State Water Survey Division

SURFACE WATER SECTION AT THE UNIVERSITY OF ILLINOIS

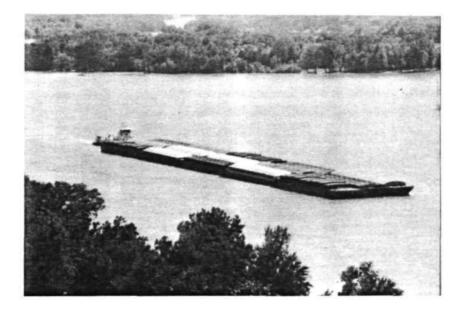
SWS Contract Report 269

RESUSPENSION AND LATERAL MOVEMENT OF SEDIMENT BY TOW TRAFFIC ON THE UPPER MISSISSIPPI AND ILLINOIS RIVERS

Submitted to: The Environmental Work Team Master Plan Task Force Upper Mississippi River Basin Commission

Submitted by: Nani G. Bhowmik, Principal Investigator

Prepared by: J. Rodger Adams, Allen P. Bonini, Chwen-Yuan Guo, David J. Kisser, and Margaret A. Sexton


1 September 1981

RESUSPENSION AND LATERAL MOVEMENT OF SEDIMENT BY TOW TRAFFIC ON THE UPPER MISSISSIPPI AND ILLINOIS RIVERS

Submitted to:

The Environmental Work Team Master Plan Task Force Upper Mississippi River Basin Commission

Submitted by:

Nani G. Bhowmik Principal Investigator

Prepared by:

J. Rodger Adams, Allen P. Bonini, Chwen-Yuan Guo, David J. Kisser, and Margaret A. Sexton

> State Water Survey Division Illinois Institute of Natural Resources Contract Report 269 September 1, 1981

CONTENTS

Abst	ract	1
Intr	ntroduction	
	Master Plan Studies	3
	Water Survey Involvement	6
	Lateral Movement Study Plan	8
	Acknowledgements	9
Back	ground Review	11
	Geology of Study Area	11
	Geological History Physiographic Divisions Characteristics of the Rivers	11 12 15
	Previous Navigation Effects Studies	17
Site	Selection	26
	Selection Process	26
	Description of Sites	28
Field	d and Laboratory Methods	39
	Surveying	39
	Track Determination Tow Velocity Determination Sampling Boat Repositioning Communications	39 42 43 46
	Sampling Equipment	47
	Suspended Sediment Samplers Current Meters	47 51
	Sampling Schedule and Procedures	52
	Suspended Sediment Water Velocity Measurement Other Data Collected	52 55 57
	Laboratory Analysis	59
	Suspended Sediment Concentration Particle Size Percent Volatile Solids	59 60 61

Page

CONTENTS (Concluded)

Page

Presentation of Data	62
Data Sheets	62
Suspended Sediment Water Velocity	62 63
Computer Data Entry	64
Description of Data Tables	64
Suspended Sediment Water Velocity Volatiles	64 66 67
Discussion of Results	68
Vessel Traffic Characteristics	68
Resuspension of Sediment	73
Event Records Statistical Analysis Summary Water Velocity	73 89 96 98
Summary and Conclusions	106
References	
Appendices	112

ABSTRACT

This is one of three field studies conducted by the Illinois State Water Survey on the effects of navigation on the Upper Mississippi River System. It is part of the environmental studies for the Comprehensive Master Plan for the Management of the Upper Mississippi River System. The master plan was requested by Congress to assist in determining the ultimate navigation capacity of the system, and specifically to determine the necessity and advisability of a second lock at Locks and Dam 26, Alton, Illinois.

Depth-integrated suspended sediment samples were collected at three locations on a river transect for 90 minutes after a tow passed. The primary study sites were Hadley's Landing, 13.2 miles up the Illinois River from its confluence with the Mississippi River near Grafton, Illinois; Rip Rap Landing, mile 265.1 on the Mississippi River; and Mosier Landing, mile 260.2 on the Mississippi River. The methods we developed worked well and were refined each time we collected field data.

Definite increases in suspended sediment concentrations were observed on both rivers. The increase was greater on the Illinois River than on the Mississippi River. The increases were also greater at the channel border sampling site than in the center of the navigation channel. The greater effect in channel border areas supports the hypothesis that tow traffic moves sediment laterally out of the navigation channel.

Due to the rescoping and truncation of the study from 29 to 16 months, the quantity of data is smaller than originally proposed, and the discussion and analysis of results are preliminary. Theoretical analyses

and mathematical modeling of resuspension and lateral movement of sediment by tow traffic was essentially eliminated in the rescoped project.

INTRODUCTION

As the environmental movement gained power and public attention in the 1960s, the U.S. Army Corps of Engineers began planning to repair, replace, or enlarge the locks at Locks and Dam 26, Alton, Illinois. This locks structure controls access to the Illinois Waterway and the Upper Mississippi River. The following description of the developments following a 1968 recommendation to replace Locks and Dam 26 is based directly on the introduction to the "Preliminary Comprehensive Master Plan for the Management of the Upper Mississippi River System" (Upper Mississippi River Basin Commission, 1981).

Master Plan Studies

In 1968, the District Engineer of the U.S. Army Corps of Engineers, St. Louis District, recommended a replacement project for Locks and Dam 26 providing for the construction of a new dam and two 1200-foot locks two miles downstream of the existing dam at Alton, Illinois. The Secretary of the Array approved the project, and in 1970 Congress appropriated funds for its design. Congress continued to appropriate funds for the project through fiscal year 1975.

On August 6, 1974, the Isaak Walton League, the Sierra Club, and 21 midwestern railroads filed lawsuits in the U.S. District Court to enjoin the U.S. Army Corps of Engineers from beginning construction on the Locks and Dam 26 replacement project at Alton, Illinois. The court ruling of September 5, 1974, stopped further actions toward construction until the U.S. Army Corps of Engineers obtained the consent of Congress and remedied the defects in the Environmental Impact Statement. In response to this ruling, the Corps of Engineers conducted additional studies which were

submitted to Congress and ordered to be printed August 26, 1976--House Document No. 94-584 (Board of Engineers for Rivers and Harbors, 1976).

Among other conclusions, the Chief of Engineers recommended that:

"Congress authorize the replacement of Locks and Dam 26 with a new dam and 110-foot by 1,200-foot main lock at a location two miles downstream from the existing dam, the design and construction of the new dam to provide for the addition of an auxiliary lock at such time as it may be authorized.

and

Congress authorize the Secretary of the Army, acting through the Chief of Engineers, in cooperation with the Departments of Transportation and Interior, the Environmental Protection Agency, and other interested Federal and State agencies, to make an economic evaluation and a comprehensive study of the river environment to determine the impacts of increased navigation which would result from provision of a second lock and submit a report to the Congress on the feasibility and desirability of constructing a second lock."

During 1976 and 1977, the Congress debated several bills to authorize the Corps of Engineers to begin construction of a replacement for Locks and Dam 26. Alternative navigation improvements were also being proposed. Because construction of a second lock would increase the river's capacity for waterway traffic, Congress would have to know the impact that increased traffic would have on the total river system and other modes of transportation. At issue were conflicts that had been brewing for decades: the demand for increased waterway commerce; environmental demands to preserve natural wildlife habitats and prevent damage to the rivers ecology; and the impact that increased waterway commerce would have on other modes of commercial transportation, most notably the railroads and trucking.

On October 21, 1978, President Carter signed into law P.L. 95-502 directing the Upper Mississippi River Basin Commission (UMRBC) to prepare a Comprehensive Master Plan for the Management of the Upper Mississippi

River System in cooperation with appropriate federal, state, and local officials. Under this law, the Master Plan is to be submitted to Congress by January 1, 1982, with a preliminary plan to be completed by January 1, 1981.

The UMRBC established a task force to prepare the first draft of the Master Plan-Plan of Study. They soon realized the time constraints of P.L. 95-502 did not allow sufficient time to properly answer the questions and concerns raised by Congress. On August 15, 1979, the Commission adopted a Plan of Study for the development of a Comprehensive Master Plan for the Management of the Upper Mississippi River System. The Plan of Study outlined a four year study effort, 19 months longer than P.L. 95-502 specified. In September 1980, Congress denied the UMRBC's request for a time extension, so the Commission rescoped all study efforts as necessary to meet the dates specified in the law.

During the development of the Plan of Study and the initial work efforts, appropriations for the Master Plan were made by Congress in three separate appropriation actions. A supplemental Fiscal Year 1979 appropriation of \$2,000,000 was approved in July 1979. Fiscal Year 1980 appropriation of \$4,000,000 was approved in October 1979, and a \$2,400,000 appropriation for Fiscal Year 1981 was approved in September 1980. A budget proposed for Fiscal Year 1982 is currently being considered through the Water Resources Council for \$1,000,000.

The Master Plan is intended to identify the economic, environmental, and recreation objectives of the river system. Specifically, the plan will guide and direct any future expansions of navigation capacity, including but not limited to construction of a second lock at Locks and Dam 26. The plan will also address projected effects of natural and man-

made activities on the system. Within this overall goal of balancing economic, environmental, and recreational objectives of the river system are two subgoals: 1) to develop technical recommendations, and 2) to develop a management framework for resolving differences between competing interests. Most of the technical questions relate to transportation and environmental issues specifically requested by Congress. These include:

- the navigation carrying capacity of the Mississippi River System;
- the effect of expanded navigation on national transportation policy and the railroads;
- the cost and benefit to the nation of expanded navigation capacity;
- an evaluation of the need for a second lock at Locks and Dam 26;
- the effects of disposing of dredged material in areas outside of the floodplain;
- the development of a study to determine the feasibility of a computerized analytical inventory and analysis system; and
- the effect that increased navigational capacity would have on fish and wildlife, water quality, wilderness, and public recreational opportunities (UMRBC, 1981: 1-4).

Lead members of the Commission were given responsibility for carrying out specific technical studies in these areas. Responsibility for the study of navigation effects was given to the Department of Interior.

Water Survey Involvement

In response to the Plan of Study, a consortium of researchers submitted a combined proposal to accomplish navigation effects studies on Pools 9 and 26 from May 1980 through September 1982. In November 1980, after Congress required the UMRBC to meet the original completion date of January 1, 1982, for the Master Plan, these studies were rescoped. The

rescoped studies did not include a comprehensive, consolidated final report, and field studies were curtailed so that the individual principal investigators could submit final reports by September 1, 1981. This reduction in project duration from 29 to 16 months severely limits the amount of analysis and model development by the principal investigators.

The Illinois State Water Survey has conducted studies on several tasks in each phase of the navigation effects program.

Phase I. Literature review and impact analysis based on existing information.

This was a joint effort by the Water Survey and the Illinois Natural Histsory Survey. A literature review was completed in September 1980 and a revised report was submitted in May 1981 (Lubinski et al., 1981). A report which proposed studies to provide data to address information gaps about the effects of navigation on the physical, chemical, and biological regime was submitted in December 1980 (Lubinski et al., 1980).

Phase II. Reconnaissance and selection of sites for site specific studies.

A report on the bed material characteristics and channel geometry of the 80 miles of the Illinois River in Pool 26 was submitted in July 1981 (Schnepper et al., 1981). This task was done by the Water Quality Section of the Water Survey.

Phase III. Impact studies at selected sites.

Three separate but related studies on the physical effects of navigation were performed by the Surface Water Section of the Water Survey.

- Determination of the Magnitude, Nature, Energy Content, and Patterns of Waves Caused by the Movements of Various Types of Commercial and Recreational Vessels on Pool 26.
- Determination of the Water and Sediment Inputs to Selected Side Channels and/or Backwater Lakes Associated with the Passage of Large Commercial and Recreational Vessels in Pool 26.
- 3. Determination of the Extent and Magnitude of Lateral Movements of Sediments Associated with the Movements of Recreational and Commercial Vessels in Pool 26. The results of this task are detailed in this report.

Lateral Movement Study Plan

Given the task of determining the lateral movement of sediment, a hypothesis was set forth in the research proposal: "Movement of Commercial and Recreational Vessels in a Waterway Moves the Suspended and the Bottom Sediments in a Lateral Direction." Our objectives, therefore, were to test the hypothesis in the following manner:

 To collect a set of data on suspended sediment at a section in a reach of the river to try to answer the following questions: Does the suspended sediment move laterally during the passage of a barge? If so, what are the timelags and the intensity of distribution? What kind of materials are suspended or is it a redistribution of the suspended load? How much time does it take before the increased concentration either settles down in the bed or moves downstream with the water?

- 2. To determine the effect of this lateral movement of suspended sediment on the sedimentation rates in the backwater lakes.
- 3. Make an attempt to develop a mathematical model of the lateral movement of sediment due to river traffic.

The remainder of this report will detail the steps taken to accomplish these objectives. After a background review and discussion of site selection, the field and laboratory methods are explained. Presentation of the data follows, along with a discussion and analysis of the results. The rescoping of this study reduced the number of field data collection trips from 12 to 5 and eliminated the time for model development.

Acknowledgements

This project was conducted under the administrative guidance of Stanley A. Changnon, Jr., Chief, Illinois State Water Survey, and Michael L. Terstriep, Head, Surface Water Section.

Allen P. Bonini did an outstanding job organizing and coordinating field trips involving four boats, 10 to 14 people, numerous motor vehicles, and a vast amount of supplies and equipment. He was ably assisted by William C. Bogner. Other section personnel included William Fitzpatrick, D. Kevin Davie, Richard Allgire, and David Jennings. Several regular employees and students joined our group for one field trip. David Kisser supervised the surveying and tow tracking, developed the sampling station location system, and made arrangements for radio communications.

Thomas E. Hill and Thomas E. Walkowiak of the Water Quality Section in Peoria contributed to the success of several field trips. The Water Quality Section also provided two fully equipped boats for each field trip.

Margaret A. Sexton maintained the data files and prepared the data for computer entry by members of the Data and Information Management Unit. Arthur L. Sims of that unit prepared the data tables for this report from our computer data files. C. Y. Guo, Graduate Research Assistant, did the data analysis and developed the programs for computer plotting of the velocity and suspended sediment data.

The suspended sediment samples and bed material samples were analyzed under the direction of Michael V. Miller, Head of the Analytical Chemistry Unit's sediment laboratory.

Illustrations were prepared under direction of John Brother, Jr., and Pamela Lovett typed the camera-ready text.

BACKGROUND REVIEW

Geology of Study Area

Geological History

In the preglacial period, the Iowa River occupied the valley of the present Mississippi River from Muscatine, Iowa, to Grafton, Illinois. The preglacial Mississippi River followed a course from its present location near the Wisconsin-Illinois border to the present-day Illinois Valley near Hennepin, Illinois. There the Teays River, which drained much of Ohio and north-central Indiana and Illinois, joined the Mississippi River Valley from Hennepin to Grafton at the confluence with the Iowa River. The preglacial Missouri River joined the Mississippi near the present confluence. The brief review of glacial history of Illinois and the changes in major streams given here is based on reports by Cote, Reinertsen, and Killey (1969), and Simons et al. (1975).

During the Kansan glaciation, the western drainage system was forced to the east, and the Ohio River to the south, greatly reducing the eastern drainage area of the Teays River. The Iowa River occupied the present Mississippi Valley, and the Mississippi River occupied the present Illinois Valley.

The bedrock of the Illinois Valley was buried during Illinoian glaciation, forcing the Mississippi River westward into a temporary channel. Upon retreat of the glacier, the Mississippi River occupied the Illinois Valley and the Iowa River again occupied the Mississippi Valley. Melt water from the Illinoian glaciation deepened and permanently established the tributary valleys.

The Mississippi River was permanently diverted to its present valley when the Upper Illinois Valley was blocked during Wisconsin glaciation. Upon retreat of this glacier, the Mississippi River remained in it present valley draining the melt water from the north. The melt water from the northeast was drained by the Illinois River which permanently occupied its present valley. The wide river valleys formed by large quantities of melt water from several periods of glaciation are remnants of the ice age.

Physiographic Divisions

Following Leighton, Ekblaw, and Horberg (1948), most of Illinois is in the Central Lowland province. Figure 1 locates the study area and delineates the physiographic sections. The Lincoln Hills section is part of the Ozark Plateau province, and the other three sections are part of the Till Plains section of the Central Lowland province. The Illinois River is the boundary between the Galesburg Plain and the Springfield Plain.

The eastern edge of the Dissected Till Plains section is just north of the study area. This section covers northern Missouri and southern Iowa and extends just a few miles into Illinois between Keokuk and Hannibal. The Dissected Till Plains section is covered by drift from the Kansan glaciation which occurred early in the ice age. The area is in a mature state of erosion, and the drift sheet is thin, so the terrain reflects the ruggedness of the bedrock. Thick loess deposits from later periods of glaciation are present on the adjoining bluffs. The eastern boundary of this section is the western edge of the Illinoian drift sheet.

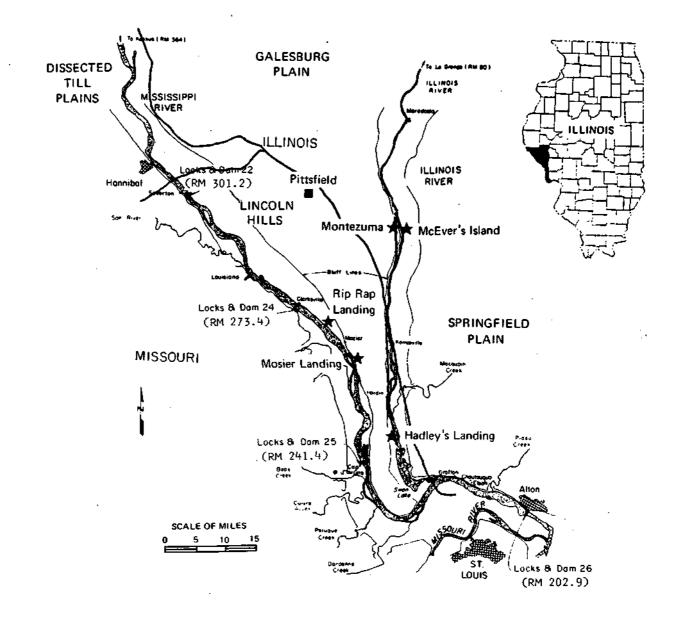


Figure 1. Location of study sites

The two subsections of the Till Plains section present in the study area are the Galesburg Plain on the north and the Springfield Plain on the east. The Galesburg Plain is covered by Illinoian drift. Since the Illinoian glaciation occurred after the Kansan glaciation, the Galesburg Plain is in a youthful stage of erosion, as compared to the Dissected Till Plains section. Since the drift sheet is thick and underlain by Kansan drift, most of the preglacial surface was buried, and only gross features of the bedrock topography are exposed. There are four moraines in this district, two near the drift border, a third parallel to the Illinois Valley, and a fourth in the central part of the region. The numerous minor valleys in the region are deep and youthful while the larger valleys are steep-walled, alluviated and terraced. The Galesburg Plain is defined by its Illinoian drift cover and its large, steep-walled valleys.

The Springfield Plain includes the level portion of the Illinoian drift and is distinguished by its flatness and shallow drainage valleys. There are two low, broad moraines present in the western area. The flat surface of the drift in this region gives rise to shallow valleys and streams with low gradients. Again, the thick Illinoian drift conceals the topography of the bedrock. Along the southeast side of the Illinois Valley there is a belt of thick loess deposits that thins to the southeast. The main difference between the Galesburg and Springfield Plains is the more sharply incised valleys of the Galesburg Plain.

The Lincoln Hills section is driftless with the exception of a few patches of Kansan drift in the north and heavy loess deposits in the south. The area lies above the junction of the Mississippi and Illinois Rivers and is bordered on the west by the Kansan drift and on the east by the Illinoian drift. Since the area is driftless, the features of the

bedrock can be seen in the rugged terrain. The central ridge is distinguished by the Lincoln Fold with large peneplains in the uplands. The central ridge is in a mature state of erosion and marked by outcrops of pre-Pennsylvanian limestones. The terrain is rugged and broken by ridges and closely spaced, narrow, steep valleys. The large valleys of the Mississippi and Illinois Rivers are deeply alluviated and terraced.

Characteristics of the Rivers

Early surveys show the Mississippi River channel on the extreme west side of the channel from Hannibal, Missouri, to Clarksville, Missouri, except for a few miles near Louisiana where the entrance of the Salt River had forced the Mississippi into the middle of the river valley. South of Clarksville, as the land separating the Mississippi and Illinois Rivers narrows, the west bank tributaries become increasingly significant. The Mississippi River is shifted toward the eastern bluff, which it follows to Alton, Illinois. The position of the river in its valley was determined during the glacial period and has not changed significantly in the last 150 years.

Though the position of the river within the floodplain has not changed, other characteristics of the Mississippi River have changed progressively with the development of navigation from the beginning of clearing and snagging around 1830 to the present time. The construction of locks and dams in the 1930s to establish the existing 9-foot navigation system began a process of adjustment from a free-flowing, though trained, river to a succession of pools controlled by the operation of the dams to maintain channel depths required for 9-foot draft vessels. In general, the effect of the locks and dams was to increase river widths immediately

upstream of a lock and dam and decrease river width immediately downstream. The river bed is degrading as sediment is being trapped in upstream pools. As a result of the higher water levels, creeks and tributaries to the lower reaches of each pool have been aggrading. The higher water levels also resulted in the formation of a number of islands and side channels as the floodplains were submerged.

The locks and dams have had little effect on the flood discharges and stages in the study area. The locks and dams decrease minimum stages directly below locks and dams and increase minimum stages above locks and dams (Simons et al., 1975).

The Illinois River shifts from a raid-valley position at Meredosia, Illinois, as the east bank tributaries become more significant, to the western bluffs. It follows the west bluffs until Hardin, where the influence of the Mississippi River forces the Illinois River to the east bluffs. Like the Mississippi River, the Illinois River has occupied its present channel since glaciation. The construction of Locks and Dam 26 has had little effect on the Illinois River in the study area. The area of the river has not changed significantly. No new islands were formed while major islands remained. The width of the river has not been affected by the higher pool level except near its junction with the Mississippi. The backwater from Locks and Dam 26 has submerged the floodplain for nine miles above the junction, increasing the width from 1000 feet to a maximum of 6000 feet. Further upstream, the width of the Illinois River remains unchanged. The control of the river stage has contributed to the increased rate of sedimentation in the extensive backwater lakes along the Illinois River (Simons et al., 1975).

Previous Navigation Effects Studies

Movement of any vessel involves a complex interaction between the vessel and the water body it traverses. Waves are the most obvious physical result of vessel movement. Propulsion, whether by jet, paddle wheel, or screw propeller, creates a turbulent jet and surge wave pattern which is easily observed and often rather dramatic. Several subtle effects occur, especially in restricted waterways, rivers, or canals. In restricted waterways the relationships between channel geometry and flow and vessel geometry, speed, and track are important factors that affect the magnitude of the effects of vessel traffic.

Plan and longitudinal section drawings in figure 2 indicate the many parameters and effects involved in vessel movement on a confined waterway. For this study, the geometric and propulsion parameters that cause resuspension, mixing, and movement of bed material particles are most important. Velocities below the barge convoy may be high enough to suspend bed material if the depth-to-draft ratio or the blocking factor (channel cross-sectional area divided by vessel submerged cross-sectional area) is small. Propulsion system jet velocities, turbulence, and jet trajectory depend on towboat horsepower, propeller characteristics (number, diameter, pitch, speed, and type) as well as the geometric ratios involving depth and area.

Liou and Herbich (1976) developed a numerical model of the velocity increase caused by a tow using the momentum theory of the propeller. They simulated the velocity distribution downstream of the propeller and obtained a shear velocity and shear stress on the channel bottom. From this, knowing data about a particular ship, the velocity distribution and the grain size of particles which will be moved can be obtained. Thus,

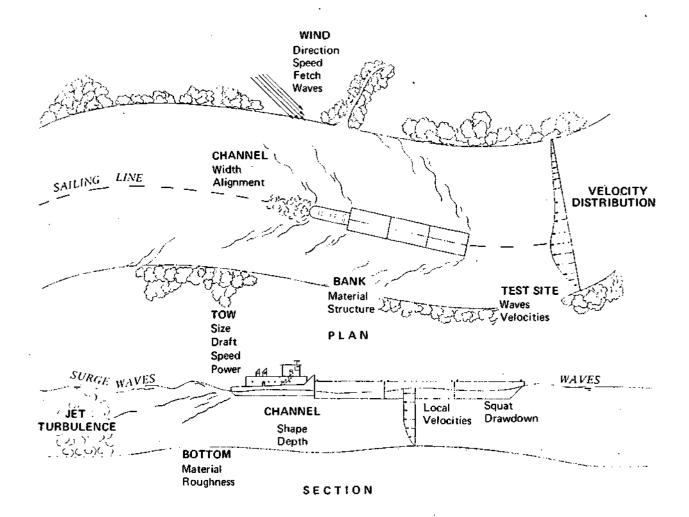


Figure 2. Physical effects of navigation

the resuspension of sediments by a particular barge can be estimated. These resuspended sediments may also be transported to side channels and backwater areas.

Fuehrer and Romisch (1977) presented information on propeller jet expansion behind a tow boat, including equations for calculating the flow velocities at the river bottom due to the propeller jet. Ballin et al. (1977) conducted a moveable bed model study of propeller jet effects on canal beds. They concluded that considerable scour can be caused by propeller jets, particularly by boats which are stationary, starting from rest, or maneuvering in restricted areas. A similar qualitative laboratory investigation was conducted at the Waterways Experiment Station (Maynard, 1977). For the 8-foot draft model tow, a 20-foot water depth was found to be the greatest depth at which significant movement of bed material was observed.

A program of field measurements was conducted on the Ohio River (U.S. Army Corps of Engineers, Huntington District, 1980) which included measurement of the effect of tow traffic on river velocity and sediment resuspension. This field data was analyzed and compared to theoretical calculations by Berger Associates, Ltd. (1980). They found that the propeller jet flow velocity has significant potential to resuspend sediment particles. At a site on the Ohio River,

"any 3,000 hp (or more) towboat, with a propeller diameter of at least 8 feet puts 100% of the particles into suspension. A small 2,000 hp towboat, with a 5-foot propeller diameter would only disturb 50% of the particles. Therefore, it appears that most of the towboats disturb 100% of the sediments right under the propeller axis.

The lateral distribution of the propeller jet flow velocity is such that the impacted area is 60 feet wide. For example, a 5,600 hp towboat disturbs from 90 to 100% of the sediment along a 40-foot wide strip, and leaves the sediment structure

unchanged outside a 65-foot wide strip." (Berger Associates, Ltd., 1980).

Tow traffic also causes drawdown, displacement currents, and backflow. These effects can also increase sediment resuspension and bank erosion. Gelencser (1977) defines drawdown surge caused by a passing ship in terms of the ship's length, beam, draft, velocity, the channel cross section, and the passing distance. He claims that shoreline damage below the water level is caused principally by drawdown. Fuehrer and Romisch (1977) give detailed equations for drawdown and backflow velocity in European canals due to barge tows. Ballin et al. (1977) also describe drawdown, return velocity, pressures on the channel bed, and squat of the vessels, based on model and prototype studies in West Germany.

Karaki and van Hoften (1974:2-4) describe the flow changes caused by a barge:

"Beneath the surface, a complex turbulent flow pattern is generated. (There is an increase in velocity of water beneath the boat relative to the mean velocity in the river.) The acceleration of flow depends on the proximity of the bottom of the barge to the river bed and is due to pressure differences created by the water surface profile along the sides of the barges. The interaction of the two flow patterns create a region of marked turbulence and increased velocities along the sides. The propellers of the tug also add turbulence to the already disturbed flow caused by barges. Depending on the proximity of the boat to the streambed and the sizes of bed material, a certain amount of bed sediment is either moved on the bed or suspended in the flow. The material in suspension will remain until the turbulence decays sufficiently for the material to settle out."

"With either a shallow draft or a deep channel, even though turbulence is generated around the towboats, the effect of disturbances on the riverbed is small. With deeper draft and less clearance between the keel and riverbed, which is the more normal situation with towboats on the river, a flow pattern with a large separation region at the sides and accelerated flow beneath the boat results."

The effects of barge traffic events on main channel and main channel border velocities, pressures and water quality were studied on the

Illinois River reach of Pool 26 and the Mississippi River in Pool 9 between August and October 1980 (Environmental Science and Engineering, 1981):

"The results of the analysis of the backwater velocity components indicate that near-bottom velocities were substantially affected by tow passage. Upstream tows frequently doubled or tripled the ambient backwater velocities for 2 or 3 minutes. Downstream tows readily reversed the river flow for approximately 2 minutes. The resulting upstream velocities frequently equaled or exceeded ambient downstream river speed. The backwater velocity changes produced by passing tows were generally between 0.5 and 1.0 ft/sec. Offshore components of the induced velocity frequently exceeded 0.2 ft/sec."

Environmental Science and Engineering (1981) compared their field data from Mississippi and Illinois River barge traffic events to calculated results from equations used on the Ohio River (Berger Associates, Ltd., 1980; U.S. Army Corps of Engineers, Huntington District, 1980). They found that these calculated results consistently underestimated the velocity generated by passing tows in the Mississippi and Illinois Rivers.

"In 82 percent of the cases, the model underestimated the measured velocity. For the data collected near shore (Pool 26, 40 feet from shore), the model underestimated the velocity by a factor of 2. The offshore velocities were underestimated by an average of 30 percent. This amount of error, however, is not unreasonable considering the number of parameters that influence the velocity field. Also, the measured parameters, such as the velocity, tow speed, distance from shore, etc., all have margins of error that could contribute to some of the scattering in the data points. . .

. . .since the model consistently underestimated the velocities, a correction equation was developed so that the model would better fit the data collected on the Upper Mississippi River system. . .The correction equation did not reduce the scatter in the data, but it did eliminate the bias toward predicting values that were too low. The final model results provide realistic estimates of backwater velocities that can be expected from passing tows.

Even though the model provides good estimates for backwater velocities, there are assumptions and simplifications in the

model development that limit the model's ability to describe the velocity generated by passing tows. The model is onedimensional, which means it only considers flow parallel to the river channel. The measurements indicated that passing tows frequently produce offshore velocities greater than 0.2 ft/sec. These velocities are not large, but they are approximately equal to the ambient river speed measured on Pool 26. The unnatural offshore component may be important in transporting sediments, eggs, or larvae into or out of the navigation channel. Also, the model uses a depth-integrated velocity technique which does not consider variations of velocity with depth. Since the velocity measurements on Pool 26 indicated the velocity near the surface may be 1.5 to 2.0 times greater than the velocity measured 1 foot from the bottom, the generated velocities from passing tows are undoubtedly greater at distances further from the bottom. Since the final model was calibrated with data collected 1 foot from the bottom of Pool 9 and Pool 26, it will still underestimate velocity changes at mid-depth or near the surface." (Environmental Science and Engineering, 1981)

Direct field measurement of resuspension of sediment due to tow traffic has been done on a limited basis. Aerial photographs of towgenerated turbidity plumes were taken by Karaki and van Hoften (1974) and Link and Williamson (1976).

Environmental Science and Engineering (1981) also measured light transmissivity during tow passage on the Upper Mississippi and Illinois Rivers. They observed a slight reduction in transmissivity in approximately 50 percent of the passages. However, the transmissivity was measured adjacent to the channel and not directly beneath the tow where impacts from the propwash would be the greatest. Based on their observations of tow-induced velocity changes, they conclude that tows do resuspend sediments although the environmental impact may not be great.

"Although tow traffic significantly changes the river velocity for a short period, the impacts on the sediments and river ecology may not be as great. Tow traffic, however, does contribute to increased resuspension of sediments. Fine sand (0.1 mm) can be resuspended as the velocity exceeds 0.8 ft/sec. Consequently, whenever the tow-induced currents in combination with the ambient river velocity exceed 0.8 ft/sec, unnatural resuspension of sediments will occur. Once the sediments are in suspension, they will remain in suspension because the ambient

river velocity is usually above the settling velocity for this size sediment. This occurrence, however, must be evaluated with knowledge that the natural river velocity frequently exceeds 0.8 ft/sec. Consequently, sediment resuspension and transport are continuous natural processes, and the added sediment resuspension potential created by river traffic may not produce significant impacts on the ecology of the river. The major effects of river traffic on suspended sediments will be to eliminate periods of relatively low turbidity that might occur during low river flow." (Environmental Science and Engineering, 1981)

The U.S. Army Corps of Engineers, Huntington District (1980) also used optical measurements to determine the amount and relative abundance of suspended sediment after tow passage. They measured transmittance across the tow wake once for each event using a towed beam transmissometer.

"Tow traffic effects on water clarity or opacity, as indicated by nephelometry and light transmittance, were significant only in clearer waters. Under more turbid conditions (storm-event runoff), changes in optical properties due to towboat traffic were less evident, if measureable at all. Changes in nearsurface lateral distributions of water clarity or opacity, as indicated by decreased light transmittance, were measured in the wakes of passing tows. This effect was usually limited to the overall width of the tow and varied according to ambient river conditions, type of vessel propulsion, and draft of tow. As a rule the more turbid the ambient river conditions, the less significant the change effected by tow passage. The open-wheel propulsion system increased turbidity more than the Kort nozzle system. Deep-draft tows caused more bottom disturbance than shallow-draft tows."

They concluded that the effects of tow traffic on the Ohio River are

only significant during low flow.

For a stream with the dimensions of the Ohio River, significant environmental impacts occur only in shallow areas or if tows venture outside the sailing line. Significant impacts occur only under low flow conditions. Effects on the river bottom are considered to be minor and confined to an area 60 feet wide beneath the tow. Only nominal stresses are introduced into the system as a result of displacement or backwater flow effects. Wave effects on shallows are considered to be nominal to minor." (U.S. Army Corps of Engineers, Huntington District, 1980) Berger Associates, Ltd. (1980) estimated the magnitude and duration of sediment resuspension expected from tow passage.

"In the worst case, it appears that duration of the disturbance added to the time of settlement after the disturbance averages five to ten minutes and rarely exceeds twenty minutes for typical Ohio River bed material ($d_{50}=0.5$ mm). The concentration of suspended sediment at the time of disturbance is also very insignifiant since the propeller jet flow velocity , as high as 6.5 ft/sec generates a very localized concentration of suspended sands of only 2.2 kg/m³, or 2,200 ppm."

