
CLOCK SYNCHRONIZATION FOR
MULTIHOP WIRELESS SENSOR NETWORKS

BY

ROBERTO SOLIS ROBLES

Ingen, Instituto Tecnologico de Zacatecas, 1992
Maest, Instituto Tecnologico y de Estudios Superiores de Monterrey, 1999

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2009

Urbana, Illinois

Doctoral Committee:

Professor P. R. Kumar, Chair and Director of Research
Professor Lui Sha
Professor Carl A. Gunter
Assistant Professor Yih-Chun Hu

UMI Number: 3392480

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI
Dissertation Publishing

UMI 3392480
Copyright 2010 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

uest
ProQuest LLC

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106-1346

© 2009 Roberto Solis Robles

ABSTRACT

In wireless sensor networks, more so generally than in other types of distributed

systems, clock synchronization is crucial since by having this service available, several

applications such as media access protocols, object tracking, or data fusion, would

improve their performance. In this dissertation, we propose a set of algorithms to

achieve accurate time synchronization in large multihop wireless networks.

First, we present a fully distributed and asynchronous algorithm that has been

designed to exploit the large number of global constraints that have to be satisfied by

a common notion of time in a multihop network. For example, the sum of the clock

offsets along any cycle in the network must be zero at any instant. This leads to the

concept of "spatial smoothing." By imposing the large number of global constraints

for all the cycles in the multihop network, these time estimates can be smoothed and

made more accurate.

The algorithm functions by simple asynchronous broadcasts at each node. Chang­

ing the time reference node for synchronization is also easy, consisting simply of one

node switching on adaptation, and another switching it off. It has been implemented

on a Berkeley motes testbed of forty nodes, and comparative evaluation against a

leading algorithm is presented.

Next, considering that most of the clock synchronization protocols that have been

developed do not provide means to detect security attacks which could render them

useless, we present a secure network-wide clock synchronization protocol. At the same

time, this protocol allows the nodes to securely discover the network's topology by

ii

detecting and isolating all links that have fallen under the control of attackers. The

protocol detects the attacks using only timing information under certain conditions.

It has been implemented on an IMote2 testbed of twenty five nodes. Experimental

results are provided.

m

To my beautiful wife, Sahara, and my wonderful children, Sahara and Alberto.

IV

ACKNOWLEDGMENTS

This dissertation would not have been possible without the help, encouragement, and

support of many people.

I am specially grateful to my adviser, Professor P. R. Kumar, for his guidance

and continued support throughout the years. Without him, this work would have

not been possible. I thank the members of my Ph.D. committe, Professors Lui Sha,

Carl Gunter and Yih-Chun Hu for their invaluable comments and suggestions to

improve this dissertation. I would also like to thank the staff of the Coordinated

Science Laboratory and all my friends and colleagues there.

I want to acknowledge the financial support received from Instituto Tecnologico de

Zacatecas, Universidad Autonoma de Zacatecas, Fulbright-CONACYT, PROMEP,

and Professor P. R. Kumar, which allowed me in one time or the other, to complete

this dissertation.

Finally, thanks to my parents, Honoria and Rufino, for always being there for me,

and specially to Sahara, my wife, who endured this long journey, and has given me

the joy of two beautiful children, Sahara and Alberto; they all have made it worth

the effort.

v

TABLE OF CONTENTS

LIST OF FIGURES ix

CHAPTER 1 INTRODUCTION 1
1.1 Wireless Sensor Networks 1
1.2 Importance of Clock Synchronization 2

CHAPTER 2 MOTIVATION A N D RELATED WORK 5
2.1 Virtual Clocks 6
2.2 Theoretical Results 7
2.3 General Network Algorithms 8
2.4 Ad Hoc Networks 10
2.5 Wireless Sensor Networks 11

2.5.1 Sources of error in the clock synchronization process 11
2.5.2 Berkeley motes and TinyOS 12
2.5.3 Reference broadcast synchronization (RBS) 14
2.5.4 Tiny-sync and mini-sync 16
2.5.5 Timing-sync protocol for sensor networks (TPSN) 17
2.5.6 Flooding time synchronization protocol (FTSP) 19
2.5.7 Lightweight tree-based synchronization (LTS) 20
2.5.8 Adaptive clock synchronization 20
2.5.9 Pairwise broadcast synchronization (PBS) 21
2.5.10 Gradient time synchronization protocol (GTSP) 21
2.5.11 Average time sync (ATS) . 21

CHAPTER 3 BILATERAL CLOCK SYNCHRONIZATION
ALGORITHM 23
3.1 System Model 23
3.2 Pair-wise Clock Synchronization between Neighbors 23
3.3 Simulation Results 30
3.4 Implementation on Berkeley Motes 31

3.4.1 Setup 33
3.5 Evaluation 34

VI

CHAPTER 4 MULTIHOP CLOCK SYNCHRONIZATION 36
4.1 Formulation 37
4.2 Implementation on Berkeley Motes 44

4.2.1 Setup 44
4.3 Evaluation 45

CHAPTER 5 SECURITY A N D CLOCK SYNCHRONIZATION . 48
5.1 Requirements for Sensor Network Security 49
5.2 Attacks 49
5.3 Defenses 51
5.4 Secure Clock Synchronization 53

5.4.1 SPS and SGS 54
5.4.2 Secure and resilient clock synchronization 54

CHAPTER 6 SECURE CLOCK SYNCHRONIZATION OVER A
SINGLE LINK 55
6.1 Protocol Description 55

6.1.1 Notation 55
6.1.2 Assumptions 56
6.1.3 Basic clock synchronization protocol 57
6.1.4 Adding security to the protocol 59

6.2 Implementation . 64
6.2.1 Exponential smoothing 65
6.2.2 MAC layer timestamping 66
6.2.3 Neighbor discovery subprotocol 68

6.3 Evaluation 70
6.3.1 Clock synchronization 70
6.3.2 Validation of clock synchronization 71
6.3.3 Man-in-the-middle attacker 73

6.4 Security Analysis 79
6.4.1 Consistent skew 79
6.4.2 Consistent one-way delay 80
6.4.3 Security of delayed authentication 81
6.4.4 Security against inter-session replay 82

CHAPTER 7 SECURE NETWORK-WIDE CLOCK
SYNCHRONIZATION A N D TOPOLOGY DISCOVERY 84
7.1 The Main Ideas 86

7.1.1 Single link checking 86
7.1.2 Neighborhood check 87
7.1.3 Network consistency check 87
7.1.4 Removal of network inconsistencies 89
7.1.5 An example 90

7.2 Implementation 97
7.2.1 Setup 97

vn

7.2.2 Exchange of valid neighbor lists 98
7.2.3 Exchange of reachable lists 99
7.2.4 Removal of network inconsistencies 101

7.3 Evaluation 101

CHAPTER 8 CONCLUSIONS A N D FUTURE WORK 106

8.1 Future Work 107

REFERENCES 108

AUTHOR'S BIOGRAPHY 118

vm

LIST OF FIGURES

2.1 Relationship between the various levels of NTP 9
2.2 Illustration of the sources of error during clock synchronization. . . . 12
2.3 Illustration of two places where the timestamping can be performed. . 13
2.4 Exchange of messages to determine relative drift and offset between

two nodes 16
2.5 Two-way message exchange 19

3.1 Frequent transmissions of estimates to neighbor node 24
3.2 Skew estimation results obtained in simulation 30
3.3 Offset estimation results obtained in simulation 31
3.4 Communication stack on TinyOS 1.x 32
3.5 Implementation setup for two nodes 33
3.6 Accuracy of estimated to real time between 2 neighboring nodes. . . . 35

