 'seeded' sample in each run. A multiple
regression was fitted using either PC-covariates or point-covariates, and the
mean difference (D) between 23 changed observations and predicted observations
was used as the test statistic and the power values were computed. In all, nine
simulation studies were carried out. Powers of simulation which employed only
the rainfall in the upwind controls without any meteorological covariates are
shown in Table 6.3. Powers of the other 8 simulations which all employed
meteorological covariates are shown in Table 6.4. These powers were ranked for
each change imposed at the 5% and 10 % nominal significance levels (Table 6.5).

Table 6.3. Powers, Principal Component Regression,
Upwind Controls without Meteorological
Covariates, ILL-ST, Total Rain

Seeding
Effect W D T
5%
1.1 .116 .156 .164
1.2 .188 .286 .296
1.3 .256 .440 .450
1.4 .316 .604 .606
A .352 .374 .374
E .622 .690 .694
C .098 .050 .054
M .186 .336 .340
10%
1.1 .204 .234 .226
1.2 .282 .386 .386
1.3 .368 .564 .574
1.4 .456 .718 .718
A .494 .508 .500
E .728 . 764 770
C .168 .092 .096
M .288 .430 .432

Findings indicate that powers of the simulations using meteorological
covariates after second-stage screening were greater than those using only upwind
controls or using the meteorological covariates after first-stage screening.
After the first-stage screening, powers of simulations using the meteorological
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covariates were not greater than those using only the upwind controls except one
case, namely, that of- using both upwind controls and PC-covariates. Secondly,
powers of simulations using PC-covariates (PC) out-performed those using
point-covariates (SR) whether upwind controls were used or not. Powers of
simulation using point-covariates (SR) after either the first-stage or the
second-stage screenings were the lowest among all the simulations compared.

After the second-stage screening, powers of simulations at the 5%
significance level using upwind controls were greater than those not using upwind
controls, and the same was true at the 10% significance level in the case of
point-covariates (SR). The differences in powers between using PC-covariates
(PC) and point-covariates (SR) diminished after the second-stage screening. A
closer look revealed that, at the 5% significance level, PC after the
second-stage screening had better powers than SR except for seeding-effect model
C; at the 10% significance level both had similar powers. Interestingly, powers
of simulations using PC-covariates with upwind controls after the first-stage
screening were greater than those using point-covariates without upwind controls
even after the second-stage screening. However, powers using PC-covariates or
point-covariates without upwind controls after the second-stage screening were
generally greater than those with upwind controls after only the first-stage
screening. This means that a proper screening of covariates might offset a
partial need for upwind controls with an understanding that the inclusion of
upwind controls is definitely an advantage after the second-stage screening.

Generally, the use of meteorological covariates improved the powers of the
evaluation techniques. A second-stage screening to remove spurious variables was
found to be worthwhile; in addition, the use of upwind controls further ensured a
greater power. If the degree of spuriousness in the variables is uncertain, then
the use of PC-covariates is recommended over point-covariates.
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Table 6.4.
Upwind

se W D T

1.1 .108 .158 .156
1.2 .188 .308 .310
1.3 .304 .488 .474
1.4 .408 .638 .620
A .418 .412 .414
E .700 .710 .700
C .100 .048 .048
M .190 .360 .366
1.1 .136 .158 .164
1.2 .218 .328 .348
1.3 .354 .540 .542
1.4 .488 .690 .690
A .468 .436 .444
E .784 772 .778
C .098 .040 .044
M 222 .382 .39%4
1.1 .194 .222 .224
1.2 .298 .402 .400
1.3 .452 .578 .566
1.4 .582 .712 .714
A .592 .514 .498
E .810 .794 .792
C .182 .098 .094
M .304 .448 .440
1.1 .192 .264 .262
1.2 .340 .458 .454
1.3 .49 .640 .636
1.4 .626 .776 .776
A .624 .59% .582
E .842 .850 .856
C .184 .102 .104
M .342 .508 .504
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No Upwind

W

D

T

W

Point-Variable

Upwind
D

First-Stage Screening, 5%

.120
.214
.324
.446
.060
.144
.002
.246

.138
.300
.452
.582
.058
.150
.002
.378

.132
.284
.422
.578
.056
.148
.002
.366

.092
.152
.214
.288
.238
.446
.058
.166

.118
.198
.298
.482
.252
.522
.052
.222

Second-Stage Screening, 5%

.132 .130 .130 .148 .158
.230 .296 .288 .248  .340
.342  .484 .466 .394 .514
.464 .624 .610 .522 .668
.454  .404 .398 .488 .434
.710 .690 .678 .758 .758
114,042 .042 .108 .056
.244 350 .348 .256  .380
First-Stage Screening, 10%

.208 .254 .242 .174 178
.330  .424 .400 .270  .300
.472 .574 .560 .362 .488
.574  .708 .682 .458 .636
.132 .116 .108 .408 .410
.236  .284 .268 .640 .668
.014 .002 .004 L1322 .108
.398 .502 .480 .282 .340

Second-Stage Screening, 10%

.218
.342
.480
.596
.586
.820
.162
.352

.270
.464
.626
.746
.574
.826
.118
.508

.274
.448
.618
.734
.570
.822
.118
.510

.228
.376
.530
.640
.612
.854
.176
.382

2772
.450
.622
.778
.596
.864
.108
.494

Powers, ILL-ST with Meteorological Covariates,

T

.110
.182
.292
.450
.236
.486
.056
.218

.138
.310
.470
.634
.402
712
.050
.362

.170
.292
.452
.608
.374
.658
.104
.318

.270
.446
.618
. 768
.584
.852
.110
.492

Total Rain

No Upwind

W D T
.100 .100 .092
.134 .136 .138
.188 .208 .200
.240 .330 .288
.090 .100 .094
.138 .186 .166
.028 .014 .014
.148 .170 .160
.094 .134 .128
.150 .238 .224
.228 .392 .370
.358 .516 .480
.336 .322 .298
.560 .576 .538
.090 .038 .040
.150 .274 .258
.142 .150 .148
.208 .220 .218
.266 .360 .346
.340 .478 .454
.142 .1e4 .160
.218 .308 .286
.054 .050 .046
.230 .270 .244
.176 .188 .182
.302 .354 .340
.428 .486 .462
.514 .622 .598
.532 .440 .420
.720 .688 .660
.164 .078 .074
.300 .392 .376
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Table 6.5. Ranks of the Statistics D by Powers at 5%
and 10% Significance Levels, Total Rain¥*

Simulation

Upwind Control X X - X - X - X -

Meteor. Cov. - X X X X X X X X

Variables PC PC PC SR SR PC PC SR SR

Sereening Stage - 1 1 1 1 2 2 2 2

No. of Variables 3 19 16 48 Uus 1 8 14 1
5%

1.1 6 8 5 2 1 8 3 8 4

1.2 y 7 6 2 1] 8 5 9 3

1.3 y T 5 2 1 9 6 8 3

1.4 5 7 4 2 1 9 6 8 3

Total 19 29 20 8 y 3& 20 33 13

A 5 i 1 3 2 9 6 8 4

E 5.5 T 1 3 2 9 5.5 8 L]

c 7 6 1 8 2 ] 5 9 3

M 4 6 7 2 1 9 5 8 3

Total 21.5 26 10 T 7 31 21.5 33 14

Grand Total 4o0.5 55 30 24 1 65 41,5 66 27
10%

1.1 5 i b 2 1 7 8 9 3

1.2 y 5 b 2 1 8 9 7 3

1.3 y 6 5 3 1 9 8 T 2

1.4 6 5 y 3 1 8 7T 9 2

T;tal - -19 20 21 10 b 32 32-- 32 10

A 5 6 1 3 2 8.5 7 8.5 i}

E 5 6 1 3 2 8 T 9 ]

C L 5 1 7.5 2 6 9 7.5 3

M 4 5 T 2 1 8.5 8.5 6 3

Total 18 22 10 15.5 7 31 31.5 31 14

Grand Total 37 %2 31 25.5 11 63 63.5 63 24

*: Highest power was assigned rank 9 and so on.
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7. VALIDITY OF HISTORICAL COMPARISON

Analyses of cloud seeding operations often compare precipitation during
operations with precipitation during preceding historical periods. (For
references see Hsu, 198la). For example, rainfall at Santa Clara during 10 years
of seeding operations after 1954 has been compared with the rainfall of 10
preceding years (Dennis and Kriege, 1966). Such comparisons implicitly involve
the assumption that the difference, if any, between the pre-operational and
operational periods reflects mainly the effect of seeding. Though it is
acknowledged that random year-to-year variability may also result in differences
between periods, tests of significance are used in an attempt to separate the
'true' difference from the random ones, and the former is ascribed to the effect
of cloud seeding.