Forty tow passages at sites on the Upper Mississippi and Illinois Rivers were monitored by Johnson (1976). He measured turbidity and suspended solids during normal pool conditions. Johnson concluded that "tow traffic on the Upper Mississippi and Illinois Rivers during normal pool conditions contribute to existing levels of suspended sediment measured as both suspended solids (a gravimetric measurement) and as turbidity (an optical measurement). Furthermore, it was found that lateral movement of sediments resuspended by tows and transported from the main channel to shoreward areas, including potentially productive side channel areas, does occur during normal pool conditions."

Many factors can affect the magnitude and duration of sediment resuspension due to tow traffic. Johnson (1976:126) observed the effects of speed and type of traffic:

"It appeared that faster moving tows had a greater effect on resuspending sediments than did slower moving tows. Also, multiple tow traffic produced additive effects and maintained previously elevated concentrations caused by prior traffic."

Barge effects can vary in different rivers and even in different sections of the same river, as Karaki and van Hoften (1974:26-27) noted.

"Large towboats caused greater resuspension of sediments in the channel than smaller pleasure crafts due to their size and proximity to the river bed. The Illinois River is more susceptible to these effects than the Upper Mississippi River because of the finer bed material and generally shallower

depths. Increasing river traffic will increase resuspension and thus turbidity at a rate proportional to the frequency of towboat.passage."

Berger Associates, Ltd. (1980) claim "the upstream tows generate a larger disturbance since their speed is decreased by opposite currents, whereas the propeller flow velocity is increased." Johnson (1976:125) observed longer recovery times for the Illinois River than for the Mississippi River.

SITE SELECTION

Selection Process

The original project scope allowed for coordination of site selection by the State Water Survey and Natural History Survey so that physical and biological studies would be conducted at similar, preferably the same, sites which would be typical reaches of the Illinois and Mississippi rivers in Pool 26. This coordination was not possible in the rescoped study plans. Primary and secondary site selection criteria were established as shown in table 1. The primary criteria for site selection were established to describe each potential site in sufficient detail to identify typical and similar sites. The secondary criteria were needed because of the number of personnel and boats and other requirements for conducting field data collection.

The site selection process began with the examination of topographic maps, navigation charts (U.S. Army Corps of Engineers, 1974, 1978), and hydrographic survey charts (U.S. Army Corps of Engineers, 1971, 1977). A number of possible sites were selected on each river. Aerial reconnaissance trips added greatly to our knowledge of river-reach geometry and potential site location and access. Each site considered suitable after the overflight was then visited by land. Two sites were selected on each river. The first site at which we collected data on the Illinois River was intended only as a place to test our methodology, and was not one of the selected sites. Also, the second site where we collected data on the Mississippi River was an alternate site.

Table 1. Site Selection Criteria

Primary Site Characteristics Typical 9 foot navigation channel Depth about 15 Representative width Natural or dredged channel Representative channel geometry and configuration Alignment Straight Representative radius bend No obstructions Wing dams Bridges Loading docks Fleeting areas Marinas/boat launches Ferry crossing Coincide with side channel site, if possible Possible site for intensive biological study Barges not coasting or maneuvering Secondary Site Characteristics Land access Vehicles Survey stations and related lines-of-sight Shore area For installation of wave instrumentation (Pool 26 only) Boat landing River access Boat launching site nearby Secure boat harbor for boats.

Description of Sites

The first field data collection trip, conducted to determine the practicality of the proposed field methods, was at mile 121.5 on the Illinois River. This site is in the LaGrange Pool, upstream from Havana, Illinois and is shown in figure 3. The survey stations were on the levee of the Thompson Lake Drainage and Levee District, opposite Quiver Island. Bed material data reported by Bhowmik and Schicht (1980:33) give median diameters of 0.38 mm at mile 118.0 and 0.40 mm at mile 124.0. The bed material at mile 121.5 is probably similar fine to medium sand.

On the second and third field trips, we collected data at Hadley's Landing, mile 13.2 on the Illinois River. Main channel bed material is sand with a median diameter of 0.47 mm. The bed material at one-half depth is sand, median diameter of 0.90 mm, on the outside of the bend and silt, median diameter of 0.038 mm, on the inside of the bend (Schnepper et al., 1981). A site map is shown in figure 4. The survey stations were located on the west bank where the road is close to the river bank. A channel cross section, looking downstream, is shown in figure 5. Figure 6 shows an aerial view of Hadley's Landing.

Since Hadley's Landing is on a bend opposite Twelve Mile Island, we searched for a straight reach on the Illinois River without an island. Two potential sites, McDonald's Daymark, mile 16.5, and north of Woods Branch, mile 35.5, were found to meet these criteria. Due to the limited number of field trips possible and the need to collect some data on the Mississippi River, data were not collected at either of these locations.

A search for sites on the Mississippi River was conducted from its confluence with the Illinois River at mile 218 to mile 296. No sites were found in Pool 26 that met our secondary criteria. Thus, we selected

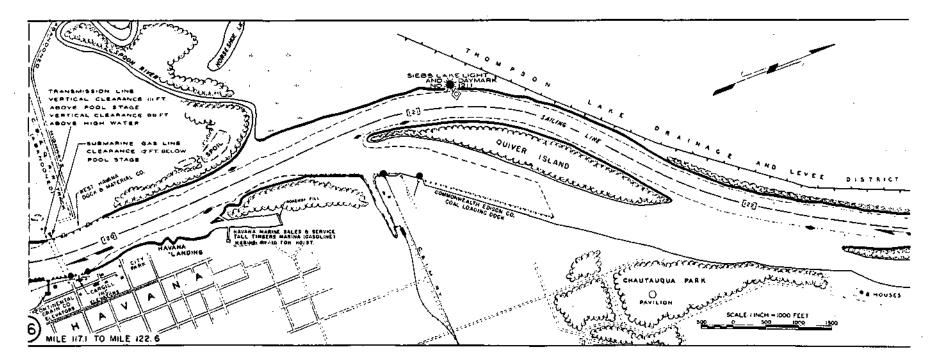


Figure 3. Site map at Illinois River mile 121.5

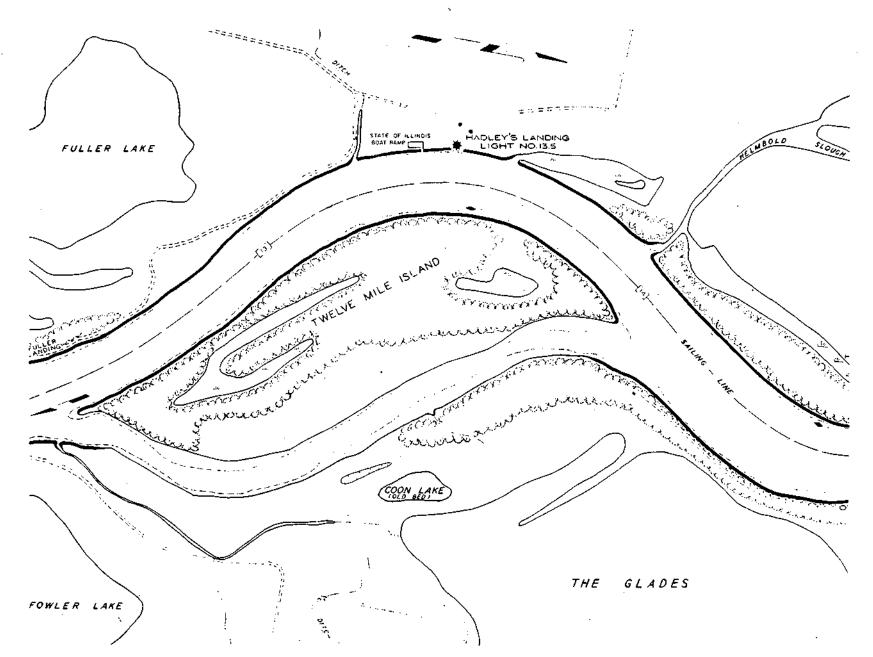


Figure 4. Site map at Illinois River mile 13.2

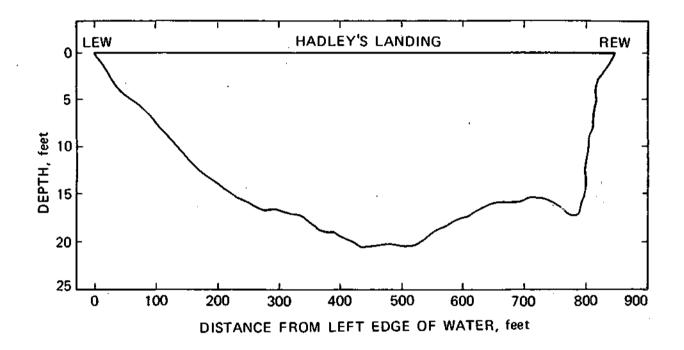


Figure 5. Cross section of channel at Illinois River mile 13.2

Figure 6. Aerial view of site at Illinois River mile 13.2

Figure 7. Aerial view of site at Mississippi River mile 265.1

several possible sites in Pool 25 that met both Che primary and secondary criteria. The channel reaches aC Che Cwo sices described below are typical of channel reaches in both Pool 25 and Pool 26 above the mouth of the Illinois River. There are only a few docks and loading facilities so the traffic density is the same.

Rip Rap Landing Conservation Area, mile 265.1, Mississippi River, between Belleview and Mozier, Illinois, was selected for our site on the Mississippi River. One survey station was at the parking lot in the left center of figure 7 and the other at the edge of the open field in the center of figure 7. A location map of Rip Rap Landing is shown in figure 8. Fourteen bed material samples were collected with a median diameter of 0.42 mm. The particle size values and uniformity coefficients are given in table 2. The river bed profile is shown in figure 9.

Sample #	Distance (feet) from LEW	^d 50	^d 95	<u>u</u>
1	1080	0.60	2.50	2.00
2	840	0.38	1.60	3.00
3	760	0.40	1.60	2.60
4	680	0.37	1.30	3.36
5	640	0.35	2.20	3.20
6	520	0.22	0.77	4.50
7	400	0.45	1.70	2.70
8	360	0.43	2.50	1.92
9	320	0.44	1.30	1.88
10	240	0.43	1.80	2.09
11	200	0.49	1.80	1.90
12	160	0.47	3.00	2.08
13	120	0.40	0.80	1.72
14	80	0.40	-	1.65

Table 2. Bed Material Particle Size, Mississippi River Mile 265.1

In May 1981, we intended to return to Rip Rap Landing for a second set of field data. However, high water prevented vehicular access. We

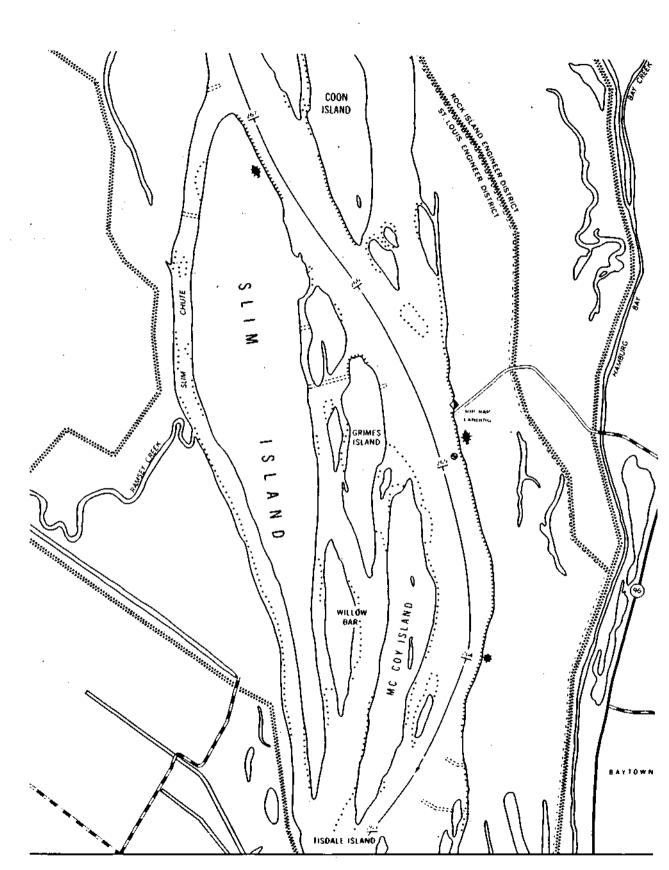


Figure 8. Site map at Mississippi River mile 265.1

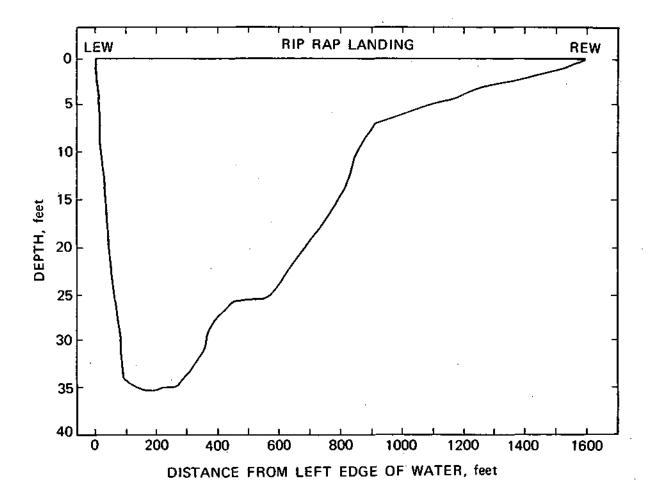


Figure 9. Channel cross section at Mississippi River mile 265.1

found the site at Mosier (Mozier) Landing, Mississippi River, mile 260.2, accessible. The location map of this site is shown in figure 10. The primary survey station and study transect are in the center of the aerial photograph in figure 11. A cross section from the hydrographic charts is shown in figure 12. A cross-sectional survey was not made because the river stage was dropping several feet per day and a water discharge, sediment load, and cross section measurement was not practicable.

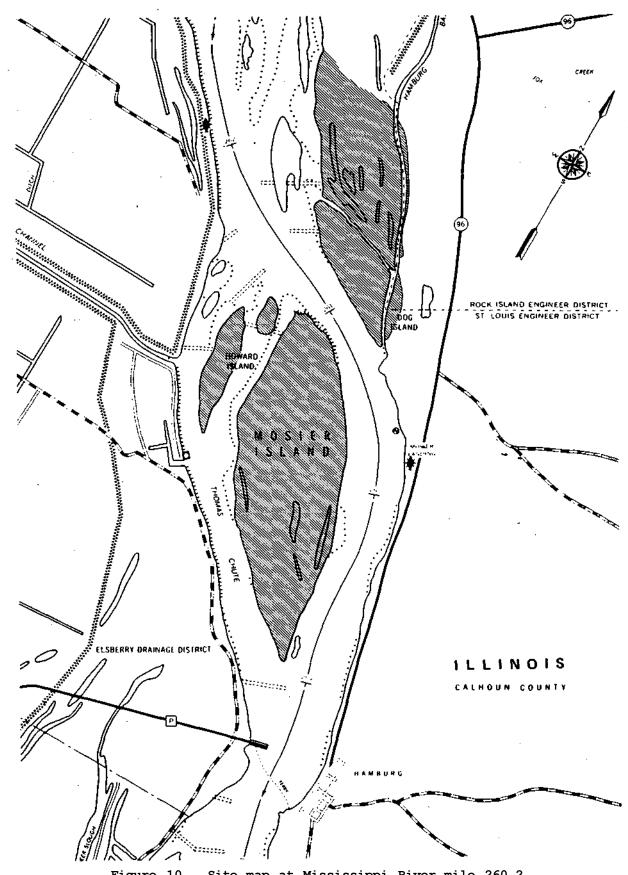


Figure 10. Site map at Mississippi River mile 260.2

Figure 11. Aerial view of site at Mississippi River mile 260.2

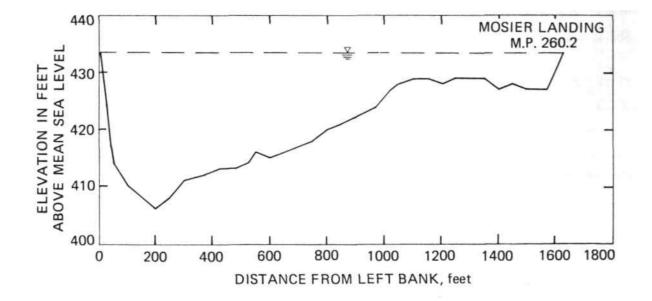


Figure 12. Channel cross section at Mississippi River mile 260.2

FIELD AND LABORATORY METHODS

Surveying

In the field, the survey team was responsible for four tasks. These were:

- Determine the track of both ends of each tow as it passes through the sampling area.
- Determine the average velocity of each tow as it passes through the sampling area.
- Develop a means of repositioning the sampling boats precisely and quickly after a tow passes and for background data collection.
- 4. Develop appropriate communications methodology and systems.

In developing procedures for these tasks, an effort was made to maintain simplicity and flexibility, while taking into consideration costs in terms of equipment and personnel.

Track Determination

A standard bearing intersection system of survey was used to determine the track of the tow. A baseline of sufficient length, usually eight hundred to fifteen hundred feet, was established on one shore adjacent to the sampling site. A semi-permanent marker was set at each end of this line. One of these was then referred to as the primary survey station, and the other was termed the secondary survey station.

It was desirable but not critical to have the baseline situated to allow a clear line-of-sight from end to end. Locations were selected which provided the greatest unobstructed view of the sampling area and channel approaches. We found that a one-half to one-mile section of the river could be viewed with little difficulty in most cases. This enabled

us to measure tow tracks which extended at least one thousand feet above or below the sampling sites.

After establishing the baseline location, the next task was to perform a site survey. This would define the shape and position of the shorelines adjacent to the sampling area and the locations of all datagathering instruments. The precise distance between the survey stations--the length of the baseline--was measured electronically, and routine land-survey procedures were employed to produce a site configuration base map. This map was reproduced in quantity and subsequently used to plot the track data for each tow, giving us a visual representation of events as they actually occurred in the field.

Given this basic set-up, the determination of track was accomplished relatively easily. For example: A tow was observed approaching one end of the sampling area. Tracking operations began as soon as the entire length of the vessel was observable from both survey stations. The basic device used to make our measurements was a Lietz TM-10C precision theodolite set at each survey station. Figure 13 illustrates the tracking procedure.

Each theodolite was zeroed on the opposite station, and this provided the index for all angular measurements. Horizontal angles were measured simultaneously from each station to a previously agreed-upon point on the tow--usually the centerline foresight mast which was present on the bow of the leading barge of most tows. These angles were measured to the nearest one minute of arc and recorded. The procedure was repeated for the stern of the tug, where the sighting point was usually the radar mast or the jack-staff.

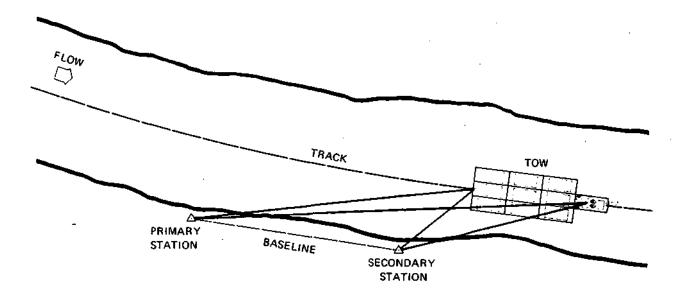


Figure 13. Tow tracking procedure

Figure 14. Tows passing near Hosier Landing

These angular measurements followed each other as rapidly as possible and were always taken in pairs. In other words, an angle to the bow from each station was measured at the same instant, and an angle to the stern from each station was measured at the same instant, forming a set of angles consisting of two pairs.

To make recording the angles easier and faster, a pocket-size, battery-powered tape recorder was utilized at each survey station. A running account of the tracking operation and the angular data was recorded and later transcribed.

This process continued at regular intervals until the tow passed from the observed area. At first glance this procedure seems cumbersome, but in actuality each pair of angles could be measured and recorded in about thirty seconds. Usually an interval of about one minute was left between sets of angles. This method proved effective even during multiple tow passages like the one shown in figure 14. The coordination between survey stations was maintained by continuous radio communication, and all actions were initiated and directed from the primary station.

A graphic depiction of each track was developed by plotting the point of intersection of each pair of angles on the base maps and connecting the resulting points. Having measured angles to both bow and stern, we were able to show differences in the tracks of each end of the tow.

Tow Velocity Determination

The speed of the tows was determined by timing the tracks. At the precise instant of measuring the first angle, bow or stern as convenient, a stop watch was started. The watch was stopped at the instant of the appropriate last angle measurement. The resulting elapsed time was

compared with the track length to obtain the average velocity. This calculation was usually performed at the same time that the tracks were plotted. Velocities thus determined were shore-relative. It may be desirable to adjust them for the effects of current. The velocity of the tows was actually a by-product of the bearing intersection procedure-another good reason why that system was adopted.

Sampling Boat Repositioning

For repositioning our three work boats in the proper location on the river, a method was developed which made no direct demands on the survey stations, requiring only the attention of the boat operator while quickly and easily providing for boat repositioning. Dubbed the "delta system," it consisted of a series of shore-based, color-coded visual guides. When aligned from the boat operator's viewpoint, these indicated exactly the correct position. Figures 15 and 16 illustrate the workings of this system.

In practice the delta system was set up in the following manner: The primary survey station was established near a line which constituted a channel transect, to which sampling locations were referenced. Two eight-foot-tall posts were erected on shore about one hundred feet apart and on the sample transect line. The post furthest back from shore was termed the index post, and the other was called the foresight post. These posts were brightly painted and set up to be clearly visible from the water. When the two posts appeared to be aligned, one behind the other, the boats were positioned on the transect line.

The boats were arranged and anchored along this line in the selected positions for sampling. Figure 17 shows the three work boats (A, B, and

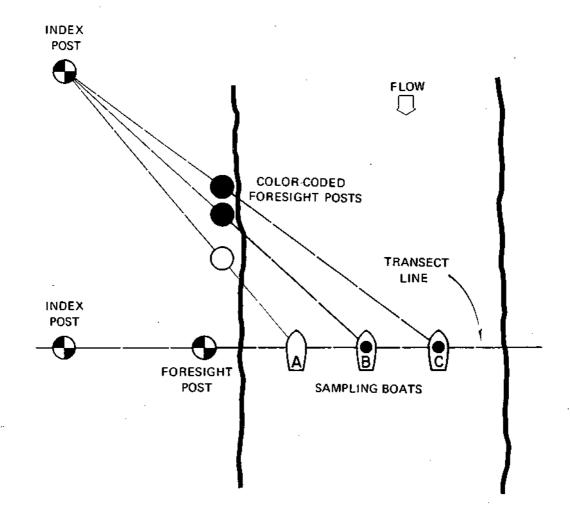


Figure 15. Delta post system

Figure 16. Delta post system viewed from boat

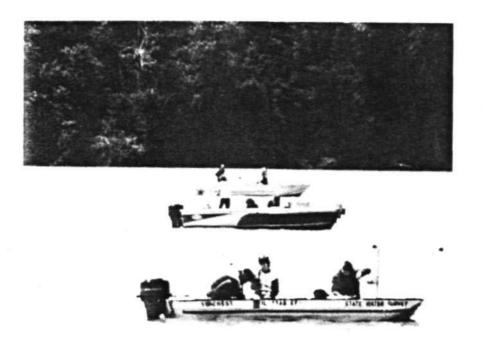


Figure 17. Sampling boats in position

C) in their sampling positions. Boat C was located in the main channel directly in the tow track, boat A was out of the main channel in shallower water (closest to shore), and boat B was located halfway between boats A and C on the transect line. At some convenient distance upstream, usually four or five hundred feet, another index post was erected in a clear area on shore. Between this post and the water, color-coded foresight posts were set. in positions which aligned with each of the sampling boats. This part of the system had a delta shape, which prompted the name. Each boat now had two sets of visual references for its correct position: one alignment defined the transect line, and the color-coded alignment intersected the transect line at the boat's correct position.

Here is an example of how the entire delta system was used. The sampling boats moved out into the channel as a tow passed. The boats moved upstream toward their positions, because steering into the current allowed more precise boat handling. With careful manipulation of heading and throttle, the boats could be maneuvered to the point where the transect line and the color-coded alignment intersected, which defined the appropriate sampling position. The boat was immediately moved directly upstream, taking into account the effects of wind and current, and the anchor was set. The boat was then allowed to drift back downstream and the anchor line was secured when the boat was in the correct sampling position.

Communications

Our communications network consisted of a hand-held citizen band transceiver in each sampling boat and survey station. They all had at least one frequency in common. The primary survey station was also

equipped with a vehicle-mounted, mobile transceiver with full fortychannel capability. The secondary survey station's hand-held unit was equipped with crystals for the common frequency and for a second frequency for use during tracking operations. Thus, the common frequency was available for communication between the sampling boats during tow tracking.

On trip five the secondary survey station also had a vehicle-mounted, forty-channel citizen band radio and the primary station had a marine band radio in addition to its citizen band radio. The marine band radio was used for communication with the tow pilots and the Coast Guard.

The primary survey station served as the coordinating facility since it commanded full-site overview and had the most powerful transceiver. Messages concerning operations and safety were relayed through this station.

Sampling Equipment

Suspended Sediment Samplers

Three different suspended sediment samplers were used for our study-the US DH-59, US P-61, and US P-72--which are standard samplers designed for the United States Geological Survey. The DH-59 was used in boat A for all five trips and boats B and C for the first three trips and part of trips four and five. The P-61 and P-72 were used in boats B and C for the last two field trips. The DH-59 was used in boat B for part of trip 4 and in boat C for part of trip 5 due to mechanical problems with the P-61 samplers.

The DH-59 consists of a streamlined bronze casting 15 inches long and weighing 24 pounds (11 kg). This sampler is pictured in figure 18. A



Figure 18. DH-59 sampler

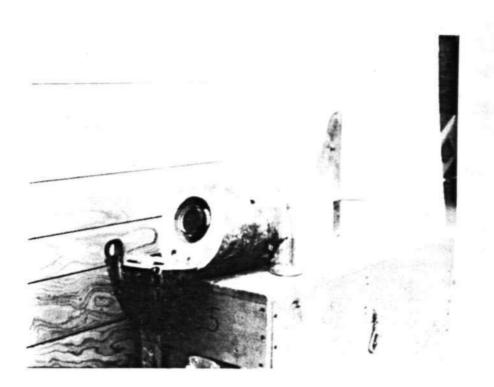


Figure 19. P-61 sampler

pint glass milk bottle is sealed against a gasket in the head cavity of the sampler by a hand-operated spring-tensioned pull-rod assembly at the tail of the sampler. The sample is collected through the intake nozzle (three nozzles are available: calibrated to 1/8, 3/16, or 1/4 inch inside diameter) and is discharged into the bottle. The displaced air from the bottle is ejected downstream through the air exhaust alonside the head of the sampler. Tail fins keep the sampler pointing into the current. The DH-59 is a depth-integrating sampler designed to accumulate a watersediment sample from a stream vertical at such a rate that the velocity in the intake nozzle is almost identical with the immediate stream velocity, while running the vertical at a uniform speed. The sampler collects and accumulates the sample as it is lowered on a rope or cable to the bottom of the stream and raised back to the surface, all at a constant rate. One drawback to this sampler is that it can be used only in depths up to 15-18 feet (Guy and Norman, 1970:5-6).

The P-61 consists of a 105 pound (48 kg) streamlined cast bronze shell, an inner recess which can hold a pint glass milk bottle or a quartsized jar, a pressure-equalizing chamber, and a two-position rotary valve operated by a solenoid which controls the sample intake and air exhaust passages. This sampler is pictured in figure 19. The P-72 is a lighter version of the P-61 which is cast aluminum weighing about 60-65 pounds. The sampler was suspended on a cable using a winch (B-reel) and crane apparatus, as shown in figure 20. The P-61 and P-72 are capable of taking either a point-integrated or a depth-integrated sample at depths up to 180 feet. For depth integration in depths around 30 feet, half of the vertical was sampled at once. For example, to sample the bottom half of the vertical, the sampler is lowered to the river bed. The solenoid is

Figure 20. Boat equipped with winch and crane to suspend P-72 sampler

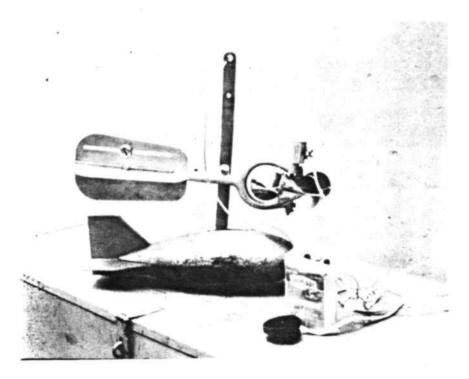


Figure 21. Current meter

energized, thus opening the intake and air exhaust passages. Immediately the sampler is raised at a constant rate to the midpoint of the vertical, where the solenoid is deactivated and the passages closed. The sampler is then raised to the surface where the sample bottle is removed. A point sample can also be taken by lowering the sampler to the desired depth, opening the nozzle long enough to get an adequate sample, then closing the nozzle at that same depth (Guy and Norman, 1970:7-8; Benedict, 1979:166). We experienced some difficulties with these samplers due to frequent malfunctions.

Current Meters

The meter used for our study to measure the velocity of the flowing river was the standard Price-type meter (see figure 21). This meter has a rotor with six cone-shaped cups mounted on a vertical stainless steel shaft. A pivot bearing supports the rotor shaft. The contact chamber houses the upper part of the shaft and an eccentric contact that wipes a bead of solder on a slender bronze wire (cat's whisker) attached to the binding post. We used the setting for the meter which completes this circuit once for every revolution of the rotor. The electrical impulse produces an audible click in a headphone. A tailpiece keeps the meter pointing into the current. The current meter was attached to a 30-1b. weight to keep it from drifting in the current. The meter was suspended with a cable attached to a winch (Steven's sounding reel) and crane apparatus. By placing the current meter at a point in the stream and counting the number of revolutions of the rotor (clicks) during a measured time interval, the velocity at that point is determined (Buchanan and Somers, 1969:4-6). The current meters were generally quite reliable;

occasionally problems occurred with debris clogging the meter and inaccurate readings due to high wind or boat waves.

Sampling Schedule and Procedures

Suspended Sediment

<u>Tow passage event</u>. When the bow of an approaching barge crossed our study transect line, a visible and audible signal was given by boat A as shown in figure 22. At this signal, stopwatches were started in all three boats. This stopwatch time was called "barge elapsed time" to denote the time in minutes after the barge passed.

Boat A was usually in its position on the transect when the tow passed. This was because their station was out of the main channel, thus they were well out of danger from the passing tow. Thus, boat A could begin sampling suspended sediment right away, while boats B and C remained a safe distance from the tow until it had passed, after which they could maneuver into position.

During the first thirty minutes after a tow had passed, one depthintegrated suspended sediment sample was taken every two minutes. For the next thirty minutes, samples were taken at five-minute intervals. During the last thirty minutes of the event, a sample was collected every ten minutes. A total of twenty-four samples would be collected per boat for the full ninety-minute sampling period for an event. If another tow arrived before the ninety minutes was up, it was designated a new event and the sampling routine was restarted.

When using the P-61 or P-72 sampler, this sampling schedule was altered slightly for the two-minute interval sampling period. Since two samples were needed to measure one depth-integrated vertical (half at a

Figure 22. Signal for the start of an event

Figure 23. BMH-60 sampler

time), each vertical was in reality sampled approximately once very three minutes. Also, boat C collected point samples at a specified depth between integrated samples. A four-event rotating schedule was followed for these point samples:

		Boa	ıt	С	Point	
		San	ıpl	е	Depth	
	event	.95	5 0	of	depth	
² nd	event	.8	of	Ē	depth	
³ rd	event	.6	of	Ē	depth	
⁴ th	event	.2	of	Ē	depth	

The schedule rotated so that for the fifth event, the depth was the same as for the first event. These depths are based on the surface being zero; thus .95 of the depth would be very near to the river bed.

<u>Background</u>. There were sometimes intervals of several minutes or even hours between barge events when no tows arrived. During those times, one depth-integrated suspended sediment sample was collected every thirty minutes at each station (A, B, and C). Boat C took a point sample at .95 of the depth for every other background sample, in addition to taking depth-integrated background samples. Background or ambient is used herein to denote conditions existing in the river on a particular day anytime a tow passage event was not being sampled.

At Rip Rap Landing (trip 4), samples were collected at several points (usually every twenty feet) along the transect line. These depthintegrated background samples were used to find the total sediment discharge at that cross-section of the river.

Water Velocity Measurement

<u>Tow passage event</u>. Velocity measurements were taken during tow events for trips four and five. Each work boat had a separate stopwatch for use exclusively by persons taking velocity measurements. If boat A was in position before the tow arrived, the crew would start the stopwatch (and velocity readings) about five minutes before the tow crossed the transect. The "velocity time" corresponding to the zero of the "barge elapsed time" was recorded later so the two times could be equated. Since boats B and C were not yet in position, they started their stopwatches when the tow crossed the transect and sampled on "barge elapsed time."

Once the boats were in position, the current meters were lowered to a fixed depth where they remained for the entire event. A four-event rotating schedule was used to determine these depths:

	event	.95	of d	depth
	event	.8 c	of de	epth
³ rd	event	.6 c	of de	epth
⁴ th	event	.2 c	of de	epth

Note that point suspended sediment samples were taken from boat C at these same depths.

When the current meter was in the water at the proper depth, the person monitoring the meter would begin to count "clicks" in the headphone. The number of clicks during each thirty-second interval was recorded, ie. as soon as the first 30 seconds had passed he/she would record the number of clicks, while at the same time beginning to count the number of clicks for the second 30-second interval. This procedure was continued until ten minutes after the tow had crossed the transect, or until ten minutes of measurements had been obtained (when readings were

begun a few minutes after the tow had passed, which was the case for boats B and C).