4.1 Example of a network 38
4.2 Link topology for the multihop implementation 45
4.3 Average closeness of estimated to real time in a 40-node network. . . 46
4.4 Experimental results of FTSP on the 40-node network 46
4.5 Comparison to FTSP 47

6.1 Message exchanges to achieve basic clock synchronization 58
6.2 Detecting a half-duplex attacker. Source: [1] 62
6.3 Illustration of MAC layer timestamping in the CC2420 radio 67
6.4 Linear skew 72
6.5 Accuracy of packet arrival time prediction and RTT behavior 72
6.6 CDF of the errors in the arrival time prediction 73
6.7 Experimental setup with an MITM attacker 74
6.8 Skews observed with an MITM attacker present 75
6.9 Comparison of skews with no MITM and with MITM 76
6.10 Round-trip time observed with MITM present 76
6.11 Accuracy of packet arrival time prediction with MITM present 77

7.1 Example network to illustrate secure multihop protocol execution . . 90
7.2 Neighborhood check step in nodes 3 and 5 92
7.3 Lists of neighbors received in node 7 92

IX

7.4 Node 7 exchanges its reachable list with its neighbors 93
7.5 Node 7 receives reachable lists from its neighbors 94
7.6 Node 7 exchanges its reachable list with neighbors again 95
7.7 Node 7 wants to communicate with node 1 but needs to first remove

the inconsistencies 96
7.8 Testbed for the implementation of the secure network-wide synchro­

nization protocol 98
7.9 Link topology of the 25 nodes in the testbed 99
7.10 Skews observed by node 1 in a particular run of the experiment. . . . 104
7.11 Skews observed by node 13 in a particular run of the experiment. . . 104
7.12 Skews observed by node 22 in a particular run of the experiment. . . 105

x

CHAPTER 1

INTRODUCTION

1.1 Wireless Sensor Networks

Technological advances made in recent years in the fields of microelectronics and

wireless communications have enabled the integration of sensors, actuators and ra­

dios, which has lead to the development and deployment of wireless sensor networks.

Wireless sensor networks have grown in popularity and the applications that can be

developed for such networks are widespread, ranging from target tracking surveil­

lance [2,3], to biomedical health monitoring [4] and seismic sensing [5]. Along with

these applications come new design challenges [6,7], which stem from the fact that

a wireless sensor network has limited resources in terms of memory, computation

power, bandwidth and energy; and design constraints based on the monitored envi­

ronment. These play a key role in determining many aspects of the network such as

size, deployment scheme and topology. For example, in terms of resource constraints,

the MICA2 Berkeley motes [8] use an 8-bit micro-controller running at 4 MHz with a

limited instruction set, have only 4KB of RAM memory and can transmit up to 19.2

kbps. They are battery powered by an inexpensive pair of AA batteries that produce

between 2.0 and 3.2 V, and the lifetime is mainly determined by its awake duty-cycle

and radio usage.

1

1.2 Importance of Clock Synchronization

For several distributed applications either it is necessary for the processors to have a

common notion of time, or to have it would improve their performance. Examples of

these applications are authentication protocols, media access protocols, and database

consistency [9]. In the case of wireless sensor networks, applications such as object

tracking, environmental monitoring, TDMA scheduling, and data fusion, require some

kind of timing service in order to determine the order in which events have unfolded

and also the actual times of the events themselves. The synchronization would also

allow the nodes to save energy. In wireless sensor networks, the accuracy of object

localization or tracking is limited by the accuracy of clock synchronization [10]. When

actuation is also performed over the network, accurate clock synchronization is needed

to avoid delay induced instabilities, and improve control system performance [11].

Due to its importance, several algorithms have therefore been designed ([12-30]) in

order to synchronize the clocks of a distributed system over traditional networks, and

also over wireless sensor networks.

In this dissertation, two algorithms to achieve clock synchronization in a multihop

wireless sensor network are presented as well as the results on their performance in

implementations.

For the first algorithm, the key novelty of the approach presented consists of

a new notion of "spatial smoothing." It exploits global constraints imposed by a

common notion of time to improve the performance of clock synchronization, and yet

achieves this through a completely asynchronous, distributed algorithm. The heart

of the idea is the following. Suppose Oy is the offset of the clock at node j with

respect to the clock at a neighboring node i, at a certain time. Then an estimate

of Oij can be formed by bilateral exchange (or broadcast) of timestamped packets

between the neighboring nodes i and j . These estimates are, however, noisy and

2

are based only on the particular timestamped packets exchanged between the two

neighboring nodes. Now consider any cycle formed by nodes ii, i2,.. •, in, in+i = H,

in the multihop network. Necessarily, Y^=i ^ikik+1 = 0 must be satisfied by the very

notion of common time. This is an example of one global constraint, and there are

several such global constraints, one for every cycle in the graph. By taking advantage

of these constraints, the noisy estimates Oij can be further smoothed to give better

estimates. Imposing these global constraints can thus improve the time estimate

at every node in a multihop network with respect to any chosen reference node.

Essentially, this procedure allows full exploitation of all bilateral estimates, i.e., all

global information, to synchronize the clock at every node, thus making possible the

spatial smoothing of otherwise noisy local time estimates.

Thus we obtain a completely distributed asynchronous algorithm, where nodes

communicate only with their neighboring nodes, to achieve these global constraints.

Our distributed algorithm takes advantage of all estimates of bilateral offsets all over

the network to improve performance at every node, and not just those, say, along a

rooted tree. The incorporation of such a large number of global constraints improves

clock synchronization, especially in large networks where there are indeed a large

number of such constraints.

As noted above, this algorithm does not require any constructions such as a rooted

tree. In fact, it does not need any global topology knowledge. Instead it only uses

asynchronous distributed broadcasts at each node. Moreover, switching the time

reference from one node to another is also easy. It simply consists of one node

switching on adaptation, and another switching it off, and the entire network then

adapts to the change.

The results of an implementation over a 40-node Berkeley motes testbed and

a comparison of these results with a leading clock synchronization protocol on the

testbed are presented.

3

For the second algorithm, security is taken into account and based on theoretical

work by Chiang et al. [1], we first develop and implement a secure clock synchroniza­

tion protocol over a single link that is able to detect man-in-the-middle attacks using

only timing information. In man-in-the-middle attacks, the attacker intercepts mes­

sages exchanged between two nodes and relays such messages in a way that makes the

two nodes believe that the link they share is valid, while in reality the characteristics

of the link have been modified. For instance, delays are introduced which could affect

the clock synchronization service. By using the secure clock synchronization protocol,

nodes are able to impose restrictions on the kind of delays a man-in-the-middle at­

tacker can add to the packets exchanged between them. We validate the assumptions

and properties of the theoretical protocol by means of an implementation performed

using IMote2 motes and TinyOS 2.1. We further proceed to successfully implement

a mechanism to detect half-duplex man-in-the-middle attackers.

Finally, the secure clock synchronization protocol is extended to securely synchro­

nize the clocks in a multihop network. At the same time this protocol also allows

the nodes in the network to securely discover the topology of the network. The ul­

timate goal of this secure network-wide clock synchronization protocol is to obtain a

network-consistent clock.

This protocol is able to detect misbehaving or compromised links, disseminate

information regarding those links and effectively isolate them. It is divided into four

steps: single link check, neighborhood check, network consistency check, and removal

of network inconsistencies.

The protocol has been implemented on a testbed comprised of 25 Crossbow IMote2

sensor nodes on top of TinyOS 2.1. Experimental results are presented.

4

CHAPTER 2

MOTIVATION AND RELATED
WORK

The applications deployed over wireless sensor networks range from environmental

monitoring [5,31-34], health and wellness monitoring [35,36] distributed control [37],

and object tracking [10,38], to control over networks [39-41]. Most of these appli­

cations need to determine the times of the events that occur during their execution,

thus requiring a clock synchronization service.