This study has been concerned with the validity of such statistical
analyses. It considered the assumptions underlying them and examined
precipitation data with a view of verifying the appropriateness of these
assumptions. Failing such verification, this study then examined the robustness
of standard statistical analyses against the existing divergences from these
assumptions. That should indicate what confidence, if any, one may place in
historical precipitation data in evaluating cloud seeding operations.

7.1 Problems of Comparison

The present study was not concerned with biases, however important these may
be (see for example, Gabriel, 1979), but with the separate questions of whether
comparisons of operational with historical periods may validly use standard
statistical techniques. Such techniques are usually derived from a series of
assumptions, including one which postulates that the observations are based on
independent and identically distributed (IID) variables on which the effect of
seeding, if any, 1s superimposed or added. In the present context, this would
mean that annual amounts of natural, i.e., unseeded, precipitation were IID. But

that surely does not fit known facts exactly. Some persistence and serial
dependence of precipitation is known to exist, as are trends over short periods
of years. Does the untruth of these assumptions then invalidate the use of

standard statistical techniques?

A simple example of the effect that violation of the IID assumption could
generate 1is as follows. Suppose that during a 20-year period annual rainfall
increased steadily by an annual increment, so that year 1i's rainfall could be

written at+ ci for some initial amount a and increment c. Now suppose a ten-year
seeding operation was launched in year 11 but the seeding had no effect at all on
rainfall which remained a+llc, a+l2c,..., at20c during the 10 operational years.

The t-statistic for comparing the last 10 'operational' years with the first 10
'historical' ones is found to be 7.39, a very highly significant value. A
spurious 'effect of seeding' would be detected, though it consisted entirely of
the natural trend in rainfall. A similar, albeit not quite so extreme, result
would be found if, more realistically, there were some random variability of
precipitation about that linear trend.

Though the assumption of IID precipitation is clearly not correct, and
though some deviations from assumptions can invalidate certain analyses (as we
have just seen), it does not follow that any deviation invalidates every
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analysis. It may be that the deviations occurring with precipitation data do not
invalidate some, or all, of the standard statistical methods of comparing two
samples. Situations can arise in which techniques remain wvalid, exactly or

approximately, even though certain of the assumptions used in deriving them are
not valid. For example, Tukey-type simultaneous confidence bounds which were
derived for independent means are also valid, with an appropriate adjustment of
the variance, for equi-correlated variables. It may well be that certain
statistical techniques give perfectly, or approximately, valid inferences when
applied to precipitation data even though some deviation from the IID assumption
exists.®

An alternative set of assumptions which often yields similar distributions
of statistics, at least asymptotically, is that of randomized selection of
treatment units from among all available units. Strictly speaking, such
selections ought to be analyzed by permutation (i.e., re-randomization) tests,
but the known similarity with IID methods often permits the use of standard
analyses. However, in the case of the operational vs. pre-operational
comparisons the assumption of randomization is patently untrue; in an operation
the treatment years are surely not chosen at random. The only way one could
conceptualize such randomness would be if nature were assumed 'to deal a random
deck,' but then we would be back in the IID situation.

It seems reasonable, on a very cursory examination of the evidence, to
assume that some sort of serial dependence of precipitation exists from

year-to-year but that it is not very strong. It also seems reasonable to assume
that compatible trends co-exist in neighboring areas in sequences of say, 20
years or less. The practical problem we are addressing is whether the small

existing order of dependence and trends may affect the operating characteristics
of standard statistical techniques sufficiently to invalidate their inferences.

The issue is one of robustness of statistical techniques against nature's
violation of randomness. One way to study this would be to model natural
precipitation as a time series and then use analytical methods to assess the
robustness of given techniques under the appropriate model. Another way is to
examine the behavior of the statistical techniques when applied to natural, i.e.,
unseeded, precipitation data, and to see how far that behavior deviates from what
would have been predicted from the IID assumptions, i.e., from standard
statistical theory.

The first kind of robustness study would require adequate time series
modelling of precipitation data - something that does not seem to have been done.
Even with such models, the derivation of robustness properties might not be easy.
We have therefore chosen the second method of study and applied a number of
statistical tests to successive samples of years of precipitation data to check
how far the observed distribution of these test statistics differs from that
predicted by the standard theory for IID variables.

The objective of this study was to allow informed assessments of the
validity of standard statistical comparisons of precipitation during operations
with historical records of precipitation. If test statistics applied to natural
precipitation data were distributed very differently from what IID assumptions
would have indicated, then one should have been warned against the use of such
statistics for operational vs. historical comparisons. If, on the other hand,
the statistics had been found to be reasonably robust and to behave much as
though they came from IID variables, then one might have had some confidence in
the validity of such analysis of cloud seeding operations.
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It must be understood that confidence in the applicability of statistical
techniques does not ensure the elimination of other biases. Even if the present
study had supported the robustness of standard methods and would therefore have
increased our confidence in standard tests of operational/historical comparisons,
that should not in any way have reduced the vigilance of critics in the matter of
biases which might creep in. Biases have to be guarded against even if the
statistical methods are valid.

7.2 The Study of Illinois Data

To study the distribution of statistics on natural precipitation, it was
necessary to assemble such data for reasonably long time periods at several
locations. As a beginning study, 100 years of records of annual precipitation,
1879-1978, were obtained for several stations in Illinois.

These Illinois data were used to simulate the analysis of short
cloud-seeding 'experiments.' Every 100-year series was broken into 10 decades,
each decade being considered as one 'experiment,' its first 5 years as
'unseeded, ' the last 5 as 'seeded.' Data for precipitation were used as
observed, without imposing or adding any 'seeding effect.' The analyses were,
therefore, run under null hypothesis conditions. 1In this way, ten 'experiments'
were simulated from the 100 years' data.

The same data were also divided into sets of 20 years for comparisons of 10
'seeded' years with 10 preceding 'unseeded' years. Again, the logic was the same
as for the shorter comparisons, but only 5 such 'experiments' could be simulated
from 100 years' data.

Comparisons with longer 'unseeded' periods might have simulated more
realistic analyses of operations but would have reduced the number of
'experiments' even more. Overlapping choices of decades, or double decades,
would have increased the number of 'experiments' at the cost of introducing
dependence, e.g., 1if 'experiment 1' ran during 1879-1888, ‘'experiment 2' could
have run during 1880-1889, etc., but the nine-year overlap would have caused
statistical dependence. We therefore stayed with 10 decades and 5 double
decades. (See, however, Gabriel and Petrondas, 1981.)

Analyses of seeding operations usually relate a 'target' area to a 'control'
area which is upwind of the target and is correlated with it, but is assumed to
be unaffected by seeding. To simulate such a design, eight Illinois stations
were paired; the more westerly or northerly station was considered as the
'target' and the other station as the 'control.' For example, Chicago was
considered to be a 'target' and Marengo its 'control.' Real operations are not
usually analyzed in terms of a single station in each area, but in this study it
was impractical to simulate a multiplicity of nearby stations in each of the
'target' and 'control' areas. Adequate historical records were not available.
Also, it seemed unlikely that use of a multiplicity of stations would have had a
meaningful impact. It would presumably have reduced the intra-area variability
for each year, but it is unlikely that it would have affected the year-to-year
variation in any interesting manner. This issue was therefore not considered
further.