When all the thirty-second continuous readings were completed, velocity readings were taken each time a suspended sediment sample was collected for the duration of the event. (For the first thirty minutes of the event, readings were taken every two minutes; the next thirty minutes, at five-minute intervals; and for the last thirty minutes, at ten-minute intervals.) The "standard discharge method" of velocity measurement was used for these readings. This entails counting to an even ten number of clicks occurring in a period of forty or more seconds. The number of clicks and seconds were recorded (for example, 40 clicks in 47 seconds).

<u>Background</u>. Every time a background sediment sample was collected (every half hour before, between, or after events), background velocity readings were also taken. These readings used the "standard discharge method" counting an even ten number of clicks for forty or more seconds. Each boat crew took these readings at several depths at their station as follows:

- Boat "A" A normal discharge measurement at .2, .4, .6, and .8 of the depth.
- Boat "B" A normal discharge measurement at .1, .2, .3, .4, .5, .6, .7, .8, and .9 of the depth.
- Boat "C" A normal discharge measurement at .1, .2, .3, .4, .5, .6, .7, .8, .9, and .95 of the depth.

Velocity measurements were taken along the transect line (about every twenty feet) for a water discharge determination at Hadley's Landing and Rip Rap Landing. Velocity was measured at .2 and .8 of the depth at each point on the cross-section, using the "standard method" of measurement.

Other Data Collected

Particle Size. Suspended sediment samples were collected for particle size analysis from boats B and C on trips four and five during four events for each trip. A P-61 or P-72 sampler with a quart jar was used to take point samples at a specified depth. Several samples were collected at this depth and poured into a gallon plastic bucket until a full gallon was collected. Grab samples were also taken at the surface by dipping a pail into the water and filling three plastic gallon buckets. A different sampling depth was used for each of the four events for which particle size samples were taken:

Event no.	Sampling depth		
3	.6 of total depth		
4	surface		
9	.95 of total depth		
10	.8 of total depth		

This sampling schedule was rather flexible; if a second tow arrived, shortening the event to be sampled, particle size samples were collected during the next event instead. Three samples were collected during each designated event: the first after five minutes had elapsed (+5 minutes), the second at +30 minutes, and the last at +60 minutes. A one-gallon bucket was filled for each sample (except for the surface samples where three gallons were collected), so there would be three gallons of sample collected during each event (except event four, for which there was nine buckets).

Background particle size samples were also collected twice a day, providing no tows had passed within ninety minutes before the samples were taken. These samples were collected at two different depths each time.

One sample was taken at .95 of the total depth (one gallon) and the other was a grab sample at the surface (three gallons).

<u>Bed Material</u>. A US BMH-60 sampler was used to sample river bed material at Rip Rap Landing (trip 4). This is a 30 lb hand-line sampler 22 inches long, made of cast aluminum with tail vanes (see figure 23). The sampler mechanism is a scoop driven by a cross-curved constant-torque motor-type spring that rotates the bucket from front to back. The scoop, when activated by release of tension on the hanger rod, can penetrate into the bed about 1.7 inches and can hold about 175 cc of material. The bucket closes when tension on the hand line is released as will occur when the sampler comes to rest on the streambed (Guy and Norman, 1970:14-15).

Bed material samples were collected at several locations along the transect line at the same time cross-section discharge measurements were taken. Each sample was stored in a plastic ziplock bag for transport to the laboratory for analysis.

<u>Photographic Record</u>. A complete photographic record was taken of all of our sampling trips. Over 800 color slides were taken with a 35 mm camera. These included pictures of tow passage events, sampling boats, shore stations, and equipment. One multiple tow passage at Mosier Landing was photographed continuously from the first sighting until the tows had passed from the area. Super 8 movies were taken of the sites and boat locations on some trips.

Slides were also taken of our sites on aerial and land reconnaissance trips. Photographs were taken with infrared film on one of the aerial trips. It was hoped that resuspension of sediment would be evident in

these pictures, but possibly due to high water and sunlight reflection, no useful data was obtained from the infrared photographs.

Laboratory Analysis

Suspended Sediment Concentration

Suspended sediment samples were analyzed by the filtration method at the Illinois State Water Survey Sediment Laboratory. The methods used are after Guy (1969).

- Samples are checked into the laboratory as soon as practicable after they are received from the field:
 - Field information is transferred to laboratory forms and a laboratory number is assigned.
 - b. Bottles are weighed to the nearest 0.1 gram on a top loading electronic balance for sample volume determination.
 - c. Samples are stored in a cool dark room to inhibit evaporation and growth of algae or other organisms.
- Samples are stored long enough to allow complete settling of all suspended sediment.
- 3. After solids have settled, the volume of liquid is reduced by suction with a "J" tube to approximately 80 ml.
- The sample is vacuum filtered through 934 AH glass fiber filters held in gooch crucibles.
- 5. The weight of the sediment is determined by oven drying and weighing to the nearest 0.1 rag on an analytical balance.
- Appropriate calculations are made to determine the sediment concentration, in ppm, of the samples.

Particle Size

Suspended sediment and bed material samples were analyzed for particle size by the pipet/sieve methods in the National Handbook of Recommended Methods for Water Data Acquisition (U.S. Geological Survey, 1978). The analysis was conducted in the Illinois State Water Survey Sediment Laboratory as described below.

- I. Suspended sediment samples are composited from a given cross section and wet sieved through a 230 mesh (63 microns) sieve to separate the sand from the fine material. If the sand material weighs 0.5 gram or more, the sand is sieved. If the sand weighs less than 0.5 gram, the fraction is reported as a unit greater than 63 microns. If the fine material weights 0.4 gram or more, a pipet analysis is performed. If the fines weigh less than 0.4 gram, they are reported as a unit finer than 63 microns.
 - A. Sieve Procedure
 - Air dry sand is put on top screen of appropriate sieve stack and sieved on shaker with vertical motion for 15 minutes.
 - 2. The material retained on sieves is weighed to nearest 0.1 gram.
 - 3. Concentration and the percent finer values are calculated.
 - B. Pipet Procedure
 - Colloidal organics are removed by the sodium hypochlorite method.
 - Organic free sample is oven dried, weighed and dispersed by shaking the sample in a solution of calgon (50 g/L.) for 12 hours.
 - 3. Dispersed sample is transferred to pipet chambers and pipetted for 31, 16, 8, 4, and 2 microns according to a predetermined chart of sampling depths for given temperatures.

 Pipetted sample is oven dried and the weight of the fraction determined to the nearest 0.1 mg.

5. Concentration and the percent finer values are calculated.

II. Bed Material Samples

- Samples are air dried and split with splitters to appropriate size for 8 or 6 inch sieves. Samples are weighed to the nearest 0.01 gram.
- Samples are wet sieved through a 63 micron sieve and treated in the same manner as suspended material samples for sieve and pipet procedures.

Percent Volatile Solids

Suspended sediment samples were analyzed to determine the percentage of volatile solids present. This analysis was performed on every third background sample from trips 4 and 5.

The procedure for volatile analysis is identical to that for suspended sediment concentrations up to and including the filtering stage. After the sample has been filtered, it is dried in the oven at 105°C overnight. The sediment is cooled in a desiccator and weighed to determine the dry weight. The sample is then placed in the muffle furnace for 15 minutes at 550°C. It is cooled in a desiccator, weighed again, and the weight loss is used to calculate the percentage of volatile solids that were present in the sample.

PRESENTATION OF DATA.

Field data was collected according to the sampling procedures described in the chapter on field methods. Pertinent information for suspended sediment and water velocity data collection was recorded on the data sheets found in appendix A. These data sheets were copied on different colored paper for handling ease. A brief explanation of each data sheet follows.

Data Sheets

Suspended Sediment

LM/SC - All of the field trips for this report were main channel studies of lateral movement, designated LM.				
Trip no numbered consecutively 1-5.				
River mile pt at the study site.				
Date				
Event no Each tow passage was considered a new event. Events were numbered consecutively for each field trip.				
Local time - Military notation was used to indicate the time the tow crossed the river transect.				
Tow name				
No. of Barges				
Direction (U/D) - Indicates the tow is moving upstream or downstream.				
Draft (ft) - Indicates the maximum draft of the barges.				
Speed (mph) - Determined by tracking survey.				
Water temp. (°C)				
Air temp. (°C)				
Water depth (ft)				
Station Key - Indicates sampler type (DH-59 or P-61) and nozzle size used.				

Station - A, B, or C.

Bottle no. - Sample bottles were numbered consecutively each day.

- Time, min. elapsed Indicates time in minutes after the tow passed . the transect.
- Conc., ppm Suspended sediment concentration in parts per million. The code letter following some concentrations indicates:

B indicates a depth-integrated sample of the bottom half of the water column,

 ${\tt T}$ indicates a depth-integrated sample of the top half of the water column, and

P indicates a point-integrated sample at a specific depth.

Depth (open/close) - When using the P-61 to take B, T, or P samples, indicates the depth at which the sampler nozzle was activated and deactivated.

Water Velocity

LM/SC, Trip no., Date, Event no., Local time, Tow name, and Station -For explanation see section on Suspended Sediment Data Sheet.

Total depth (m)

- Sampling depth (m) Indicates the distance from the water surface at which the velocity was measured.
- Barge elapsed time (min: sec) The time in minutes and seconds after the tow passed the transect.
- Velocity time (min: sec) This time differs from barge elapsed time only when a separate stopwatch, started at a time other than tow passage, was used.
- Revolutions Number of "clicks" from the current meter, counted during a specific time period.
- Seconds Specific time period during which a corresponding number of meter revolutions is counted.
- Velocity (ft/sec) The water velocity was calculated based on the number of clicks per second.

Computer Data Entry

The box numbers included on the data sheets correspond to columns for computer data entry. Data were taken directly from the data sheets and stored in the CYBER 175 computer at the University of Illinois. All data were prepared for inclusion in the appendices to this report by the Data Management Unit with the computer system.

Description of Data Tables

Suspended Sediment

The concentration of suspended sediment during tow passage events is found in appendix B. Data was collected for 45 tow passages on five trips. Samples were taken at three stations on the transect (boats A, B, and C). Exceptions include trip 1 where samples were taken at only two stations, and trip 1 event 5 and trip 5 event 5 where data was collected only at station A.

The ninety-minute sampling schedule (described in this report in the section on field methods) was followed whenever possible. Sampling in boat A usually began 0-4 minutes after tow passage. Boats B and C waited until the tow had completely passed, then repositioned and began sampling after 4-8 minutes had elapsed. Gaps in the data tables sometimes occur due to problems in the sampling boat, such as difficulty in anchoring or mechanical difficulties with the samplers. Sampling did not continue for the full ninety minutes in several events. Usually this was due to the arrival of another barge tow and the start of a new event. A few events were ended early because of dusk, and trip 5 event 7 was terminated by a thunderstorm.

In the case of some multiple tow passages (close together in time although designated separate events), the stopwatches were not restarted.

In these cases, the elapsed time at the passage of the second (or third or fourth) tow would not equal zero. Rather, the elapsed time given for the event was based on the passage time of the first tow in the series. The elapsed time corresponding to the time of passage of these tows can be calculated from the local time of passage and is given in table 3.

		Time of tow passage
Trip no.	Event no.	(min. elapsed)
1	2	18
1	4	36
1	5	71
1	6	78
2	2	21
2	3	54
3	11	15
4	8	21

Table 3. Time of Passage for Multiple Tow Events

A few tow passages very close together in time were designated as one event. Two tows, traveling side by side, passed the transect at exactly the same time to make trip 4 event 9. Trip 5 events 3 and 9 were made up of three and two tows, respectively, passing very close together in time. The elapsed time for these events is based on the passage time of the first tow.

Mechanical difficulties with the P-61 and P-72 samplers were experienced in boat B for trip 4 events 5-10 and in boat C for trip 5 events 7-9. A DH-59 sampler was used for these events. Since the water depths at these sampling stations were too great to sample the entire water column with a DH-59, only the top 15 feet was sampled. These sample concentrations are followed by the letter T in the appendix.

Overall, the data for suspended sediment concentration is quite consistent. However, occasionally an unexpectedly high concentration is

given for a single sample. (Several of these occur in trip 4 event 6, station A.) This could be caused by the sampler landing nozzle-down in the river bed or on the lee face of a dune, or other factors beyond our control. It is difficult to separate such bad samples from those where the sediment concentration really is elevated.

Appendix C contains the background suspended sediment concentrations. Background samples were taken on all trips except trip 1, following the procedure given in the chapter on field methods.

Water Velocity

The water velocity data collected during tow passage events on trips 4 and 5 is given in appendix D. Water velocity was measured from all three work boats (A, B, and C) except for trip 5 event 5, where readings were taken only at station A.

The field procedure described earlier in this report was followed when possible. Boat A began velocity readings before the tow arrived when possible. For these readings, the elapsed time would be a negative number since all times are given in "barge elapsed time". Velocity measurements at stations B and C usually began somewhat later than suspended sediment sampling because a few minutes are needed to set up and lower the current meter.

Gaps sometimes occur in these data tables due to problems anchoring, debris clogging the current meter, etc. Generally speaking, the velocity data given here is quite reasonable and consistent.

The stopwatch was not restarted for trip 4 event 8. See table 3 for the time of passage for this tow. An explanation of shortened events and

multiple tow passages is found in the preceding section on suspended sediment data.

Background water velocity data for trips 4 and 5 are found in appendix E.

Volatiles

Percent volatile analysis was conducted on every third background suspended sediment sample from trips 4 and 5. These data are found in appendix F.

DISCUSSION OF RESULTS

Typical plots of suspended sediment and velocity are shown and discussed for the Illinois River at Hadley's Landing, mile 13.2, and for the Mississippi River in Pool 25 at Rip Rap Landing and Mosier Landing, miles 265.1 and 260.2, respectively. Site location maps and site descriptions are contained in the section on "Site Selection". Before a discussion of the field data on resuspension and lateral movement of sediment, a brief outline of traffic characteristics is presented.

Vessel Traffic Characteristics

Table 4 lists the name, size, horsepower, and type of propeller for the towboats we observed while we were collecting data. These tow characteristics were obtained from the "Inland River Record 1981" (Owen, 1981). Table 5 gives direction, draft, time, number of barges, and tow speed for each event. For trips 2 and 3 on the Illinois River, the average towboat horsepower was 2911. The horsepower ranged from 1530 to 5850. Ten of sixteen towboats had between 2000 and 4000 horsepower. Four towboats had Kort nozzles and the other had open propellers. All but one (which had three propellers) had two propellers driven through reduction gearing by diesel prime movers. On the Mississippi River during trips 4 and 5, the average horsepower was 3775. The range was from 1275 to 6450 horsepower. Seven of twenty-one towboats had Kort nozzles. Most of the towboats over 4000 horsepower had Kort nozzles. Two of the towboats had triple screws while the rest all had twin screws.

Tow size, speed, and time of passage were recorded for each event during the five field data collection trips. Additional size and time of

Table 4. Tow Characteristics

	No. of	Size	Power	Type of
Name of tow boat	screw	<u>(ft)</u>	(HP)	nozzle
Andrew Benedict	2	114×35	4100	Kort
Arthur E. Snider	2	152×34	3200	
Atlas	3	70×26	1275	
Barbara Jeanne Meyer	2	145×27	2200	
Betty Brent	2	135×32	3000	
Chicago Trader	2	90×32.1	1530	
Clark Frame	2	111.8×35	3200	
Colonel George Lambert	2	140×42	4200	Kort
Conti Afton	2	140×44	4200	
Craig M.	2	148×34.7	2400	Kort
Creole Belle	2	130×37	3900	
Fort Pierre	2	135×32	2800	
Frederick B. Wells	2	140×38	3800	
Gordon Jones	2	147×38.5	4200	
Hawkeye	2	150×35	4300	
Herb Schreiner	2	85×26	1700	
Irene Chotin	2	148×34.5	3200	Kort
Joanne				
John M. Warner	2	103×30.8	1800	
Kathy Ellen	2	150.8×34.8	3800	
Leviticus	2	147×37.9	4200	
Lillian Clark	2	180×52	6450	Kort
Luke Gladders	2	150×35	3200	
Lynn B.	2	148×34.7	2400	Kort
Magnolia	2	116×45	3800	
Marvin E. Norman	2	102×34	1800	
Mr. Joey	2	145×48	5600	Kort
New Dawn	2	140×42	5600	Kort
Nohab Express	2	91×30	3000	
Patsy Swank	2	141×38.5	3500	
Prairie Dawn	2	160×40	5000	Kort
Robin Mott	3	148×45	4800	
Rose Marie Walden	2	90×32	2400	
Sally Barton	2	116×27.5	2400	
Sierra Dawn	2	164×40	5000	Kort
Virginia E. Towey	3	140×45	5850	
White Dawn	2	156×35	3200	
White Knight	2	150×33.6	3200	
Yankton	2	125×28	2200	

Table 5. Summary of Events

Trip 1 at Havana Illinois River, mile 121.5

Date	Event	Local <u>time</u>	Tow name	No. of barges	Traffic direction	Draft <u>(ft)</u>	Tow speed (mph)
5/28/80	1	1321	Lynn B.	11	D*	-	7.2
5/28/80	2	1339	Magnolia	5	D	-	8.8
5/29/80	3	1113	Creole Belle	14	D	-	6.6
5/29/80	4	1149	Andrew Benedict	8	D	-	7.6
5/29/80	5	1224	Patsy Swank	9	U*	-	4.8
5/29/80	6	1231	John M. Warner	3	D	-	6.4

Trip 2 at Hadley's Landing Illinois River, mile 13.2

Date	Event	Local <u>time</u>	Tow name	No. of <u>barges</u>	Traffic <u>direction</u>	Draft <u>(ft)</u>	Tow speed <u>(mph)</u>
7/23/80	1	1520	Chicago Trader	6	D	8	5.4
7/23/80	2	1541	Herb Schreiner	12	D	9	3.9
7/23/80	3	1614	Marvin E. Norman	15	U	2	5.3
7/24/80	4	0959	Yankton	12	D	9	4.4
7/24/80	5	1145	Fort Pierre	15	D	9	4.6

Trip 3 at Hadley's Landing Illinois River, mile 13.2

Date	Event	Local <u>time</u>	Tow name	No. of <u>barges</u>	Traffic direction	Draft <u>(ft)</u>	Tow speed <u>(mph)</u>
9/23/80	1	1008	Andrew Benedict	4	U	9	-
9/23/80	2	1236	Leviticus	6	D	9	5.6
9/23/80	3	1454	Craig M.	4	U	9	4.0
9/24/80	4	1315	Irene Chotin	18	U	9	4.8
9/25/80	5	1015	Barbara Jeanne Meyer	8	U	2	5.4
9/25/80	6	1310	Luke Gladders	15	D	9	5.9
9/25/80	7	1450	Fort Pierre	12	D	9	4.1
9/25/80	8	1747	Virginia E. Towey	15	D	-	-
9/26/80	9	0950	Clark Frame	8	U	9	2.2
9/26/80	10	1115	Betty Brent	8	U	9	4.0
9/26/80	11	1130	Lynn B.	12	D	9	5.9

Table 5. Concluded

Trip 4 at Rip Rap Landing Mississippi River, mile 265.1

Date	Event	Local time	Tow name	No. of barges	Traffic direction	Draft <u>(ft)</u>	Tow speed (mph)
4/08/81	1	0947	Atlas	9	U	2	3.9
4/08/81	2	1044	Prairie Dawn	15	U	2	7.0
4/09/81	3	0823	Lillian Clark	16	U	2	7.9
4/09/81	4	1005	Arthur E. Snider	12	D	9	8.1
4/09/81	5	1129	Rose Marie Walden	9	D	8	-
4/09/81	6	1300	White Dawn	15	D	9	8.7
4/09/81	7	1602	Robin Mott	14	U	2	-
4/09/81	8	1623	Hawkeye	12	D	9	9.1
4/10/81	9	0825	Conti Afton	15	U	2	5.9
		0825	Gordon Jones	13	U	9	5.0
4/10/81	10	1118	Mr. Joey	15	D	9	8.0

Trip 5 at Mosier Landing Mississippi River, mile 260.2

Date	Event	Local <u>time</u>	Tow name	No. of <u>barges</u>	Traffic <u>direction</u>	Draft <u>(ft)</u>	Tow speed <u>(mph)</u>
5/20/81	1	1258	Colonel George Lambert	15	D	9	8.9
5/20/81	2	1325	Joanne	4	D	9	10.0.
5/21/81	3	0850	Sally Barton	9	U	2	5.8
		0854	Kathy Ellen	12	D	9	9.5
		0908	Marvin E. Norman	9	U	2	0.9
5/21/81	4	1055	Frederick B. Wells	12	D	9	8.9
5/21/81	5	1511	Sierra Dawn	15	U	2	3.2
5/21/81	6	1555	Atlas	6	D	9	7.7
5/22/81	7	0915	New Dawn	15	D	9	9.2
5/22/81	8	1215	Nohab Express	3	U	9	6.7
5/22/81	9	1730	White Knight	15	D	9	9.1
		1741	Colonel George Lambert	15	U	2	6.3

*U=Upstreara, D=Downstream

passage data were collected during June and July, 1981. Recreational boating frequency was also observed.

At Hadley's Landing on the Illinois River in Pool 26, tow traffic was exactly divided between up and down river travel. The average tow contained 8.9 barges. The most common tow sizes were 15 (23 percent), 12 (16 percent), and 8 (11 percent) barges. One tow consisted of 18 barges. Sixty-five percent of the barges were loaded. Tow speed was obtained for 14 events. The average speed was 5.0 mph for downbound tows and 4.3 mph for upbound tows. The average time between tows was 93.3 minutes, which corresponds to 15.4 tow passages per day. The time interval between tows was found to be well described by the exponential distribution. Small boats were recorded at an average time interval of 47.1 minutes on weekdays and 5.1 minutes on weekends.

Similar data were compiled for Pool 25 on the Mississippi River. Fifty-three percent of the tows were downbound and 62 percent of the barges were loaded. The average tow size was 10.4 barges. One 16-barge tow was observed. About 41 percent of the tows consisted of 15 barges, and about 11 percent consisted of 12 barges. Speed was determined for 21 tows. The average speed was 8.8 mph for downbound tows and 5.3 mph for upbound tows. The time interval between tows was exponentially distributed with an average of 99.9 minutes between tows, which corresponds to 14.4 tows per day. The time interval between small boat passages was 32.6 minutes for weekdays and 7.1 minutes for the weekend.

These data are provided for informative purposes only, Observations were recorded during periods which were selected with no intention to achieve valid statistical samples or to evaluate seasonal variations in commercial or recreational traffic. All observations were made during

daylight hours and, especially for the sediment data collection trips, the time of observation was determined by the logistics and mobility of our field operation which involved many people, vehicles, and boats.

Resuspension of Sediment

Event Records

<u>Illinois River</u>. Trip 1 to a site near Havana, Illinois, on May 28 and 29, 1980, was a trial effort. The delta post system for locating sampling points, the safe distances for lateral and stern approach to a barge tow, the tow tracking procedure, and the suspended sediment sampling procedure were all given a field trial and were found to be generally sound procedures. Personnel were all new at this combined operation, and several were unable to stay both days. Thus, the time between tow passage and the beginning of sampling is longer than desirable, especially for the second boat on the second day. Our procedures were confirmed by this experience. The importance of good, complete notes, despite the frequency of sampling, was reinforced and remained a priority concern on the remaining field trips.

The data for the trip 1 events listed in table 5 are presented in the appendices for completeness. The plot of suspended sediment concentration versus time for event 2 is given in figure 24. This tow passed the transect 18 minutes after the tow that was recorded in event 1. On trip 1 boat A was located on the tow track and boat B was on the edge of the navigation channel. The initial elevated concentrations and decrease to a relatively constant value about 30 minutes after tow passage are typical of the data for trip 1 at mile 121.5 on the Illinois River.

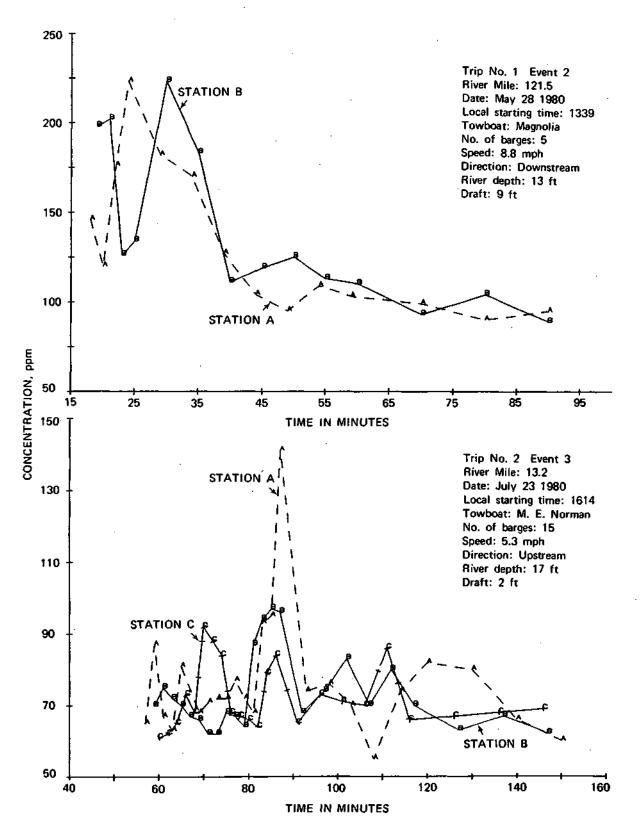


Figure 24.

Trip 2 in July, 1980, and trip 3 in September, 1980, were conducted at a site on a bend at Hadley's Landing, opposite Twelve Mile Island. Two typical event concentration versus time plots from trip 2 are shown, one in figure 24 and one in figure 25. Table 5 shows that event 3 was the third tow passage in less than one hour. Event 4 was the first tow passage that day. The suspended sediment content varies widely for about an hour after tow passage before returning to values close to the ambient concentration of about 65 ppm. Three typical events from trip 3 are shown in figure 25 (event 2) and figure 26 (events 6 and 9). These are individual events at least 2 hours after the previous tow passage. The return to ambient concentrations occurs after 45 to 60 minutes. One distinct difference between trips 2 and 3 is evident from these graphs. For trip 2 the ambient concentration is similar for the three sampling stations. This is a typical summer flow condition with average or below average water discharge and uniform sediment concentrations in the river. The suspended sediment concentrations during trip 3 are considerably higher and distinctly different at each sampling station. This resulted from a rainfall-runoff event on an upstream tributary which increased the sediment (and debris) load but did not increase the river stage or discharge at our sampling point. For the four days of data, the ambient concentration was 205 ppm at boat A in the channel border position, 283 ppm at boat B on the edge of the navigation channel, and 352 ppm at boat C in the central portion of the channel. Ambient or background conditions are defined to be those on the river on a given day exclusive of the tow passage events.

All of the suspended sediment concentration data for trips 2 and 3 are shown in a series of daily plots presented in figure 27 (trip 2) and

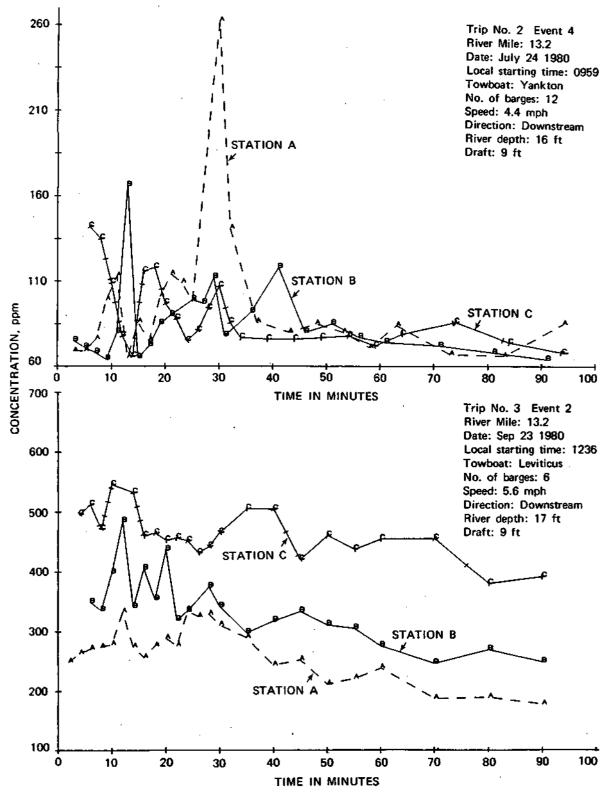
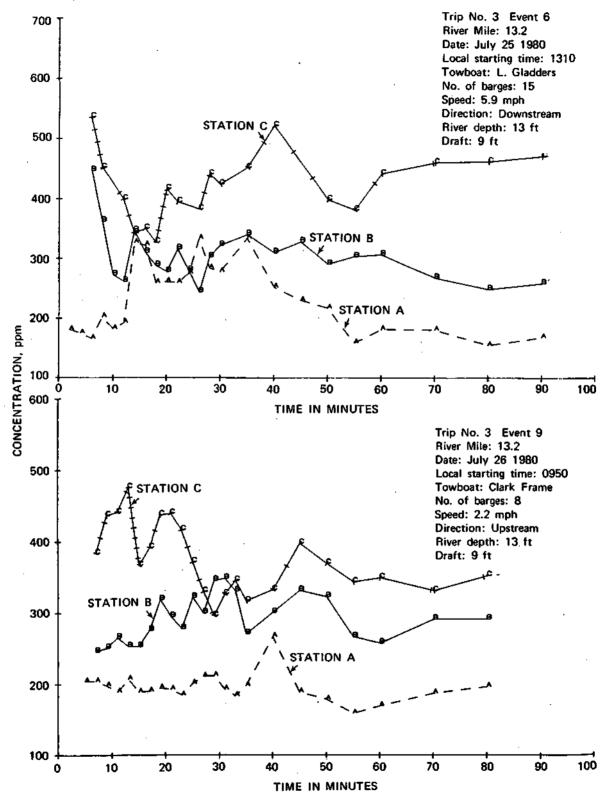
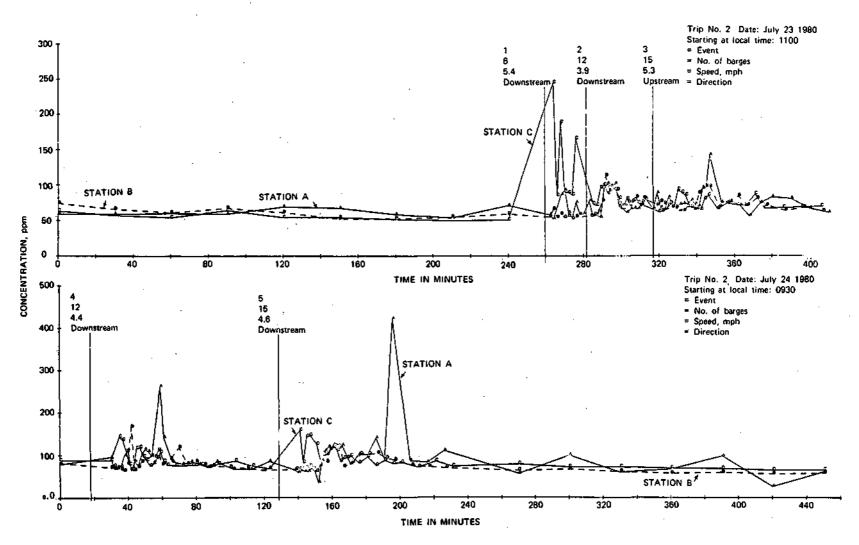




Figure 25.

figures 28 and 29 (trip 3). In all of these plots the line between the preceding background concentration and the first event concentration is drawn between the two data points by the computer, though the concentration does not actually increase until the tow passes. The suspended sediment concentration is much more variable and generally above the ambient values for 30 to 60 minutes following tow passage. Successive tow passage extends the time when concentrations are higher and more variable. No inference can be made about the magnitude of concentration increase and multiple tow passages. Statistical analyses of the event concentration data will be presented in a separate section.

The sailing lines followed by each tow were obtained and plotted. The effects of maneuvering for the bend just upstream of the measuring transect could be clearly seen in many of these plots. For compactness, only the range and average of the distance from the west bank (figure 4) at the transect and at survey station "B" are given here. Tow tracks were determined for 14 of 16 events at Hadley's Landing. Distance from shore to the tow centerline varied between 300 and 560 feet, with an average of 457 feet. With reference to the channel shape (figure 5) the tows were all within the full depth portion of the channel. Just upstream, tows came considerably closer to the shore on the outside of the sharp bend at the north end of Twelve Mile Island.

Two geometric parameters are considered important for navigation in constricted waterways: the blocking factor and the depth-to-draft ratio. The blocking factor is the ratio of the channel cross-sectional area to the submerged cross-sectional area of the vessel. For the tow passage events observed at Hadley's Landing the blocking factor varied between 12 for 9-foot draft, 3 barge wide tows and 56 for 2-foot draft, 3 barge wide

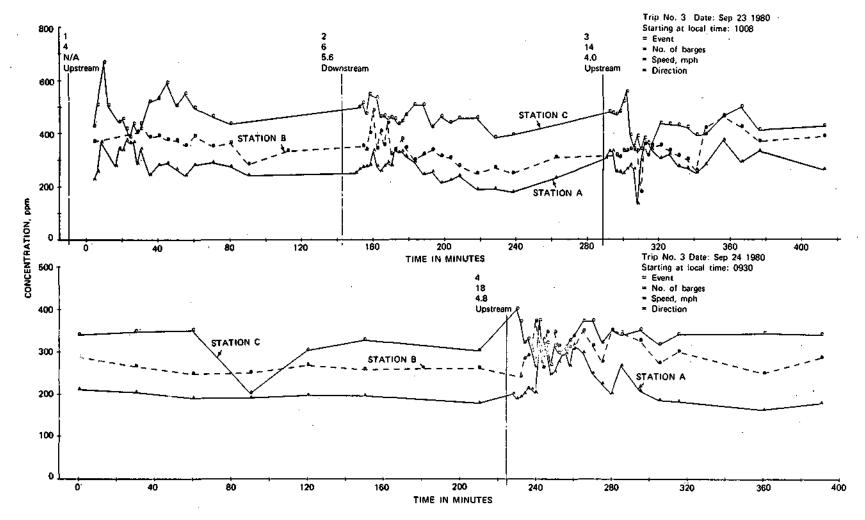
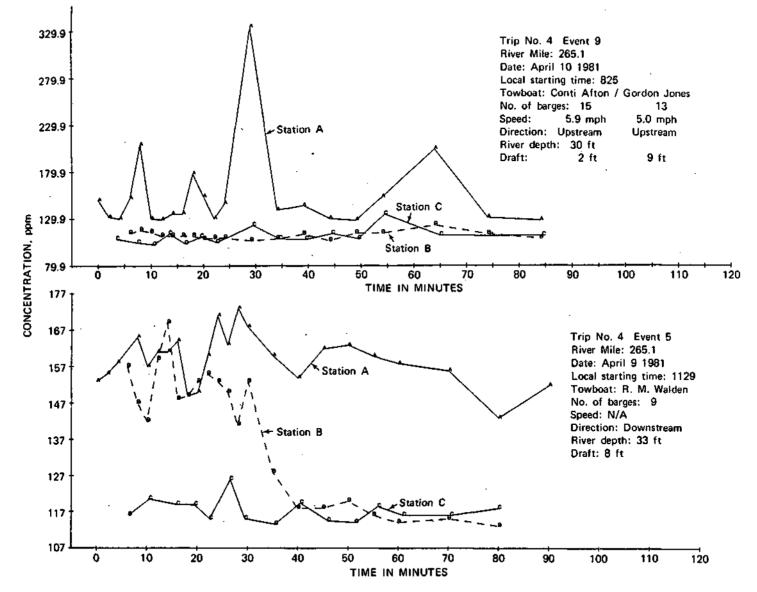


Figure 28.



tows. Depth-to-draft ratios were 9 for 2-foot draft and 2 for 9-foot draft, approximately.