For instance, in [10], a network of directional sensors is intended to monitor a

region which is crossed sporadically by objects assumed to be moving at nearly con­

stant velocity. Using the times at which sensors detect objects crossing their "field

of vision," the trajectories of the objects can be determined as well as the sensor

directions, which are also unknown a priori.

An accurate notion of time can also be used to improve communication network

performance. By having nodes in a wireless network synchronized, implementation

of MAC protocols such as TDMA or SEEDEX [42] would be feasible. This can lead

to greater throughput [43]. In addition, it can also be used to conserve energy by

reducing collisions when nodes transmit over the shared medium, as well as sleep while

awaiting their turn to transmit. Accurate clock synchronization can allow nodes to

more accurately coordinate their sleep states by employing advanced duty-cycling

schemes [44].

Clock synchronization has been an important topic of research for several years.

Several algorithms have been developed, mainly for traditional wireline networks, and,

lately, many for wireless sensor networks. This chapter presents the most important

5

references in this field beginning with the seminal work by Lamport on virtual clocks,

followed by some important theoretical results and the main algorithms proposed for

traditional, ad-hoc, and sensor networks.

2.1 Virtual Clocks

The seminal work in clock synchronization is due to Lamport [45], where the idea

of virtual clocks is used. In his system, he defines the "happened before" relation

(denoted by the symbol —•) as follows:

1. If a and b are events in the same process, and a comes before b, then a —>• b.

2. If a is the sending of a message by one process and b is the receipt of the same

message by another process, then a —> b.

3. If a —» b and b —»• c then a —»• c.

4. Two distinct events a and b are said to be "concurrent" if neither a —> b nor

b —>• a hold.

Also, a logical clock Ci is defined as a function that assigns a real number Ci(a) to

any event a in that process. The clock meets the following condition: For any events

a, b in process i, if a —> 6, then Ci(a) < Q(6) as long as the following holds:

1. If a and b are events in process Pi and a comes before b, then Cj(a) < Ci(b).

2. If a is the sending of a message by process Pi and 6 is the receipt of the same

message by process Pj, then Ci(a) < Cj(b).

Finally, a total ordering "happened before" relation, denoted by => is defined. It

extends the —> relation to a total ordering by assigning processors a priority to break

the ties. However, the resulting total order is not unique.

6

This work also determines that in case of physical clocks, the closest that two

clocks can get is approximately d(pr + e), where d is the diameter of the network, p

is the drift rate of the clock, r is the time interval over which a clock synchronization

message is sent, and e is the maximum unpredictable delay of the message.

2.2 Theoretical Results

Several theoretical results have been published regarding clock synchronization, the

most important being the following:

• In [46], Dolev and Halpern prove the impossibility of achieving clock synchro­

nization if more than a third of the nodes in the network are faulty, and give

the requirements to be met in order to achieve it.

• In [47], Lundelius and Lynch show that no algorithm can synchronize clocks

exactly, and provide lower and upper bounds on how close the clock values can

be at the same real time in a fully connected network.

• In [48], Biaz and Welch provide a lower bound for the optimal clock synchro­

nization achievable for any network topology, taking into account the diameter

of the network, and provide a tighter bound for a specific class of network

topologies.

• In [11], Graham and Kumar show that it is fundamentally impossible to es­

timate time between two clocks precisely without assuming symmetric delays.

Clock skew can be estimated regardless, and also, after two nodes have clock

synchronized, when one node sends a packet to the other, the sender can per­

fectly predict the time at which the packet will be received in terms of the

receiver's clock.

7

• In [49], Gurewitz et al. propose a method to estimate the one-way delay for each

link in an N-node network that works by summing up all single-hop one-way

measurements made along various cyclic paths. They show that the maximal

number of independent cyclic path delays that can be computed is smaller than

the number of links by N-l, which means that it is not possible to uniquely

determine the one-way delays.

• In [50], Freris and Kumar analyze networks of clocks, and characterize what is

determinable from what is not.

2.3 General Network Algorithms

The basic idea of a clock synchronization algorithm is that a node has a logical clock

which provides a time base for all activities on a node [51], and which is derived

from the hardware clock on the node. The algorithm executed can be viewed as a

clock process invoked at the end of every resynchronization interval. This process is

responsible for periodically reading the clock values at other nodes and then adjusting

the corresponding local clock value. The algorithm must satisfy the following two

conditions:

1. Agreement: The offset between all non-faulty clocks in the system is bounded.

2. Accuracy: The logical clock keeps up with the real time.

The diverse algorithms differ in the way these conditions are specified and in the way

the clock processes read the clock values at the other nodes. They can be divided

into two categories:

1. Deterministic: These guarantee an upper bound on the closeness of the synchro­

nization attainable, assuming an upper bound on transmission delays [52-55].

8

2. Probabilistic: These do not make any assumptions about the uncertainty, and

provide a smaller expected upper bound on the closeness of synchronization, but

do not guarantee such a bound with probability one [56,57].

External
Reference Clock

Stratum 1

Stratum 2

Stratum 3

Figure 2.1: Relationship between the various levels of NTP.

One important algorithm which is widely used is the Network Time Protocol

(NTP) described in [12]. As can be seen in Figure 2.1, in NTP each group of processes

served by the synchronization protocol is organized in a hierarchical structure. The

primary servers are located at the root level or stratum 1, and are synchronized to

accurate external clocks. Nodes at stratum 2 are synchronized with the primary

servers at stratum 1, nodes at stratum 3 are synchronized with nodes at stratum 2,

and so on. To withstand possible failures in nodes or network links, nodes at the

different strata can obtain time readings from several nodes, resulting in a redundant

topology. To achieve synchronization, nodes exchange messages which include the

9

latest three timestamps that, together with the time at which the message is received,

allow estimating round-trip delays and clock offsets. These estimates are then filtered

to reduce timing noise, and a peer-selection algorithm is used to determine which

subset is the most accurate and reliable. The resulting offsets of this subset are

combined using a weighted-average basis, and processed by a phase-lock loop to

produce a phase-correction term used to control the local clock. Levels close to

the root of the subnet have better accuracy and precision relative to the external

standard.

2.4 Ad Hoc Networks

An ad hoc network is a network of mobile wireless computing devices which have a

possibly dynamical topology, there being no infrastructure. An algorithm for clock

synchronization suitable for ad hoc networks is proposed in [13]. The basic idea of

this algorithm is not to synchronize the local clocks of the devices but to generate

time stamps using unsynchronized local clocks that when passed between devices will

be transformed to the local time of the receiving device. Since these transformations

cannot be done with high precision due to the unpredictability of the computer clocks,

the algorithm estimates a lower and upper bound for the real time passed from the

generation of a timestamp to its arrival in the destination, transforms such bounds to

the time of the receiver, and subtracts the resulting values from the time of arrival in

the destination node. This results in an interval specifying lower and upper bounds

for the time stamp relative to the local time of the receiving node.

The accuracy obtained is in the order of milliseconds for an implementation over

a 100 Mbps Ethernet network. A time translation control time protocol is also devel­

oped in [11] which is suitable for control applications over networks. It is also shown

that it is impossible to synchronize under asymmetric delays, i.e., when communica-

10

tion delays in the two directions are different.

2.5 Wireless Sensor Networks

For wireless sensor networks which share the limitations of an ad hoc network, along

with a need, generally, for greater energy efficiency, a few algorithms have been pro­

posed. Before describing the more important algorithms in this area, we review what

are the sources of error in the clock synchronization process [14,58], and describe the

most common architecture used to implement the algorithms for sensor networks,

Berkeley motes [59].

2.5.1 Sources of error in the clock synchronization process

First we define some terminology.