As a preliminary to considering the 'seeded' vs. 'unseeded' comparisons, we
briefly considered the variation within and between successive groups of years.
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Table 7.1 shows F-ratios of variances between means of groups to pooled variances
within groups. Thus, in the top panel of the Table, the F-ratios serve to
compare the variance of the 10 decade means with the pooled variance within
decades. Similarly, the bottom panel compares the variance between the 20 means
of quingquennia with the pooled variance within quinquennia. Considering
individual stations (appearing as X or Y in Table 7.1), we found Dubuque, Moline,
and St. Louis to have significantly greater between-period variability than
within periods. For paired station differences, Dubuque-Moline and

St. Louis-Cairo showed significantly greater period-to-period variability, This
indicated that, at least in parts of Illinois, there was systematic rather than
purely random variation over time - contrary to the IID assumption. That finding
made the use of standard techniques prima facie suspect and called for an
investigation of their actual performance in 'experiments' simulated by taking
decennial data from rainfall records and splitting them up into 'unseeded' and
'seeded' periods.

Table 7.1. F-Ratios for between/within Groups of Years

Dubucque (Y) St. Louis (Y) Chicago (Y) Peoria (Y)
VS Vs Vs Vs
Moline (X) Cairo (X) Marengo (X) Springfield (X)

10 vs 10 F (9, 90)

X 3-095 2.336 1.488 1.117
Y 4.970 1.115 1.845 0.591
Y-X 4.474 5.674 0.573 1.464

5vs 5 F(19, 80)

X 2.603 1.837' 0.989 0.896
Y 2.770 0.913 1.145 0.682
Y-X 2.550 3.933 0.529 1.070

A number of statistics were computed for each simulated experiment. These
included t-tests on the 'target' itself, on the 'target' adjusted for regression
on 'control,' and on 'target-control' differences. They further included double
ratios, i.e., (seeded target total/unseeded target total) / (seeded control
total/unseeded control total), and transformations of these ratios.
Non-parametric test statistics were also computed, i.e., the median test, the
Mann-Whitney test, and the squared-rank-sum test.

The P-value of each statistic was then evaluated by standard methods which
assume IID precipitation or, at least, randomized allocation of seeding to 5 out
of 10 given years (or 10 out of 20 years). Since these 'experiments' were
applied to natural precipitation data without superimposition of any 'seeding
effect,' a valid statistical technique should have produced P-values distributed
uniformly between 0 and 1. In other words, the probability that the P-value
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should be less than any number P (0<P<1l) should have been exactly P. The
P-values of the simulated 'experiments' were therefore examined to see if they
could have arisen from such a uniform distribution. If they had done so, the
statistical techniques yielding these P-values could be considered to yield valid
inferences from operational vs. historical comparisons.

If, on the other hand, the simulated P-values would have been found to be
smaller (larger), one would have been led to suspect that this statistical
technique might lead to radical (conservative) inferences, i.e., might result in
too many (too few) type I errors. Such findings would have made the analysis of
cloud seeding operations with this technique suspect. One would suspect too many
false decisions on whether seeding was (or was not) effective.

As an example, consider the 10 decade 'experiment' with the Dubuque 'target'
and Moline 'control,' and consider the t-statistic for Y - X, where Y and X are
'target' and 'control' precipitations, respectively. The statistics and P-values
for this example are shown in Table 7.2 so it may be judged whether these ten
P-values deviate significantly from the uniform (0,1) distribution. No clear
deviation is evident. The calculations were made of the four statistics,

) 10 ) - 10
Xl ==-2 L fn Pi; X2 =-2 I (1 - Pi);
1=1 i=1
) 10 5 10
X,°=-2 I fn (-2 {Pi-0.5]); X,°=-2 % n (2 [Pi-0.5])
3 4 A
: i=1 _ i=1

each of which has a chi-square distribution with 20 degrees of freedom under the
null hypothesis. X2 and X3 are likelihood ratio tests; X,'and X,° are two

versions of the test developed by Pearson and advocated by Fisher. The
alternatives indicated by high and low values of these statistics are listed in
Table 7.2. The example shows one 5% significant (one-tailed), statistic (since

X@oyr-95= 31.41) and thus provides slight evidence of less dispersion than in
the uniform case.
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Table 7.2. Detailed Analysis of Dubugque vs. Moline
Decennial Experiments

Decade t statistics P-value*
1879-1888 -0.171 0.566
1889-1898 -0.001 0.500
1899-1908 -0.951 0.815
1909-1918 -0.715 0.752
1919-1928 -1.609 0.927
1929-1938 1.427 0.096
1939-1948 0.016 0.494
1949-1958 1.044 0.164
1959-1968 -0.856 0.791
1969-1978 2.276 0.026
Test statistics (HQ : P-distribution is Uniform (0,1))
Likelihood Ratio Pearson-Fisher
Against a shift alternative 21.1%* 19.6
(+ shift as indicated by small values large values)
(- shift as indicated by large values small values)
Against a dispersion alternative 20.7 31.7
(less dispersion about 1/2
is indicated by small values large values)
(more dispersion about 1/2
is indicated by large values small values)

* 8 d.f., one-sided
** All four statistics have a chi-square distribution with 20 d.f.

Comparisons of this kind were carried out on all four pairs of stations, for
each of a selection of statistics and separately for 10 decennial 'experiments'
and 5 duodecennial 'experiments.' These are not quite independent because annual
precipitation at the various Illinois stations was correlated although
inter-station differences Y-X were probably less correlated. Hence, no
significance tests were run on these 'mixed' samples, but only on samples from a
single station pair. The same proviso applies to mixing the P-values of 5
duodecennial 'experiments' from each of four station pairs.

Chi-square tests of significance of uniformity of P-value distribution were
run separately for each of the four station pairs. The four tests - see above
and Table 7.2 - were run separately for 5 vs. 5 year 'experiments' (Table 7.3)
and for 10 vs. 10 year 'experiments' (Table 7.4). Most of the P-values were
based on statistical techniques comparing the location of the 'seeded' with the
'unseeded' set of years to see if the former were larger, i.e., one-sided tests.
P-values for slope and regression techniques were somewhat different since these
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compare Y on X regressions rather thean the 'effects' of seeding on location.
However, they were included in this study because such tests are also commonly
run.

No striking evidence of departures from uniformity is apparent from Table
7.3. Very few of the chi-squares are significant even at the one-tailed, 5%
level test, i.e., at a 10 % two-tailed level. At most, there is a very vague
suggestion of a tendency to smaller P-values than expected from uniformity.
Table 7.4, on the other hand, shows high significance for too large P-values and
excessive dispersion of P-values. It is difficult to reconcile these two bits of
evidence.

It is difficult to know what to make of these findings. More study is
needed to resolve these issues. The 5 vs. 5 year comparisons seem to confirm the
validity of the statistical techniques for location comparisons; if anything,
they were perhaps a little radical, i.e., resulting in too many type I errors.
The 10 vs. 10 years comparisons, on the other hand, strongly suggest that these
tests are conservative, i.e., have too few type I errors and, hence, also too low
power. It could, of course, be that precipitation distributions affect the
performance of these techniques differently for experiments of different lengths,
but that would seem somewhat surprising, and one would wish for more evidence
before reaching even tentative conclusions (see Gabriel and Petrondas, 1981).

As to slope comparisons, Tables 7.3 and 7.4 suggest that standard
statistical techniques may not be wvalid with precipitation experiments. However,
here again, the evidence from the two tables is contradictory. The 5 vs. 5 year
comparisons (Table 7.3) suggest that the standard tests are radical, whereas 10
vs. 10 year comparisons (Table 7.4) yield apparently conservative tests. Again,
we can only conclude that the evidence is equivocal and cannot make definite
recommendations.

Conclusions. The present study of 100 years of Illinois precipitation data
has not resolved the issue which it addressed. At best, we may conclude that the
standard statistical techniques of comparing operational with historical
precipitation are not blatantly invalid. But it is impossible to say whether
their error rates are very close to the true ones or whether they deviate
conservatively or radically. More study is needed.