<u>Mississippi River</u>. Field trip 4 in April, 1981, to Rip Rap Landing, mile 265.1, and field trip 5 in May, 1981, to Mosier Landing, mile 260.2, produced data for 19 events involving 23 tow passages. Rip Rap Landing was the intended site for both trips, but high water in May prevented land access to that site, so Mosier Landing was selected as an alternate site. The sites are similar in plan and cross section as can be seen in figures 8, 9, 10, and 12. The stage at Rip Rap Landing was about 437, 3 feet above minimum pool elevation. At Mosier Landing the stage was at least 441, 7 feet above minimum pool and had been several feet higher early in the week. Because of the rapidly dropping stage, no discharge-load measurement was attempted there. Because of water depths over 18 feet, actually as great as 36 feet, the P-61 or P-72 samplers were used in boats B and C.

Two event concentration versus time plots from trip 4 are shown in figure 30. Event 5, the third of six events that day, shows an increase in concentration for stations A and B but not for station C. The ambient suspended sediment concentrations were about 120 ppm. Tracking data were not obtained, so it is not known if the tow was near station A's location. It is possible that the additional mixing caused lateral movement of sediment into the channel border area in which boat A was positioned. Event 9 is hardly typical as two tows passed our site headed upstream side by side, but the event data is not particularly different from that for single tow passage events.

The two event plots for trip 5 in figure 31 are from Mosier Landing with falling stage and ambient sediment concentrations of 300 to 600 ppm. The lateral distribution of ambient concentrations varied from day to day and will be discussed in the statistical section. The maximum concentration appears to occur rather randomly within the 30 minutes following tow passage. Trip 4 event 5 and trip 5 event 4 follow other tow passages by about an hour and a half. Trip 4 event 9 was the first event that day and trip 5 event 8 was three hours after the previous tow passage.

Three days of background and tow passage event data were collected on each of these trips. The daily plots are shown in figures 32, 33, and 34. The plot for April 9, 1981, shows six tow passage events. The concentration scale is compressed by the one value of 604 ppm (figure 32). An extremely high background concentration of 1256 ppm appears on May 20, 1981 (figure 33). This value and five values on April 9, 1981, that exceeded 1000 ppm were excluded from the statistical analysis. The outliers on April 9, 1981, were also excluded from the plot to prevent obscuring all the other data. These are probably bad samples, perhaps the result of the sampler landing on the foreslope of a sand dune on the river bed. However, we have no way to prove this or identify an erroneous laboratory analysis. More likely the sample was not representative when collected. The variations in ambient concentration with time on trip 5 at station C on May 21 and May 22 are real and follow the stage changes as the hydrograph receded at the site.

Tow track data was collected for several tows for which suspended sediment data were not collected at Rip Rap Landing. At the Rip Rap Landing transect, the average distance from shore to the tow track was 350 feet and varied from 75 to 700 feet. If the two tows that passed side by

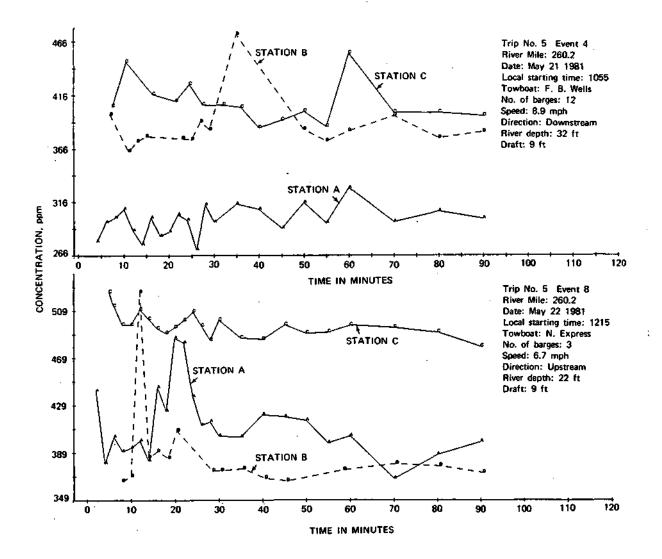


Figure 31.

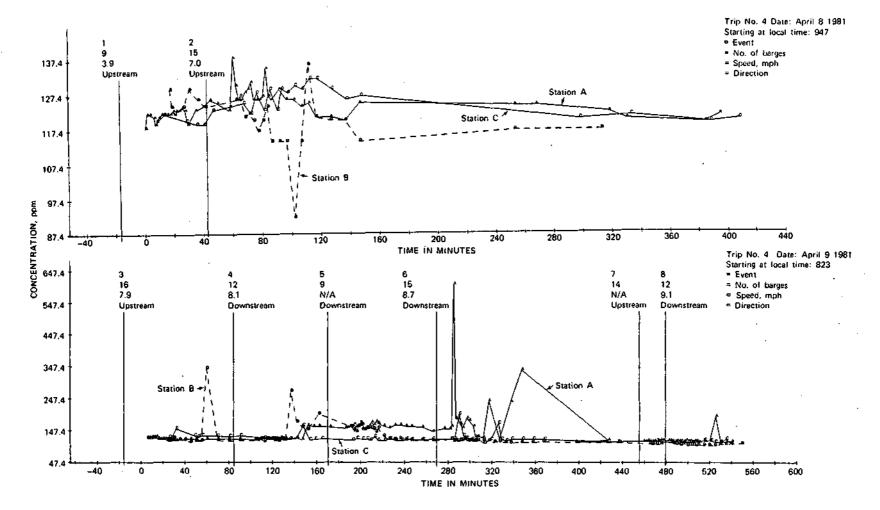
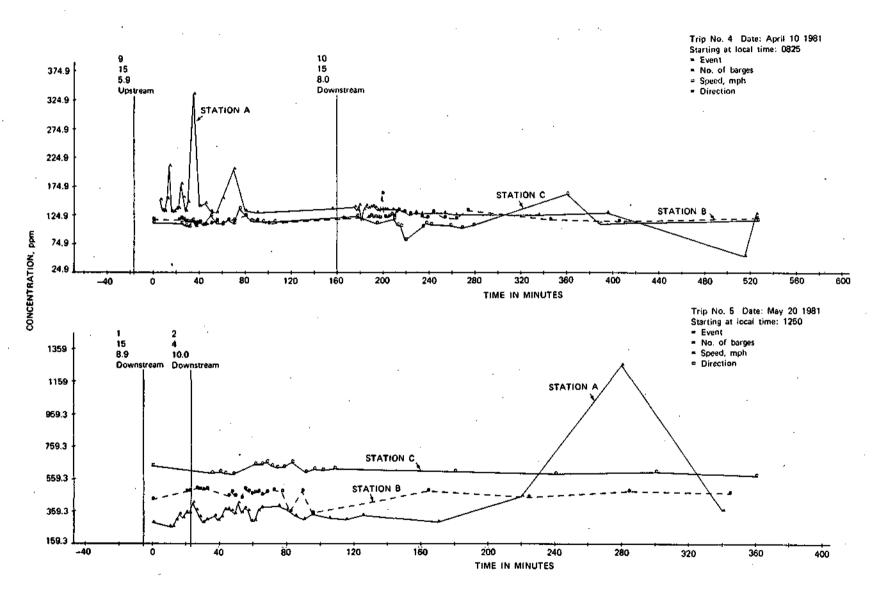
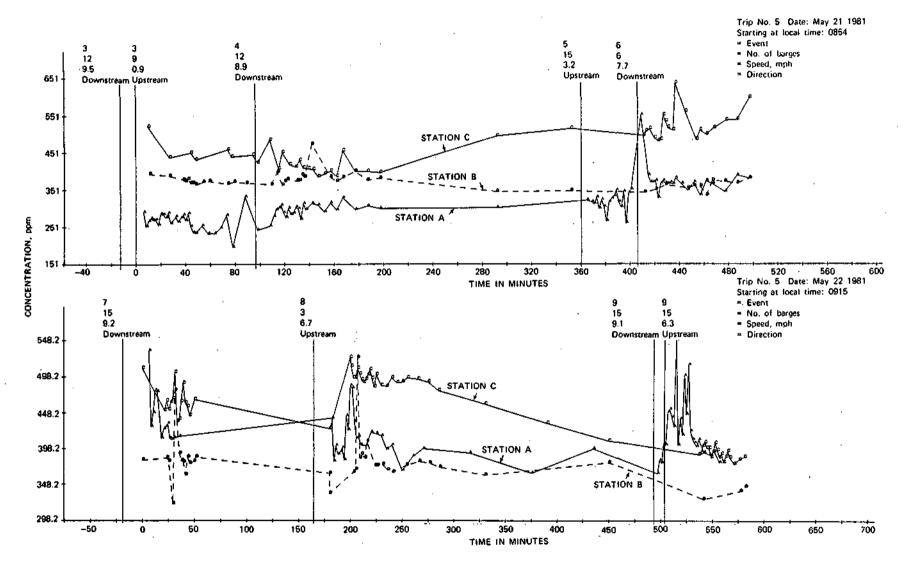




Figure 32.

side are excluded, the distance varied from 275 to 475 feet. At survey station B, the tows were turning away from the east shore and the distance to the sailing line averaged 460 feet and varied from 300 to 650 feet. The blocking factor varied between 25 and 114 and was 20.8 for the double tow passage in event 9. Depth-draft ratios were between 4 and 18.

At Hosier Landing, the geometry is similar except that survey station A and the transect were on the bend and survey station B was on a straight reach. The sailing line distance at the transect varied from 350 to 960 feet and averaged 730 feet. At survey station B the sailing line distance varied from 400 to 725 feet and averaged 590 feet. The blocking factor varied between 34 and 150 and the depth-draft ratio varied between 3 and 18. These values are approximate because of the changing river depth.

Statistical Analysis

Means and standard deviations were calculated for each day's ambient, or background, suspended sediment concentration at each sampling location. The same statistics were also calculated for each tow passage event for four different time periods: 1) all samples from the event, 2) 90 minute minimum time period, 3) 60 minute time period, and 4) until the concentration returned within one standard deviation of the ambient. The last three schemes combine closely spaced events into a continuous event.

The Student t test was used to compare the mean of each 60-minute single or continuous event with the daily mean background concentration. The parameter, t, and a table or graph yields the probability that two means could be obtained from the same population chance by chance. For example, in table 7 for event 1 trip 3 at station A, t equals 2.16 and the P value of 0.05 means that the probability that the event and background

average concentrations are from the same population is less than 5 percent but greater than 1 percent. This t corresponds exactly to a probability of 0.045. Similarly for the same event, station B has a t of 3.44, a tabulated probability of 0.01, and an exact probability less than 0.001; and station C has a t of 2.75 which corresponds to a probability of 0.014. Probabilities that the two means could be obtained from the same population by random sampling over 0.2 are indicated by a dash. Such high probabilities do not prove the event and background concentrations are the same, but do raise serious doubts about any significant difference. Preliminary analysis led to the presentation of the statistical parameters for the 60 minute minimum period. There is not much difference between the 60 and 90 minute minimum period except for the number of "continuous" events, or a second tow passage within the minimum time period. If data were collected for the first event in a series, the parameters for each event are each listed as well as the parameters for the continuous event from the first tow passage until 60 minutes after the last tow passage.

<u>Illinois River</u>. The statistical parameters for trips 2 and 3 to Hadley's Landing on the Illinois River are given in table 6. The number of samples, mean, and standard deviation are arranged by trip, date, and event number. On each date, the background or ambient suspended sediment concentration information is given first. Individual event statistics are next, and any continuous event is given last.

For the five events of trip 2, the daily average background suspended sediment concentration was about 65 ppra with a range at the three sampling stations from 55 to 78 ppm. The incremental increase in average concentration during an event was: station A maximum 34 ppm, minimum 6 ppm,

A. Trip 2

		St	Station A Station B		tion B	}	Station C				Station B Station C		;
		No. of			No. of			No. of					
Date	Event	sample	Mean	S.D.*	sample	Mean	S.D.	sample	Mean	S.D.			
7/23/80													
	B.G. †	9	61	5.8	9	60	7.5	9	55	5.4			
	1	9	67	14.8	8	56	4.4	7	123	65.6			
	2	16	73	16.5	15	78	15.5	13	82	11.1			
	3	24	76	16.8	24	72	10.9	23	71	9.0			
	1-3	45	74	17.0	44	72	14.1	40	83	35.3			
7/24/80													
	B.G.	9	73	24.1	9	64	9.0	9	78	10.5			
	4	20	99	43.0	20	88	23.6	21	86	22.2			
	5	21	107	77.5	21	89	19.7	20	97	24.2			

B. Trip 3

	· · · · · · · · · · · · · · · · · · ·	St	ation	A	Sta	tion B		Sta	tion C	1
		No. of			No. of			No. of		
Date	Event	sample	Mean	S.D.	sample	Mean	S.D.	sample	Mean	<u>S.D.</u> ;
9/23/80										
	B.G.	7	246	52.5	8	319	50.0	5	405	22.9
	1	17	295	50.0	9	383	24.0	17	500	75.7
	2	21	268	35.8	18	339	53.6	19	471	34.6
	3	20	284	50.6	18	339	59.0	19	417	80.9
9/24/80										
	B.G.	9	183	16.2	9	258	16.0	9	317	47.2
	4	22	252	46.1	19	317	34.2	21	332	36.7
9/25/80										
	B.G.	3	190	10.4	3	293	32.6	3	388	30.8
	5	21	195	25.9	20	285	26.4	19	393.	44.7
	6	21	242	58.5	19	310	44.3	16	423	58.5
	7	21	207	41.8	19	324	36.7	18	412	87.3
	8	18	282	48.2	16	330	37.8	15	350	42.8
9/26/80										
	B.G.	3	202	8.8	3	249	21.9	3	338	45.9
	9	21	196	20.7	20	295	34.4	20	373	50.2
	10	6	198	26.6	2	314	3.5	2	358	33.9
	10-11	28	274	90.3	22	328	73.1	22	403	100.0

* S.D. = standard deviation

+ B.G. = ambient

average 19 ppm; station B maximum 25 ppm, minimum -4 ppm, average 15 ppm; and station C maximum 68 ppm, minimum 14 ppm, average (excluding 68 ppm value) 19 ppm. The ratio of the mean concentration during an event to the background concentration varied from 0.93 to 1.49 if the value for station C event 1 is excluded. The average ratio is 1.28 at station A, 1.24 at station B, and 1.28 at station C. Events 1 through 3 were also treated as a multiple event with average concentration increases of 13, 12, and 18 ppm at stations A, B, and C, respectively. The ratio of event to background mean was 1.2 for stations A and B and 1.5 for station C. For the conditions during this trip a ratio of event to background concentration of about 1.25 and an increase in concentration of about 16 ppm was representative of the effect of tow passage on suspended sediment.

During trip 3, the background sediment concentration was much higher than for trip 2 and the trip averages are 192 ppra for station A, 267 ppm for station B, and 348 ppm for station C. The incremental increase in average concentration during events was: station A maximum 92 ppm, minimum 6 ppm, average 38 ppm; station B maximum 64 ppm, minimum 8 ppm, average 32 ppm; and station C maximum 95 ppm, minimum 38 ppm, average 28 ppm. The ratio of event to background concentration varied from 0.90 to 1.48. This ratio averaged 1.18 at station A, 1.11 at station B, and 1.07 at station C. For trip 3, the background concentration was highest at station C in the center of the navigation channel, and lowest at station A on the channel border. The effect of tow passage on suspended sediment concentration was greatest at station A and least at station C, both in magnitude of the change and in relative terms.

The comparisons of event and background means by the Student t test are given in table 7 for the Illinois River suspended sediment data.

Table 7. Results of Student t Test of Suspended Sediment Events on the Illinois River

	Station A		Stati	on B	Station		
Event	t	<u>P</u> *	t	P	t	P	
1-3	2.23	.05	2.47	.05	2.40	.05	
4	1.67	.20	2.91	.01	1.11	-	
5	1.28	.20	3.62	.01	2.35	.01	

A. Trip 2, 7/23-24, 1980

B. Trip 3, 9/23-26, 1980

.

	Statio	on A	Stati	on B	Stati	on C
Event	t	P	t	P	t	Р
1	2.16	.05	3.44	.01	2.75	.05
2	1.28	-	0.89	-	4.04	.01
3	1.73	.05	0.83	-	0.45	· –
4	4.30	.01	4.88	.01	0.92	-
5	0.33		0.46	-	0.16	-
6	1.52	.20	0.63	-	0.99	-
7	0.72	· _	1.40	.20	0.47	-
8	· 3.23	.01	1.60	.20	1.47	. 20
9	0.46	-	2.22	. 05	1.12	-
10-11	1.37	.20	1.84	.10	1.09	-

. .

.

ĥ.

* P is the probability level at which the event mean is significantly different from the background mean. These results indicate the variability of suspended sediment data. Only four events have probability values less than 0.2 for all three sampling stations. Station C has only 5 of 13 events with probabilities less than 0.2. For trip 3, six events have two stations with probabilities greater than 0.2, and one of these has all three station probabilities greater than 0.2.

<u>Mississippi River</u>. The means and standard deviations for the tow passage events on the Mississippi River during trip 4 at Rip Rap Landing and trip 5 at Mosier Landing are given in table 8.

During trip 4, the average background concentration was about 118 ppm with a daily average maximum of 125 ppm and a minimum of 111 ppm. Stations A and B had nearly the same daily averages and station C had a slightly higher average. The incremental increase in average concentrations during a tow passage event was: station A maximum 67 ppm, minimum 4 ppm, average 26 ppm; station B maximum 40 ppm, minimum -3 ppm, average 12 ppm; and station C maximum 12 ppm, minimum -22 ppm, average -1 ppm. The ratio of event to background mean concentration varied from 0.82 to 1.58. This ratio averaged 1.22 at station A, 1.11 at station B, and 1.00 at station C. Two multiple events were recorded and very small changes in mean sediment concentration were observed.

Trip 5 to Mosier Landing took place during a period of high water and sediment flows. The increase in background concentration at station A on May 22 is due to a change in the location of this sampling site due to the decrease in stage. The lateral increase in concentration from shore to the channel center position is similar to that observed on the Illinois River, trip 3, when suspended sediment concentrations were about the same.

		St	ation	A	Sta	tion B	,	· Sta	tion (;
		No. of			No. of			No. of		
Date	Event	sample	Mean	S.D.*	sample	Mean	S.D.	sample	Mean	<u>S.D.</u>
4/8/81										
	B.G.†	6	121	2.1	2	117	0.0	4	120	0.8
	1	20	123	2.0	7	125	2.7	6	120	1.6
	2	25	125	4.3	18	118	8.8	15	128	3.1
	1-2	42	125	3.9	22	121	8.5	19	125	4.5
4/9/81										
	B.G.	6	115	4.7	6	111	4.4	6	120	10.3
	3	19	120	4.2	10	128	71.2	9	132	9.0
	4	21	129	14.6	17	151	43.7	10	124	13.5
	5	21	160	6.2	19	135	18.2	13	117	3.5
	6	16	182	115.8	19	112	3.5	12	128	26.4
	7-8	31	117	14.3	25	102	2.6	14	111	3.7
4/10/81										
	B.G.	5	115	34.0	5	116	2.3	6	125	20.1
	9	19	160	48.2	17	113	4.1	13	112	8.8
	10	21	132	6.2	20	125	9.5	8	103	10.8

A. Trip 4, Rip Rap Landing, mile 265.1

B. Trip 5, Mosier Landing, mile 260.2

		St	ation	A	Sta	tion B	;	Sta	tion C	;
		No. of			No. of			No. of		
Date	Event	sample	Mean	S.D.	sample	Mean	S.D.	sample	Mean	<u>S.D.</u>
5/20/81										
	B.G.	4	341	77.6	5	462	23.0	5	605	23.4
	1	12	323	43.2	6	490	7.0	4	591	5.6
	2	23	339	32.3	16	451	44.0	11	628	20.3
	1-2	32	341	38.7	22	461	40.4	15	619	25.3
5/21/81										
	B.G.	3	301	4.2	4	358	20.2	4	465	64.4
	3	24	262	19.1	10	381	10.1	4	459	42.1
	4	20	301	14.8	12	399	30.5	13	410	21.7
	6	19	374	45.0	8	355	12.8	16	524	39.0
5/22/81										
	B.G.	3	380	19.2	5	364	18.7	5	451	39.5
	7	13	435	37.0	12	385	35.3	14	461	18.2
	8	21	414	28.6	13	383	43.0	20	495	10.6
	9	25	419	44.6	3	335	9.3	19	390	8.6

* S.D. = standard deviation

+ B.G. = ambient

Stations B and C indicate a decrease in background concentration from the first to the second day..

No statistical analysis of suspended sediment data is given for event 5 because the tow stopped against the shore just upstream of the sampling transect and waited for the downbound tow of event 6 to pass. Only station A could be occupied until the tow departed. The incremental increase in mean suspended sediment concentration during events was: station A maximum 73 ppm, minimum -39 ppm, average 18 ppm; station B maximum 41 ppm, minimum -29 ppm, and average 11 ppm; and station C maximum 59 ppm, minimum -69 ppm, average 3 ppm. The ratio of event to background mean concentrations ranged between 0.87 and 1.24. This ratio averaged 1.04 at station A, 1.03 at station B, and 1.00 at station C. The one multiple event observed caused no change in mean concentration. At station A the average ratio of means corresponds to an increase of 14 ppm if the background concentration is 340 ppm. On the first day, the average ratio corresponds to an increase of 14 ppm at station B for an event. On the second and third day, this increase is 11 ppm at station B. The average ratio of 1.00 at station C does not increase the mean concentration during an event.

The results of the statistical comparison of event and background means for the Mississippi River suspended sediment data are given in table 9. The results are similar to those on the Illinois River. This statistical comparison neither proves nor disproves the hypothesis that tow passage events increase the suspended sediment concentration.

Summary

The effect of tow passage on suspended sediment concentrations is highly variable in time and space. Greater effects were observed at

Table 9. Results of Student t Test of Suspended Sediment Events on the Mississippi River

Event	Station A		Station B		Station C	
	t	P*	t	P	t	<u> </u>
1-2	2.16	.05	0.65	-	2.12	05
· 3	2.18	.05	0.62	-	2.36	.05
4	2.29	.05	2.27	.05	0.67	-
5	16.49	.01	3.31	.01	0.83	-
6	1.40	-	0.86	-	0.66	-
7→8	0.31	-	6.00	.01	2.93	.0
9	1,95	.10	1.92	.10	1.96	.10
10	2.25	.05	2.04	.10	2.59	.0

A. Trip 4, Rip Rap Landing, 4/8-10, 1981

B. Trip 5, Mosier Landing, 5/20-22, 1981

Event	Station A		Station B		Station C	
	t	P	t	P	t	P
1-2	0.01	-	0.05	-	1.11	-
3	3.52	.01	2.85	.05	0.15	-
4	0.08	-	2.46	.05	2.77	.0
6	2.75	.10	0.36	-	2.38	.0
7	2.47	.05	1.24	-	0.76	
8	2.02	.10	0.95	-	4.64	.0
9	1.50	.20	2.46	.05	6.50	.0

۰. •

* P is the probability level at which the event mean is significantly different from the background mean.

station A in a channel border position than at the main channel sampling positions. The increases in suspended sediment were greater on the Illinois River than on the Mississippi River. The differences in channel depth and width are consistent with more significant effects on the Illinois River. These increases are the result of resuspension of sediment and lateral movement of sediment. The channel border sampling site averaged a 20 percent increase in suspended sediment concentration on 3 of 4 periods of data collection. On the Mississippi River with depth-to-draft ratios over 3 and blocking factors over 25 no concentration increase was measured directly behind a tow. An increased concentration at the other two sampling locations was observed on both rivers during two different background concentrations. The range of geometric parameters at a particular site is limited by the fixed river geometry (except for floods) and the standard size and draft of barges and barge tows.

Water Velocity

One of the effects of vessel movement is a velocity pattern in the vessel wake and the high velocity and highly turbulent propeller jet flow. In constricted waterways or rivers a change in flow velocity outside the wake region results from the conservation of mass and energy in open channel flow. The Water Survey has several Price-type current meters. Though they are not meant for turbulence measurement, we used them on trips 4 and 5 as described in the section on methodology. The velocity measurements were taken at various depths following the preset rotation for events. Representative velocity versus time plots for three events are shown in figure 35. Mean velocities and standard deviations were computed for each event with velocity data. These values are given in

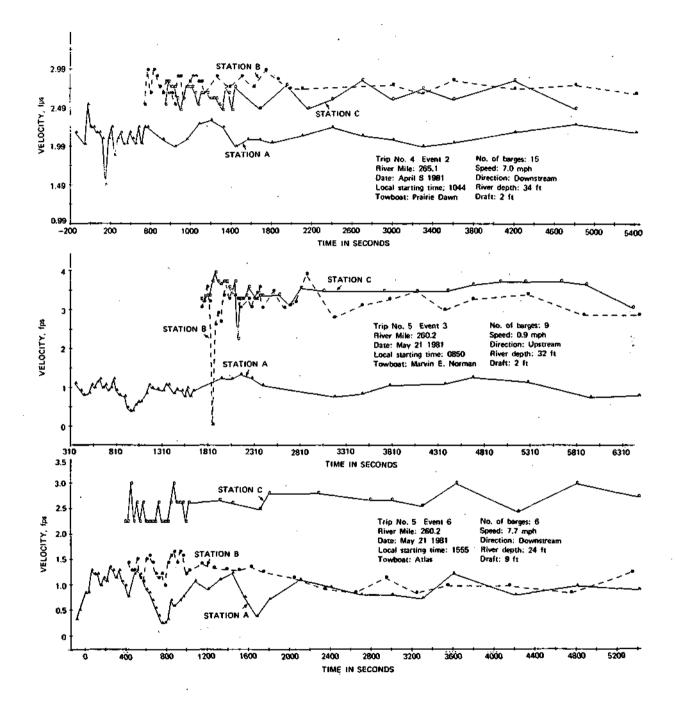


Figure 35.

table 10 for trip 4 and in table 11 for trip 5. The omitted events were followed too soon by another tow passage for data collection to be complete. The data are given in appendix D. In table 10 the only differences in mean velocity over 0.10 fps between the first portion of the record within 30-second velocity data and the rest of the data are station C event 1, station B event 3, and station A event 10. In table 11 the same difference in mean velocity occurs for stations B and C event 1, station C event 3, station A event 4, stations B and C events 6, 7, and 9, and stations A and C event 8. The standard deviations in both tables indicate a tendency for the first part of the data to be slightly more variable than the second part. No pattern is apparent in the occurrence of larger differences in mean velocity and event characteristics. Boats B and C are not able to take position soon enough after tow passage to detect high intensity turbulence (at least 5 minutes after tow passage). For an average tow speed of 7 mph, 5 minutes places the sampling boat 3080 feet astern of the tow when sampling begins. No depth of measurement is related to higher variability or greater differences in mean velocity.

Water velocity data were also collected in conjunction with the background suspended sediment samples. The velocity distribution was obtained. Boat A measured velocity at 0.2, 0.4, 0.6, and 0.8 of the depth from the surface. Boats B and C took more data, ideally at each 0.1 from 0.1 to 0.9 depth and 0.95 depth. The three upper semilog graphs in figure 36 show a typical set of background velocity profiles. On days with few tow passage events, several velocity profiles were measured. The lower three graphs in figure 36 show velocity distributions at station A for three different times on the same day. The straight lines through these velocity data points are given by equations of the form:

		<u>Station A</u> Standard		Sta	<u>Station B</u> Standard		<u>Station C</u> Standard	
Event	Data	Mean	deviation	Mean	deviation	Mean	deviation	
1	a*	1.87	0.46	2.41	0.47	1.99	0.47	
	b †	1.95	0.33	2.46	0.46	2.18	0.36	
2	a	2.11	0.42	2.78	0.36	2.63	0.33	
	b	2.13	0.33	2.77	0.30	2.66	0.39	
3	a	2.50	0.40	2.87	0.63	3.09	0.45	
	b	2.51	0.35	3.18	0.41	3.08	0.39	
4	a	2.67	0.36	3.53	0.35	3.71	0.40	
	b	2.68	0.30	3.50	0.22	3.70	0.28	
5	a	1.67	0.30	2.05	0.53	2.33	0.54	
	b	1.69	0.32	2.10	0.28	2.34	0.40	
6	a	1.93	. 0.41	2.93	0.47	2.77	0.46	
	b	1.95	0.33	2.88	0.44	2.76	0.44	
8	a	2.17	0.39	3.19	0.42	2.99	0.40	
	b	2.22	0.36	3.17	0.40	2.99	0.44	
9	a	2.68	0.35	3.60	0.40	3.85	0.33	
	b	2.74	0.37	3.57	0.45	3.81	0.28	
10	a	1.83	0.42	2.53	0.48	2.31	0.51	
	b	2.01	0.30	2.61	0.44	2.30	0.37	

Table 10. Water Velocity for Trip 4, Rip Rap Landing (in feet per second)

* continuous data for 30-second intervals † intermittent data at variable time intervals

		<u>Station A</u> Standard		Sta	<u>Station B</u> Standard		<u>Station C</u> Standard	
Event	Data	Mean	deviation	Mean	deviation	Mean	deviation	
2	a*	0.98	0.42	2.55	0.24	2.71	0.30	
	b†	1.04	0.26	2.44	0.20	2.57	0.42	
3	a	0.90	0.22	3.09	0.73	3.41	0.33	
	b	0.98	0.22	3.15	0.32	3.51	0.22	
4	a	1.20	0.37	3.60	0.20	3.63	0.20	
	b	1.56	0.22	3.69	0.24	3.67	0.17	
6	a	0.87	0.33	1.35	0.20	2.49	0.25	
	b	0.90	0.22	1.02	0.22	2.71	0.17	
7	a	1.87	0.10	2.32	0.22	2.49	0.17	
	b	1.87	0.10	2.22	0.22	2.36	0.10	
8	a	2.39	0.14	2.84	0.22	3.05	0.20	
	b	2.11	0.24	2.82	0.17	3.18	0.14	
9	a	1.90	0.17	3.19	0.17	2.98	0.30	
	b	1.95	0.10	3.08	0.10	3.49	0.17	

Table 11. Water Velocity for Trip 5, Mosier Landing (in feet per second)

* continuous data for 30-second intervals

† intermittent data at variable time intervals

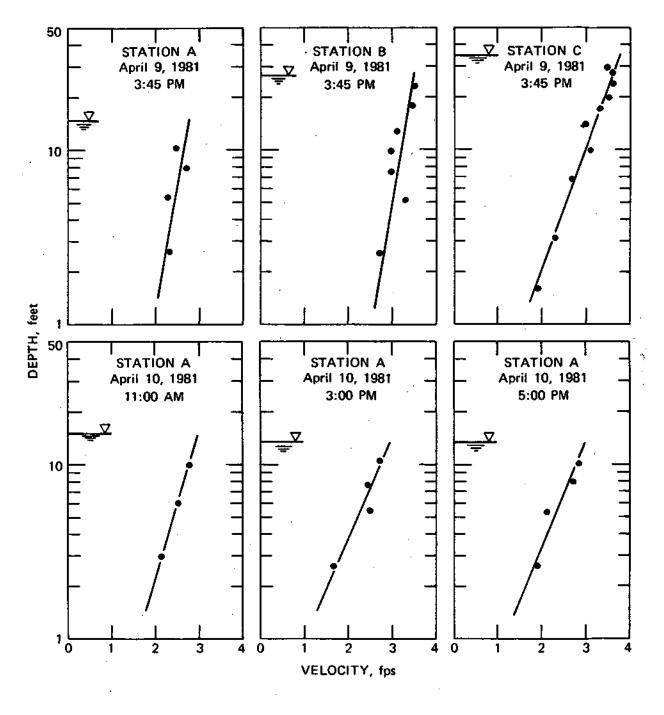


Figure 36. Background water velocity profiles for trip 4

$U = A + B \log y$

The coefficients A and B for each velocity distribution are given in table 12. Though there is a lot of variation, on a given day there is consistency for each station. Because of the dynamic location of sampling boats each time, the exact position is slightly different for each data set. On trip 5, boats A and B changed location on May 22 because of the drop in stage since sampling locations were first determined on May 20. The velocity distributions are typical of open channel flow. If the river's energy slope were known on the days the velocity data was obtained, additional analysis based on fundamental fluid mechanics could be done. This would attempt to develop a relationship between velocity, slope, depth, and bed roughness.