Send time. This is the time spent at the sender to pass the message from the ap­

plication to the network interface.

Access time. This is the delay incurred waiting for access to transmit on the chan­

nel, which in turn is dependent on the MAC protocol being used.

Propagation time. This is the time in transit from the sender to the receiver, once

the message has left the sender. This time is very small on a local network if

the sender and receiver share access to the same physical media.

Receive time. This is the time needed to process the message once it has arrived

at the receiver's network interface.

These quantities affect the latencies of communications between nodes, and are

shown graphically in Figure 2.2. Figure 2.3 shows the difference between timestamp-

ing at the application layer and the MAC layer and how some of sources of error can

be avoided.

11

Application calls send()

Sending
process

Receiving,
process

t-'ropagationf 1 I
i Application receives message

Figure 2.2: Illustration of the sources of error during clock synchronization.

2.5.2 Berkeley motes and Tiny OS

A mote is an autonomous sensor node which provides a combination of sensing, com­

munication and computation, in a complete architecture which has been developed

at the University of California, Berkeley [59].

Berkeley motes run the TinyOS Operating System, which is an open-source oper­

ating system designed for wireless embedded sensor networks. Its component-based

architecture enables rapid implementation while minimizing code size as required by

the severe memory constraints inherent in sensor networks [60]. Applications are

written in nesC, which is a new language for programming structured component-

based applications that has a C-like syntax and supports the TinyOS concurrency

model [61].

Over the years, motes architecture has been improved in terms of processing

power, memory and communication capabilities. We describe some of the features

of three different types of motes to illustrate these improvements (for more details,

see [62,63]).

A MICA mote [64] uses an Atmel ATmega 103 or ATmega 128L processor running

12

App calis senolO
App layer

Imestamp

MAC layer
receives
packet

Sender

MAC layer;
timestariii>:

II

Receiver

Send fee «tey.
dependentm

current toad and
the operating

Access 8me delay,
incurred wWie

mstikm oacomas
tee, dependent on
hSAC protocol and

neiwettt traffic

I Pwpagaiwndi^siy. dependent o« I
distance and almost n6a,lia.iMe |

i Packet
• Transmission

J J Recaye ime delay,
dependent on cutram
w»d and

syswsused

T i S T

i-M&G. layer
ifimestirnp

"App receives
packet

App layer
ttmesjsmp

Figure 2.3: Illustration of two places where the timestamping can be performed.

at 4 MHz. It has 128 KBytes of onboard flash memory to store the mote's program

and 4 KBytes of RAM.

It comes with 512 KBytes of flash memory to hold data, and also has a 10-bit A/D

converter so that sensor data can be digitized. Sensors available include temperature,

acceleration, light, sound and magnetic. Finally, the radio module consists of an RF

Monolithics TR1000 transceiver that can operate at communication rates up to 40

kbps. The complete system is designed to operate off an inexpensive pair of AA

batteries that produce between 2.0 and 3.2 V.

A MICA2 mote [8] has similar features as the MICA, but uses a different radio,

the Chipcon CC1000, which allows a better range and better noise immunity. It also

allows us to program the frequency at which to transmit the data, and has support for

wireless remote reprogramming which is very helpful when there is a large number of

motes to program. The processor has a 7.3728MHz crystal to support higher UART

baud rates.

An IMote2 mote [65], which is a newer generation of mote, uses an Intel PXA271

XScale processor at 13 MHz (scalable up to 416 MHz). It has 256 KB of SRAM and

13

32 MB of SDRAM. It uses a CC2420 IEEE 802.15.4 radio module which supports a

250 kbps rate with 16 channels in the 2.4 GHz band.

The software side of the architecture, that is, TinyOS, has also been improved

over the years [60]. In 2001, MICA motes were developed and programmed with

version 0.6 which used a mix of C and Perl scripts. In September 2002, version

1.0 appeared, which was implemented in nesC. In November 2006, version 2.0 was

released [66]; which is a complete rewrite of the entire operating system looking to

support greater platform flexibility by means of a newer and more powerful version

of the nesC language and the introduction of a three layer Hardware Abstraction

Architecture [67]. The most recent version is 2.1.

2.5.3 Reference broadcast synchronization (RBS)

This scheme, described in [14], uses broadcast communications to allow the receivers

of the synchronization message (called beacon) to synchronize with one another. The

receivers record their local time when receiving the beacon, and then they exchange

their recorded times. With this exchange, they find their clocks' difference. By doing

this, two of the sources of error mentioned in Section 2.5.1 are removed (sending

time and access time), and since the propagation time is ignored (considered being

negligible in the broadcast medium in which this scheme is used), the only possible

error is reduced to the receiver's side (receive time), and can be generally kept very

small by timestamping the reception at the lowest possible level. The receiver error

was characterized by doing tests on a wireless sensor network testbed in which a

node broadcasted packets and the phase offsets of five receivers were recorded. The

distribution of such errors appeared Gaussian with parameters \x = 0, a — 11.1/isec.

In order to increase the precision of the synchronization, more than one beacon

is sent:

14

1. m reference packets (beacons) are broadcasted.

2. Each of the n receivers records the time at which the beacon was received,

according to its local clock.

3. The receivers exchange their recorded times.

4. Each receiver i can compute its offset with respect to any other receiver j as

the average of the phase offsets implied by each beacon received by both nodes

i and j ,

. rn

Vienjen: Offset [U] := - £ (T i i f c - T a) .
fit

k=i

To account for the clock skew, a least-squares linear regression is performed on

the phase offsets. The protocol was implemented on a Berkeley motes testbed and

it was able to keep the synchronization error between two nodes at 7.4 fj,s after a 60

second interval.

It should be noted that the protocol code ran on iPAQs that have more stable

oscillators and a higher resolution (the motes were only used to provide the wireless

communication). A multihop extension is also proposed to synchronize at least two

groups of nodes, but it relies on effective clustering of the nodes around the broadcast

nodes.

To reduce communications, a scheme called post-facto synchronization is proposed

where instead of keeping the time-synchronization process always on, a synchroniza­

tion is performed only after an event of interest happens, in order to estimate the

phase shift at the previous time by extrapolating backwards. This however can result

in delayed reaction to events, which can potentially affect the stability of sensor-

actuator networks.

15

2.5.4 Tiny-sync and mini-sync

The work described in [15] assumes that the clock drift at a node is linear and of the

form

ti(t) = ait + bt,

where U is the local clock in node i, a* and bi are its drift and offset parameters, and

t is the real time. If node 1 wants to determine what are its relative drift and offset

with respect to node 2 (ai2 and 612 respectively), an exchange of messages would take

place in the following way (shown graphically in Figure 2.4):

1. Node 1 sends a message to node 2, which is timestamped right before it is sent

9X T/Q.

2. Node 2 timestamps the reception with fy,, and returns a reply to node 1 which

includes £&.

3. Node 1 timestamps the reply with tr.

Figure 2.4: Exchange of messages to determine relative drift and offset between two
nodes.

16

The three timestamps (t0,tb,tr) form a data-point which limits the values of pa­

rameters ai2 and bu- Since to —> tt, and £& —> tr, the following inequalities should

hold for the data points:

t0(t) < a12tb(t) + 612 ,

tr(t) > al2tb(t) + b12 .

After the acquisition of a few (at least two) data-points, an estimation of the

parameters can be performed by solving the linear programming problem given by

the inequalities formed by the data-points. As new data-points arrive, the number

of data-points to keep can be reduced to only two by determining which ones result

in the best estimates (tiny-sync method). Alternatively, up to 40 points can be used

with a different way to eliminate old data-points (mini-sync method). The tiny-sync

method results in a suboptimal solution.