The main reason for the paucity of results is that the present study
analyzed only 10 'experiments' of 5 'seeded' vs. 5 'unseeded' years (or 5
'experiments' of 10 vs. 10 years). This is a very small number, but is all one
can get from 100 years' data. To some extent we tried to augment the data by
concurrently studying experiments at four different station pairs, but since they
were all in Illinois, and well correlated, this could not really be considered to
be replication. For the same reason, we did not 'replicate' the 'experiments'
further by studying all 91 possible 10 year 'experiments,' i.e.,
1879-1888,1880-1889,1881-1890,...,1968-1977, 1969-1978. These 91 overlapping
'experiments' would have been likely to be highly correlated.
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Table 7.3. Chi-Square Tests on Uniformity of P-values,
Comparisons of 5 'Seeded' vs 5 'Unseeded' Years
(Tests as in Table 7.2)
Dubuque (Y) St. Louis (Y) Chicago (Y) Peoria (Y)
Vs Vs VS %S
Moline (X) Cairo (X) Marengo (X) Springfield (X)
IR P-F IR P-F IR P-F IR P-F
X t-test Loc 22.5 23.0 23.7 18.7 14.7 20.3 19.0 14.3
Disp 27.4 11.7 23.3 15.0 15.3 15.2 11.9 25.0
Y : t-test Loc 19.9 21.6 24.7 11.5 16.2 18.0 20.3 15.0
Disp 22.1 17.0 15.0 23.1 13.1 21.5 14.2  24.2
Y-X : t-test Loc 21.1 19.6 24.6 18.5 19.3 16.1 21.4 16.1
Disp 20.7 31.7 16.4 23.6 13.9 28.7 18.1 15.0
Y-b.X : t-test Loc 23.9 21.2 l6.6 22.8 22.9 14.1 23.6 17.0
Disp 25.6 16.3 19.4 16.2 16.2 27.3 20.9 18.8
ANCOVA, t-test Loc 16.6 21.1 22.8 15.1 25.0 15.3 23.5 15.1
Disp 18.6 13.8 18.2 17.2 19.5 26.1 18.0 24.¢6
b slopes Loc 34.8 8.5 20.6 15.4 15.0 14.6 16.0 26.1
t-test Disp 22.6 22.0 15.0 23.3 6.1 41.7 23.6 12.2
a,b reg.: Loc 21.4 19.4 14.7 21.8 11.1 30.6 20.7 15.6
F-test Disp 20.2 22.0 16.5 24.7 22.5 15.9 17.2 13.2
InR : y-test  Loc 20.5 19.2 24.0 17.6 19.6 15.5 20.6 15.8
Disp 19.8 23.2 21.7 20.2 13.3 30.5 16.4 16.6
InR : Normal Loc 20.4 19.9 23.8 18.0 19.9 15.5 20.6 16.3
test Disp 20.6 21.9 22.1 19.0 13.8 29.1 17.3 15.1
InR : permut- Loc 20.1 19.8 24.8 18.0 20.1 15.6 21.0 16.3
ation test Disp 20.1 22.7 23.2 19.1 14.2 28.3 17.6 15.4
Median test Loc 26.2 13.1 25.1 21.2 15.6 20.2 22.2 13.6
Disp 20.1 13.0 28.3 10.1 16.1 14.5 16.1 14.5
Mann-Whitney Loc 20.6 16.7 25.8 18.9 17.6 16.3 22.7 15.5
test Disp 16.2 25.8 25.4 17.4 11.8 28.4 18.0 19.3
Squared Ranks Loc 19.0 21.9 23.7 17.9 18.2 16.5 22.4 17.1
test Disp 21.5 20.1 22.4 15.2 13.0 32.4 20.1 15.1



75

Table 7.4. Chi-Square Tests of Uniformity of P-values,
Comparisons of 10 'Seeded' vs 10 'Unseeded' Years
(Tests as in Table 7.3)
Dubuque (Y) St. Louis (Y) Chicago (Y) Peoria (Y)
Vs Vs VS Vs
Moline (X) Cairo (X) Marengo (X) Springfield
Test IR P-F IR P-F IR P-F IR P-F
X t-test Loc 5.0 13.1 12.7 6.0 9.4 8.2 6.5 12.3
Disp 7.9 10.6 8.0 1.1 7.8 7.8 9.6 5.2
Y : t-test Loc 5.4 24.1 12.7 10.9 11.1 12.6 6.5 12.5
Disp 21.3 2.9 15.3 3.2 14.8 5.0 9.5 7.2
Y-X t-test Loc 9.4 26.7 9.2 22.7 7.5 8.7 11.3 6.3
Disp 26.4 8.6 22.3 16.6 5.0 15.1 7.3 9.5
Y-b.X t-test Loc 9.9 28.6 14.2 19.4 8.5 10.4 7.6 7.8
Disp 29.8 4.0 25.8 2.1 9.5 6.4 4.2 13.4
ANCOVA, t-test Loc 8.4 28.5 12.2 20.6 8.6 11.2 7.6 9.3
Disp 28.1 4.6 24.7 2.8 10.0 7.9 6.2 12.5
b slopes Loc 9.4 21.1 10.9 9.8 13.6 10.7 8.1 11.9
t-test Disp 20.3 11.7 10.4 12.9 15.7 4.1 10.3 8.6
a,b reg.: Loc 34.7 7.3 21.2 3.2 13.4 7.0 7.4 11.2
F-test Disp 32.1 8.6 14.7 8.1 10.7 18.5 8.6 8.2

In view of the inconclusiveness of the present findings,

that a few more analyses be made of the Illinois data,
year 'experiments' as well as 7 vs.
consistency in the results for experiments of different lengths;
overlapping 'experiments' after all.

such as:

Try 3 vs.

7 year 'experiments' to see if there is

replicate the analyses at other stations,

above procedures might lead to more conclusive findings

1981) .

(2)
More importantly, we should try to
preferably far from Illinois.

(Gabriel and Petrondas,

Try

The

(X)

it is recommended

(1)

3
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8. MISCELLANEOUS TOPICS

Other topics which are important to the evaluation of operational seeding
projects are discussed below. The topic of piggyback is relatively recent, and
because of its future potential as a viable means of conducting scientific
experiments in conjunction with commercial operations, efforts were exerted to
obtain a better understanding of the feasibility of piggyback experiments. Also,
criteria for weather modification operations and effective evaluation were
developed as part of OSET (Huff and Changnon, 1980) in order that a reasonably
good bank of information would be available for a latter assessment of the
seeding operations.

8.1 Piggyback Experiment

The addition of scientific measurements to operational weather modification
projects has been referred to as 'piggyback' science (Weather Modification
Advisory Board, 1978b). Some form of randomization must be employed in this
approach. Inventive ways to incorporate randomized piggyback research need to be
studied. Two types of piggyback projects appear scientifically possible and
acceptable to users of operational weather modification. The first type could
utilize partial randomization on some (rainfall) occasions before, during, or
after the designated operational seeding period. For example, in the period
before the users want seeding, the choice of seed or no-seed is made for each
occasion. The weather and climate conditions before or after would have to be
very similar to the non-randomized seeded period. Also, minimal randomization
during the period of user need for modification should be undertaken, if at all
possible.

The second type of potential piggyback research would employ randomization
only during seeding operations, with sufficient frequency (percentage of seedable
situations) to provide adequate statistical data for reliable evaluations. For
instance, different seeding agents or difference rates could be used.

Combination of both the first and second type piggyback approaches may also be
feasible.

Due to restricted funding, a relatively small effort has been made to study
various issues relating to piggyback experiments. The results were summarized in
a report by Gabriel and Changnon (1981). The idea of piggyback experiments on
operational projects was discussed with emphasis on the meteorological aspects.
Two examples of possible piggyback experiments and the outlines of experimental
designs were explicitly given in the report. Other issues discussed included
'blindness' in various stages of operations, and seeding rates.