For the discharge measurement at Rip Rap Landing on April 10, the 0.2 and 0.8 depth method was used so only the distribution of velocity across the channel was obtained. The influence of the bend upstream and the shallow border area along the islands is clear. In the deeper, east half in the main channel and on the outside of the bend, the average velocity is about 3.3 fps. In the shallower, western half, the average velocity is about 2.5 fps.

.

	Time	Stati	on A	Stati	.on B	Stati	on C
Date	(hrs)	A	В	Ā	В	A	B
4/8/81	14:10	0.85	1.75	2,45	0.75	-	-
	15:10	0.95	1.50	2.10	0.95	1.55	1.35
	16:10	1.80	0.70	-		1.75	1.20
4/9/81	15:45	1.90	0.75	2.50	0.70	1.55	1.45
4/10/81	11:00	1.60	1.15	1.20	2.10	1.10	1.90
	14:00	2.10	0.65	0.70	2.00	1.70	1.30
	15:00	1.10	1.45	-	-	1.80	1.40
	17:00	1.10	1.70	-	-	-	-

A. Trip 4, Rip Rap Landing

B. Trip 5, Mosier Landing

	Time	Stati	on A	Stati	on B	Stati	on C
Date	(hrs)	A	В	A	B	A	·B
5/20/81	15:40	0.60	0.60	-	-	-	_
	16:30	0.75	0.30	- ·	-	-	
	17:30	0.90	0.35	-	-	-	-
5/21/81	14:00	-	-	2.20	0.90	2.60	0.90
5/22/81	14:30	1,50	0.70	2.10	0.65	-	-
	16:30	1.10	0.90	2.00	1.00	-	-

SUMMARY AND CONCLUSIONS

This report presents the results of the reduced field data collection program for lateral movement of sediment caused by tow traffic. New data on the effects of commercial tow traffic on suspended sediment concentrations was obtained on both the Illinois and Mississippi Rivers during periods with ambient suspended sediment concentrations at low (about 100 ppm) and high (300 to 500 ppm) levels. Our scientists consulted with others who have studied navigation effects at two Corps of Engineer facilities: the Waterways Experiment Station and the Huntington District.

Time constraints did not permit the laboratory to complete particle size analysis of suspended sediment samples in time for inclusion of the data in this report. The short time between completion of laboratory analyses of the suspended sediment samples and the due date of this report (July 1 to August 31) precluded any mathematical modeling or investigation of applicability of theories for the resuspension and lateral movement of sediment. Without a theory for lateral movement, no estimation of the flux of suspended sediment into side channels due to lateral movement could be made.

We intend to pursue the mathematical analyses of the effects of tow traffic on suspended sediment as time and support are available. About half of the boundary of Illinois is inland waterway and the state is bisected by the Illinois Waterway. The total length of waterways in and around Illinois is over 1000 miles. Thus, navigation traffic volumes and the effects of vessel traffic on the physical and biological environment

106

of these waterways is of vital concern to the state and to the three scientific surveys of the Illinois Institute of Natural Resources.

The brief analysis of data given herein supports the general validity of the hypothesis that sediment is moved in a lateral direction. Specific points are:

- 1. Tow passage increases suspended sediment concentrations.
- The increase in concentration is greater in channel border areas than in the navigation channel.
- The increase is more significant when the ambient suspended sediment concentration is low.
- The concentration is increased for 60 to 90 minutes after tow passage.
- 5. Successive tow passages at time intervals of less than 90 minutes result in extended periods of increased sediment concentration, though the average increase for a multiple event is less than the average increase for an isolated event.
- 6. The effects of tow passage are greater on the Illinois River than on the Mississippi River. This is consistent with the differences in channel dimensions.
- 7. The ambient suspended sediment concentration was higher in the channel than in the channel border when the sediment load was increased by upstream runoff or flood flows.

No information on the redistribution of the resuspended or laterally displaced sediment was obtained. Some data (Schnepper et al., 1981) on the Illinois River indicate that fine sand and silt is present in channel border areas but not in the navigation channel. Additional data and much more detailed analyses are needed to establish a model for the resuspen-

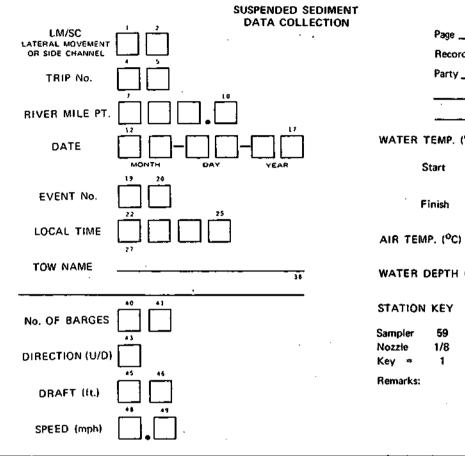
107

sion and movement of sediment caused by vessel traffic on inland waterways.

REFERENCES

- Ballin, C. W., G. Brandenburg, K. Felkel, M. Hager, M. Masson, E. Muller, Obius, E. Schale, and V. Wetzel. 1977. Rapport. Proceedings of the 24th International Congress, Leningrad.
- Benedict, Paul C. 1979. Equipment for investigations of fluvial sediment. ASCE Journal of the Hydraulics Division 105(HY3, Proceedings paper 14407):163-170, March.
- Berger Associates, Ltd., Louis Berger and Associates, Inc., and Academy of Natural Sciences. 1980. Environmental and physical impact studies for Gallipolis Locks and Dam, Ohio River. Phase I replacement study, Volume II: navigation impacts.
- Bhowmik, Nani G., and Richard J. Schicht. 1980. Bank erosion of the Illinois River. Illinois State Water Survey Report of Investigation 92.
- Board of Engineers for Rivers and Harbors. 1976. Locks and Dam No. 26, Mississippi River, Alton, Illinois. Report to the Chief of Engineers, Department of the Army in-house Document No. 94-584.
- Buchanan, Thomas J., and William P. Somers. 1969. Discharge measurements at gaging stations. Book 3, Chapter A8 in Techniques of Water-Resources Investigations of the United States Geological Survey, United State Government Printing Office, Washington, D.C.
- Cote, William, David L. Reinertsen, and Myrna M. Killey. 1969. Geological science field trip, Havana area. Illinois State Geological Survey guide leaflet 1969-B, May 10.
- Environmental Science and Engineering. 1981. Navigation impact study, Illinois River, Pool 26, August 1980; Mississippi River, Pool 9, October 1980; Phase III, Task 9. Illinois Natural History Survey, Grafton, Illinois.
- Fuehrer, M., and K. Romisch. 1977. Effects of modern ship traffic on inland- and ocean-waterways and their structures. Proceedings of the 24th International Navigation Congress, Leningrad.
- Gelencser, G. J. 1977. Drawdown surge and slope protection, experimental results. Proceedings of the 24th International Navigation Congress, Leningrad.
- Guy, Harold P. 1969. Laboratory theory and methods for sediment analysis. Book 5, Chapter Cl in Techniques of Water-Resources Investigations of the United States Geological Survey, United States Government Printing Office, Washington, D.C.

- Guy, Harold P., and Vernon W. Norman. 1970. Field methods for measurement of fluvial sediment. Book 3, Chapter C2 in Techniques of Water-Resources Investigations of the United States Geological Survey, United States Government Printing Office, Washington, D.C.
- Johnson, J. H. 1976. Effects of tow traffic on the resuspension of sediments and on dissolved oxygen concentrations in the Illinois and upper Mississippi Rivers under normal pool conditions. Technical Report Y-76-1, U.S. Army Engineer Waterways Experiment Station, Environmental Effects Laboratory, Vicksburg, Mississippi, 181 pp.
- Karaki, S., and J. van Hoften. 1974. Resuspension of bed material and wave effects on the Illinois and upper Misssissippi Rivers caused by boat traffic. CER 74-75SKJV9, Colorado State University, Ft. Collins, Colorado, November.
- Leighton, M. M., G. E. Eklaw, and L. Horberg. 1948. Physiographic divisions of Illinois. Illinois State Geological Survey Report of Investigation 129.
- Link, L. E., Jr., and A. N. Williamson, Jr. 1976. Use of automated remote sensing techniques to define the movement of tow-generated suspended material plumes on the Illinois and upper Mississippi Rivers. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi, 71 pp.
- Liou, Y. C., and J. B. Herbich. 1976. Sediment movement induced by ships in restricted waterways. Texas A & M University, TAMU-S6-76-209, COE Report No. 188, August.
- Lubinski, K. S., N. G. Bhowmik, R. L. Evans, J. R. Adams, and M. Demissie. 1980. Identification and prioritization of study needs related to the physical, chemical, and biological impacts of navigation on the Upper Mississippi River system. Illinois State Water Survey Contract Report 259, December 24.
- Lubinski, K. S., H. H. Seagle, Jr., N. G. Bhowmik, J. R. Adams,M. A. Sexton, J. Buhnerkempe, R. L. Allgire, D. K. Davie, andW. Fitzpatrick. 1981. Information summary of the physical,chemical, and biological effects of navigation. Illinois State WaterSurvey Contract Report 261, May 7.
- Maynard, Steven T. 1977. Model demonstration of the effects of propeller wash on the bed of an alluvial river; Section 32 Program, streambank erosion control evaluation and demonstration; Work Unit 3. Hydraulic Research Report 1, U.S. Army Engineer Waterways Experiment Station, November.
- Owen, Dan, editor. 1981. Inland River Record 1981. The Waterways Journal, St. Louis.
- Schenck, Hilbert, Jr. 1968. Theories of engineering experimentation. 2nd ed., McGraw-Hill, Inc., New York, New York.


- Schnepper, Donald, Thomas Hill, David Hullinger, and Ralph Evans. 1981. Physical characteristics of bottom sediments in the Alton pool, Illinois Waterway. Illinois State Water Survey Contract Report 263, July 10.
- Simons, D. B., J. A. Schumm, M. A. Stevens, Y. H. Chen, and P. F. Lagasse. 1975. Environmental inventory and assessment of navigation pools 24, 25, and 26, Upper Mississippi and Lower Illinois Rivers--A geomorphic study. U.S. Army Engineer Contract Report Y-75-3, July.
- Upper Mississippi River Basin Commission. 1981. Preliminary comprehensive master plan for the management of the Upper Mississippi River System. January 1.
- U.S. Army Corps of Engineers. 1974. Charts of the Illinois Waterway from the Mississippi River at Grafton, Illinois, to Lake Michigan at Chicago and Calumet Harbors. U.S. Army Engineer District, Chicago.
- U.S. Army Corps of Engineers. 1971. Hydrographic survey maps of the Mississippi River, river mile 202 to mile 300. U.S. Army Engineer District, St. Louis.
- U.S. Army Corps of Engineers. 1978. Upper Mississippi River navigation charts. U.S. Army Engineer Division, North Central.
- U.S. Army Corps of Engineers, Huntington District. 1980. Appendix J, vol. 1: Environmental and social impact analysis. Gallipolis Locks and Dam replacement, Ohio River, Phase I, Advanced engineering and design study, general design memorandum.
- U.S. Army Corps of Engineers. 1977. Hydrographic survey maps of the Illinois River, river mile 0 to 80. Army Engineer District, St. Louis.
- U.S. Geological Survey. 1978. Chapter 3: Sediment, appendices 3.L.6 and 3.L.7: Laboratory procedure for pipet method and Laboratory procedure for sieving. National handbook of recommended methods for water data acquisition, U.S. Geological Survey, Reston, Virginia.

APPENDICES

- APPENDIX A. Data Sheets
- APPENDIX B. Suspended Sediment Concentration During Tow Passage Events
- APPENDIX C. Background Suspended Sediment Concentration Data
- APPENDIX D. Water Velocities During Tow Passage Events
- APPENDIX E. Background Water Velocity Data
- APPENDIX F. Background Percent Volatiles

APPENDIX A

DATA SHEETS

	Page	of					
	Recorder						
	Party _						
	. —						
	•	<u> </u>					
	·						
WATER T	EMP. (⁰	C)					
			"	52			
5	tart						
			<u>، الم</u>	- ⁵⁵			
Fi	nish						
	_		<u>,</u> ,,,	56			
AIR TEM	P. (^o C)						
			<u> </u>	61			
WATER D	EPTH (f t.)					
			<u></u>	64			
STATION	KEY			-			
ampler	59	61					
-	1/8	3/16	3	1/4			
Key ≉	1	2		3			
Remarks:							

.

.

	64	61 /0 Rottin	Time		79	De	pth	_
Event	Station	Bottle No.	Min Elapsed	Conc.	ppm	open	close	Remarks
				-				
					•			

VELOCITY DATA FOR BARGE EVENT

.M/SC			EVENT	NO	20	STATION		ORDER
TRIP NO	<u> </u>			TIME		TOTAL D	EPTH (m)	<u> </u>
		vear	TOW NA	ME	<u> </u>		G DEPTH (m)	
52 57				71 74	52 57	59 63	65 66	7; 74
BARGE ELAPSED TIME (2 MIN:SEC)	1		LUTIONS	VELOCITY	BARGE ELAPSED TIME (±MIN:SEC)	VELOCITY TIME	REVOLUTIONS	VELOCITY (FT/SEC)
	0:30	+			:	15:30	<u> </u>	
	1:00	\square			:	16:00		
	1:30					16:30		
	2:00	\square			:	17:00		
	2:30	<u> </u>	·		:	17:30		
	3:00				:	18:00		,
:	3:30	T T		-	:	18:30		
- :	4:00				:	19:00		•
;	4:30	<u> </u>			:	19:30		
:	5:00	1			:	20:00		
:	5:30				:	20:30		<u> </u>
:	6:00	1			:	21:00		
;	6:30	1	•		:	21:30		
:	7:00				:	22:00		•
	7:30				:	22:30		·
;	8:00	1			:	23:00		
:	8:30			•	:	23:30		· · ·
:	9:00	+			:	24:00		
:	9:30	<u> </u>			:	24:30		
	10:00				:	25:00		
	10:30	┼			:	25:30		
:	11:00	1			:	26:00		
÷	11:30	+	_		. <u>.</u>	26:30		•
- <u></u>	12:00	1				27:00	<u> </u>	· · · · · · · · · · · ·
:	12:30	<u> </u>			· · · · · · · · · · · · · · · · · · ·	27:30		
:	13:00				:	28:00	<u> </u>	
 :	13:30	1			:	28:30		•
:	14:00	1		<u> </u>	:	29:00		
	14:30	<u> </u>			:	29:30		· .
•	15:00				 :	30:00		
;	1	<u> </u>	- <u> </u>	L	· ·			· ·

LM/SC			P NO4	5	12		17	
22 25 Local	27 38	40 Station	Depti ⁴² Total ⁴⁵	h (m)		68 69 Seconds	71 74 Velocity (ft/sec)	Remæks
(military)			Total Total	Sample S		_ .	-	· · · · · · · · · · · · · · · · · · ·
	BG		<u> </u>					· · · · · · · · · · · · · · · · · · ·
	BG							
	BG							
	BG						-	
	BG							
	BG							
	8G		-					
	8G							
	BG		· ·					
	BG		- -					
	BG							
	BG		• .					
	ВG							
	BG	7		L			·····	
	BG						'	
	BG							
	BG				-			

BACKGROUND VELOCITY DATA

•

APPENDIX B

SUSPENDED SEDIMENT CONCENTRATION DURING TOW PASSAGE EVENTS

Site: Havana	Starting time: 1321
River mile 121.5	Tow name: Lynn B.
Trip no. 1	No. of barges: 11
Event no: 1	Draft:
Date: 05-28-80	Traffic direction: Downstream Tow speed: 7.2 mph

Sta Water t Water d	-	Water	tion B temp.: epth: 13 ft
	Suspended sediment conc. (ppm)	Time (minutes elapsed)	
4	411	0	100
6	583	2	88
8	344	4	86
10	336	6	156
15	664	8	232
		10	277
		12	366
		15	338
		17	297

Site: Havana	Starting time: 1339
River mile 121.5	Tow name: Magnolia
Trip no. 1	No. of barges: 5
Event no: 2	Draft:
Date: 05-28-80	Traffic direction: Downstream
	Tow speed: 8.8 mph

	tion A		tion B
Water t Water	emp.: depth:		emp.: epth: 13 ft
Matter	acpen.	Watter a	epen: 10 10
Time	Suspended	Time	Suspended
(minutes	sediment	(minutes	sediment
elapsed)	conc. (ppm)	elapsed)	conc. (ppm)
18	146	19	198
20	120	21	202
22	176	23	126
24	223	25	134
29	182	30	223
34	170	35	183
39	127	40	111
44	104	45	119
49	95	50	125
54	109	55	113
59	103	60	110
70	99	70	93
80	90	80	104
90	95	90	89

Site: Havana River mile 122 Trip no. 1 Event no: 3 Date: 05-29-80		No. of bar Draft:	Creole Belle ges: 14 - rection: Downstream
	tion A emp.: 24 C epth:	Water te	tion B emp.: 24 C epth: 14 ft
	Suspended sediment conc. (ppm)		Suspended sediment conc. (ppm)
0	86	15	470
2 4	73 118	20 25	147 121
4	218	30	106
8	191	00	100
10	271		
15	358		
20	144		
25	124		
30	105		
35	89		

Site: Havana	Starting time: 1149
River mile 121.5	Tow name: Andrew Benedict
Trip no. 1	No. of barges: 8
Event no: 4	Draft:
Date: 05-29-80	Traffic direction: Downstream Tow speed: 7.6 mph

Sta Water t Water d	1	Station B Water temp.: - Water depth: 14 ft
Time (minutes elapsed)		Time Suspended (minutes sediment elapsed) conc. (ppm)
37 39 41 43 45 47 52 57 62 67	81 277 254 165 167 216 263 185 155 116	52 115 57 154 62 122

Site: Havana River mile 121.5 Trip no. 1 Event no: 5 Date: 05-29-80 Starting time: 1224 Tow name: Patsy Swank No. of barges: 9 Draft: ----Traffic direction: Upstream Tow speed: 4.8 mph

Station A Water temp.: ----Water depth: ----Time Suspended (minutes sediment elapsed) conc. (ppm)

13	102
75	115

Site: Havana	Starting time: 1231
River mile 121.5	Tow name: John M. Warner
Trip no. 1	No. of barges: 3
Event no: 6	Draft:
Date: 05-29-80	Traffic direction: Downstream
	Tow speed: 6.4 mph

Station A Water temp.: Water depth:		Station B Water temp.: Water depth: 12 ft		
Time (minutes elapsed)		Time (minutes elapsed)		
79	99	94	130	
81	64	99	116	
83	79	104	135	
85	116	109	111	
87	142	114	123	
89	147	119	117	
94	138	124	97	
99	133	129	84	
104	157	134	92	
109	121			
114	113			
119	97			
124	87			
129	98			
134	85			
139	95			

Site: Hadley's Landing	Starting time: 1520
River mile 13.2	Tow name: Chicago Trader
Trip no. 2	No. of barges: 6
Event no: 1	Draft: 8 ft
Date: 07-23-80	Traffic direction: Downstream
	Tow speed: 5.4 mph

Station A Water temp.: 31 Water depth:		ation B cemp.: 31 C lepth:	Water te	tion C emp.: 30 C epth: 13 ft
Time Suspended (minutes sediment elapsed) conc. (pp	(minutes		Time (minutes elapsed)	
2 57	2	54	4	244
4 51	4	65	6	84
8 85	6	53	8	187
10 92	8	58	10	89
12 60	10	53	12	88
14 53	12	55	14	85
16 74	14	51	16	164
18 58	16	54		
20 58				

Riv Tri Eve	te: Hadley's L ver mile up no. 2 ent no: 2 te: 07-23-80	anding 13.2	Starting time: Tow name: Her No. of barges: Draft: 9 ft Traffic direct Tow speed: 3.	b Schreiner : 12 cion: Downs	
Stat	ion A	Sta	tion B	Sta	tion C
Water te	emp.: 30 C	Water t	.emp.: 30 C	Water t	emp.: 30 C
Water de	epth: 13 ft	Water d	lepth:	Water d	lepth:
Time	Suspended	Time	Suspended	Time	Suspended
(minutes	sediment	(minutes	sediment	(minutes	sediment
elapsed)	conc. (ppm)	elapsed)	conc. (ppm)	elapsed)	conc. (ppm)
23	76	24	55	25	72
25	55	26	57	27	70
27	57	28	61	29	95
29	53	30	76	31	99
31	95	32	112	33	87
33	101	34	91	35	97
35	97	36	94	37	93
37	101	38	92	39	80
39	69	40	66	41	70
41	65	42	70	43	79
43	60	44	74	45	70
45	65	46	75	47	77
47	66	48	81	49	73
49	65	50	69		
51 53	71 79	52	80		
55	כו				

Site: Hadley's Landing	Starting time: 1614
River mile 13.2	Tow name: Marvin E. Norman
Trip no. 2	No. of barges: 15
Event no: 3	Draft: 2 ft
Date: 07-23-80	Traffic direction: Upstream Tow speed: 5.3 mph

	tion A cemp.: 30 C lepth:	Water t	tion B emp.: 31 C epth: 15 ft	Water te	tion C emp.: 30 C epth: 17 ft
Time (minutes elapsed)		Time (minutes elapsed)	Suspended sediment conc. (ppm)	Time (minutes elapsed)	Suspended sediment conc. (ppm)
57 59	65 87	59 61	70 75	60 62	61 62
61	67	63	73	64	65
63	63	65	72	66	73
65	81	67	67	68	68
69	68	69	66	70	92
71	71	71	62	72	88
73	72	73	62	74	84
75	72	75	68	76	68
77	77	77	67	78	67
79	72	79	64	80	66
81	68	81	87	82	64
83	93	83	94	84	79
85	95	85	97	86	84
87	141	87	96	91	65
93	74	92	68	96	73
98	76	97	74	101	71
103	70	102	83	106	70
108	55	107	70	111	86
114	74	112	80	116	66
120	82	117	70	126	67
130	80	127	63	136	68
140	66	137	67	146	69
150	60	147	62		

Site: Hadley's Landing	Starting time: 0959
River mile 13.2	Tow name: Yankton
Trip no. 2	No. of barges: 12
Event no: 4	Draft: 9 ft
Date: 07-24-80	Traffic direction: Downstream Tow speed: 4.4 mph

Station A Water temp.: 29 C Water depth: 12 ft		Station B Water temp.: 29 C Water depth: 16 ft		Water t	Station C Water temp.: 29 C Water depth: 16 ft	
Time (minutes elapsed)	Suspended sediment conc. (ppm)	Time (minutes elapsed)	Suspended sediment conc. (ppm)	Time (minutes elapsed)	Suspended sediment conc. (ppm)	
3	69	3	75	6	142	
5	69	5	71	8	135	
7	76	7	68	10	109	
9	99	9	64	12	78	
11	113	11	80	14	66	
13	65	13	166	16	116	
15	86	15	65	18	118	
17	75	17	72	20	97	
19	101	19	85	22	88	
21	114	21	90	24	75	
23	109	25	99	26	81	
25	98	27	97	28	94	
30	262	29	112	30	107	
32	141	31	78	32	86	
37	86	36	92	34	77	
43	80	41	118	39	76	
48	85	46	80	44	76	
53	80	51	85	49	77	
58	71	56	77	54	78	
63	84	61	74	59	72	
73	67	71	72	64	79	
83	66	81	68	74	86	
94	85	91	64	84	74	
				94	68	

Site: Hadley's Landing	Starting time: 1145
River mile 13.2	Tow name: Fort Pierre
Trip no. 2	No. of barges: 15
Event no: 5	Draft: 9 ft
Date: 07-24-80	Traffic direction: Downstream Tow speed: 4.6 mph

Water t	tion A emp.: 30 C lepth: 13 ft		tion B emp.: 29 C lepth:	Water t	tion C emp.: 30 C epth: 17 ft
Time (minutes		Time (minutes		Time (minutes	
elapsed)	conc. (ppm)	elapsed)	conc. (ppm)	elapsed)	conc. (ppm)
3	65	4	66	6	157
5	59	6	66	8	82
7	64	8	66	10	142
9	62	10	69	12	145
11	61	12	74	16	124
13	68	14	67	18	89
15	61	16	61	20	99
17	35	18	75	22	101
19	86	20	102	26	121
21	109	22	83	28	110
23	118	24	112	30	85
25	115	26	117	32	92
27	120	28	118	34	93
29	120	30	118	36	97
31	121	32	72	41	81
36	78	37	82	46	95
41	101	42	101	51	76
46	100	47	101	56	87
51	138	52	103	61	79
56	90	57	92	66	82
61	420	62	87	76	71
71	86	72	75	86	85
81	82	82	72	96	73
91	109	92	69		

Site: Hadley's Landing River mile 13.2	Starting time: 1008 Tow name: Andrew Benedict
Trip no. 3	No. of barges: 4
Event no: 1	Draft: 9 ft
Date: 09-23-80	Traffic direction: Upstream Tow speed:

	tion A emp.: 20 C lepth:	Water t	tion B cemp.: 20 C lepth: 15 ft	Water t	tion C emp.: 22 C epth: 18 ft
•	Suspended sediment conc. (ppm)	Time (minutes elapsed)	Suspended sediment conc. (ppm)	Time (minutes elapsed)	Suspended sediment conc. (ppm)
4	226	4	367	4	424
6	255	28	401	6	506
8	365	30	436	10	664
16	276	35	383	12	504
18	342	40	388	18	441
20	334	45	374	20	453
22	372	50	371	22	415
24	362	55	352	24	383
26	364	60	387	26	434
28	284	70	349	28	405
30	339	80	361	30	415
35	242	90	282	35	518
40	280			40	530
45	287			45	589
50	264			50	503
55	240			55	548
60	280			60	495
70	289			70	462
80	274			80	434
90	240				

Site: Hadley's Landing	Starting time: 1236
River mile 13.2	Tow name: Leviticus
Trip no. 3	No. of barges: 6
Event no: 2	Draft: 9 ft
Date: 09-23-80	Traffic direction: Downstream
	Tow speed: 5.6 mph

Water t	tion A emp.: 20 C epth: 10 ft		tion B temp.: 20 C depth:	Water t	tion C emp.: 21 C epth: 17 ft
Time	Suspended	Time	Suspended	Time	Suspended
(minutes	sediment	(minutes	sediment	(minutes	sediment
elapsed)	conc. (ppm)	elapsed)	conc. (ppm)	elapsed)	conc. (ppm)
2	249	6	349	4	496
4	263	8	335	6	512
6	271	10	398	8	471
8	274	12	484	10	545
10	278	14	340	14	532
12	332	16	405	16	460
14	274	18	353	18	464
16	256	20	436	20	452
18	275	22	318	22	456
20	288	24	334	24	451
22	275	28	374	26	431
24	333	30	341	28	442
26	324	35	297	30	465
28	328	40	317	35	505
30	310	45	333	40	504
35	289	50	310	45	420
40	243	55	304	50	460
45	252	60	275	55	437
50	211	70	246	60	454
55	221	80	269	70	455
60 70 80 90	238 187 189 177	90	248	80 90	380 391

Tr Ev	ver mile rip no. 3 rent no: 3 te: 09-23-80	13.2	Tow name: Cr No. of barges Draft: 9 ft Traffic direc Tow speed: 4	s: 4 ction: Upstr	eam
Sta	tion A	Sta	tion B	Sta	tion C
Water t	.emp.: 20 C	Water t	.emp.: 20 C	Water t	emp.: 21 C
Water d	lepth: 13 ft	Water d	lepth: 17 ft	Water d	lepth:
Time	Suspended	Time	Suspended	Time	Suspended
(minutes		(minutes	sediment	(minutes	sediment
elapsed)	conc. (ppm)	elapsed)	conc. (ppm)	elapsed)	conc. (ppm)
4	303	10	314	6	478
6	328	12	307	8	473
8	329	14	330	10	468
10	254	16	330	12	478
12	253	18	335	14	516
14	246	20	334	16	553
16	263	22	330	18	388
18	277	24	176	20	345
20	263	26	354	22	384
22	131	28	313	24	336
24	292	30	346	26	377
26	352	35	350	28	356
28	362	40	331	30	351
30	335	45	313	35	434
35	303	50	299	40	431
40	318	55	258	45	428
45	275	60	417	50	419
50	267	70	460	55	389
55	248	80	421	60	391
60	279	90	366	70	464
70	370			80	497
80 90	290 331			90	410

Site: Hadley's Landing	Starting time: 1315
River mile 13.2	Tow name: Irene Chotin
Trip no. 3	No. of barges: 18
Event no: 4	Draft: 9 ft
Date: 09-24-80	Traffic direction: Upstream
	Tow speed: 4.8 mph

	tion A cemp.: 21 C depth:		tion B cemp.: 20 C depth:	Water t	tion C emp.: 21 C lepth:
Time (minutes elapsed)	Suspended sediment conc. (ppm)	Time (minutes elapsed)	Suspended sediment conc. (ppm)	Time (minutes elapsed)	sediment
3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 40 45	200 188 192 200 213 210 202 312 331 296 245 251 274 291 295 265 316 297 247	7 9 11 13 15 17 19 21 25 27 29 31 33 35 40 45 50 55 60	239 282 290 309 371 321 261 345 345 345 313 298 303 310 306 349 314 275 350 344	5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 40 45 50	400 370 321 330 301 264 373 288 320 267 313 296 294 311 326 337 371 372 321
50 55 60 70 80 90	223 200 266 207 185 182	70 80 90	326 272 300	55 60 70 80 90	350 339 351 317 341

Site: Hadley's Landing	Starting time: 1015
River mile 13.2	Tow name: Barbara Jeanne Meyer
Trip no. 3	No. of barges: 8
Event no: 5	Draft: 2 ft
Date: 09-25-80	Traffic direction: Upstream Tow speed: 5.4 mph
	iow speed. 5.1 mpii

Station A Water temp.: 21 C Water depth: 13 ft		Station B Water temp.: 21 C Water depth: 17 ft		Station C Water temp.: 21 C Water depth:	
	Suspended sediment conc. (ppm)	Time (minutes elapsed)	Suspended sediment conc. (ppm)	Time (minutes elapsed)	
2	197	4	256	6	448
4	180	6	260	8	492
6	186	8	272	10	451
8	191	10	272	12	348
10	192	12	320	14	365
12	171	14	319	16	364
14	186	16	325	18	359
16	185	18	301	20	344
18	192	20	327	22	348
20	187	22	316	24	342
22	201	24	273	26	361
24	262	26	270	28	331
26	236	28	298	30	397
28	213	30	329	35	413
30	220	35	266	40	416
35	225	40	278	45	426
40	205	45	271	50	373
45	182	50	278	55	414
50	200	55	272	60	377
55	137	60	251	70	388
60	172	70	255	80	330
70	219	80	262	90	445
80	168	90	260		
90	163				

Site: Hadley's Landing	Starting time: 1310
River mile 13.2	Tow name: Luke Gladders
Trip no. 3	No. of barges: 15
Event no: 6	Draft: 9 ft
Date: 09-25-80	Traffic direction: Downstream
	Tow speed: 5.9 mph

Station A Water temp.: 22 C Water depth: 13 ft		Water t	tion B emp.: 21 C epth: 17 ft	Water t	tion C emp.: lepth:
Time (minutes elapsed)	Suspended sediment conc. (ppm)	Time (minutes elapsed)	Suspended sediment conc. (ppm)	Time (minutes elapsed)	
2	181	6	447	6	536
4	175	8	362	8	452
6	166	10	272	12	399
8	202	12	261	14	342
10	182	14	346	16	350
12	192	16	310	18	327
14	326	18	288	20	416
16	322	20	278	22	395
18	259	22	316	26	383
20	261	24	280	28	441
22	259	26	244	30	424
24	275	28	303	35	452
26	333	30	322	40	522
28	284	35	340	50	399
30	278	40	310	55	382
35	334	45	328	60	442
40	252	50	291	70	461
45	230	55	304	80	463
50	217	60	307	90	472
55	159	70	268		
60	182	80	249		
70	181	90	259		
80	155				
90	169				

Site: Hadley's Landing	Starting time: 1450
River mile 13.2	Tow name: Fort Pierre
Trip no. 3	No. of barges: 12
Event no: 7	Draft: 9 ft
Date: 09-25-80	Traffic direction: Downstream
	Tow speed: 4.1 mph

Water t	tion A emp.: 22 C epth: 13 ft	Station B Water temp.: 21 C Water depth: 17 ft		Water t	tion C emp.: 21 C epth: 12 ft
Time (minutes elapsed)	Suspended sediment conc. (ppm)	Time (minutes elapsed)	Suspended sediment conc. (ppm)	Time (minutes elapsed)	Suspended sediment conc. (ppm)
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 35 40 45 50	190 172 178 172 168 232 310 274 246 242 273 221 201 213 243 221 201 201 201 201 171	6 8 10 12 14 16 18 20 22 24 26 28 30 35 40 45 50 55 60	290 269 334 409 356 321 292 279 291 296 365 330 363 327 366 319 292 321 297	6 8 10 12 14 18 20 22 24 26 28 30 35 40 45 50 55 60 70	534 669 532 390 402 359 321 334 337 373 423 400 453 432 373 369 397 471 451
55 60 70 80 90	163 162 165 155 162	70 80 90	295 283 278	80 90	456 415

Site: Hadley's Landing	Starting time: 1747		
River mile 13.2	Tow name: Virginia E. Towey		
Trip no. 3	No. of barges: 15		
Event no: 8 Date: 09-25-80	Draft: Traffic direction: Downstream Tow speed:		

Water t	tion A emp.: 22 C epth: 13 ft	Water t	tion B emp.: 21 C lepth: 17 ft	Water to	tion C emp.: 21 C lepth:
(minutes	Suspended sediment conc. (ppm)	(minutes	Suspended sediment conc. (ppm)	Time (minutes elapsed)	-
2	215	6	416	8	380
4	214	8	384	10	346
6	233	10	365	12	331
8	252	12	315	14	382
10	219	14	383	16	316
12	302	16	343	18	278
14	301	18	270	20	293
16	252	20	297	22	269
18	263	22	312	24	331
20	249	24	334	26	347
22	288	26	346	28	369
24	358	28	339	30	423
26	333	30	330	35	381
28	344	35	326	40	360
30 35 40 45	360 301 252 263	40 45	312 298	45	341

Starting time: 0950
Tow name: Clark Frame No. of barges: 8
Draft: 9 ft Traffic direction: Upstream
Tow speed: 2.2 mph