To synchronize a multihop network, it is assumed that the sensor network is

organized as a tree hierarchy with sensor nodes in the lowest layer, one (or more)

root node(s), and possibly several layers of intermediate nodes. It is also assumed

that data is fused at the intermediate nodes. So, instead of synchronizing the entire

network to one unique clock, all nodes reporting to the same intermediate node should

synchronize with such intermediate node using the exchange of messages described.

Therefore, nodes in layer i synchronize with nodes in layer i — 1 and so on. The

performance of the algorithm was tested on an 802.11b multihop ad hoc network,

achieving an accuracy of 3 ms over a single hop.

2.5.5 Timing-sync protocol for sensor networks (TPSN)

In [16], a protocol, called TPSN, is proposed to achieve network-wide synchronization.

In this protocol, the first step is to create a hierarchical topology in the network where

17

every node is assigned a level in the hierarchical structure. To create this hierarchical

topology, the root (which is assigned level 0) initiates a level discovery phase when

the network deploys, by broadcasting a level-discovery packet, which contains the

identity and level of the sender. Once the neighboring nodes receive this packet, they

assign themselves a level which is one greater than the level they have received and

broadcast a new leveLdiscovery packet. This process continues until every node is

assigned a level. Once a node has assigned itself a level, then further leveLdiscovery

packets received are discarded.

Once the level discovery phase ends, a synchronization phase starts where a node

belonging to a level i synchronizes to level i-1. In this latter phase, a two-way message

exchange occurs, and the clock drift and propagation delay are calculated, with the

node making the calculations and correcting its clock accordingly. The two-way

message exchange to synchronize two nodes A and B works in the following way (see

Figure 2.5):

1. Node A sends a message (called synchronization pulse) to B at time Tl . This

message contains the level number of A and the value of Tl .

2. Node B receives the message at time T2, where T2 = Tl + S + d, S and d being

the clock drift between the two nodes, and the propagation delay, respectively.

3. Node B sends back an acknowledgment to node A at time T3, containing the

level number of B and the values of Tl , T2 and T3.

4. Node A receives the acknowledgment at T4.

Once the acknowledgment is received at node A, it can calculate the clock drift S

18

Node T2 T3
B

Figure 2.5: Two-way message exchange,

and propagation delay d as follows:

(T2 - Tl) - (T4 - T3)
5 =

(T2 - n) + (T4 - T3)

This protocol was implemented on Berkeley MICA motes using a 4MHz crystal

oscillator, after making modifications to the MAC layer so it could timestamp the

messages at reception time. The accuracy obtained is around 17/xs for the synchro­

nization of two motes.

2.5.6 Flooding time synchronization protocol (FTSP)

In [17], Flooding Time Synchronization Protocol (FTSP) is proposed to achieve clock

synchronization on a wireless sensor network. It uses MAC layer timestamping ca­

pabilities to eliminate several sources of error in the clock synchronization process:

sending time, access time and receive time. In this protocol, it is assumed that a node,

the root, which is elected after the exchange of messages in the network, is already

19

synchronized, and the other nodes synchronize with this node. The root broadcasts a

message which includes the global time at the time of sending the message and root

ID. The receiver gets a timestamp at the time of reception, and using the arrival and

sending times, it estimates the clock offset and skew once a number of readings are

available, using linear regression.

When a mote determines it is already synchronized, it also broadcasts packets

which include the global time and root ID, creating in this fashion a clock synchro­

nization hierarchy where the root is at Level 0, nodes within the broadcast range of

the root at Level 1 and so on. Every node therefore estimates the global time by

synchronizing its clock to the nodes one level higher than itself.

This protocol has been implemented in Berkeley MICA2 motes. The average

accuracy obtained for a 60-node network is 16 fis.

2.5.7 Lightweight tree-based synchronization (LTS)

[18] proposes a tree-based synchronization method for sensor networks that requires

the construction of a spanning tree in order to generate the pair-wise synchroniza­

tions required to synchronize the whole network. It also proposes another method

to synchronize a multihop network without requiring the construction of a tree, but

assumes the use of a multi-channel MAC. Both versions were simulated but not im­

plemented, and are aimed at minimizing the complexity of the synchronization and

not in maximizing accuracy.

2.5.8 Adaptive clock synchronization

In [19], RBS is extended to provide an adaptive and probabilistic clock synchroniza­

tion allowing a trade-off between the accuracy achieved and the resources used by

the protocol. It has not been implemented.

20

2.5.9 Pairwise broadcast synchronization (PBS)

In [20], a new approach for clock synchronization is proposed. It uses the broadcast

nature of the wireless channel, and allows a node to synchronize by overhearing syn­

chronization packets exchanged in a similar fashion as TPSN among two neighboring

nodes, without the need to send extra messages. This method reduces the number of

messages required for synchronization but requires that all nodes hear each other. A

multi-cluster extension has been proposed in [21], which requires the construction of

a hierarchical tree and the use of groupwise pair selection algorithm to achieve global

synchronization.

2.5.10 Gradient time synchronization protocol (GTSP)

The Gradient Time Synchronization Protocol (GTSP) is proposed in [22]. The idea

of this protocol is to provide a precise clock synchronization between neighboring

nodes and allow a more loose synchronization between nodes separated by multiple

hops. The algorithm does not require the construction of a hierarchical topology, or

a reference node, but in order for it to converge, the network needs to be strongly

connected. It has been implemented on a small network of 20 Berkeley MICA2 motes,

obtaining an average error of 4 /is for direct neighbors, and a network-wide average

error of 14 /xs.

2.5.11 Average time sync (ATS)

[23] proposes the Average Time Sync (ATS) to synchronize a multihop wireless sensor

network. The protocol is formulated as a consensus problem, and achieves global clock

synchronization to a virtual reference clock in a distributed manner. The protocol

works by performing three tasks in each of the nodes: relative skew estimation, skew

compensation and offset compensation. These tasks require only local information

21

exchanges between neighboring nodes, each of the nodes maintains its own estimate

of the virtual reference clock, which is updated by averaging it with respect to the

estimate that the neighboring nodes have. It has been implemented on Tmote Sky

nodes [68].

As can be observed from the description of the protocols for clock synchronization

in wireless sensor networks, with the exception of the last two ([22,23]), either they

rely on the construction of a hierarchical tree structure ([15-18]), which generates

a lot of overhead and does not support dynamic topology changes very well, or they

rely on all the nodes sharing the media with a beaconing node ([14,19,20]), which

makes them unsuitable for multihop networks.

The protocol described in Chapter 4 provides an efficient clock synchronization

algorithm for wireless multihop networks without requiring the construction of a

hierarchical structure. It is fully distributed and has been implemented on a Berkeley

motes testbed with very good results.

22

CHAPTER 3

BILATERAL CLOCK
SYNCHRONIZATION
ALGORITHM
This chapter presents the bilateral synchronization part of our new clock synchroniza­

tion algorithm. The system model is described in Section 3.1. The method to achieve

a pair-wise synchronization between neighboring nodes is explained in Section 3.2.

3.1 System Model

It is assumed in this work that the clock drift in a node follows the linear equation:

Ti = otit + Oi, just as in [11,15,17], where % is the local clock, oti and Oi are the drift

parameters that express the relative speed of the clock and the offset respectively, and

t is the real time. Nodes' clocks drift at different rates. Neighboring nodes exchange

timestamps to estimate the best-fit offset line between them by using a recursive least

squares (RLS) estimation approach. Further details are provided in Section 3.2.

Also assumed is the fact that all the nodes are aware of the set of neighbor nodes

with which they can directly communicate, and that the communication links between

the nodes are bidirectional.

3.2 Pair-wise Clock Synchronization between

Neighbors

In this section we very briefly describe how bilateral synchronization between two

neighboring nodes is performed. This is not really novel, since it is just a variant of

23

linear regression.