8.2 Operational Criteria

An OSET report (Huff and Changnon, 1980) treated the key issues and
presented recommendations for weather modification operations. This report
provides guidance for achieving effective, reliable evaluation of seeding
results, and, consequently, establishing credibility in these evaluations, and
providing scientific information leading to better understanding and greater
skills in future weather modification operations. Four tasks were
discussed--design, selection of seeding criteria, conduct of seeding mission, and
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collection and recording of data. A number of key issues and recommendations are
presented at the end of the report. They included personnel required for

operations; seeding criteria; requirements for operations for different types of
seeding; needs for radar and other instrumentation; and requirements for detailed

documentation of operational activities.
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9. SUMMARY

A collection of statistical-physical techniques to evaluate weather
modification projects was compared primarily through extensive simulation testing
of assumed weather modification effects superimposed upon natural precipitation
distributions. Statistical power was the main index used in comparison. The
studies on the approximation of power by using two methods indicated that at both
5% and 10% nominal significance levels, powers computed by Method I (naive
method) were, in general, slightly larger than those computed by exact Method IT.
Discrepancies were small, usually less than or equal to .05. Additionally,
normal approximation of Method II usually overestimated the exact power slightly
and the approximation of Method I was even a little higher. It was concluded
that for all but very small experiments, both approximations come reasonably
close to true power (only a few percentage points above it). Method I, due to
its cost-efficiency in the computations, was employed in the subsequent
simulations.

Five data sets from four areas were selected for simulation to compare the
effectiveness of the statistical techniques in evaluating weather modification
projects. Findings from Kansas rain simulations indicated that the technique of
principal component regression retaining the first component (PCR[1]) was one of
the most powerful techniques for various summer months and target-control
designs. In the east-central Illinois (ILL-EC) rainfall study the techniques of
PCR[1] and double ratios (DR) were generally the most powerful; and the technique
of two regressions (2Reg) was the next powerful. The results of the ILL-EC
simulation, when compared with those of the Kansas simulation, indicated that the
technique of PCR[1] had high powers in both simulations in every month except
June, when only the double ratio had high power (in the averaged target
simulation) .

In Montana hail suppression simulations, for the larger target, principal
component regression with 3 components (PCR[3]) was the most powerful in both 3
seeded years and 6 seeded years simulations. For smaller targets, PCR[3] worked
well in the 3 seeded years study. DR was most powerful in the 6 seeded years
study, followed closely by PCR[3] and sum of ranked powers test (SRP). The
techniques of two regressions was not compared in the 3-year study, but was
compared in the 6-year study. Its powers were rather poor relative to other
techniques. The technique of SRP had poor powers in the 3-year study except when
the assumed seeding effect was large. In the Illinois-storm simulation, results
for constant seeding-induced increases indicated that multiple regression (MR)
and PCR[1] were the most powerful techniques. The SRP was the most powerful when
varying seeding effect models A, E, and C (see Table 3.15 for details) were
assumed; while MR and PCR[1] were the most powerful when model M was assumed. In
the Illinois 48-hour simulation, multiple regression was the most powerful
technique in all cases; the principal component regression with 1 component
(PCR[1]) was a close second. The double ratio performed well, too.

A number of past seeding projects of the commercial type were selected for
testing the statistical-physical evaluation techniques developed. A large-scale
hail suppression and rain enhancement project, the Mudddy Road Project in
southwestern Kansas, was evaluated using monthly rains and annual crop-hail
loss-cost data. The evaluation of the hail suppression efforts indicated that
there was a reduction of hail loss-cost values during the 1975-1979 seeded
period; however, only the reduction in the east sub-target was significant at the
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10% significance level. This example also demonstrated that the principal
component regression (PCR) 1is a better technique for evaluating hail suppression
than the multiple regression (MR). On the other hand, the statistical evaluation
on the rainfall observations indicated that there was a non-significant reduction
of rainfall in the target area during the seeded period.

Several small-scale rain enhancement projects in Illinois also were
evaluated. In general, the results reflected quite mixed outcomes. Two of the
projects (years) indicated increases, signified by pluses (1976 and 1979), in the
target rainfall and/or radar echoes. One year (1978) indicated a rain decrease.
The target echo results were also mixed. In all instances, the l-year (usually
one or two months) projects were too short, regardless of the apparent increases
or decreases of rainfall or echo in the target areas, to draw any conclusions
that have any statistical or physical significance when taken alone.

A long-term operational project in the Texas Panhandle which dealt with hail
suppression was selected for evaluation. The technique of factor analysis was
BMapplied to a 12-county data set for 1947-1976. The Varimax rotation was employed
and 7 factors were retained. They explained 91% of the total hail loss-cost
variance. From the loading matrix it was shown that the target counties, Hale
and Lamb, were both heavily loaded on Factor 4, Factor 1 represented counties in
the northwestern corner, and Factor 3 represented counties in the southeastern
corner. Both Welch's t-test and Mann-Whitney tests showed that only Factors 2
and Factor 4 (target) displayed differences which were significant at the 5%
significance level between the historical and seeded factor scores. Factor 2
represented Cochran County and Lubbock County, both located south of the target.
This indicated that the two target counties together showed a significant change
of hail loss-cost between the historical and seeded period, and except for part
of the southern counties, most control counties did not show any significant
difference of loss-cost values between the two periods.

Further investigation of the usage of principal component regression
indicated that when corner counties were used as dependent variables, the
principal component regression which retained the first 3 components was more
powerful than the principal component regression which retained only the first
component. Twelve biased methods which shrink the principal components were
investigated. The findings revealed first that in the modeling process, the
difference of residual mean square (RMS) among all the biased regression was
minor. A few RMS's of biased regression were smaller than the full-modeled least
squares, but larger than certain least squares best subsets. Shrinking the
small-eigenvalued components reduced the biased portion of MSE more than
shrinking the retained components, and deleted the small-eigenvalued components.
As more principal components were included in the regression, MSE became
smaller, no matter whether retained principal components or small-eigenvalued

principal components were shrunk. However, shrinking retained principal
components shows improvement of RMS and MSE over non-shrinking whenever
generalized ridge estimators were employed. In the prediction process, the

biased methods predicted uniformly better than the least squares best subsets,
though the predicted residual mean square (PRMS) of the biased method did not
reach the attainable minimum. Overall, the biased methods decreased the
coefficient of determination, R , when compared to the least squares;

however, the biased methods gained predicting power over least squares. Slight
shrinking on retained principal components or on small-eigenvalued principal
components showed improvement in terms of PRMS over non-shrinking.
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The usage of surface meteorological covariates as forecasters and evaluators
was 1investigated. In the forecaster study, comparisons were made between the
usage of PC-covariates and point-covariates, as well as between first-stage and
second-stage variable screenings. The advantage of using PC-covariates over
using point-covariates is that by using only those few principal components which
are most useful in prediction, we are able to include in the prediction process
as much information as desired and at the same time avoid the problem of
multi-collinearity. Forty-five point-covariates and 16 PC-covariates were
retained after the first-stage screening. The range of the coefficients of
determination of the regresssion, using the individual field of point-covariates
as the independent variable, was slightly narrower than that using the individual
field of PC-covariates as the independent variable. The majority of the selected
point-covariates were located rather close to the target area, with very few
farther than 200 km. After a second-stage screening, 11 point-covariates and 8

PC-covariates were retained. The results showed that the mean of 500 D (mean
difference) values using PC-covariates was closer to zero than using
point-covariates both after a first-stage and a second-stage screening. The

means and extremes of the D-distributions revealed an advantage of employing a
second-stage screening whether using PC-covariates or point-covariates.

In the evaluator study, findings indicate that powers using the
meteorological covariates after second-stage screening were greater than those
using only the precipitation in the upwind controls as independent variables or
those stopped at the first-stage screening. If screening stopped at the
first-stage, powers using both upwind controls and the meteorological covariates
were greater than those using only the upwind controls, but the inclusion of
point-covariates did not improve the powers over using only the upwind controls.
Secondly, powers of simulation using PC-covariates (PC) out-performed those using
point-covariates (SR) whether upwind controls were included or not. Powers of
using point-covariates (SR) were the lowest among all the simulations compared in
both the first-stage and the second-stage screenings. After the second-stage
screening, powers at the 5% significance level of the simulation which employed
upwind controls were larger than those not using upwind controls.