Water t	tion A emp.: 21 C epth: 13 ft		tion B cemp.: 20 C depth:	Water t	tion C emp.: lepth:
Time (minutes elapsed)	Suspended sediment conc. (ppm)	Time (minutes elapsed)	Suspended sediment conc. (ppm)	Time (minutes elapsed)	
5 7 9 11 13 15 17 19 21 23 25 27 29 31	204 204 198 189 207 189 191 195 193 185 201 211 212 193	7 9 11 13 15 17 19 21 23 25 27 29 31 33	246 251 265 253 276 319 295 278 322 300 346 349 331	7 9 11 13 15 17 19 21 23 25 27 29 31 33	384 437 441 476 367 392 438 440 417 372 330 296 327 346
33 35 40 45 50 55 60 70 80	184 198 267 189 179 159 170 188 197	35 40 45 50 55 60 70 80	271 301 332 323 267 258 292 292	35 40 45 50 55 60 70 80	317 333 398 370 344 350 332 353

Site: Hadley' River mile 13 Trip no. 3 Event no: 10 Date: 09-26-80	.2	Starting time Tow name: Bet No. of barges Draft: 9 ft Traffic direc Tow speed: 4.	ty Brent : 8 tion: Upstr	eam
Station A	Sta	tion B	Sta	tion C
Water temp.: 21 C	Water te	emp.: 20 C	Water te	emp.: 20 C
Water depth: 13 ft		÷		epth: 17 ft
Time Suspended (minutes sediment elapsed) conc. (ppm	(minutes	sediment	Time (minutes elapsed)	-
3 167	7	316	7	382
5 189	9	311	9	334
7 218				
9 178				
11 202				
13 239				

Starting time: 1130 Tow name: Lynn B. No. of barges: 12 Draft: 9 ft Traffic direction: Downstream Tow speed: 5.9 mph
Tow speed: 5.9 mph

Water t	tion A cemp.: 21 C lepth: 13 ft	Water t	tion B emp.: 20 C epth: 17 ft	Water t	tion C emp.: lepth:
	Suspended sediment conc. (ppm)	Time (minutes elapsed)	Suspended sediment conc. (ppm)	Time (minutes elapsed)	Suspended sediment conc. (ppm)
15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 50 55 60 65 70	250 272 286 236 224 302 397 416 372 442 434 364 397 417 353 319 291 245 202 196 189	19 21 23 25 27 29 31 33 35 37 39 41 43 45 50 55 60 65 70 75	309 292 323 318 301 319 452 395 408 389 480 501 359 419 317 298 278 269 263 250	19 21 23 25 27 29 31 33 35 37 39 41 43 45 50 55 60 65 70 75	290 317 282 311 322 306 393 337 328 321 405 614 565 573 525 517 410 421 381 394
75	197				

Site: Riprap Landing	Starting time: 0947
River mile 265.1	Tow name: Atlas
Trip no. 4	No. of barges: 9
Event no: 1	Draft: 2 ft
Date: 04-08-81	Traffic direction: Upstream
	Tow speed: 3.9 mph

Water t	tion A emp.: 13 C epth: 10 ft	Water te	cion B emp.: 13 C epth: 29 ft	Water te	tion C emp.: 13 C epth: 35 ft
Time (minutes elapsed)	Suspended sediment conc. (ppm)	(minutes	Suspended sediment conc. (ppm)	Time (minutes elapsed)	Suspended sediment conc. (ppm)
0	118	18	139B	7	121B
2	122	18	119T	10	119T
4	122	19	130B	12	130P
7	121	19	117T	13	123B
8	119	21	123B	15	121T
10	121	21	120T	24	128P
12	122	27	124B	28	123B
14	122	27	123T	29	116T
16	122	31	123T	32	128P
18	122	31	135B	35	124B
20	123	37	126T	37	113т
22	123	37	125B	39	122P
24	123	42	124T	40	123B
26	124	42	124B	42	115T
28	123			43	126P
30	119			45	133B
35	123			48	112T
40	124			49	122P
45	126				
50	125				

NOTE: The letter B,T,or P follows some suspended sediment concentrations. B indicates a depth-integrated sample of the bottom half of the water column T indicates a depth-integrated sample of the top half of the water column P indicates a point-integrated sample at a specific depth All others are depth-integrated samples of the entire water column

Site: Riprap Landing	Starting time: 1044		
River mile 265.1	Tow name: Prairie Dawn		
Trip no. 4	No. of barges: 15		
Event no: 2	Draft: 2 ft		
Date: 04-08-81	Traffic direction: Upstream		
	Tow speed: 7.0 mph		

Station A		Sta	tion B	ion B Station C		
Water t	.emp.: 13 C	Water t	emp.: 13 C	Water t	emp.: 13 C	
Water d	lepth: 10 ft	Water c	lepth: 26 ft	Water d	Water depth: 34 ft	
Time	Suspended	Time	Suspended	Time	Suspended	
(minutes	sediment	(minutes	sediment	(minutes	sediment	
elapsed)	conc. (ppm)	elapsed)	conc. (ppm)	elapsed)	conc. (ppm)	
0	123	6	124T	9	129B	
2	124	6	128B	12	120T	
4	138	9	130B	14	133P	
6	130	9	124T	15	130B	
8	126	12	123B	16	114T	
10	126	12	119T	17	129P	
12	128	15	125B	19	132B	
14	129	15	118T	21	123T	
16	131	18	122B	22	131P .	
18	126	18	117T	24	131B	
20	126	21	116T	25	115T	
22	126	21	118B	27	128P	
24	127	24	117T	28	136B	
26	135	24	122B	30	122T	
28	127	27	126T	31	132P	
30	126	27	122B	33	128B	
35	129	30	114T	34	117т	
40	126	30	114B	35	134P	
45	126	35	121B	36	134B	
50	124	35	107т	37	123T	
55	125	40	114B	39	134P	
60	121	40	114T	40	136B	
70	121	45	70B	42	120T	
80	120	45	114T	43	134P	
90	125	50	114B	45	136B	
		50	114T	47	123Т	
		55	153B	48	130P	
		55	119T	50	134B	
		60	123B	52	123т	
		60	119T	53	137P	
		70	118T	55	136B	
		70	121B	56	127т	
		80	122B	57	136P	
		80	118T	60	140B	
		90	118B	61	124T	
		90	110T	62	135P	
				70	136B	
				71	121T	

Station A	Station B	Station C
Water temp.: 13 C Water temp.: 13 C		Water temp.: 13 C
Water depth: 10 ft	Water depth: 26 ft	Water depth: 34 ft
Time Suspended (minutes sediment elapsed) conc. (ppm)	Time Suspended (minutes sediment elapsed) conc. (ppm)	Time Suspended (minutes sediment elapsed) conc. (ppm)
		72 131P 80 132B 82 120T 83 129P 90 128B 91 126T 92 129P

Tow speed: 7.9 mph

Water t	tion A emp.: 13 C epth: 06 ft	Water t	tion B emp.: 12 C epth: 28 ft	Water t	tion C emp.: 12 C epth: 35 ft
Time (minutes elapsed)	Suspended sediment conc. (ppm)	Time (minutes elapsed)	Suspended sediment conc. (ppm)	Time (minutes elapsed)	Suspended sediment conc. (ppm)
-		-		-	
8	125	6	126B	10	125B
10	127	6	119T	11	120T
12	126	24	118	12	122P
14	128	27	118	25	128B
16	121	30	123	26	123T
18	120	35	118	27	125B
20	121	40	117	28	121T
22 12		45	111	29	123P
24	116	50	114	31	124B
26	113	55	114	32	179T
28	117	60	339	34	123B
30	116	70	115	48	130B
32	116	80	114	50	132T
35	118	90	115	51	130B
40	120			52	122T
45	121			53	132B
50	120			54	126T
55	115			55	133B
60	120			56	127т
70	119			69	130B
80	121			70	128T
90	119			71	132P
				80	131B
				81	125T
				90	133B
				92	126T
				93	121P

Site: Riprap Landing	Starting time: 1005
River mile 265.1	Tow name: Arthur E. Snider
Trip no. 4	No. of barges: 12
Event no: 4	Draft: 9 ft
Date: 04-09-81	Traffic direction: Downstream
	Tow speed: 8.1 mph

Sta	tion A	Station B		Station C	
Water t	emp.: 13 C	Water temp.: 12 C		Water te	emp.: 12 C
Water d	epth: 12 ft	Water d	epth: 26 ft	Water de	epth: 35 ft
Time	Suspended	Time	Suspended	Time	Suspended
(minutes	sediment	(minutes	sediment	(minutes	sediment
elapsed)	conc. (ppm)	elapsed)	conc. (ppm)	elapsed)	conc. (ppm)
2	118	5	116	10	126B
4	118	8	120	11	119T
6	119	11	112	12	120P
8	122	14	120	17	125B
10	123	16	119	19	114T
12	121	18	121	20	118P
14	121	20	115	23	121B
16	120	22	116	24	116T
18	122	24	113	26	114P
20	122	26	122	28	120B
22	122	28	116	30	113т
24	120	30	117	31	115P
26	121	35	269	33	121B
28	121	40	172	34	116T
30	121	45	158	35	113P
35	120	50	149	39	128B
40	124	60	198	41	115T
45	117			42	68P
50	162			45	204B
55	159			46	119T
60	160			48	117P
70	157			51	119B
				52	115T
				53	112P
				56	122B
				58	116T
				59 63	116P 117T
				63	1171 124B
				64	124B 117P
				01	** * *

Starting time: 1129
Tow name: Rose Marie Walden
No. of barges: 9
Draft: 8 ft
Traffic direction: Downstream
Tow speed:

Water t	tion A emp.: 14 C epth: 12 ft	Station B Water temp.: 12 C Water depth: 27 ft		Water te	tion C emp.: 12 C epth: 33 ft
Time (minutes elapsed)	Suspended sediment conc. (ppm)	Time (minutes elapsed)	Suspended sediment conc. (ppm)	Time (minutes elapsed)	Suspended sediment conc. (ppm)
0	153	6	157T	6	120B
2	155	8	147T	7	112T
4	158	10	142T	9	121 123P
4	2390	10	1421 159T	10	123F 123B
8	165	14	169T	10	123B 118T
10	157	16	148T	13	123P
10	161	18	149T	16	117T
14	161	20	153T	16	121B
16	164	22	155T	17	121D 126P
18	149	24	153T	19	119B
20	150	26	150T	20	119D 119T
22	160	28	141T	20	122P
24	171	30	153T	22	117B
26	163	35	128T	23	113T
28	173	40	118T	24	122P
30	168	45	118T	26	122B
35	160	50	120T	27	130T
40	154	55	116T	28	108P
45	162	60	114T	29	117B
50	163	70	115T	30	113T
55	160	80	113T	31	119P
60	158	00	1101	35	112B
70	156			36	112B 115T
80	143			37	117P
90	152			40	125B
20	102			41	114T
				42	117P
				45	120B
				47	109T
				10	1000

48

51

52

53

55 57

58

60 62 123P

117B

111T

120P

122B 115T

128P

117B 115T

Station A	Station B	Station C
Water temp.: 14 C	Water temp.: 12 C	Water temp.: 12 C
Water depth: 12 ft	Water depth: 27 ft	Water depth: 33 ft
Time Suspended	Time Suspended	Time Suspended
(minutes sediment	(minutes sediment	(minutes sediment
elapsed) conc. (ppm)	elapsed) conc. (ppm)	elapsed) conc. (ppm)
		63122P70119B71113T72122P80115T80121B81123P

Site: Riprap Landing	Starting time: 1300		
River mile 265.1	Tow name: White Dawn		
Trip no. 4	No. of barges: 15		
Event no: 6	Draft: 9 ft		
Date: 04-09-81	Traffic direction: Downstream		
	Tow speed: 8.7 mph		

	tion A emp.: 14 C lepth: 12 ft	Station B Water temp.: 14 C Water depth: 27 ft		Water te	tion C emp.: 14 C epth: 34 ft
Time (minutes elapsed)	Suspended sediment conc. (ppm)	Time (minutes elapsed)	Suspended sediment conc. (ppm)	Time (minutes elapsed)	Suspended sediment conc. (ppm)
erapsea)	(ppiii)	crapsea)	(ppm)	crapsed)	(ppm)
4	150	6	119T	8	121B
6	157	8	111T	9	114T
8	604	10	113T	11	120P
10	182	12	111T	12	273B
12	180	14	114T	13	118T
14	165	16	114T	14	119P
16	153	18	120T	16	138B
18	10311	20	114T	17	119T
20	184	22	112T	18	122P
22	176	24	114T	19	122B
24	1018	26	111T	21	117т
26	159	28	112т	21	172P
28	125	30	113T	24	119B
30	127	35	114T	25	114T
35	123	40	113T	27	118P
40	238	45	108T	28	123B
50	119	50	110T	29	118T
55	3551	55	107т	30	115P
60	235	60	106T	35	98B
70	335	70	108T	36	111T
80	1735	80	108T	37	119P
90	4752	90	109T	41	120B
				42	113T
				48	222B
				49	114T
				50	119P
				51	121B
				F 0	1100

52

53

55

56

57

60

61

62

70

71

72

113T

119P

115B

108T

113P

118B

117т

122P

123B

113T

113P

Station A Water temp.: 14 C Water depth: 12 ft	Station B Water temp.: 14 C Water depth: 27 ft	Station C Water temp.: 14 C Water depth: 34 ft	
Time Suspended (minutes sediment elapsed) conc. (ppm)	Time Suspended (minutes sediment elapsed) conc. (ppm)	Time Suspended (minutes sediment elapsed) conc. (ppm)	
		80 124B	
		82 113T	
		83 115P	
		90 119B	
		91 114T	
		92 115P	

Water t	tion A emp.: 13 C epth: 12 ft	Water te	ion B emp.: 13 C epth: 27 ft	Water t	tion C emp.: 13 C epth: 36 ft
Time (minutes elapsed)	Suspended sediment conc. (ppm)		Suspended sediment conc. (ppm)	Time (minutes elapsed)	
0	112	6	104T	11	117B
2	111	8	102T	13	111T
4	114	10	104T	14	111P
6	112	12	103T	16	110B
8	112	14	103T	17	110T
10	112	16	104T	19	114P
13	113				
14	114				
16	116				
18	116				

Site: Riprap Landing	Starting time: 1623
River mile 265.1	Tow name: Hawkeye
Trip no. 4	No. of barges: 12
Event no: 8	Draft: 9 ft
Date: 04-09-81	Traffic direction: Downstream
	Tow speed: 9.1 mph

Water t	sion A emp.: 14 C lepth: 12 ft	Water t	tion B emp.: 14 C epth: 26 ft	Water te	tion C emp.: 14 C epth: 35 ft
Time (minutes	Suspended sediment	Time (minutes	Suspended sediment	Time (minutes	
elapsed)	conc. (ppm)	elapsed)	conc. (ppm)	elapsed)	conc. (ppm)
23	114	26	109T	29	115B
25	114	28	104T	30	105T
27	112	30	102T	32	114P
29	110	32	105T	33	114B
31	113	34	100T	34	105T
33	113	36	103T	35	110P
35	112	38	104T	37	108B
37	110	40	99T	38	109T
39	115	42	100T	39	111P
41	112	44	100T	40	111B
43	113	46	100T	41	106T
45	107	48	99T	43	108P
47	112	50	100T	44	109B
49	110	55	100T	46	108T
51	110	60	99T	47	114P
56	113	65	98T	48	112B
61	113	70	102T	50	110T
66	190	75	102T	52	109P
71	111	80	105T	55	113B
76	110	90	105T	57	118T
81	112			58	111P
				61	117B
				62	108T
				63	109P
				65 67	112B 105T
				67	1051 106D

68

70

71

72

75 77

78

80

82 83 106P

108B

107т

109P

135B 103T

106P 106B

101T 104P Site: Riprap Landing River mile 265.1 Trip no. 4 Event no: 9 Date: 04-10-81

Starting time: 0825 Tow name: Conti Afton(W) No. of barges: 15 Draft: 2 ft Traffic direction: Upstream Tow speed: 5.9 mph

Starting time: 0825 Tow name: Gordon Jones(E) No. of barges: 13 Draft: 9 ft Traffic direction: Upstream Tow speed: 5.0 mph

Sta Water t Water d	_	Water t	tion B emp.: 15 C epth: 27 ft	Sta Water te Water de	
Time (minutes elapsed)	Suspended sediment conc. (ppm)	Time (minutes elapsed)	Suspended sediment conc. (ppm)	Time (minutes elapsed)	Suspended sediment conc. (ppm)
6	150	12	115T	9	113B
8	132	14	118T	10	105T
10	130	16	116T	12	102P
12	152	18	112T	13	106B
14	209	20	112T	14	104T
16	130	22	112T	15	101P
18	129	24	112T	16	109B
20	135	26	109T	17	97т
22	135	28	110T	18	99P
24	178	30	110T	19	119B
26	154	35	107T	20	110T
28	130	40	109T	21	102P
30	146	45	114T	22	106B
35	334	50	107T	23	102T
40	139	55	115T	24	99P
45	144	60	115T	25	116B
50	130	70	123T	26	107T
55	128	80	114T	27	108P
60	153	90	109T	28	107B
70	204			29	104T
80	131			30	104P
90	128			35	141B
				36	105T
				37	105P
				40	113B
				41	105T
				42	105P
				45	116B
				46	101T
				47 50	105P
				50	113B

Station A	Station B	Station C	
Water temp.: 14 C	Water temp.: 15 C	Water temp.: 15 C	
Water depth:	Water depth: 27 ft	Water depth: 30 f	
Time Suspended	Time Suspended	(minutes s	Suspended
(minutes sediment	(minutes sediment		sediment
elapsed) conc. (ppm)	elapsed) conc. (ppm)		conc. (ppm)
		51 52 55 56 57 60 61 62 70 72 73 80 81 82 90 91 92	116T 106P 112B 106T 103P 116B 153T 156P 115B 110T 104P 111B 113T 105P 114B HOT 106P

Site: Riprap Landing	Starting time: 1118
River mile 265.1	Tow name: Mr. Joey
Trip no. 4	No. of barges: 15
Event no: 10	Draft: 9 ft
Date: 04-10-81	Traffic direction: Downstream
	Tow speed: 8.0 mph

	tion A temp.: 15 C lepth: 11 ft	Water t	tion B emp.: 16 C lepth: 27 ft	Water te	tion C emp.: 16 C epth: 35 ft
Time (minutes elapsed)	Suspended sediment conc. (ppm)	Time (minutes elapsed)	Suspended sediment conc. (ppm)	Time (minutes elapsed)	Suspended sediment conc. (ppm)
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 35 40 45 50 55 60 70 80	138 132 141 115 133 140 136 138 140 137 133 133 133 133 134 134 134 134 134 134	4 6 8 10 12 14 16 18 20 22 24 26 28 30 35 40 45 50 55 60 70 80 90	120T 123T 120T 121T 120T 121T 120T 121T 120T 122T 122	6 8 9 21 22 23 24 25 26 27 28 29 31 32 33 46 47 48 49 50 51 53 54	108B 109T 113P 122B 111T 111P 112B 99T 105P 106B 102T 103P 100B 59T 103P 103B 103T 110P 113B 105T 110P 113B 105T 110P
90	124	50	1021	55 70 71 72	106P 106B 104T 107P

102B

99T

108P

107B

105T

105P

80 81

82

90

91

92

Site: Mosier LandingStarting time: 1258River mile 260.2Tow name: Colonel George LambertTrip no. 5No. of barges: 15Event no: 1Draft: 9 ftDate: 05-20-81Traffic direction: DownstreamTow speed: 8.9 mph

Sta	tion A	Sta	tion B	Sta	tion C
Water t	emp.: 14 C	Water t	emp.:	Water t	emp.:
Water d	lepth: 13 ft	Water d	epth: 35 ft	Water d	epth: 35 ft
Time (minutes elapsed)	Suspended sediment conc. (ppm)	Time (minutes elapsed)	Suspended sediment conc. (ppm)	Time (minutes elapsed)	Suspended sediment conc. (ppm)
6	299	8	497B	9	575P
8	336	8	463T	11	584B
2	261	10	493B	6	590B
4	259	10	472T	7	591T
10	312	14	485T	12	611T
12	348	14	510B	13	570P
14	343	16	496T	14	576B
16	408	16	488B	15	599T
18	362	18	492B	16	562P
20	318	18	485T	19	583B
22	284	20	483T	20	587T
24	302	20	506B	22	569P

Site: Mosier Landing River mile 260.2 Trip no. 5 Event no: 2 Date: 05-20-81	Starting time: 1325 Tow name: Joanne No. of barges: 4 Draft: 9 ft Traffic direction: Downstream Tow speed: 10.0 mph

Sta	tion A	Sta	tion B	Sta	tion C
Water t	emp.: 14 C	Water t	.:	Water t	emp.:
Water d	epth: 10 ft	Water d	lepth: 30 ft	Water de	epth: 30 ft
Time (minutes elapsed)	Suspended sediment conc. (ppm)	Time (minutes elapsed)	Suspended sediment conc. (ppm)	Time (minutes elapsed)	Suspended sediment conc. (ppm)
2	326	6	455B	6	626T
4	298	6	448T	6	666B
6	319	8	486T	8	591P
8	366	8	465B	9	627B
10	369	10	473B	10	664T
12	357	10	430T	11	624P
14	337	13	435T	12	659B
16	407	14	444B	13	659T
18	344	15	491T	14	684P
20	375	16	498B	15	632B
22	358	17	473T	16	639T
24	294	18	487B	17	610P
26	296	19	470T	18	604B
28	358	20	459B	19	648T
30	380	21	466T	20	588P
40	389	22	480B	22	612B
45	365	23	476T	23	646T
50	327	24	477B	25	620P
55	304	25	466T	27	675B
60	337	26	450B	28	641T
70	313	27	482T	29	649P
80	304	30	467B	35	571B
90	331	31	495T	37	622T
		35	480B	38	577P
		36	475T	40	608B
		40	480B	41	624T
		41	448T	42	624P
		45	260B	45	613B
		46	447T	47	604T
		50	482	48	602P
		55	448B	51	618B
		56	243T	54	620T
				54	597P

Site: Mosier Landing	Starting time:	0850
River mile 260.2	Tow name: Sall	y Barton
Trip no. 5	No. of barges:	9
Event no: 3	Draft: 2 ft	
Date: 05-21-81	Traffic direct	ion: Upstream
	Tow speed: 5.8	mph
Starting time: 0854	Starting time:	0908
Tow name: Kathy Ellen	Tow name: Marv:	in E. Norman
No. of barges: 12	No. of barges:	9
Draft: 9 ft	Draft: 2 ft	
Traffic direction: Downs	stream Traffic direction	ion: Upstream
Tow speed: 9.5 mph	Tow speed: 0.9	mph
Station A	Station B	Station C

Water t	tion A emp.: 14 C epth: 09 ft	Water t	tion B emp.: 13 C epth: 33 ft	Water t	tion C emp.: epth: 30 ft
Time (minutes elapsed)	Suspended sediment conc. (ppm)	Time (minutes elapsed)	Suspended sediment conc. (ppm)	Time (minutes elapsed)	Suspended sediment conc. (ppm)
4 6 8 10 12 14 16 18 20 22 24 26 28 32 34 36 38 40 42 44 46 48 53 58 63 68 73 78	279 291 252 267 275 270 271 256 286 284 276 288 260 279 264 275 283 268 287 252 235 233 268 287 252 235 233 254 232 232 247 282 195	10 12 26 27 37 38 39 40 41 42 43 44 45 46 47 48 53 54 58 59 73 74 78 79 88 89 108 109	399B 388T 399B 376T 378B 377T 375B 372T 362B 398T 378B 360T 376B 360T 376B 361T 371B 358T 375B 368T 375B 368T 379B 368T 359B 374T 364B 380T 363B 374T 363B 374T	9 10 11 24 30 30 43 44 45 47 48 49 73 75 76 77 78 94 97 98 99 108 111	503B 540T 445P 420B 433P 454T 447B 453T 443P 421B 441T 432P 459B 459T 418P 439 426P 444 422P 423 440P 485 419P
88 98 108	332 242 253				

Site: Mosier Landing	Starting time: 1055
River mile 260.2	Tow name: Frederick B. Wells
Trip no. 5	No. of barges: 12
Event no: 4	Draft: 9 ft
Date: 05-21-81	Traffic direction: Downstream
	Tow speed: 8.9 mph

Sta	tion A	Station B		Station C		
Water t	emp.: 15 C	Water 1	Water temp.:		emp.:	
Water d	lepth: 11 ft	Water d	epth: 33 ft	Water de	epth: 32 ft	
Time	Suspended	Time	Suspended	Time	Suspended	
(minutes	sediment	(minutes	sediment	(minutes	sediment	
elapsed)	conc. (ppm)	elapsed)	conc. (ppm)	elapsed)	conc. (ppm)	
4	279	7	409B	7	3993	
6	297	7	386T	8	414T	
8	301	11	362T	9	419P	
10	309	11	365B	10	419B	
12	289	13	381T	11	482T	
14	276	13	366B	15	417P	
16	301	15	369B	16	405B	
18	284	15	388T	17	431T	
20	288	23	365T	18	419P	
22	304	23	385B	21	402B	
24	299	25	362B	22	421T	
26	271	25	390T	23	409P	
28	313	27	383T	24	404B	
30	297	27	399B	25	454T	
35	314	29	389T	26	410P	
40	309	29	380B	27	392B	
45	291	35	388T	28	425T	
50	315	35	560B	29	410P	
55	296	50	388T	32	407	
60	329	50	381B	34	425P	
70	297	55	382T	36	405	
80	307	55	366B	37	409P	
90	300	60	397T	40	386	
		60	371B	41	402P	
		70	427T	45	393	
		70	373B	46	410P	
		80	372B	50	401	
		80	381T	51	405P	
		90	381T	55	387	
		90	383B	56	410P	
				60	455	
				61	407P	
				70	400	
				71	406P	
				80	400	
				81	414P	
				90	397	

91

415P

Site: Mosier Landing River mile 260.2 Trip no. 5 Event no: 5 Date: 05-21-81 Starting time: 1511 Tow name: Sierra Dawn No. of barges: 15 Draft: 2 ft Traffic direction: Upstream Tow speed: 3.2 mph

Station A Water temp.: 15 C Water depth: 10 ft

Time	Suspended
(minutes	sediment
elapsed)	conc. (ppm)
2	322
6	317
8	312
10	329
12	299
14	323
16	304
18	266
20	316
22	325
24	332
26	348
28	316
30	302
32	344
34	260
36	340
38	350

Ri Tr Ev	te: Mosier Landi ver mile 260.2 ip no. 5 rent no: 6 te: 05-21-81	.ng	Starting time Tow name: Atla No. of barges Draft: 9 ft Traffic direct Tow speed: 7.	as : 6 tion: Downs	tream
Water t	tion A emp.: 15 C epth: 10 ft	Water t	tion B emp.: epth: 22 ft	Water t	tion C cemp.: epth: 24 ft
	Suspended sediment conc. (ppm)		Suspended sediment conc. (ppm)	Time (minutes elapsed)	Suspended sediment conc. (ppm)
2	551	5	342	4	496
8	388	14	350	5	491P
10	370	22	363	6	508
12	370	40	354	7	486P
14	374	45	360	9	514
16	327	50	360	12	503P
18	366	55	334	13	489
20	374	60	375	14	483P
22	367	70	372	16	481
24	366	80	368	17	453P
26	369	90	381	18	485
28	364			19	507P
30	381			20	550
35	366			21	552P
40	348			22	534
45	370			23	558P
50	334			24	517
55	374			25	491P
60	366			28	510
70	344			29	529P
80	389			30	635
90	381			31	517P
				38	560
				41	520P
				47	485
				48	474P
				50 52	510
				53 55	503P 499
				55	499 400D

499P 517P 538P 545P 603P

Site: Mosier Landing	Starting time: 0915
River mile 260.2	Tow name: New Dawn
Trip no. 5 Event no: 7	No. of barges: 15 Draft: 9 ft
Date: 05-22-81	Traffic direction: Downstream
	Tow speed: 9.2 mph

Sta	tion A	Sta	tion B	Station C		
Water t	emp.: 16 C	Water t	emp.:	Water t	emp.:	
Water d	lepth: 12 ft	Water d	epth: 28 ft	Water d	epth: 28 ft	
Time	Suspended	Time	Suspended	Time	Suspended	
(minutes	sediment	(minutes	sediment	(minutes	sediment	
elapsed)	conc. (ppm)	elapsed)	conc. (ppm)	elapsed)	conc. (ppm)	
6	534	8	385	6	451T	
8	429	10	380	8	464T	
10	448	14	321	10	452T	
12	479	16	479	12	462T	
14	477	20	391	14	467T	
18	412	22	381	16	504T	
20	425	24	379	18	436T	
22	428	26	361	20	439T	
24	433	28	386	22	463T	
26	412	30	377	24	489T	
28	410	34	380	26	461T	
30	413	36	386	28	456T	
35	415			30	444T	
				35	466T	

Site: Mosier LandingStarting time: 1215River mile 260.2Tow name: Nohab ExpressTrip no. 5No. of barges: 3Event no: 8Draft: 9 ftDate: 05-22-81Traffic direction: UpstreamTow speed: 6.7 mph

Water t	tion A emp.: 16 C epth: 15 ft	Water t	tion B cemp.: lepth: 28 ft	Water t	tion C cemp.: epth: 22 ft
Time (minutes elapsed)	Suspended sediment conc. (ppm)	Time (minutes elapsed)	Suspended sediment conc. (ppm)	Time (minutes elapsed)	Suspended sediment conc. (ppm)
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 35 40 45 50 55 60 70 80 90	441 380 402 390 393 399 382 444 424 486 482 436 412 415 403 402 421 419 416 397 403 367 387 398	8 10 12 14 16 18 19 20 21 22 28 29 30 31 35 36 40 41 45 46 50 55 62 70 71 80 81 90	365 369 525 385 390 382B 387T 365B 450T 355B 373B 374T 373B 374T 373B 375T 360B 375T 360B 375T 360B 375T 363B 367T 370B 386B 363T 371B 388T 376B 379T 366B	5 6 8 10 12 14 16 18 20 22 24 26 28 30 35 40 45 50 55 60 70 80 90	525T 513T 497T 510T 502T 494T 490T 495T 501T 508T 496T 486T 486T 485T 497T 490T 491T 497T 495T 491T 479T
		91	378T		

Site: Mosier Landing River mile 260.2 Trip no. 5 Event no: 9 Date: 05-22-81 Starting time: 1730 Tow name: White Knight No. of barges: 15 Draft: 9 ft Traffic direction: Downstream Tow speed: 9.1 mph

Starting time: 1741 Tow name: Colonel George Lambert No. of barges: 15 Draft: 2 ft Traffic direction: Upstream Tow speed: 6.3 mph

Water t	tion A emp.: 17 C epth: 10 ft	Water t	ation B cemp.: depth: 28 ft	Water t	tion C emp.: epth: 24 ft
Time (minutes elapsed)	Suspended sediment conc. (ppm)	Time (minutes elapsed)	Suspended sediment conc. (ppm)	Time (minutes elapsed)	Suspended sediment conc. (ppm)
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 47	363 382 378 405 403 449 453 442 429 549 403 440 417 500 446 515 423 411 406 401 411 393	19 20 56 61	320B 336T 339T 345T	16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 50 55 60	390T 392T 402T 407T 399T 399T 386T 394T 406T 396T 386T 391T 379T 387T 395T 386T 377T 383T 387T
52 57 62	390 394 379				

APPENDIX C

BACKGROUND SUSPENDED SEDIMENT CONCENTRATION DATA

Site: Hadley's Landing River mile 13.2 Trip no. 2

```
Station A Station B Station C
```

		Suspended sediment			Suspended sediment			Suspended sediment
Date	Time	Conc.(ppm)	Date	Time	Conc.(ppm)	Date	Time	Conc.(ppm)
07-23-80	1100	114	07-23-80	1100	74	07-23-80	1100	63
07-23-80	1130	59	07-23-80	1130	66	07-23-80	1130	57
07-23-80	1200	60	07-23-80	1200	61	07-23-80	1200	54
07-23-80	1230	59	07-23-80	1230	67	07-23-80	1230	64
07-23-80	1300	69	07-23-80	1300	61	07-23-80	1300	54
07-23-80	1330	67	07-23-80	1330	52	07-23-80	1330	54
07-23-80	1400	58	07-23-80	1400	52	07-23-80	1400	51
07-23-80	1430	53	07-23-80	1430	54	07-23-80	1430	49
07-23-80	1500	70	07-23-80	1500	58	07-23-80	1500	50
07-24-80	0930	79	07-24-80	0930	82	07-24-80	0930	88
07-24-80	1000	96	07-24-80	1000	71	07-24-80	1000	88
07-24-80	1400	56	07-24-80	1400	63	07-24-80	1400	78
07-24-80	1430	98	07-24-80	1430	66	07-24-80	1430	71
07-24-80	1500	59	07-24-80	1500	60	07-24-80	1500	71
07-24-80	1530	66	07-24-80	1530	56	07-24-80	1530	68
07-24-80	1600	96	07-24-80	1600	58	07-24-80	1600	67
07-24-80	1630	26	07-24-80	1630	55	07-24-80	1630	64
07-24-80	1700	60	07-24-80	1700	56	07-24-80	1700	64

Site: Hadley's Landing River mile 13.2 Trip no. 3

Station A Station B Station C Suspended Suspended Suspended sediment sediment sediment Date Time Conc. (ppm) Date Time Conc. (ppm) Date Time Cono. (ppm) 09-23-80 1430 230 09-23-80 1200 331 09-23-80 1700 425 09-24-80 0930 09-23-80 1700 262 09-23-80 1430 307 340 09-24-80 0930 211 09-23-80 1700 385 09-24-80 1000 347 09-24-80 1000 09-24-80 0930 09-24-80 1030 350 204 287 09-24-80 1030 190 09-24-80 1000 09-24-80 1100 264 201 09-24-80 1100 191 09-24-80 1030 246 09-24-80 1130 303 09-24-80 1130 09-24-80 1100 09-24-80 1200 197 249 328 09-24-80 1200 09-24-80 1130 09-24-80 1300 196 267 302 09-24-80 1300 178 09-24-80 1200 257 09-24-80 1530 344 09-24-80 1530 09-24-80 1600 163 09-24-80 1300 260 341 09-24-80 1600 179 09-24-80 1530 249 09-25-80 1000 373 09-25-80 1000 200 09-24-80 1600 09-25-80 1700 405 286 09-25-80 1702 181 09-25-80 1000 298 09-25-80 1730 351 09-25-80 1740 184 09-25-80 1700 291 09-26-80 0830 394 09-26-80 0830 207 09-25-80 1730 247 09-26-80 0900 325 09-26-80 0900 205 09-26-80 0830 276 09-26-80 0930 308 09-26-80 0930 191 09-26-80 0900 234 09-26-80 0930 252

Site: Riprap Landing River mile 265.1 Trip no. 4

Station A	Stati	on B	St	tation C
Suspende sediment Date Time Conc.(pr	5	Suspended sediment Conc.(ppm)	Date 1	Suspended sediment Time Conc.(ppm)
				(<u>F</u> F)
04-08-81 1400 124	04-08-81 1400	118B	04-08-81	1445 117т
04-08-81 1415 124	04-08-81 1400	116T	04-08-81	1445 126P
04-08-81 1505 122	04-08-81 1500	114T	04-08-81	1445 122B
04-08-81 1517 120	04-08-81 1500	120B	04-08-81	1520 135P
04-08-81 1611 119	04-09-81 1540	108T	04-08-81	1520 123B
04-08-81 1621 121	04-10-81 0815	116T (04-08-81	152,0 119T
04-09-81 1530 110	04-10-81 1100	118T	04-08-81	1600 121B
04-09-81 1530 115	04-10-81 1400	116T	04-08-81	1615 117т
04-10-81 1100 135	04-10-81 1500	113T	04-08-81	1619 116P
04-10-81 1400 124	04-10-81 1700	119T	04-08-81	1633 122B
04-10-81 1500 128		(04-08-81	1635 118T
04-10-81 1700 53		(04-08-81	1639 124P
04-10-81 1710 126		(04-09-81	1539 107т
			04-09-81	1539 116P
			04-09-81	1539 113B
			04-10-81 (0811 112B
			04-10-81 (0811 99P
			04-10-81 (0811 108T
			04-10-81	1107 104B
			04-10-81	1108 140T
			04-10-81	1109 108P
			04-10-81	1409 213B
			04-10-81	1411 109т
			04-10-81	1414 111P
			04-10-81	1438 107B
			04-10-81	1440 108T
			04-10-81	1441 106P
			04-10-81	1500 108B
			04-10-81	1501 111T
			04-10-81	1502 115P
			04-10-81	1655 112B
			04-10-81	1657 117T
			04-10-81	1658 133P
NOTE: The letter B,T,c	or P follows some	suspended sedi	lment conc	centrations.