Suppose we have two nodes i and j which can communicate directly, and want to

determine their offset Oij and skew a^ by exchanging packets. By the offset Oij(t)

we will mean the difference in the two clocks Tj(t) — Ti{t). By the skew a^ we will

mean the ratio of the speeds —.

At time X(tk), node i sends a packet p(tk) that includes this timestamp, its

latest estimate of its skew with respect to j , &ji(tk), and its latest estimate of the

time difference between received and transmitted timestamps for packets from j to i,

Tji(tk). Packet p(tk) is received at time U(tk) by node j . This is done frequently as

can shown in Figure 3.1. With these packets, node j can compute the value <%(£&),

which is the estimate of the skew of j with respect to % at real time tfc.

Figure 3.1: Frequent transmissions of estimates to neighbor node.

The value aij(tk) is estimated using Recursive Least Squares (RLS) [69] to solve

the following problem:

fc-i

ay(tfc) = m i n V A ^ - ^ M - ^ - a ^ y - i y f , (3.1)

24

where A G (0,1) is the forgetting or weighting factor that reduces the influence of old

data.

The RLS algorithm is widely used in adaptive filtering, system identification and

adaptive control. It also allows us to estimate a with minimal storage requirements

since only the previous and current values of U(t) and X(t) are required at any given

time.

To develop the algorithm, we rewrite equation (3.1) as follows:

fc-i

Ak = minj] A^- ' IT . -^A] 2 ,
/=—oo

(3.2)

where

T, = |£/fe+i)-tf(i,)|,

<pf = ixc^o-xct,)!,

A = lal .

We differentiate (3.2) with respect to A and set it to zero, i.e.,

dA

k-l
T A I 2

J2 A*"1"' [T, - <f>fA]
/=—oo

= 0,

and get the following:

fc-i

£
/=—oo

A k-l-l rt - 4>fAk = o,

where Afc is the least squares estimate. Hence,

25

l=—oo

Let us define

fc-i

/=—oo

Then we can see that

Rk = XRk-i + 4>k4>k •

Substituting (3.4) in (3.3) we get

fc-i

Rk-lAk= Y, A*- 1 " '^ , .
J=—oo

Similarly, we obtain

fc

RkAk+1 = £ Afc-'0,T,
Z = — o o

fc-1

= 2J Afc_1_' 0/Tz + 4>kTk
l=—oo

= Rk-iAk + </>fcTfc

= (i?fc - (/>fc</>fe) Afc + 0fcTfc.

Hence, multiplying by R^1, assumed to exist, we obtain

Afc+1 = (J - i£Vk^JO Afe + i£VkTfc

= Afc + R^V* (Tfc - <#Afc) •

26

k - i

E
Z = — o o

A fc-i-j <rf A fc-

Now, we need to find a way to calculate Rk in a recursive fashion using only the

information available at time k. For this, we use the Matrix Inversion Formula [69]

that says the following:

If A and B are M x M invertible matrices, D is a N x N matrix, and C

is a M x N matrix, which are related by

A = B~l + CD^CF ,

then

A"1 = B - BC (D + CTBC)_1 CTB,

whenever the inverses exist.

We apply this formula to (3.5) using

D = 1,

C = (f>k,

B~ = XRk-i,

and

A = Rk,

and get the following

R^1 = (AJRfc_1)-1-(Ai?fc_x)-10fc(l + ^(A JR f c_1)-10 f c)"1^(A JR f c_i)"1

A A (A + ^i?fc-^0fc) '

27

Now, from (3.6) we see that we need to compute R^cfik, so

Hk <pk -
A A (A + < ^ ~ - A)

R;yfc (A + (fjR-^k) - R^MlRk-Jk
A(A + ^ ^ 0 f c)

A + ^KV*"

Therefore, we can now compute Afc+1 using values that are all known at time A;

with the following recursion:

s*+> = s ' + i ? S § * (T ' - « s ')

Once the skew a.ij{tk) is computed, we can estimate the time at which the current

packet should be received, using a window of AT values of U(tk) and X(tk), by doing

the following computation:

1 fc-i

U(tk) = jj E Iy(*') + *«(**)(*(**)-*(*/))]. (3.7)
/=fc-JV

where

«i(tk) •= Jf^y (3-8)

Then, we can determine the difference between the received and transmitted times-

tamps at nodes j and i, Ty. This is the sum of the offset of node j with respect to

i, 0{j, and the transmission delay of the packet, Ay, at time tk. It is estimated by

subtracting X(tk) from U(tk):

ry(<*) = Oij(tk) + Ay = U(tk) - X(tk). (3.9)

28

However, we need to first determine the value of A -̂ so that we can estimate the

value of Oij(tk). In order to achieve this, packets must be sent back from node j to

node i and should include the following values: a^-, Tij(S) and the time S at which

the packet was sent. Tij(S) is then computed as follows;

ry(5) = ry(tfc) + (s-Ufa)) ^ - \ (3.10)

to account for the change in offset between Ufa) and S due to skew.

Node i executes the same procedure as node j . That is, it also estimates its skew

with respect to j , dijifa), the time at which the packet should have been received,

and its difference in time with respect to j , Tjifa).

Now, node i can estimate the value of the transmission delay as

Ajtfa) = r ^ + ̂ fa) , (3.ii)

and then its offset with respect to j as

Ojifa) = r^fa) - Ajifa). (3.12)

Now, on the next packet, pfa+i), to be sent from node itoj, the values included

in it would be its most recently calculated skew, a^fa), its most recently calculated

transmission delay, Ajifa), and the estimated offset at time tk+i, which is given by

63lfa+1) = O^fa) + (tk+1 - U(S)) a ^ t k l ~ \ (3.13)

This process is then repeated.

By this method we can obtain estimates of offsets and skews at given times be­

tween two neighboring nodes.

29

3.3 Simulation Results

Before implementing the algorithm discussed, simulations were performed to verify if

the behavior of the algorithm was as expected.

First, we simulated the pair-wise synchronization procedure with different values

of A and N (forgetting factor for the RLS algorithm and window size to estimate

U(i), respectively). We found through simulation with various values of A and N

that values of A = 0.999 and N = 10 provide the best estimation accuracy without

requiring too much memory space.

1.00015

5
CD

1.0001

1.00005 -

1 -

0.99995

0.9999 f

0.99985

1

-

r •

i

/

i

i

y

/

t

N

1

,-""'

i

1 1

Real
Estimated

/ U ' V " ' V > - . - ,
\
\
\
\

1 1

100 200 300 400 500

Sample number
600 700 800 900 1000

Figure 3.2: Skew estimation results obtained in simulation.

Then, the skew of one of the nodes simulated was modified frequently, within the

ranges (±100ppm) of the physical oscillator [70] found on the experimental testbed to

be used, during the course of the simulations in order to determine if the calculations

of skew and offset adapt to the changes. We can see in Figure 3.2 that the skew

30

estimate indeed adapts to the real skew as it changes. Also, in Figure 3.3 we see that

the difference between the real and estimated offsets between the two nodes is below

2 jis.

3=

o

a
E

200 300 400
Sample number

500 800

Figure 3.3: Offset estimation results obtained in simulation.

3.4 Implementation on Berkeley Motes

For the implementation of the algorithm described in this chapter, as well as the one

that will be presented in the next chapter, we used a testbed of MICA and MICA2

motes.

Figure 3.4, which shows the communication stack of TinyOS on the Berkeley

motes, provides a better understanding of the sources of error in the clock synchro­

nization process mentioned in Section 2.5.1 and how can we prevent some of them in

TinyOS.