The differences in powers between using PC-covariates (PC) and
point-covariates (SR) diminished after the second-stage screening. A closer look
revealed that, at the 5% significance level, PC after the second-stage screening
had better powers than SR except for seeding-effect model C; at the 10%
significance level both had similar powers. Interestingly, powers using
PC-covariates with upwind controls after the first-stage screening were greater
than those using point-covariates without upwind controls, even after the
second-stage screening. Powers of using PC-covariates or point-covariates
without upwind controls after the second-stage screening were generally greater
than those including upwind controls but stopped at the first-stage screening.
This means that a proper screening of covariates might offset a partial need for
upwind controls with an understanding that the inclusion of upwind controls is
definitely an advantage after the second-stage screening.

Generally, the use of meteorological covariates improved the powers of the

evaluation techniques. A second-stage screening to remove spurious variables was
found to be worthwhile; in addition, the use of upwind controls further ensured a
greater power. If the degree of spuriousness in the variables is unknown, then

the use of PC-covariates 1s recommended over point-covariates.
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The validity of using the historical comparison approach to evaluate weather
modification projects was studied. A number of statistical tests were employed
and the resulting distributions of P-values were compared by using a number of

pairs of long-term National Weather Service stations in Illinois. From these
distributions of P-values, no striking evidence of departures from uniformity was
apparent. Very few of the chi-square statistics were significant even at the

one-tailed, 5% level test, i.e., at a 10% two-tailed level. At most, there was
a very vague suggestion of a tendency to smaller P-values than expected from
uniformity. On the other hand, a high significance for too large P-values and
excessive dispersion of P-values was shown. It was difficult to reconcile these
two bits of evidence. As to slope comparisons, the findings suggested that
standard statistical techniques may not be valid with precipitation experiments;

however, the evidence was not conclusive. Five vs. five year comparisons
suggested that the standard tests were slightly radical, whereas 10 vs. 10 year
comparisons yielded apparently conservative tests. The present study of 100

years of Illinois precipitation data has not resolved the issue which it
addressed. At best, we may conclude that the standard statistical techniques of
comparing operational with historical precipitation are not blatantly invalid.
However, it is impossible to say whether their error rates are very close to the
true ones or whether they deviate conservatively or radically. More study 1is
needed to resolve these issues.
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APPENDIX A

Statistical Techniques

Details of the statistical techniques used in the simulation studies are
described in this appendix. They include double ratio, multiple regression,
principal component regression, two regressions, and sum of rank power tests.
These are techniques found to be more promising after the inital Kansas
simulation. Two techniques, factor analysis (FA) and canonical correlation
analysis (CCA), were not studied as intensively as others due to limited time and
funding, and a preliminary simulation using FA and CCA was carried out only in
the Kansas simulation. More research on better application of FA and CCA needs
to be carried out, and they were not described here.

The assumptions and the hypotheses relevant to the testing and estimating of
the seeding effects are discussed. Formulas for test statistics are given, and
remarks on their usage are included.
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Double Ratio Test

Suppose that Xl’ T Xn/ Xn+1r T T Xn+m' and Yl'___'

Yo, Yoy, ————, Yo, are two samples collected in a target area
and a control area, respectively, where n(m) is the number of
time units during the historical (seeding) period.

A double ratio (DR) 1is defined as

X ?m
DR = () (=) (1)
3, / 0 .
where
m n
T = 13 +.,'}En=%z X,
m m -7 0¥l i=1 s
m n
s _ 1 = _ 1
m T m §=1 Yori > Yn T n §=1Yi
DR can also be expressed as
im 2n
DR = (=) = (2)
7, / (Yn)

In order that DR be used to assess seeding effect, we need

to assume implicitly either one of the following two assertions:

(A) Had no seeding been carried out, the temporal relationship
of average events in the target area during the historical
period and the seeding period would be identical to the
corresponding temporal relationship of average events in
the control area. (This can be seen from (1). by putting

DR =1.)
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(B) Had no seeding been carried out, the areal relationship
of average events in the target area and in the control
area during the historical period would be identical to the
corresponding areal relationship of average events during
the seeding period. (This can be seen from (2) by setting

DR = 1.)

Hypotheses

H, : DR = 1,

le DR > 1.

Suppose either one of the assertions (A) or (B) holds, if
there is no seeding effect, DR is close to one. Therefore,

a one-sided test procedure is as follows: Reject Hy, if DR is

too large.
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Multiple Regression

Suppose that X;, —---, Xn' Xn+1’ -——y Xn+m' and YIJ: ==
tha Yi%l f-—=, Ygﬂu + j=1, ---, k, are samples collected respec-

tively in the target area and in the fE control area, where n(m) is the

number of time units during the historical (seeding) period.

Model

_ 1
X; = By + BY. T+ BY,

24wy K e, iml, 2, -o ()
where p;'s are assumed to be independent random variables with zero
mean and identical wvariance. It is assumed implicitly that each

Yf is constant, i.e., no measurement error nor random variation.

The regression coefficients, B, Bi, -- Bx , are fitted by the

usual least squaresmethod for the historical data. In order that

the above model can be applied to detect seeding effect, we assume

that:

(A) Had no seeding been carried out, the relationships of
events between target area and control areas during the
seeding period can also be described by (1) with sufficiently

high resolution.

Hypotheses

HO: There is no seeding effect on events in the target area

during the seeding period.
H;: There 1is a positive seeding effect on events in the target

area during the seeding period.
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Suppose that assumption (A) holds, then (1) can be used to
predict events in the target area during the seeding period, or more

explicitly,

~ 1 2 | koL L

(2)

A

Under Hy, the predicted event Xi differs from the observed event
X; only by a random error. Various tests can then be applied to

s ~

X Y, (X X

n+l’ n+l )f == (X ¢ X )

those m matched pairs, (X n+m N+

n+2’ “n+2

e

to test whether the observed X;'s and the predicted X;'s come from
the same population. If this later claim is rejected, then Hy is

rejected.

Note:

(1) xi/ii can be used as an estimator of the ratio of change
due to seeding effects in the-:i.-E-Il time unit, while the confidence
interval of ii can be calculated by assuming normal distribution
of p's.

(2) For the wvalidity of using (2) to predict seeded events,
see Neter and Wasserman (1974).

(3) In general, control areas are adjacent to target areas;
therefore, a certain degree of interdependence (e.g., multicollinearity)
seems 1inevitable for (meteorological) events among control areas.

Therefore, the validity of model (1) needs to be established before using

the method of multiple regression (Hsu, 1978).
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Principal Component Regression

Suppose that X;, ---, X,, Xu:1, -———, Xupin, and NS R—
v.¢, Y,..% -——, Y, *+m=, d=1, 2, ---, k, are samples collected
respectively in the target area and in the dth control area, where n (m)
is the number of time units during the historical (seeding) period.

Denote by R the sample correlation matrix of Y % Y’2 -——=

4 14
Y* obtained from the historical data. Suppose that the rank of
R is r. Then from R we can obtain a principal component decompo-

sition of Y’'s as follows (cf. Morrison, 1976) :

'j = — . j= —_— .
Z4 Ajl Py * A-jz Py; + + AJ.IR,*,l 1, 2, , n;
j=1) 2) _= k (1)
where Z7;7 is the standardized Y;’, and(P,;,, --- P,,) ' is the ﬂf

principal component.

Model
vV, = B + B Pli + - +'B PSi'+ e, i=1; 2) --=-, n,
1 O 1 77\'1' = m . 1
s £ T . (2)
where V;. is the standardized X., X. 1is the RLQ largest eigenvalue

of Ry, and e.'s are assumed to be independent variables with =zero
mean and identical wvariance. It is assumed implicitly that each

P.. 1is constant, i.e., no measurement error nor random variation.

The number s, which indicates how many principal components are
included in the regression model, decides the magnitude of resolution

of the above model. Usually, only a small s is required to produce
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a satisfactory result. The regression coefficients, o, B, -——,

3 , are fitted by the usual least squares method for the historical
data. (2) can be expressed in terras of Zij as follows:
1 2 k

+ Yz Zi + ——= + Yk Zi + ei . (3)

In order that the above model can be applied to the seeding

period, we assume that:

(A) Had no seeding been carried out, observations in the
target area during the seeding period could be described

by (3) with sufficiently high resolution.