NOTE: The letter B,T,or P follows some suspended sediment concentrations. B indicates a depth-integrated sample of the bottom half of the water column T indicates a depth-integrated sample of the top half of the water column P indicates a point-integrated sample at a specific depth

All others are depth-integrated samples of the entire water column

Site: Mosier Landing River mile 260.2 Trip no. 5

Station A Station B Station C

Data	T ime	Suspended sediment	Data	Пima	Suspended sediment	Data	Пima	Suspended sediment
Date	Time	Conc.(ppm)	Date	TTME	Conc.(ppm)	Date	Time	Conc.(ppm)
05-20-81	1250	286	05-20-81	1245	414B	05-20-81	1230	627B
05-20-81	1540	288	05-20-81	1246	448T	05-20-81		647T
05-20-81		450	05-20-81	1530	487B	05-20-81	1230	656P
05-20-81		1256	05-20-81	1530	477T	05-20-81		627т
05-20-81		360	05-20-81	1530	477P	05-20-81		527P
05-21-81		302	05-20-81	1630	467P	05-20-81		572B
05-22-81	1430	392	05-20-81	1630	461B	05-20-81	1630	635T
05-22-81		364	05-20-81	1630	427T	05-20-81		539B
05-22-81	1630	398	05-20-81	1730	476T	05-20-81		567P
			05-20-81	1730	485B	05-20-81		586B
			05-20-81		516P	05-20-81		611T
			05-20-81	1830	457B	05-20-81	1730	605P
			05-20-81	1830	515P	05-20-81		578B
			05-20-81	1830	482T	05-20-81		576T
			05-21-81	1400	346P	05-20-81		579P
			05-21-81	1400	368P	05-21-81		496
			05-21-81	1400	340T	05-21-81	1415	467P
			05-21-81		350B	05-21-81		483P
			05-21-81 05-21-81	1400 1400	342P 359P	05-21-81 05-21-81		466P 494P
			05-21-81	1400	339P 349P	05-21-81		494P 489P
			05-21-81	1400	343P	05-21-81		409F 479P
			05-21-81	1500	352T	05-21-81		479P 504P
			05-21-81	1500	340P	05-21-81		409P
			05-21-81	1500	3401 342B	05-21-81		516
			05-22-81		482P	05-22-81		510T
			05-22-81		382	05-22-81		426T
			05-22-81	1200	363	05-22-81		460T
			05-22-81	1200	335	05-22-81		434T
			05-22-81	1430	368P	05-22-81		409T
			05-22-81		374P			
			05-22-81		352B			
			05-22-81		380P			
			05-22-81	1430	367P			
			05-22-81	1430	363P			
			05-22-81	1430	370P			
			05-22-81	1430	367P			
			05-22-81	1430	369T			
			05-22-81	1630	382T			
			05-22-81	1630	375P			
			05-22-81	1630	375B			

APPENDIX D

WATER VELOCITIES DURING TOW PASSAGE EVENTS

Site: Riprap LandingStarting time: 0947River mile 265.1Tow name: AtlasTrip no. 4No. of barges: 9Event no: 1Draft: 2 ftDate: 04-08-81Traffic direction: UpstreamTow speed: 3.9 mph

Station A	Station B	Station C	
Total depth: 2.15 m	Total depth: 8.40 m	Total depth: 10.30 m	
Sampling depth: 2.04 m	Sampling depth: 7.95 m	Sampling depth: 9.73 m	

Time	Water	Time	Water	Time	Water
(min:sec	Velocity	(min:sec	Velocity	(min:sec	Velocity
elapsed)	(ft/sec)	elapsed)	(ft/sec)	elapsed)	(ft/sec)
3:00	1.79	10:30	1.86	10:00	2.01
3:30	2.16	11:00	2.45	10:30	1.93
4:30	1.64	11:30	2.13	11:00	1.95
5:00	1.64	12:00	2.23	11:30	1.79
5:30	1.71	12:30	2.23	12:00	2.16
6:00	1.93	13:00	2.45	12:30	2.10
6 : 30	1.79	13:30	2.16	13:00	1.86
7:00	1.71	14:00	2.16	13:30	1.64
7:30	1.86	14:30	2.38	14:00	1.86
8:00	1.64	15:00	2.08	14:30	1.56
8:30	2.16	15:30	2.45	15:00	1.86
9:00	1.93	16:00	2.45	26:00	2.23
9:30	2.01	16:30	2.30	27:30	2.42
10:00	2.16	17:00	2.30	30:30	2.12
10:30	1.86	17:30	2.38	35:00	2.07
11:00	2.16	18:00	2.30	40:00	2.23
11:30	1.79	18:30	2.52	45:00	2.23
12:00	2.16	19:00	2.23	10.00	2.12
12:30	2.08	19:30	2.08		
13:00	1.93	20:00	2.52		
13:30	1.34	20:30	2.89		
14:00	1.82	20:30	2.45		
16:00	1.79	21:30	2.40		
18:00	2.03	31:00	2.37		
20:00	1.94	36:00	2.32		
22:00	2.07	41:00	2.47		
24:00	2.03	46:00	2.78		
26:00	2.03	40.00	2.70		
28:00	1.98				
30:00	1.86				
35:00	1.94				
40:00	1.94				
45:00	1.79				
43.00 50:00	2.03				
50.00	2.00				

Site: Riprap LandingStarting time: 1044River mile 265.1Tow name: Prairie Dawn Trip no. 4 No. of barges: 15 Event no: 2 Draft: 2 ft Date: 04-08-81 Traffic direction: Upstream Tow speed: 7.0 mph

Station A Total depth: 2.15 m Sampling depth: 1.80 m		Total depth:	ion B 8.00 m th: 6.40 m	Station C Total depth: 10.40 m Sampling depth: 8.33 m	
Time	Water	Time	Water	Time	Water
(min:sec	Velocity	(min:sec	Velocity	(min:sec	Velocity
elapsed)	(ft/sec)	elapsed)	(ft/sec)	elapsed)	(ft/sec)
1 ,	(- , ,	-		1 ,	(-, ,
-2:30	2.16	9:00	2.52	12:26	2.52
-1:00	2.01	9:30	2.97	12:56	2.82
-0:30	2.52	10:00	2.67	13:26	2.75
0:00	2.23	10:30	2.97	13:56	2.75
0:30	2.23	11:00	2.89	14:26	2.60
1:00	2.16	11:30	2.75	14:56	2.45
1:30	2.16	12:00	2.67	15:26	2.60
2:00	2.08	12:30	2.82	15:56	2.75
2:30	1.49	13:00	2.67	16:26	2.75
3:00	2.08	13:30	2.67	16:56	2.75
3:30	2.23	14:00	2.52	17:26	2.67
4:00	1.86	14:30	2.89	17:56	2.52
4:30	2.08	15:00	2.89	18:26	2.67
5:00	2.16	15:30	2.60	18:56	2.67
5:30	2.01	16:00	2.75	19:26	2.67
6:00	2.01	16:30	2.82	19:56	2.60
6:30	2.16	17:00	2.89	20:26	2.60
7:00	2.08	17:30	2.89	20:56	2.60
7:30	2.01	18:00	2.82	21:26	2.52
8:00	2.23	18:30	2.82	21:56	2.45
8:30	2.01	19:00	2.67	22:26	2.75
9:00	2.23	21:00	2.89	22:56	2.67
9:30	2.23	23:00	2.75	23:26	2.45
12:00	2.07	25:00	2.89	23:56	2.75
14:00	1.98	27:00	2.75	28:00	2.47
16:00	2.07	29:00	2.97	32:30	2.78
18:00	2.27	31:00	2.85	36:00	2.47
20:00	2.32	33:00	2.73	40:00	2.59
22:00	2.23	35:00	2.73	45:00	2.84
24:00	1.98	50:00	2.78	50:00	2.59
26:00	2.07	55:00	2.67	55:00	2.33
28:00	2.07	60:00	2.84,	60:00	2.73
30:00	2.07	70:00	2.73	70:00	2.35
35:00	2.03	80:00	.2.78	80:00	2.34
40:00	2.23	90:00	2.67	00:00	2.4/
		90:00	2.0/		
45:00	2.12				

50:002.0755:001.98

Station A		Station B		Station C	
Total depth: 2.15 m		Total depth: 8.00 m		Total depth: 10.40 m	
Sampling depth: 1.80 m		Sampling depth: 6.40 m		Sampling depth: 8.33 m	
Time	Water	Time	Water	Time	Water
(min:3ec	Velocity	(min:sec	Velocity	(min:sec	Velocity
elapsed)	(ft/sec)	elapsed)	(ft/sec)	elapsed)	(ft/sec)
60:00 70:00 80:00 90:00	2.03 2.17 2.27 2.17				

Site: Riprap LandingStarting time: 0823River mile 265.1Tow name: Lillian ClarkTrip no. 4No. of barges: 16Event no: 3Draft: 2 ftDate: 04-09-81Traffic direction: UpstreamTow speed: 7.9 mph

Station A	Station B	Station C	
Total depth: 1.83 m	Total depth: 7.91 m	Total depth: 10.50 m	
Sampling depth: 1.10 m	Sampling depth: 4.75 m	Sampling depth: 6.30 m	

Time (min:sec elapsed)	Water Velocity (ft/sec)	Time (min:sec elapsed)	Water Velocity (ft/sec)	Time (min:sec elapsed)	Water Velocity (ft/sec)
<pre>(min:sec elapsed) 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00 16:30 16:00 16:30 18:00 18:30 19:00 19:30 20:00 20:00 20:30 21:00 21:30 22:00 24:00 26:00 28:00 30:00</pre>	Velocity (ft/sec) 2.23 2.23 2.30 2.52 2.30 2.45 2.60 2.60 2.60 2.30 2.60 2.30 2.60 2.38 2.60 2.38 2.38 2.60 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.5	(min:sec elapsed) 6:30 7:00 7:30 8:00 8:30 9:00 9:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 20:00 22:00 24:00 26:00 24:00 26:00 30:00 35:00 40:00 55:00 60:00	Velocity (ft/sec) 3.34 3.11 3.41 3.34 3.19 3.34 2.97 2.89 2.60 2.52 2.75 2.60 2.75 2.60 2.75 2.16 3.46 3.34 3.10 3.10 3.03 3.46 3.25 3.25 3.25 3.10 2.84 3.18 3.18	(min:sec elapsed) 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00 16:30 17:00 17:30 18:00 18:30 19:00 20:00 20:00 20:30 21:00 21:30 22:00 22:30 23:00 30:30 34:00 40:00 50:30 53:00	Velocity (ft/sec) 3.19 3.41 3.26 2.97 2.89 2.82 3.26 3.04 2.97 2.60 2.97 3.26 2.82 3.19 2.89 3.26 3.26 3.26 3.26 3.21 3.11 3.11 3.19 3.19 3.03 3.25 3.25 2.84 3.25
32:00 35:00 40:00 45:00 50:00 55:00 60:00 70:00 80:00 90:00	2.47 2.53 2.42 2.23 2.47 2.59 2.53 2.65 2.53 2.47	70:00 80:00 90:00	3.10 3.25 3.34	55:00 63:00 72:00 81:00 91:10	3.03 3.18 3.10 2.97 2.90

Site: Riprap LandingStarting time: 1005River mile 265.1Tow name: Arthur E. SniderTrip no. 4No. of barges: 12Event no: 4Draft: 9 ftDate: 04-09-81Traffic direction: DownstreamTow speed: 8.1 mph

Station A	Station B	Station C	
Total depth: 4.44 m	Total depth: 8.00 m	Total depth: 10.50 m	
Sampling depth: 0.89 m	Sampling depth: 1.60 m	Sampling depth: 2.10 m	

Time (min:sec elapsed)	Water Velocity (ft/sec)	Time (min:sec elapsed)	Water Velocity (ft/sec)	Time (min:sec elapsed)	Water Velocity (ft/sec)
(min:sec	Velocity	(min:sec	Velocity	(min:sec	Velocity
24:00 26:00 28:00 40:00 45:00 50:00 55:00 60:55 70:00	2.65 2.78 2.71 2.59 2.71 2.71 2.71 2.71 2.59 2.78	28:00 30:00 35:00 40:00 45:00 50:00 55:00 60:00	3.46 3.38 3.54 3.54 3.46 3.46 3.54 3.54	50:30 56:00 62:00	3.78 3.70 3.70

Site: Riprap Landing Starting time: 1129 River mile 265.1 Tow name: Rose Marie Walden Trip no. 4 No. of barges: 9 Event no: 5 Draft: 8 ft Date: 04-09-81 Traffic direction: Downstream Tow speed: ----

Station A Total depth: 4.44 m Sampling depth: 4.22 m		Station B Total depth: 8.30 m Sampling depth: 7.89 m		Station C Total depth: 9.92 m Sampling depth: 9.42 m	
Time	Water	Time	Water	Time	Water
(min:sec	Velocity	(min:see	Velocity	(min:sec	Velocity
elapsed)	(ft/sec)	elapsed)	(ft/sec)	elapsed)	(ft/sec)
crapsea,	(10/500)	crapsea)	(10/000)	crapsea)	(10/500)
-3:30	1.71	16:00	2.23	8:30	2.45
-3:00	1.56	16:30	1.93	9:00	1.56
-2:30	1.79	17:00	1.79	9:30	1.93
-2:00	1.79	17:30	1.71	10:00	2.16
-1:30	1.71	18:00	2.23	10:30	2.30
-1:00	1.71	18:30	2.30	11:00	2.60
-0:30	1.56	19:00	1.64	11:30	2.67
0:00	1.79	19:30	1.79	12:00	2.67
0:30	1.49	20:00	1.93	12:30	2.16
1:00	1.64	20:30	2.08	13:00	2.23
1:30	1.71	21:00	1.71	13:30	2.08
2:00	1.71	21:30	2.23	14:00	2.97
2:30	1.71	22:00	1.56	14:30	2.30
3:00	1.64	22:30	2.30	15:00	2.38
3:30	1.71	23:00	2.75	15:30	2.23
4:00	1.64	23:30	2.30	16:00	2.30
4:30	1.64	24:00	1.86	16:30	2.16
5:00	1.49	24:30	2.01	17:00	2.30
5:30	1.49	25:00	2.08	17:30	2.52
6:00	1.71	25:30	2.30	18:00	2.23
6:30	1.71	26:00	2.16	18:30	2.60
7:00	1.71	28:00	2.10	20:30	2.23
7:30	1.71	30:00	2.06	25:30	2.42
8:00	1.56	35:00	2.14	29:00	2.17
8:30	1.71	40:00	1.92	35:00	2.37
9:00	1.71	45:00	2.10	40:00	2.42
9:30	1.79	50:00	2.03	45:00	2.32
10:00	1.56	55:00	2.10	50:00	2.32
12:00	1.75	60:00	2.14	55:00	2.32
14:00	1.63	70:00	2.19	60:00	2.12
16:00	1.82	80:00	2.14	70:00	2.65
18:00	1.79			79:00	2.10
20:00	1.63				

 10:00
 1.75

 20:00
 1.63

 22:00
 1.75

 24:00
 1.63

 26:00
 1.79

 28:00
 1.86

 30:00
 1.56

Station A Total depth: 4.44 m Sampling depth: 4.22 m	-	Station C Total depth: 9.92 m Sampling depth: 9.42 m	
Time (min:sec elapsed)Water Velocity (ft/sec)35:001.6840:001.4645:001.7550:001.8255:001.6860:001.7570:001.6380:001.7590:001.63	Time .Water (min:sec Velocity elapsed) (ft/sec)	Time Water (min:sec Velocity elapsed) (ft/sec)	

Site: Riprap LandingStarting time: 1300River mile 265.1Tow name: White DawnTrip no. 4No. of barges: 15Event no: 6Draft: 9 ftDate: 04-09-81Traffic direction: DownstreamTow speed: 8.7 mph

Station A Total depth: 4.44 m Sampling depth: 3.66 m		Stat Total depth: Sampling dep		Station C Total depth: 10.03 m Sampling depth: 8.00 m	
Time	Water	Time	Water	Time	Water
	Velocity	(min:sec	Velocity	(min:3ec	Velocity
elapsed)	(ft/sec)	elapsed)	(ft/sec)	elapsed)	(ft/sec)
1		<u> </u>		<u> </u>	
2:00	2.01	8:30	3.04	10:00	2.89
2:30	1.93	9:00	3.04	10:30	2.82
3:00	1.79	9:30	3.04	11:00	2.60
3:30	1.86	10:00	2.97	11:30	2.97
4:00	2.16	10:30	2.97	12:00	2.67
4:30	2.16	11:00	3.34	12:30	2.97
5:00	2.16	11:30	2.97	13:00	2.45
5:30	1.56	12:00	2.82	13:30	3.11
6:00	1.86	12:30	2.89	14:00	3.11
6:30	1.86	13:00	2.75	14:30	2.67
7:00	1.79	13:30	3.11	15:00	2.82
7:30	1.93	14:00	3.26	15:30	2.60
8:00	2.01	14:30	2.45	16:00	2.82
8:30	1.93	15:00	2.89	16:30	2.60
9:00	1.71	15:30	2.89	17:00	2.82
9:30	1.86	16:00	2.89	17:30	2.75
10:00	2.16	16:30	2.38	18:00	2.82
12:00	1.86	17:00	2.89	18:30	2.45
14:00	1.98	17:30	2.75	19:00	2.23
16:00	1.98	18:00	3.19	19:30	2.82
18:00	1.82	18:30	3.11	20:00	2.89
20:00	1.98	19:00	3.04	24:00	2.78
22:00	1.86	19:30	2.97	28:00	2.78
24:00	1.90	20:00	3.19	35:00	2.97
26:00	1.86	20:30	2.67	41:00	2.65
28:00	1.94	21:00	2.97	47:30	2.84
30:00	1.63	24:00	2.78	50:30	2.65
35:00	1.98	26:00	3.25	55:00	2.65
40:00	1.90	28:00	3.03	60:00	2.97
50:00	1.98	30:00	3.03	70:00	2.37
55 : 00	1.94	35:00	2.78		
60:00	2.07	40:00	3.03		
70:00	1.98	45:00	2.97		
80:00	2.07	50:00	2.84		
90:00	1.86	55:00	2.67		
		60:00	3.10		

Station A		Station B		Station C	
Total depth: 4.44 m		Total depth: 8.45 m		Total depth: 10.03 m	
Sampling depth: 3.66 m		Sampling depth: 6.77 m		Sampling depth: 8.00 m	
Time	Water	Time	Water	Time	Water
(min:sec	Velocity	(min:sec	Velocity	(min:sec	Velocity
elapsed)	(ft/sec)	elapsed)	(ft/sec)	elapsed)	(ft/sec)
		70:00 80:00 90:00	2.67 2.97 2.67		

Site: Riprap Landing	Starting time: 1602
River mile 265.1	Tow name: Robin Mott
Trip no. 4	No. of barges: 14
Event no: 7	Draft: 2 ft
Date: 04-09-81	Traffic direction: Upstream
	Tow speed:

Station A Total depth: 4.12 m Sampling depth: 2.47 m	-	-	
Time Water (min:sec Velocity elapsed) (ft/sec)	Time Water (min:sec Velocity elapsed) (ft/sec)	Time Water (min:sec Velocity elapsed) (ft/sec)	
-2:30 2.52 -2:00 2.52 -1:30 2.23 -1:00 2.23 -0:30 2.38 0:00 2.23 0:30 2.52 1:00 2.45 1:30 2.60 2:00 2.38 2:30 2.67 3:00 2.30 3:30 2.23 4:00 2.30 4:30 2.16 5:00 2.16 5:30 2.38	6:30 3.63 7:00 3.63 7:30 3.63 8:00 3.48 8:30 3.41 9:00 3.48 9:30 3.34 10:00 3.48 Sampling depth: 4.91 m 12:30 3.26 13:00 3.19 13:30 3.41 14:00 3.15 15:00 2.97 15:30 3.11	11:00 2.75 11:30 2.89 12:30 3.11 13:30 3.19 14:00 3.00 15:00 2.97	
6:002.236:302.457:002.237:302.308:002.088:302.239:002.019:302.2310:001.9312:002.5314:002.1216:002.06	16:00 3.19		

Station A	Station B	Station C
Total depth: 4.12 m	Total depth: 7.90 m	Total depth: 10.55 m
Sampling depth: 2.47 m	Sampling depth: 4.74 m	Sampling depth: 6.96 m

Time	Water	Time	Water	Time	Water
(min:sec	Velocity	(min:sec	Velocity	(min:sec	Velocity
elapsed)	(ft/sec)	elapsed)	(ft/sec)	elapsed)	(ft/sec)
23:00	2.01	29:00	3.56	29:30	2.89
23:30	1.93	29:30	3.19	30:00	3.04
24:00	2.30	30:00	3.11	30:30	3.04
24:30	2.38	30:30	3.19	31:30	3.26
25:00	2.16	31:00	3.11	32:00	2.82
25:30	2.16	31:30	3.26	32:30	3.04
26:00	2.38	32:00	3.19	33:00	3.34
26:30	2.16	32:30	3.19	33:30	2.82
27:00	2.45	33:00	3.19	34:00	3.11
27:30	2.30	33:30	3.26	34:30	2.97
28:00	2.38	34:30	3.41	35:30	3.19
28:30	2.23	35:00	2.97	36:00	3.04
29:00	1.93	35:30	3.04	36:30	3.04
29:30	2.08	36:00	3.11	37:00	2.82
30:00	2.16	36:30	3.41	37:30	3.11
30:30	2.01	37:00	3.41	38:00	3.11
31:00	2.23	37:30	3.11	38:30	2.82
31:30	2.23	38:00	2.97	42:30	2.90
32:00	2.23	38:30	3.04	46:30	2.97
32:30	2.16	39:00	3.34	52:00	3.10
33:00	2.16	39:30	3.56	57:30	2.78
33:30	1.86	40:00	3.04	63:00	2.71
34:00	2.30	40:30	2.97	68:00	3.10
34:30	2.01	41:00	3.04	72:00	3.34
35:00	2.30	41:30	3.04	77:30	3.03
35:30	2.08	44:00	3.38	83:00	2.97
36:00	2.16	46:00	3.25		
36:30	2.08	48:00	3.03		
39:00	2.23	50:00	2.97		
41:00	2.23	55:00	3.18		
43:00	2.42	60:00	3.03		
45:00	2.23	69:00	3.31		
47:00	2.07	70:00	3.25		
49:00	2.14	75:00	3.38		
51:00	2.17	80:00	2.97		
56:00	2.06	90:00	3.34		
61:00	2.37				
66:00	2.03				

Station A	Station B	Station C	
Total depth: 4.12 m	Total depth: 7.90 m	Total depth: 10.55 m	
Sampling depth: 2.47 m	Sampling depth: 4.74 m	Sampling depth: 6.96 m	
Time Water	Time Water	Time Water	
(min:sec Velocity	(min:sec Velocity	(min:sec Velocity	
elapsed) (ft/sec)	elapsed) (ft/sec)	elapsed) (ft/sec)	
71:002.3776:002.3781:002.12			

		Starting time: 0825 Tow name: Conti Afton(W) No. of barges: 15 Draft: 2 ft Traffic direction: Upstream Tow speed: 5.9 mph			
			No. of barge Draft: 9 ft	ordon Jones(E) es: 13 ection: Upstre	
9+-+	ion A	Stat	ion B	C+ -+	ion C
Total depth:		Total depth:			
-	th: 0.79 m	-			
Time	Water	Time	Water	Time	Water
(min:sec	Velocity	(min:sec	Velocity	(min:sec	Velocity
	(ft/sec)		(ft/sec)	elapsed)	-
-	0.67	-		-	a a=
8:30	2.67	21:30	3.70	12:00	3.85
9:00	2.67	22:00	3.63	12:30	4.07
9:30	2.75	22:30	3.48	13:00	3.85
10:00	2.89	23:00	3.56	13:30	4.00
10:30	2.75	23:30	3.56	14:00	4.07
11:00	2.52	24:00	3.41	14:30	
11:30	.2.67	24:30	3.48	15:00	3.78
12:00	2.38	25:00	3.48	15:30	3.93
12:30	2.67	25:30	3.93	16:00	3.93
13:00	2.67	26:00	3.70	16:30	3.85
13:30	2.60	26:30	3.41	17:00	4.07
14:00	2.82	27:00	3.26	17:30	3.85
14:30	2.67	27:30	3.70	18:00	3.93
15:00	2.67	28:00	3.63	18:30	3.93
15:30	2.82	28:30	3.70	19:00	3.78
16:00	2.67	29:00	3.70	19:30	3.78
16:30	2.67	29:30	3.70	20:00	3.85
17:00	2.75	30:00	3.48	20:30	3.70
17:30	2.75	35:00	3.79	21:00	3.85
18:00	2.45	40:00	3.79	21:30	3.78
18:30	2.82	45:00	3.70	22:00	3.78
19:00	2.67	50:00	3.70	22:30	3.78
20:00	2.73	55:00	3.34	25:00	3.70
22:00	2.71	60:00	3.62	29:00	3.87
24:00	2.47	70:00	3.62	35:00	3.78
26:00	2.71	80:00	3.25	40:00	3.87
28:00	2.42	90:00	3.70	45:00	3.95
30:00	2.71			50:00	3.78
35:00	2.71			55:00	3.70
40:00	2.84			60:00	3.78

70:00 3.87

45:00 2.53

Station A		Station B		Station C	
Total depth: 3.93 m		Total depth: 9.30 m		Total depth: 9.11 m	
Sampling depth: 0.79 m		Sampling depth: 1.86 m		Sampling depth: 1.82 m	
Time	Water	Time	Water	Time	Water
(min:sec	Velocity	(min:sec	Velocity	(min:sec	Velocity
elapsed)	(ft/sec)	elapsed)	(ft/sec)	elapsed)	(ft/sec)
50:00 55:00 60:00 70:00 80:00 90:00	2.84 2.78 2.71 2.84 2.78 2.78			80:00 90:00	3.78 3.70

Site: Riprap Landing	Starting time: 1118
River mile 265.1	Tow name: Mr. Joey
Trip no. 4	No. of barges: 15
Event no: 10	Draft: 9 ft
Date: 04-10-81	Traffic direction: Downstream
	Tow speed: 8.0 mph

Station A Total depth: 4.63 m Sampling depth: 4.40 m		Station B Total depth: 8.80 m Sampling depth: 7.98 m		Station C Total depth: 10.80 m Sampling depth: 10.26 m	
Time	Water	Time	Water	Time	Water
	Velocity		Velocity	(min:sec	
	(ft/sec)	elapsed)	(ft/sec)	elapsed)	(ft/sec)
0:30	1.42	5:30	2.30	8:00	2.01
1:00	1.56	6:00	2.45	8:30	2.30
1:30	1.71	6:30	2.67	9:00	2.52
2:00	1.86	7:00	2.60	9:30	2.01
2:30	1.86	7:30	2.97	10:00	2.38
3:00	1.71	8:00	2.45	10:30	2.45
3:30	1.56	8:30	2.38	11:00	2.16
4:00	1.64	9:00	2.08	11:30	2.16
4:30	1.79	9:30	2.60	12:00	2.60
5:00	1.71	10:00	2.23	12:30	2.82
5:30	1.71	10:30	2.30	14:00	2.23
6:00	1.71	11:00	2.60	14:30	2.01
6:30	1.79	11:30	2.52	15:00	2.67
7:00	2.01	12:00	2.30	15:30	2.38
7:30	1.93	12:30	2.52	16:00	2.01
8:00	1.86	13:00	2.67	16:30	2.38
8:30	2.01	13:30	2.97	17:00	2.23
9:00	1.93	14:00	2.45	17:30	2.23
9:30	1.93	14:30	2.30	18:00	2.08
10:00	1.93	15:00	2.45	18:30	1.93
12:00	2.17	18:00	2.78	19:00	2.01
14:00	2.17	20:00	2.59	21:30	2.65
16:00	2.12	22:00	2.71	24:00	2.23
18:00	1.96	24:00	2.65	27:00	2.23
20:00	1.98	26:00	2.47	30:30	2.37
22:00	2.03	28:00	2.78	45:30	2.23
24:00	2.07	30:00	2.71	49:00	2.23
26:00	2.07	35:00	2.53	52:30	2.32
28:00	1.94	40:00	2.59	61:00	2.27
30:00	1.98	45:00	2.78	70:00	2.23
35:00	2.03	50:00	2.37	80:00	2.47
40:00	2.03	55:00	2.42	90:00	2.23
45:00	2.12	60:00	3.10		
50:00	1.98	70:00	2.65		

80:00 2.37

2.47

90:00

55:00

60:00

1.86

1.90

Station A	Station B	Station C
Total depth: 4.63 m	Total depth: 8.80 m	Total depth: 10.80 m
Sampling depth: 4.40 m	Sampling depth: 7.98 m	Sampling depth: 10.26 m
Time Water	Time Water	Time Water
(min:sec Velocity	(min:sec Velocity	(min:sec Velocity
elapsed) (ft/sec)	elapsed) (ft/sec)	elapsed) (ft/sec)
70:001.9880:002.0790:002.03		

Site: Hosier Landing	Starting time: 1258
River mile 260.2	Tow name: Colonel George Lambert
Trip no. 5	No. of barges: 15
Event no: 1	Draft: 9 ft
Date: 05-20-81	Traffic direction: Downstream
	Tow speed: 8.9 mph

Station A	Station B	Station C
Total depth: 3.96 m	Total depth: 10.29 m	Total depth: 10.76 m
Sampling depth: 3.75 m	Sampling depth: 9.78 m	Sampling depth: 10.23 m

Time (min:sec elapsed)	Water Velocity (ft/sec)	Time (min:sec elapsed)	Water Velocity (ft/sec)	Time (min:sec elapsed)	Water Velocity (ft/sec)
elapsed) 3:00 3:30 4:00 4:30 5:00 5:30 6:00 6:30 7:00 7:30 8:00 8:30 9:00 9:30 10:00	(ft/sec) 1.05 1.12 1.20 1.34 1.20 1.20 1.20 1.12 0.97 1.05 0.83 0.68 0.61 0.53 0.46 0.24		(ft/sec) 2.38 2.52 2.45 2.67 2.23 2.16 2.30 2.30 2.60 2.38 2.67 2.52 2.60 2.67 2.52 2.60 2.67 2.38		(ft/sec) 1.71 2.01 1.93 1.71 2.30 2.45 2.38 2.60 2.67 2.67 2.67 2.89 2.82 2.30 2.30 2.30 1.93
10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30	0.75 0.97 1.12 1.12 1.12 1.05 1.05 0.90 1.05	16:30 17:00 17:30 18:00 18:30 19:00 20:00	2.30 2.38 2.16 2.16 1.86 1.79 2.65	16:00 16:30 17:00 17:30 18:00 18:30	2.23 2.97 2.30 2.16 2.52 2.38

15:00

15:30

16:00

16:30

17:00

17:30 20:00 1.20

1.12

1.20

1.12

1.49 1.20

0.96

Starting time: 1325		
Tow name: Joanne No. of barges: 4 Draft: 9 ft		
Traffic direction: Downstream Tow speed: 10.0 mph		