31

APPLICATION

MESSAGES

MAC

PHYSICAL

SENDER

Timesync Application
A

' '

Generic Comm

1
•

B

RadioCRC Packet
c

' •

DTT<l\/r

RECEIVER

Timesync Application
£
i i

Generic Comm

•

. i

RadioCRC Packet
V

•
L

"DT7TVT

x\r IVI

Figure 3.4: Communication stack on TinyOS 1.x.

• The message to be sent is constructed at the application layer and is then passed

to the lower layers for its transmission. The time that it takes to construct

the message and pass it down to the MAC layer is the send time. In Figure

3.4, it would be time period starting at the point the Clock Synchronization

application calls sendMsg() (denoted by the symbol .4.), and ending at the

reception of the message at the RadioCRCPacket component (denoted by the

symbol B).

Once in the MAC layer, some time must elapse before the message is actually

transmitted over the medium, since it has to wait until it has been determined

that the medium is idle. This is the access time. In Figure 3.4, it would be the

time period starting at the reception of the message at the RadioCRCPacket

component (denoted by the symbol B), and ending at the time the first byte is

sent for transmission to the Radio Module (denoted by the symbol C).

32

• Once the bits have been received at the receiver, the message is reconstructed

and passed up to the application layer. The time taken to do all this is the

receive time. In Figure 3.4 it would be time period starting at the reception

of the first byte at the RadioCRCPacket component from the Radio Module

(denoted by the symbol Z>), and ending at the time the message is received at

the Clock Synchronization application (denoted by the symbol £).

Therefore, in order to reduce the sources of error in our implementation, we have

modified the MAC layer of TinyOS to allow the timestamping of a packet at the time

the first byte is sent, instead of doing it at the application layer. We also record the

time at which the first byte is received by the MAC layer at the receiver side for

later use by the application layer. In this way, we attempt to mitigate the send time,

access time and receive time as sources of error, leaving only the propagation time,

which is negligible in the case of the broadcast medium used in the Berkeley motes.

3.4.1 Setup

Sender Receiver

Figure 3.5: Implementation setup for two nodes.

For this first stage of testing, three motes were used for the implementation, the

33

sender and receiver as described before, and a third mote connected to a PC through

the serial port acting as a data collector or gateway. This latter mote continuously

senses the medium and communicates the data being transmitted to the PC. The

sender and receiver exchange a clock synchronization message every 30 seconds. This

setup is illustrated in Figure 3.5.

In order to get better accuracy, the motes' clocks were modified to generate a finer

granularity clock, which is triggered by a crystal oscillator. The frequency of such

crystals was modified in the MICA motes to 500 KHz. For this, the clock timer had

to be changed since the original timer (Timer 0) uses an 8-bit register to maintain the

clock counter. This would overflow at this frequency, and so we use instead Timer 1

which has a 16-bit clock counter. These changes were problematic since Timer 1 is

already used for other purposes by TinyOS, and the conflicts raised had to be solved

in order for TinyOS and our application to work correctly. For MICA2 motes, a

component to use a higher frequency of 921.6 KHz was made available by Maroti et

al. [71].

Although MICA motes were initially used for the implementation of the pair-wise

synchronization, due to the lack of wireless reprogramming and support in newer

versions of TinyOS, the subsequent experimentations were only performed on MICA2

motes.

3.5 Evaluation

In order to determine the accuracy of this protocol, the gateway mote periodically

requests the time each mote has estimated. Both motes reply to this query, one with

the time it has estimated at the other node, and the other node with its current time.

The difference between the times replied is the accuracy or error of the protocol. By

using this method to compare the times in both motes, we remove the send time,

34

zs
c

O

150 200 250 300 350
Timestamp exchange number

500

Figure 3.6: Accuracy of estimated to real time between 2 neighboring nodes.

access time, and propagation time as sources of error (see Figure 2.5.1).

With the implementation on MICA2 motes, we obtained an average accuracy of

below 2//s (with a worst-case accuracy of 6/is) as can be seen on Figure 3.6. This

is better than the accuracy obtained in the related works mentioned in Section 2.5,

with the exception of [17]. It has similar results as ours since we use the same

timestamping technique to eliminate most of the sources of error that appear when

we try to synchronize nodes in a network through message exchanges [58].

Now that each node is able to estimate the time at each of its neighbors, we want

all nodes to be able to agree on a common time. In the next chapter we address this

problem.

35

CHAPTER 4

MULTIHOP CLOCK
SYNCHRONIZATION

We now turn to clock synchronization for a network of clocks. We address the problem

of how to globally combine bilateral estimates of offset and skew into estimates of

time with respect to the reference clock for each node in the network.

Just for simplicity of presentation, suppose that there are n nodes all having

clocks running at exactly the same speed, except that they have different offsets.

With node 1 chosen as the reference, let Zi denote the amount that node z's clock is

ahead of node 1. So z\ = 0. Thus, if U(t) denotes the time at clock i at real time t,

then

U(t) = t^t) + zt

for all t. Let

be the offset between nodes i and j .

Let Ni denote the set of neighbors of node i, and |A^| the number of such neighbors.

Assume that through experimentation as in Section 3.2, we have obtained esti­

mates Xij of Xij = (zi — Zj) for j 6 Ni for all i. These estimates will not be exactly

equal to the true values. We will also suppose that

Xji = —x^ for j G Ni for all i,

so that nodes i and j have talked to each other in arriving at this estimate (using the

algorithm described in Chapter 3).

36

The problem is this: We want to obtain estimates Vi = 2i of the offsets with

respect to the reference node.

4.1 Formulation

Note that the true x^-'s satisfy the global constraint

for every cycle

Z = ((« l , i 2) , (« 2 , « 3) , - - - , (* m , « l))

in the multihop network.

This is one example of a global constraint that needs to be satisfied by the offset

between neighboring nodes. There are many such constraints because there are many

cycles in the graph of the wireless network.

However, the estimates x^ arrived at through only bilateral transactions described

in Chapter 3 need not satisfy these constraints.

By enforcing the large number of such constraints, the estimates {:%} can be

smoothed and improved. We call this procedure "spatial smoothing." In essence, it

exploits a spatial law of large numbers through a reformulation of the problem to

lead to better clock synchronization with respect to any chosen reference node.

Moreover, we would like to perform such constrained estimation over the ad hoc

network with the nodes acting in a completely distributed asynchronous manner.

We will now develop an algorithm where each node only needs to asynchronously

broadcast a few numbers. Each node updates its numbers through an extremely

simple formula based on each received broadcast. This then will be shown to lead to

37

an estimate of the offset with respect to any node which acts as a reference node.

Nodes will not need to know which is the reference node, or the topology of

the network. No levels of hierarchies of nodes need to be constructed. In fact, our

protocol exploits all edge offset estimates in the network, and not just those along a

tree. In a large network it uses all the global information, and yet does so in a simple

distributed asynchronous manner. Not all local broadcasts have to be received by

any node either.

The manner of changing from one reference node to another, i.e., reference clock

handoff, is also easy. The old reference node simply starts adapting, while the new

one stops. The rest of the network automatically adapts to this change, and need not

be explicitly informed of such reference handoffs.

We illustrate the method with a concrete example. For the network in Figure 4.1,

there are five nodes { 1 , . . . , 5} and six arcs {(1, 2), (2,3), (3,4), (1,4), (2, 5), (3, 5)}.

Figure 4.1: Example of a network.

As a convention we shall take each arc as going from a lower lexicographically num­

bered node to a higher one. Let A be the Node x Arc matrix, called the incidence

38

matrix:

1

2

3

4

5

(1,2)

+1

-1

0

0

0

(2,3)

0

+1

-1

0

0

(3,4)

0

0

+1

-1

0

(1,4)

+1

0

0

-1

0

(2,5)

0

+1

0

0

-1

(3,5)

0

0

+1

0

-1

where in the row corresponding to node i, we have an entry +1 for all arcs of the

form (i, *), an entry —1 for all arcs of the form (*, i), and 0 otherwise.