Hypotheses

H : There is no seeding effect on events in the target area
during the seeding period,
H,: There is a positive seeding effect on events in the target
area during the seeding period.
Suppose that assumption (A) holds, then (3) can be used to
predict observations in the target area during the seeding period,
or more explicitly,

_ 1 2 K -
= Yo t Yy Dyt ¥ ZT 4 -k Yk 2.7, i=n+l, n+2,

<>

-==, n+m ' (4)

o~

Under Hy, the predicted observation Vi differs from the observed V;

only by a random error. Various tests can then be applied to
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~ el

those m matched pairs (Vn+1"vn+1)’(vn+2’ Vn+2), -, (Vn+m’ vn+m)
to test whether the observed V.'s and the predicted Vi's come
from the same population. If this later claim is rejected, then

Ho is rejected.

Note:

(1) Vi/Vi can be used as an estimator of the ratio of change
due to seeding effects in the ith time unit. However, the confidence
interval of this estimator is not a trial thing to work out (cf.

Anderson, 1963).

(2) In the case of meteorological events, data of neighboring
areas are often commensurate with each other. So, 1instead of Ry,
one may want to start with Sy, the sampling covariance matrix, and
standardize all the observations by subtracting their means only.
Then proceedwith the rest as above. The advantage of this is that
sampling distributions of the regression coefficients By, 1, ———,

Bs, are much easier to derive.

(3) If there existsmulticollinearity between the observations
of control areas, Y's, then principal component regression possesses
certain advantages over the usual multiple regression (cf. Massy,

1965) .
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Two (Simple) Regression Lines

Suppose that Xlr___r an Xn+lr___r Xn+m/ and er___r Ynl
Yoi1, —-——, Yo are two samples collected in a target area and a
control area respectively, where n(m) is the number of time units

during the historical (seeding) period, and N, m are not too small.

Model

N .
Xi = BO + 8 Yi + e i=1,2, ===, n (1)
X =62 +-82 Y.+ e i =n+l, nt2, ---, n¥m  (2)
i o 1 i i . » ’ »

where e;'s are assumed to be independent random variables with zero
mean and identical wvariance. The regression coefficients Bé and éi
are fitted by the least squares methods for the historical data, While
the coefficients Bg and Bi are fitted for the seeded data.

Several test procedures can be performed to detect whether there
is a seeding effect or not. They are described in the following
paragraphs. First we discuss some parametric tests, then non-

parametric tests.

1) Likelihood Ratio Test

(A) Assume that, for 1 =1, 2, , n, (Xi, Yi) 4is an identically

and independently distributed (i. i. d.) bivariate normal random
2 2

G, O P,

vector BINORM (mx, my; X -

. 2 2 .
with m,, m, expected values, GX, Uy variance, and p
correlation coefficient; and for i = n+l, n+2, ---, n+m, (X

2 2,
x! O'y?

., Y.) 1is

i.i.d. BINORM (mx + c, my; a p) random vector, where ¢ 1is a
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constant. In other words, we assume that the seeding effect is

constant and additive.

Hypotheses
H0 C=o
H C>o

Bernier (1967) shows that the likelihood ratio test statistic

for the above hypotheses is asymptotically equivalent to the following

.. . ’ : _ : 2
A= [wen) Six ““’i) /{n Sli(]"\%) +m8§x(l-1r22))]:(m)/

(3)

2 2 2 .
where Slx’ S2X’ and SOX are the m.l.e. variances of X for the

historical period, the seeding period, and the two periods combined,
respectively; and Vi, VY2, Yo are the sample correlation coefficients
similarly defined. For m, n large, -2 loge. A is distributed as a

chi-square distribution with one degree of freedom. Therefore Hy is

rejected, if -2 loge. A is large.

Note:

(1) It is implicitly assumed that the variance of X (Y), UX (03), as
well as the correlation coefficient of x, y are identical during the

historical period and during the seeding period. Their equality must

be established beforehand.

(2) The assumption of normality may be achieved frequently by

suitably transforming X, Y; e.g., square root transformation, logarithmic

transformation, etc.
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(3) Usually m, the number of time units during the seeding period,
is relatively small. 1In this case, the asymptotical chi-square
distribution can not be used; rather, the exact distribution of the

likelihood ratio test statistic should be used, although it may not

be easy to derive.

(4) Under assumption (A), equations (1) and (2) hold, and Bi = B%.

The null hypothesis of testing ¢ = o is then equivalent to the

2 2 2

hypothesis of testing B; = 80. (In other words, constant ags Uy, p

during both time periods implies that the two regression lines are

parallel.)

11) t Tests
First we test the parallelism of regression lines (1) and (2),

i.e.,

Hypothesis 1

=8}

The statistic T; defined below may be used (Bernier, 1967);

3 2 .2 1t | PCI,
noefms2 2 B R
! ~
nSZ +m52

ly  BT2yf _ o
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where By = Y, Siyx / Siy" =1, 2 _ . (5)
. - 2 2 2 2
62 = (ma-i)” o [nSE (oY) s s, (1Y) (6)
Sli, 8 2 S 2 S 2 are the m.l.e. variances of X, Y for the

2x* "1y’ "2y

historical and seeding periods, respectively; and N and 1\ are the

sample correlation coefficients similarly defined.

(B) Assume that ey's are i. i. d. normal (o, o) .

Then under Hy and assumption (B) , T; has "approximately" a
student's t distribution with (m+n-4) degrees of freedom. We reject
Hy if T,;. is large.
. . . 1 _ ,2
Suppose that the above Hy 1s not rejected, 1.e., Bl = 61-
Then next we test whether the intercepts of these two regression

lines are identical, i.e.,

Hypothesis 2

H: Bo = Boz (=Bo)

The statistic T, defined below is used (Mielke et al., 1977)

2 - _T _a y _-
2 | {m+n) (1) S _
- — .2 -
(Y. -Y))
mn 2 1 :
where H = — = (8)
b 1y
~ nSIxy + rnS2xy
B, - > (9)
nSIY + mS2Y
2_[ 2 2 _ 2 2 2, ] Cay)
$€= nSlx__+.rnS2X B! (nsly.+ mSzy} (ﬁ+n 3) (10)
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il’ EQ’ Yl’ ?2 are the sample means of X, Y for the historical and
seeding periods, respectively; Sli, Szi, 813, 825 are defined as
before; and Si., Sixy are the m.l.e. covariance of X, Y for the
historical and seeding periods, respectively. Then under Hy and
assumption (B), T, has "approximately”™ a student's t distribution
with (m+n-3) degrees of freedom. We reject Hy, if T, is large.

Another test which compares the "central position" of the

regression lines is as follows (Bernier, 1967):

Hypothesis 3

. —'__ I— =.— - 2_ l_ 2 - .
ot X;'- By = X, - B"Y, and B, = 8] (=8,)
Iet
. an 172 X,-X = 8, (Y,-Y)) (11)
3 (mFn) 1+H . _
where 81 is defined in (.9), 9 in (6). Under Hy and assumption

(B), T3 has "approximately" a student's t distribution with (m+tn-4)

degrees of freedom. We reject Hy if T3 is large.

Note:

(1) The assumption (B) of normality may be achieved frequently by

transforming X.'s.

(2) T, and T3 are statistically independent (Bernier, 1967, pp. 38).
The only difference between T, and T3 is that of s and 0, which is
due to the difference of Hypotheses 2 and 3. T3 1is also a maximum

likelihood estimator.
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(3) In actual application, we often find that not all of the above
assumptions are satisfied. Cochran (1969) points out that when some
of these assumptions are violated, using only the historical data to
estimate the regression coefficients possesses some advantages over
using the pooled data. More explicitly, difference estimation methods
should be used according to the following three situations:

. _ .1
(1) Bo = Bo + constant

I.e., seeding effect is constant. Pooled data should be used in

estimating Bi in (7) or (.11).

(ii) 'Bg = ﬁé + constant + random variation
a) 1If EY1 = EY2 (here 1 (2) refers to historical (Seedingjl)

No preferred method.
b) If EY; # EY,, am L o< 0% 052 - 2, use historical data,

otherwise use pooled data.