Station A	Station B	Station C
Total depth: 3.96 m Sampling depth: 3.14	Total depth: 9.30 m m Sampling depth: 7.44 m	Total depth: 9.75 m Sampling depth: 8.00 m
Time Water	Time Water	Time Water
(min:sec Velocity	(min:sec Velocity	(min:sec Velocity
elapsed) (ft/sec)	elapsed) (ft/sec)	elapsed) (ft/sec)
0:30 1.56	9:00 2.82	8:00 2.67

elapsed)	(It/sec)	elapsed)	(IT/sec)	elapsed)	(It/sec)
0:30	1.56	9:00	2.82	8:00	2.67
2:00	1.34	9:30	2.45	8:30	2.82
2:30	1.20	10:00	2.23	9:00	3.34
3:30	0.68	10:30	2.52	9:30	3.04
4:00	0.68	11:00	2.16	10:00	2.75
4:30	0.68	11:30	2.52	10:30	2.52
5:00	0.90	12:00	2.52	11:00	2.23
5:30	1.34	12:30	2.60	11:30	2.45
6:00	1.05	13:00	2.60	12:00	3.04
6:30	0.24	13:30	2.52	12:30	2.89
7:00	0.16	14:00	2.45	13:00	2.60
10:30	1.42	14:30	2.45	13:30	2.89
11:00	1.27	15:00	2.97	14:00	2.82
11:30	1.27	15:30	2.89	14:30	2.38
14:00	0.96	16:00	2.82	15:00	2.82
16:00	1.02	16:30	2.52	15:30	2.08
18:00	1.52	17:00	2.89	16:00	2.82
20:00	1.32	17:30	2.67	16:30	2.82
22:00	1.02	18:00	2.01	17:00	2.16
24:00	0.57	18:30	2.38	17:30	2.67
28:00	1.20	19:00	2.60	18:00	2.60
30:00	1.46	20:00	2.59	18:30	2.60
35:00	1.27	22:00	2.78	19:00	3.11
45:00	0.78	24:00	2.53	22:00	2.42
50:00	0.83	26:00	2.32	26:30	2.53
55:00	1.22	28:00	2.53	35:00	2.59
60:00	0.96	30:00	2.47	40:00	2.59
70:00	0.94	35:00	2.42	45:00	3.03
80:00	0.96	40:00	2.47	50:00	1.75
90:00	1.29	45:00	2.12		
		50:00	2.65		
		55:00	2.17		

Site: Mosier Landing River mile 260.2 Trip no. 5 Event no: 3 Date: 05-21-81	Starting time: 0850 Tow name: Sally Barton No. of barges: 9 Draft: 2 ft Traffic direction: Upstream Tow speed: 5.8 mph
Starting time: 0854	Starting time: 0908
Tow name: Kathy Ellen	Tow name: Marvin E. Norman
No. of barges:.12	No. of barges: 9
Draft: 9 ft	Draft: 2 ft
Traffic direction: Downstream	Traffic direction: Upstream
Tow speed: 9.5 mph	Tow speed: 0.9 mph

Station AStation BStation CTotal depth: 2.22 mTotal depth: 9.72 mTotal depth: 9.85 mSampling depth: 1.33 mSampling depth: 5.83 mSampling depth: 5.91 m

Time (rain:sec elapsed)	Water Velocity (ft/sec)	Time (min:sec elapsed)	Water Velocity (ft/sec)	Time (min:sec elapsed)	Water Velocity (ft/sec)
6:00 7:00	1.09 0.90	29:00 29:30	3.04 3.19	29:00 29:30	3.26 3.19
7:30	0.79	30:00	3.56	30:00	3.34
8:30	0.83	30:30	3.19	30:30	3.34
9:00	1.05	31:00	0.02	31:00	3.70
9:30	0.97	31:30	2.60	31:30	3.93
10:00	1.12	32:00	2.89	32:00	3.70
10:30	1.20	32:30	2.67	32:30	3.63
11:00	0.97	33:00	3.34	33:00	3.70
11:30	1.05	33:30	3.63	33:30	3.70
12:00	0.90	34:00	3.26	34:00	3.56
12:30	0.97	34:30	3.48	34:30	3.41
13:00	1.20	35:00	3.34	35:00	3.70
13:30	0.90	35:30	3.26	35:30	2.23
14:00	0.79	36:00	3.04	36:00	3.26
15:00	0.75	37:30	3.26	36:30	3.26
15:30	0.46	38:00	3.04	37:00	3.34
16:00	0.38	38:30	3.26	37:30	3.56
16:30	0.38	39:00	3.41	39:00	3.26
17:00	0.53	39:30	3.56	39:30	3.34
17:30	0.61	40:00	3.03	40:00	3.34
18:00	0.61	42:00	3.46	43:00	3.37
19:00	0.83	44:00	3.03	45:00	3.10
19:30	1.05	46:00	3.18	47:00	3.54
20:00	0.97	48:00	3.89	51:03	3.46
21:00	0.94	53 : 00	2.78	62 : 00	3.46
22:00	0.90	58:00	3.10	73:30	3.46
22:30	1.05	63:00	3.25	78:05	3.62
23:00	1.05	68:00	3.46	83:00	3.70
24:00	0.83	73:00	2.97	87:30	3.70
24:30	0.94	78:00	3.25	94:00	3.70

Statio	n A	Stat	ion B		Stat	ion C
Total depth:	2.22 m	Total depth:	9.72 m		Total depth:	9.85 m
Sampling depth	1.33 m	Sampling dep	th: 5.83	m	Sampling dep	th: 5.91 m
Time W (rain:sec V elapsed) (-	Time (min:sec elapsed)	-		Time (min:sec elapsed)	-
25:30	0.90	88:00	3.38		98:30	3.62
26:00	0.75	98:00	2.84		107:00	3.03
26:30	0.97	108:00	2.84			
27:00	0.75					
27:30	0.90					
32:30	1.22					
34:20	1.20					
36:00	1.32					
38:00	1.22					
40:00	1.04					
53:00	0.74					
58:00	0.82					
63:00	1.04					
73:00	1.07					
78:00	1.24					
88:00	1.12					
99:15	0.72					
108:00	0.77					

Starting time: 1055
Tow name: Frederick B. Wells
No. of barges: 12
Draft: 9 ft
Traffic direction: Downstream
Tow speed: 8.9 mph

Total depth:	ion A 3.58 m oth: 0.72 m	Stat Total depth: Sampling dep		Stat Total depth: Sampling dep	
Time	Water	Time	Water	Time	Water
(min:sec	Velocity	(min:sec	Velocity	(min:sec	Velocity
elapsed)	(ft/sec)	elapsed)	(ft/sec)	elapsed)	(ft/sec)
9:00	0.75	8:00	3.78	8:30	3.48
9:30	0.53	8:30	3.78	9:00	3.70
10:00	0.33	9:00	3.85	10:00	3.67
10:00	0.40	9:30	3.63	10:30	3.56
11:00	0.46	10:00	3.56	13:30	3.78
11:30	0.75	10:00	3.93		3.63
12:00	0.97	11:00	3.56	14:00 14:30	3.63
12:30	1.20	11:30	3.78	17:00	3.19
13:00	1.71	12:00	3.56	17:30	3.56
13:30	1.56	12:30	3.63	18:30	3.45
14:00	1.34	13:00	3.26	19:00	3.85
14:30	1.27	13:30	3.78	22:00	3.95
15:00	1.34	14:00	3.70	24:00	4.04
15:30	1.20	14:30	3.70	27:00	3.70
16:00	1.12	15:00	3.48	30:00	3.54
16:30	1.27	15:30	3.26	31:00	3.70
17:00	1.20	16:00	3.34	36:00	3.62
17:30	1.27	16:30	3.34	41:00	3.95
18:00	1.42	17:00	3.48	45:00	3.70
18:30	1.49	17:30	3.70	50:00	3.54
19:00	1.34	18:00	3.93	57:00	3.62
19:30	1.34	18:30	3.41	61:00	3.46
20:00	1.56	19:00	3.70	70:00	3.79
20:30	1.42	21:00	3.34	80:00	3.54
21:00	1.34	23:00	3.54	90:00	3.79
23:00	1.56	25:00	3.62		
26:00	1.05	27:00	3.79		
28:00	1.72	29:00	3.46		
30:00	1.63	35:00	3.54		
35:00	1.60	50:00	3.79		
40:00	1.75	55:00	3.54		
45:00	1.86	60:00	3.70		
50:00	1.43	70:00	3.79		
55:00	1.63	80:00	3.54		
60:00	1.75	90:00	4.33		
70.00	1 40	20.00			

70:00

80:00

90:00

1.43

1.46 1.34 Site: Mosier Landing River mile 260,2 Trip no. 5 Event no: 5 Date: 05-21-81 Starting time: 1511 Tow name: Sierra Dawn No. of barges: 15 Draft: 2 ft Traffic direction: Upstream Tow speed: 3.2 mph

Station A Total depth: 3.26 m Sampling depth: 2.95 m

Time	Water
(min:sec	Velocity
elapsed)	(ft/sec)
-15:30	0.90
-15:00	0.53
-14:30	0.75
-14:00	0.90
-13:30	0.68
-13:00	0.83
-12:30	0.90
-12:00	0.90
-11:30	0.90
-11:00	0.97
-10:30	1.12
-10:00	1.12 1.20
-9:30 -9:00	1.20
-9:00 -8:30	1.12
-8:00	1.12
-7:30	1.05
-7:00	1.05
-6:30	1.34
-6:00	1.34
-5:30	0.97
-5:00	1.05
-4:30	0.83
-3:30	0.90
-3:00	1.05
-2:30	1.12
-2:00	0.97
-1:30	1.49
-1:00	0.83
-0:30	0.68
0:00	0.97
0:30	1.27
1:30	1.49
2:00 2:30	1.12
2:30 3:00	1.20 1.20
3:00	0.90
4:00	0.90
UU	0.91

	St	tatic	n	А		
Total	dept	th:	3.	26	m	
Sampli	.ng c	depth	:	2	.95	m

Time (min:3ec elapsed)	Water Velocity (ft/sec)	
4:30 5:00 5:30 6:00 6:30 7:00 7:00 7:30 8:00 8:30 9:00 9:30 10:30 11:00 11:30 12:00 13:00 13:30 20:00 22:00 24:00 26:00	1.12 0.90 1.05 0.90 0.83 0.90 0.90 0.68 1.05 0.46 0.31 0.83 0.68 0.61 0.75 1.05 0.90 0.90 0.90 0.90 0.79 0.54	
28:00 30:00 32:00 34:00 36:00	0.44 1.29 1.04 1.02 0.52	

Site: Mosier Landing River mile 260.2 Trip no. 5 Event no: 6 Date: 05-21-81

Starting time: 1555 Tow name: Atlas No. of barges: 6 Draft: 9 ft Traffic direction: Downstream Tow speed: 7.7 mph

Station A		Station B		Station C	
	3.26 m	Total depth:	6.73 m	Total depth: 7.40 m	
		Sampling dep			
Time	Water	Time	Water	Time	Water
	-	(min:sec	-		Velocity
elapsed)	(ft/sec)	elapsed)	(ft/sec)	elapsed)	(ft/sec)
-1:30	0.31	7:00	1.42	6:30	2.23
-1:00	0.49	7:30		7:00	2.23
0:00	0.83	8:00	1.27	7:30	2.97
0:30	0.83	8:30	1.49	8:00	2.23
1:00	1.27	9:00	1.12	8:30	2.60
1:30	1.20	9:30	1.05	9:00	2.23
2:00	1.20	10:00	1.49	9:30	2.60
2:30	0.97	10:30	1.56	10:00	2.23
3:00	1.12	11:00	1.42	10:30	2.23
3:30	1.05	11:30	1.20	11:00	2.23
4:00	1.34	12:00	1.12	11:30	2.23
4:30	1.27	12:30	1.20	12:00	2.60
5:00	1.12	13:00	0.97	12:30	2.23
5:30	1.27	13:30	1.42	13:00	2.23
6:00	1.05	14:00	1.56	13:30	2.23
6:30	0.97	14:30	1.64	14:00	2.60
7:00	0.75	15:00	1.42	14:30	2.97
8:00	1.20	15:30	1.64	15:00	2.60
8:30	1.27	16:00	1.56	15:30	2.60
9:00	1.20	16:30	1.20	16:00	2.60
9:30	1.05	17:00	1.27	16:30	2.23
10:00	0.90	19:00	1.40	17:00	2.23
10:30	0.83	21:00	1.32	22:00	2.65
11:00	0.68	23:00	1.29	24:00	2.03
11:30	0.53	25:00	1.27	28:30	2.35
12:00	0.38	27:00	1.34	30:00	2.78
12:00	0.24	29:00	1.24	38:00	2.78
13:00	0.24	34:00	1.12	46:30	2.65
13:30	0.31	39:00	0.90	50:00	2.65
14:00		44:00		55:00	2.03
14:00	0.57	49:00	1.12	60:30	2.33
15:30	0.68	54:00	0.82	70:30	2.97
16:00	0.08	59:00	0.82	80:00	2.42
18:00	1.07	69:00	0.96	90:00	2.97
20:00	0.90	79:00	0.82	50.00	2.11
20:00					
22:00 24:00	1.09 1.22	89:00	1.22		
26:00	0.74				

Station A	Station B	Station C
Total depth: 3.26 m	Total depth: 6.73 m	Total depth: 7.40 m
Sampling depth: 2.95 m	Sampling depth: 6.40 m	Sampling depth: 7.04 m
Time Water	Time Water	Time Water
(min:sec Velocity	· · · · · ·	(min:sec Velocity
elapsed) (ft/sec)	elapsed) (ft/sec)	elapsed) (ft/sec)
28:00 0.37		
30:00 0.70		
35:00 1.09		
40:00 0.94		
45:00 0.79		
50:00 0.79		
55:00 0.71		
60:00 1.20		
70:00 0.78		
80:00 0.96		
90:00 0.88		

Site: Mosier LandingStarting time: 0915River mile 260.2Tow name: New DawnTrip no. 5No. of barges: 15Event no: 7Draft: 9 ftDate: 05-22-81Traffic direction: DownstreamTow speed: 9.2 mph

Station A	Station B	Station C	
Total depth: 3.80 m	Total depth: 7.10 m	Total depth: 8.50 m	
Sampling depth: 2.30 m	Sampling depth: 5.68 m	Sampling depth: 7.00 m	
Time Water	Time Water	Time Water	

(min:sec	Velocity	(min:sec	Velocity	(min:sec	Velocity
elapsed)	(ft/sec)	elapsed)	(ft/sec)	elapsed)	(ft/sec)
erapsed)	(IL/Sec)	erapsed)	(IL/Sec)	etapsed)	(IL/Sec)
18:00	1.93	11:00	2.30	8:00	2.60
18:30	1.79	11:30	2.16	8:30	2.75
19:00	1.79	12:00	2.01	9:00	2.60
19:30	1.79	12:30	1.71	9:30	2.97
20:00	1.79	13:00	2.30	10:00	2.60
20:30	2.01	13:30	2.23	10:30	2.60
21:00	1.86	14:00	2.23	11:00	2.82
21:30	1.93	14:30	2.38	11:30	2.52
22:00	2.08	15:00	2.45	12:00	2.30
22:30	1.93	15:30	2.45	12:30	2.60
23:00	2.01	16:00	2.30	13:00	2.52
23:30	2.01	16:30	2.38	13:30	2.60
24:00	1.71	17:00	2.23	14:00	2.30
25:30	1.79	17:30	2.67	14:30	2.45
26:00	1.86	18:00	2.38	15:00	2.67
26:30	1.79	18:30	2.38	15:30	2.60
27:00	1.86	19:00	2.38	16:00	2.52
27:30	1.86	19:30	2.60	16:30	2.45
28:00	1.79	20:00	2.60	17:00	2.75
28:30	2.01	20:30	2.01 .	17:30	2.60
29:00	1.93	21:00	2.23	18:00	2.38
29:30	1.86	22:00	2.59	18:30	2.60
		24:00	1.94	19:00	2.23
		26:00	2.03	19:30	2.52
		28:00	2.37	20:00	2.30
		30:00	2.42	20:30	2.60
		32:00	2.19	21:00	2.60
		34:00	2.23	21:30	2.45
		36:00	2.07	22:00	2.30
				26:00	2.27
				28:00	2.27
				30:00	2.37
				35:00	2.47

Site: Mosier Landing River mile 260.2 Trip no. 5	Starting time: 1215 Tow name: Nohab Express
Event no: 8 Date: 05-22-81	No. of barges: 3 Draft: 9 ft Traffic direction: Upstream Tow speed: 6.7 mph

Station A Total depth: 4.58 Sampling depth: 0	m Total depth:	tion B : 8.54 m oth: 5.12 m	Stat. Total depth: Sampling dep	
Time Water (min:3ec Veloc. elapsed) (ft/s	ity (min:3ec	Water Velocity (ft/sec)	Time (min:sec elapsed)	Water Velocity (ft/sec)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 10:30 8 11:00 8 11:30 1 12:00 5 12:30 5 13:00 5 13:30 7 14:00 7 14:30 5 15:00 8 16:00 2 16:30 5 17:00 3 17:30 5 18:00 3 19:30 7 20:00 7 20:30 7 20:30 7 22:00 6 24:00 3 26:00 2 28:00	3.11 3.11 2.97 2.75 2.97 2.60 2.67 2.89 2.67 2.60 2.45 2.67 2.60 2.45 2.67 2.89 2.97 3.19 2.60 3.11 2.97 2.53 2.59 3.03 2.97	9:00 9:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:00 13:30 14:00 14:30 15:00 15:30 16:00 16:30 17:00 17:30 18:00 18:30 19:00 23:06 24:00 28:00	2.97 2.60 2.97 2.97 3.34 2.97 2.60 2.97 2.97 3.34 3.34 2.97 2.97 2.97 2.97 2.97 2.97 2.97 2.97 2.97 2.97 2.97 2.97 2.97 3.34 3.34 3.34 2.97 2.97 3.34 3.34 3.34 2.97 2.97 3.34 3.34 2.97 2.97 3.34 3.34 2.97 2.97 3.34 3.34 3.34 2.97 2.97 3.34 3.34 3.34 2.97 2.97 3.34 3.35 3.45 3.25
40:002.045:002.150:001.755:002.260:002.270:002.080:002.290:002.4	7 35:00 2 40:00 3 45:00 3 50:00 7 55:00 7 60:00	3.03 2.65 2.78 2.84 2.84 2.78 2.59 2.84 2.90 3.03	30:00 35:00 40:00 45:00 50:00 55:00 60:00 70:00 80:00 90:00	3.25 3.34 3.31 3.10 3.38 3.34 3.03 3.10 3.10 3.18

Site: Mosier Landing River mile 260.2 Trip no. 5 Event no: 9 Date: 05-22-81	Starting time: 1730 Tow name: White Knight No. of barges: 15 Draft: 9 ft Traffic direction: Downstream Tow speed: 9.1 mph		
	Starting time: 1741 Tow name: Colonel George Lambert No. of barges: 15 Draft: 2 ft Traffic direction: Upstream		

Tow speed: 6.3 mph

Station AStation BStation CTotal depth: 3.18 mTotal depth: 8.62 mTotal depth: 7.25 mSampling depth: 1.91 mSampling depth: 1.72 mSampling depth: 1.46 m

Water Velocity (ft/sec)	Time (min:sec elapsed)	Water Velocity (ft/sec)	Time (min:sec elapsed)	Water Velocity (ft/sec)
-		-		-
2.01 1.79 1.64 1.56 1.86 2.08 2.23			40:00 42:00 44:00 46:00 50:00 54:00 58:00	3.62 3.18 3.24 3.38 3.79 3.54 3.54
	Velocity (ft/sec) 1.49 1.56 1.93 1.93 2.01 2.01 1.86 2.01 1.86 1.93 1.93 1.64 1.86 2.08 2.04 1.93 2.08 2.04 1.93 2.08 2.04 1.93 2.08 2.01 1.97 2.08 1.71 1.64 1.79 2.01 1.79 1.64 1.56 1.86 2.08	Velocity (ft/sec)(min:sec elapsed)1.4920:301.5621:001.9321:301.9322:302.0123:002.0123:301.8624:002.0124:301.8625:001.8625:301.9326:001.9326:301.6427:001.8627:302.0828:002.0428:301.9329:002.0829:302.0130:001.641.792.011.791.641.561.862.08	Velocity (ft/sec)(min:sec elapsed)Velocity elapsed)1.4920:303.111.5621:003.111.9321:303.191.9322:303.342.0123:003.342.0123:303.261.8624:003.262.0124:303.481.8625:003.261.8625:303.481.9326:003.191.9326:303.111.6427:003.481.8627:303.562.0828:002.972.0428:303.191.9329:003.262.0829:303.042.0130:003.111.9746:003.182.0856:003.031.7161:003.031.641.792.011.791.641.561.862.082.08	Velocity (ft/sec)(min:sec elapsed)Velocity (ft/sec)(min:sec elapsed)1.4920:303.1120:301.5621:003.1121:001.9321:303.1921:301.9322:303.3422:302.0123:003.2623:001.8624:003.2623:302.0124:303.4824:001.8625:003.2624:301.8625:303.4825:001.9326:303.1126:001.9326:303.1126:001.6427:003.4826:301.8627:303.5627:002.0828:002.9727:302.0428:303.1928:001.9329:003.2628:302.0829:303.0429:002.0130:003.1129:301.9329:003.2628:302.0428:303.1928:001.9329:003.2628:302.0856:003.0332:001.7161:003.0334:001.6446:0041:001.5646:0044:001.6444:0044:001.5646:0054:00

Station A Total depth: 3.18 m Sampling depth: 1.91 m		-		Station C Total depth: 7.25 m Sampling depth: 1.46 m	
Time (min:sec elapsed) 18:30 19:00 19:30 20:00 20:30 21:00 21:30 22:00 24:00	Water Velocity (ft/sec) 2.16 2.08 1.71 1.86 1.93 1.93 1.93 1.86 1.94 1.94	Sampling dep Time (min:sec elapsed)	Water Velocity (ft/sec)	Sampling dep Time (min:sec elapsed)	Water Velocity
26:00 28:00 30:00 32:00 34:00 36:00 38:00 40:00 42:00 47:00 52:00 57:00 62:00	1.86 1.90 1.98 2.23 1.86 1.98 2.03 2.03 1.90 1.98 1.98 1.98 1.82 1.94				

APPENDIX E

BACKGROUND WATER VELOCITY DATA

Site: Riprap Landing River mile 265.1 Trip no. 4

Station	Total depth(m)	Sampling depth(m)	Date	Time	Water velocity (ft/sec)
A	3.73	2.98	04-08-81	1410	1.56
A	3.73	2.24	04-08-81	1410	2.07
A	3.73	1.49	04-08-81	1413	2.37
A	3.73	0.75	04-08-81	1414	2.65
A	2.97	2.40	04-08-81	1508	1.56
A	2.97	1.80	04-08-81	1510	1.56
A	2.97	1.20	04-08-81	1513	1.90
A	2.97	0.60	04-08-81	1515	2.53
A	4.21	3.37	04-08-81	1613	2.19
A	4.21	2.53	04-08-81	1616	2.32
А	4.21	1.68	04-08-81	1618	2.53
А	4.21	0.84	04-08-81	1620	2.59
В	8.36	7.53	04-08-81	1410	2.65
В	8.36	6.30	04-08-81	1411	3.10
В	8.36	5.47	04-08-81	1411	3.38
В	8.36	4.64	04-08-81	1412	3.34
В	8.36	3.81	04-08-81	1412	3.34
В	8.36	2.98	04-08-81	1413	3.34
В	8.36	2.15	04-08-81	1414	3.46
В	8.36	1.32	04-08-81	1415	3.62
В	8.36	0.49	04-08-81	1416	3.46
В	8.60	7.74	04-08-81	1510	2.71
В	8.60	6.88	04-08-81	1511	2.59
В	8.60	6.00	04-08-81	1513	2.90
B	8.60	5.14	04-08-81	1515	3.18
B	8.60	4.28	04-08-81	1517	3.10
B	8.60	3.42	04-08-81	1519	3.46
B	8.60	2.56	04-08-81	1521	3.25
B B	8.60	1.70 0.84	04-08-81 04-08-81	1523	3.54
B C	8.60 10.02	9.50	04-08-81	1525 1500	3.38 1.68
C	10.02	9.00	04-08-81	1500	2.47
C	10.02	8.00	04-08-81	1500	2.47
C	10.02	7.00	04-08-81	1500	2.97
C	10.02	6.00	04-08-81	1500	2.97
C	10.02	5.00	04-08-81	1500	3.18
C	10.02	4.00	04-08-81	1500	3.38
С	10.02	3.00	04-08-81	1500	3.34
C	10.02	2.00	04-08-81	1500	3.38
С	10.02	1.00	04-08-81	1500	3.54
С	10.20	9.69	04-08-81	1607	2.03
С	10.20	9.18	04-08-81	1607	2.67
С	10.20	8.16	04-08-81	1607	2.47
С	10.20	7.14	04-08-81	1607	2.78
С	10.20	6.12	04-08-81	1607	3.03

	_				Water
	Total	Sampling			velocity
Station	depth(m)	depth(m)	Date	Time	(ft/sec)
С	10.20	5.10	04-08-81	1607	3.18
С	10.20	4.08	04-08-81	1607	3.34
С	10.20	3.06	04-08-81	1607	3.25
С	10.20	2.04	04-08-81	1607	3.70
С	10.20	1.02	04-08-81	1607	3.54
A	4.12	3.30	04-09-81	1545	2.34
A	4.12	2.47	04-09-81	1545	2.28
A	4.12	1.65	04-09-81	1545	.2.78
A	4.12	0.82	04-09-81	1545	2.67
В	8.10	7.30	04-09-81	1545	2.73
В	8.10	6.50	04-09-81	1545	3.34
В	8.10	5.70	04-09-81	1545	2.90
В	8.10	4.90	04-09-81	1545	2.97
В	8.10	4.10	04-09-81	1545	3.10
B	8.10	2.50	04-09-81	1545	3.46
B	8.10	0.90	04-09-81	1545	3.54
C	10.50	10.00	04-09-81	1545	1.86
C	10.50	9.50	04-09-81	1545	2.32
C	10.50	8.40	04-09-81	1545	2.65
C	10.50	7.40	04-09-81	1545	3.10
C	10.50	6.30	04-09-81	1545	2.97
C	10.50	5.30	04-09-81	1545	3.34
C	10.50	4.20	04-09-81	1545	3.54
C	10.50	3.20	04-09-81	1545	3.63
C	10.50	2.10	04-09-81	1545	3.62
C	10.50	1.10	04-09-81	1545	3.54
A	4.60	3.68	04-10-81	1100	2.23
A	4.60	2.70	04-10-81	1100	2.23
A	4.60	1.84	04-10-81	1100	2.78
A	5.13	4.11	04-10-81	1400	2.53
A	5.13	3.07	04-10-81	1400	2.59
A	5.13	2.04	04-10-81	1400	2.35
A	5.13	1.01	04-10-81	1400	2.90
A	4.00	3.20	04-10-81	1500	1.72
A	4.00	2.40	04-10-81	1500	2.37
A	4.00	1.60	04-10-81	1500	2.23
A	4.00	0.80	04-10-81	1500	2.23
A	4.11	3.29	04-10-81	1700	1.90
A	4.11	2.47	04-10-81	1700	2.12
A	4.11	1.65	04-10-81	1700	2.71
A	4.11	0.82	04-10-81	1700	2.84
B	8.44	7.60	04-10-81	1106	2.04
B	8.44	6.76	04-10-81	1106	2.27
B	8.44	5.92	04-10-81	1106	3.18
B	8.44	5.08	04-10-81	1106	3.62
B	8.44 9.60	8.64	04-10-81	1420	2.37
B	9.60 9.60	8.64 7.68	04-10-81		2.27
Б	9.00	1.00	04-10-01	1420	2.23

					Water
	Total	Sampling			velocity
Station	depth(m)	depth(m)	Date	Time	(ft/sec)
В	9.60	6.72	04-10-81	1420	2.65
В	9.60	5.76	04-10-81	1420	3.18
В	9.60	4.80	04-10-81	1420	3.34
3	9.60	3.84	04-10-81	1420	3.25
В	9.60	2.88	04-10-81	1420	3.46
В	9.60	1.92	04-10-81	1420	3.54
В	9.60	0.96	04-10-81	1420	3.79
С	10.90	2.18	04-10-81	1105	3.89
С	10.90	4.36	04-10-81	1105	3.54
С	10.90	6.44	04-10-81	1105	3.34
С	10.90	8.72	04-10-81	1105	2.65
С	10.90	10.35	04-10-81	1105	2.47
С	10.63	10.12	04-10-81	1410	2.07
С	10.63	9.63	04-10-81	1410	2.47
С	10.63	8.63	04-10-81	14,10	2.47
С	10.63	7.53	04-10-81	1410	3.10
С	10.63	6.53	04-10-81	1410	3.03
С	10.63	5.43	04-10-81	1410	3.34
С	10.63	4.43	04-10-81	1410	3.54
С	10.63	3.33	04-10-81	1410	3.79
С	10.63	2.33	04-10-81	1410	3.79
С	10.63	1.23	04-10-81	1410	3.79
С	10.80	10.26	04-10-81	1505	2.53
С	10.80	8.64	04-10-81	1505	2.84
С	10.80	6.48	04-10-81	1505	3.56
С	10.80	4.32	04-10-81	1505	3.63
С	10.80	2.16	04-10-81	1505	3.87
С	10.80	10.26	04-10-81	1700	1.79
С	10.80	8.64	04-10-81	1700	2.59
С	10.80	6.48	04-10-81	1700	3.34
С	10.80	4.32	04-10-81	1700	3.62
С	10.80	2.16	04-10-81	1700	3.70

Site: Mosier Landing River mile 260.2 Trip no. 5

Station	Total depth(m)	Sampling depth(m)	Date	Time	Water velocity (ft/sec)
A	4.11	3.30	05-20-81	1540	0.96
A	4.11	2.47	05-20-81	1540	0.87
A	4.11	1.65	05-20-81	1540	0.88
A	4.11	0.82	05-20-81	1540	1.43
А	2.65	2.12	05-20-81	1630	0.83
А	2.65	1.59	05-20-81	1630	0.88
А	2.65	1.06	05-20-81	1630	0.94
A	2.65	0.53	05-20-81	1630	0.98
A	2.46	1.97	05-20-81	1730	1.04
A	2.46	1.48	05-20-81	1730	1.00
A	2.46	0.99	05-20-81	1730	1.20
A	2.46	0.49	05-20-81	1730	1.16
A	2.13	1.70	05-21-81	1400	0.96
A	2.13	1.28	05-21-81	1400	0.55
A	2.13	0.85	05-21-81	1400	0.37
A	2.13	0.43	05-21-81	1400	0.45
A	4.10	3.28	05-22-81	1430	1.82
A	4.10	2.46	05-22-81	1430	1.90
A	4.10	1.64	05-22-81	1430	2.07
A	4.10	0.82	05-22-81	1430	2.23
A	3.46	2.77	05-22-81	1630	1.49
A	3.46	2.08	05-22-81	1630	1.60
A	3.46	1.38	05-22-81	1630	1.72
A	3.46	0.69	05-22-81	1630	2.03
B	9.65	1.93	05-21-81	1406	3.62
В	9.65	3.86	05-21-81	1406	3.38
В	9.65	5.79	05-21-81	1406	3.10
B	9.65	7.72	05-21-81	1406	3.03
B	9.65	8.69	05-21-81	1406	2.53
B	9.65	9.17	05-21-81	1406	2.59
B	8.54	8.11	05-22-81	1430	2.17
B	8.54	7.68	05-22-81 05-22-81	1430	2.59
B	8.54	6.83	05-22-81	1430	2.59
B	8.54	5.97	05-22-81	1430	2.53
B B	8.54 8.54	5.12 3.41	05-22-81	1430 1430	2.90 2.71
B	8.54	1.71	05-22-81	1430	3.18
B	8.44	8.01	05-22-81	1430	2.07
B	8.44 8.44	7.62	05-22-81	1630	2.07
B	8.44 8.44	6.73	05-22-81	1630	3.10
B	8.44 8.44	5.05	05-22-81	1630 1630	3.03
B	8.44	3.38	05-22-81	1630	3.10
B	8.44	1.67	05-22-81	1630	3.25
C	9.60	9.12	05-20-81	1230	0.95
C	9.60	8.64	05-20-81	1230	3.16
C	2.00	0.01	00 20 UI	1200	0.10

Station	Total depth(m)	Sampling depth(m)	Date	Time	Water velocity (ft/sec)
С	7.30	7.00	05-21-81	1400	2.65
С	7.30	6.60	05-21-81	1400	2.85
С	7.30	5.90	05-21-81	1400	3.24
С	7.30	4.40	05-21-81	1400	3.03
С	7.30	2.90	05-21-81	1400	3.95
С	7.30	1.50	05-21-81	1420	3.79

APPENDIX F

BACKGROUND PERCENT VOLATILES

Date	Time	Station	<pre>% volatile</pre>
4/8/81	1505	A	11.53
4/8/81	1611	А	11.56
4/9/81	1530	А	12.12
4/10/81	1500	А	11.35
4/10/81	1700	А	18.31
4/9/81	1540	В	13.31
4/10/81	1400	В	6.18
4/10/81	1500	В	10.62
4/10/81	1700	В	11.67
4/8/81	1600	С	12.30
4/8/81	1619	С	12.10
4/8/81	1635	С	11.70
4/9/81	1539	С	12.70
4/9/81	1539	С	12.92
4/10/81	0811	С	11.22
4/10/81	0811	С	12.78
4/10/81	1107	С	14.00
4/10/81	1409	С	9.47
4/10/81	1414	С	10.76
4/10/81	1440	С	12.30
4/10/81	1500	С	11.40
4/10/81	1655	С	12.03
5/20/81	1245	В	10.48
5/20/81	1530	В	9.02
5/20/81	1730	В	8.87
5/20/81	1830	В	8.87
5/21/81	1400	В	10.35
5/21/81	1400	В	10.04
5/21/81	1500	В	9.66
5/22/81	1200	В	9.91
5/22/81	1430	В	9.34
5/22/81	1430	В	9.21
5/22/81	1630	В	9.60
5/20/81	1230	С	8.37
5/20/81	1530	С	9.08
5/20/81	1630	С	8.31
5/20/81	1730	С	8.57
5/20/81	1830	С	8.45
5/21/81	1417	С	9.06
5/21/81	1425	С	9.16
5/21/81	1500	С	9.20