2,.. _ .1
(iii) 80(1) = BO

-y

+ constant + 6Yi+n + random variation, i.e
seeding effect in the (i+n)th time unit 1is proportional
to the (i+n)th event in the control area. In this
situation, only historical data should be used to estimate
the regression coefficients. If pooled data are used, the
resulting estimates will be biased.

To sum up, if é% and a% differ significantly and if the
interpretation in situation (iii) seems reasonable, only historical

data should be used to estimate the regression coefficients.
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111) F Tests

The approach used here is that of the linear hypothesis in
linear model. Assuming the same model as in (1) and. (2), first we

test the parallelism of these two regression lines.

Hypothesis 1

The statistic F; defined below is used (Wilks, 1962),

SSEO —SSE1
F1 * SSE_/Gamn-d) | (12)
where
. : 2 , :
sse=§:'[(x -X) -8 (v, - T " X, 20 71"
1 =1 i 1 i i ] +._Z (Xi - Xz) = B](Yi'Yz) . (]3)
i=n+1 _ N
n _ - I n+m _ N 72w
SSE, = L) (XX} - 8 (Yi-Yl)] YoiEn [(xi"xz) - 8 (YI-YZ)] )
gl éz are defined in (5) é in (9), and %,, X, Y., ¥
1! 1 14 1 . ] l} 2: l! 2)

similarly defined as in (11).

Under H and assumption (B), F, has an F distribution with (1,
m+n-4) degrees of freedom. We reject Hy if Fy, is large.

Next we test whether the two regression lines are identical or

not.

Hypothesis 2

| 1 _ o2  _
Ho Bo = Bo (= Bo) and B1 - B1 (= Bl)
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Let
(SSE-SSE,}/2 '
F, = : (15)
SSE]/(m+n-4) .
m+n _ A _ 2
where SSE = iil X, =X .- Bl(Yi_Yn+mﬂ o (16)
I mn _ .n+m 2 - 2
= - - ' 1
By =1Ly XY (mndX Y By YG  (mlY - an
and in+m .?n+m are the sample means of X, Y of the combined samples,
respectively. Under Hy and assumption (B), F, has an F distribution

with (2, m+n-4) degrees of freedom. We reject Hy, if F, is too large.

Note:

(1) As in the above, the assumption (B) of normality may be achieved

by making a suitable transformation of X's.

(2) t tests and F tests are closely related in theory. F tests are
exact tests, while t tests utilize some estimation in defining test
statistics. For large sample sizes m, n, these two kinds of tests
probably will not display too much difference, but for small or

moderate sample sizes, they might behave differently.

(3) The approach used in this section can easily be extended to the
cases of two multiple regression lines, or three or more regression

lines.

IV) Non—-Parametric Test

Assuming the same model as in (1) and (2), we test the

parallelism of these two lines as follows:
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Hypotheses
1,2
H0 B'1 __Bl
S
Hy 5 6] <8

(C) Assume that no two Y.'s in the historical period are equal and no two Y.'s

in the seeding period are equal.
(D) Assume that as m—o , nfm—oosome constant.
(E) See Assumption 5B in Potthoff's paper, p. 302.

Define (Potthoff, 1974)

m

W= (;)-](m)-liEk 3 M) (18)

where h(x) =E? if x%o

1 if x»o0
-1 ) -l
and Vipip = Kovg ™ Xaeg) Oosg Y oug) X %) =Y)
Potthoff shows that, under Hp and assumptions (C), (D), and (E), as

m, n large, the statistic
NP, = - 2m+5 -1/2
| [“ & ] TEntaT)? ' (19)

has a standard normal distribution. We reject Ho, if NP, is large.

Note:

(1) Assumption (C) can also be interpreted as that the probability
of two Y.'s having the same value is virtually zero. In the real
world, this often is the case, provided that measurement precision

of the instrument is taken into consideration, no matter how small

it is.

(2) For the present test, the requirement of identical variance of
e;'s can be lessened so that those e.'s in the historical period

have an identical wvariance, and those e.'s in the seeding period have

another identical wvariance.
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(3) Assumptions (D) and (E) are needed only to prove the asymptotic
normality of W. If we are interested only in the case of small

sample sizes, they are not required.

(4) In the same paper Potthoff also proposed a non-parametric
statistic for testing the equality of two intercepts after accepting

the parallelism, but its properties have not been fully studied yet.

Overall Remarks:

(1) Depending on the test used, equality of the two residual
variances might need to be established before further testing. This

can be accomplished by the usual F test.

(2) The independence of e;'s needs to be verified after the fitting.
Some test procedures are specifically designed for such verification.
For example, the Durbin-Watson test may be performed to test whether
there exists a serial correlation between e.'s (cf. Neter and

Wasserman, p. 358-361).

(3) Moran (1959) has suggested using X;-Y;, and X;+Y; instead of
Xi, Y; in fitting the models (1) and (2). In fact this will reduce
the residual variance by a factor of (1—61)2, which is < 1, if the
correlation between X and Y is positive. In turn, the estimation of
regression coefficients will be more accurate. This substitution

may be applied to each one of the above tests.

Sum of Rank Power Test

SU.ppOS@ that Xil 7 an Xn+ll - Xn+mr and Yll 4 an
Yos1, ———, Yo are two samples collected in a target area and a
control area, respectively, where n(m) is the number of time units

during the historical (seeding) period.

For i = 1, --—-, n+m, let
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= Xi/Y;

i.e., R. 1is the ith target-control ratio.

For each j

sample of

statistic

=1, ---, m, let a. be the rank of R . in the combined

R1, Ry, -y, Ra, Izﬂ,———, ij. A sum of rank power

is then defined as

iy
Ar = I (ai)r, for r=1, 2, 3
B, = I o, |, for r;l, 3
c, = Z'SIGN(Di)IDi[ , for r=2, 3
where summation is over the seeded sample; D. = a.-(N+1)/2, with N

the total number of observations; and SIGN(a)=1, 0, or -1, according

to whether

a is >0, =0, or <O0.

In order to use these statistics to assess a seeding effect,
we assume that
(A) Ri, Ry, -—-—, R, are independent, identically
distributed with distribution function F (x)
(B) Rut1, Rpizry———, Rpim are independent, identically
distributed with distribution function G (X)
(C) G(x) = F(x-a), a=20
Hypotheses
Hp:a=0
Hl: a>>0
Then under assumptions (A)-(C), a test procedure is as follows:

Reject Hp, 1if the statistic is large.
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Power Curves of High Power Test Statistics

Power curves of the high power statistics as discussed in the simulations
are shown below. Values along the horizontal axis are nominal significance
level, and values along the vertical axis are values of power. In each figure,
there are four curves. From bottom upward they are power curves corresponding to
10, 20, 30, and 40% seeding-imposed changes, respectively. The only exceptions
are those corresponsing to varying changes in the ILL-ST simulation studies,
(either with or without meteorological covariates). In these figures, the three
solid curves correspond, upward, to powers of seeding effect models C, A, and E,
respectively; and the dashed curve corresponds to powers of seeding effect model
M. Notations in the figures are self-explanatory except the following:

1) The four-digit number denotes the target-control setup used in the
simulation. The first 2 digits represent the county (or area) used as
'target, ' the next 2 digits represent the county or counties used as
'control(s)."' '99' or '88' generally denote the average of target or
control counties (or areas). The county (or area) numbers can be found
in the figures displaying the simulation study area.

2) N denotes the number of runs carried out in the simulations.

3) In the Montana simulation, MON(3) denotes that 3 years were selected to

form a seeded sample, and similarly MON(6) denotes that 6 years were
selected.

4) In the ILL-ST or I11-48 simulations, after the 4 digits (sometimes the
leading zero was omitted), the characters T, M, A denote, respectively,
that total rain, maximum rain, or average rain were used as responsible
variables.

5) 'ILL-ST,V denotes that varying seeding-induced changes were employed in
the ILL-ST simulation.

6) Some extra notations after the statistic in the ILL-ST simulation have the
following meanings: (PC, PV) denotes that the PC-covariates of the
meteorological covariates (or predictor variables) were employed; (SR,
PV) denotes that the point-covariates of the meteorological covariates
were used and were screened by stepwise regression.

7) "W and 'W+' both denote the sum of positive ranks (or signed rank test
statistic).
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