Let Vi denote the estimate that we will make of Zi. Then the estimate of the offset

between nodes i and j is Vi — Vj, which is the inner product, {(ij)-th. column of A,

vector v). Hence, written as a vector of estimates of arc offsets, it is ATv.

Thus the problem formulation is:

Mmv\\A
Tv-x\\2. (4.1)

Note that this seeks the minimum norm approximation in the range space of

AT to the vector x. The error of the approximation, by the Projection Theorem,

is orthogonal to R(AT), the range space of AT. That is, (ATv — x) is orthogonal to

R(AT). However R(AT)± = N(A), where N(A) is the null space of A. Thus (ATv-x)

is in the null space of A. Hence the solution of this optimization problem is

A(ATv-x) = 0,

or

AATv = Ax. (4.2).

39

Now let us consider the i-th row of A. It corresponds to node i. It has a ±1 for every

incident arc. Now the j'-th column of AT similarly has ±1 for every arc incident to j .

Hence (AAT)a = # of neighbors of i = \Ni\. Also,

(AA^j = -ItijeNi

= Oif j^ iV, .

Thus the i-th entry of AATv is

\Ni\Vi ~ Yl V3-

Also, the i-th. entry of Ax is the sum of terms of the form +1 times £;*, or (—1) times

x*i, which in either case is x^. Thus the i-th entry of Ax is

E
jeNi

Xij.

Thus (4.2) can be written as:

\Ni\vi — 2_. vj = / J %ij f° r a u i- (4-3)

Note that this is deficient by at least one rank. So we set

vi := 0.

This corresponds to choosing node 1 as the reference node.

We will now consider the problem:

M i n ^ ^ M i V i K - ^ ^ - ^ ^ j . (4.4)

40

file:///Ni/vi

We will solve the problem by coordinate descent since that will provide a fully

distributed algorithm, in addition to being asynchronous. At the m-th iterate, let

v(m) be the estimate. We can take the initial iterate as

v(0) := 0.

Also, since node 1 is the reference, we also have

i>i(m) := 0 for all m > 0.

We will minimize over Vi(k) perturbing it by Si to minimize the objective function

(4.4), while keeping Vj(k) invariant for j ^ i. Now the only terms in which vi figures

in (4.4) are

V j€Ni jeNi J

I

jeNi

\

\Ni\v3 -^2vk~Yl Aik ~Vi~ x j *

V k^i kjti

When we perturb Vi to Vi + <5j, we get

[iNiKvi + SJ-^Vj + Xij)) +
\ jeNi)

X \Nj\V3 ~ Yl(Vk+ ^ -(vi + $i)- %ji

)
jeNi

\
keNj
k^i

41

Differentiating with respect to Si, and setting to 0 gives,

WllNiUvi + S^-^ivj+Xij)
jeNi

jeNi JegJVj

Let

Then

So

ej : = \Nj\vj- J2(vk + Xjk)
k<ENj

— "Reported error of node j " .

({N^ + lNiDSi + lNilei-Y,^ = 0.
jeNt

Si =
t-ujeN^J \^i\ei

IW + M
1

NA + 1
jeNi

So the distributed algorithm is very simple: At each iterate, some node, say node i,

changes its Vi to Vi + Si, where

Si :=
1

\Nt\ + l

1

reE*6'-*)
jeNi

\Ni
- [Average of (e,- — ej) reported by its neighbors j]
i\ T 1

Thus, sporadically, each node i broadcasts to its neighbors (i,Vi,e{). From this each

42

file:///Nj/vj-

node can calculate:

ej = Wjlvj-^ivi + Xji).
i<=Nj

It then adjusts its Vj to Vj + 5j. Then it rebroadcasts e_,-, etc. •

Now, if the clocks do not run at the same speed, that is, they have a drift or

skew, a similar process would also have to be executed simultaneously to estimate

the clocks' skews. If we substitute log(aji) for Xji we are able to use the same solution

just discussed to estimate skews while taking global constraints into account.

Also, due to the difference in skews between the nodes' clocks, every time the

error is computed by a node i for the offset estimation, the u,'s and Xjk's of all its

neighboring nodes k should be adjusted using the latest estimation of their skew in

a way similar to the one shown in equation 3.13.

One can also obtain an alternative algorithm for the problem of minimizing (4.1).

If we take another look at the original problem formulation in (4.1), we see that since

we are trying to minimize v, we can simply use the following recursion:

Vi = —-—-— J— for all i. (4.5)

Therefore we have another distributed algorithm which is even simpler. Each node

j simply broadcasts to its neighbors (j,Vj) sporadically, and from this, each node i

can calculate its Vi following (4.5).

A further modification is to only take the average in (4.5) with respect to nodes

that are at a fewer number of hops in distance from the reference node.

In [72], Giridhar and Kumar have analyzed the least-squares approach used in

this protocol by relating the optimization problem given by (4.1), to the problem

of determining the electrical resistance between two nodes in an electrical network

43

(in a similar way that Karp et al. did in [73] for RBS). They have shown that the

performance of the least-squares algorithm, measured in terms of maximum error

variance, is substantially better than that of a tree-based approach like TPSN, and

also provide the lower and upper bounds on the settling time of the distributed

algorithm we have just described.

4.2 Implementation on Berkeley Motes

The algorithm represented by (4.5) was implemented using MICA2 motes on a 40-

node network where different topologies were enforced by software. That is, although

all nodes operated on the same cell, packets were filtered out according to the multi-

hop topology desired, i.e., as in MAC filtering.

4.2.1 Setup

As with the implementation of the pair-wise synchronization algorithm, we had a mote

acting as a gateway to the PC that continuously collected the packets transmitted

by the motes in the network. Each node sends a clock synchronization message to

its neighbors, with a time interval randomly selected between 25 and 45 seconds so

as to reduce the probability of collisions. The gateway mote requests the reference

time each mote has estimated, every 15 seconds. To avoid collisions and errors in the

measurements, instead of each mote responding to the queries made by the gateway

mote immediately, they store the information regarding their estimates of the time

at the reference, at the time each query is received on the external 512 KBytes flash

EEPROM. The complete information was collected once the experiment was finished,

so we could determine the accuracy of the algorithm by comparing the estimate the

reference mote had made at each of the queries, which are identified using a sequence

number, with the estimate that each of the other motes had at that same query.

44

Figure 4.2: Link topology for the multihop implementation.

4.3 Evaluation

For the topology of 4x10 motes shown in Figure 4.2, which results in a maximum

9-hop network, we show the minimum, maximum and average accuracy obtained

between the estimated time and the actual time at the reference across the whole

network in Figure 4.3. The variant shown is that where the averaging is done over

neighbors at a fewer number of hops from the reference node.

Such results are quite similar to the ones reported for FTSP in [17]. So taking

into account that leading research groups on sensor networks, such as the ones in the

University of Virginia and Ohio State, use FTSP, we set to comparing the behavior

of this algorithm with FTSP, by running it on the exact same topology. FTSP nodes

send clock synchronization messages every 30 seconds, and our gateway mote queries

the global time that every mote has estimated every 15 seconds.

The minimum, maximum and average accuracy obtained between the estimated

time and the actual time at the reference across the whole network through FTSP

are shown in Figure 4.4.

Also plotted in Figure 4.5 is the behavior of the average accuracy as well as the

standard deviation for each of the 9 hops in the network. We can observe that our

algorithm provides better accuracy, and the estimates have smaller standard devia-

45

80

70

60

50

K 40

o
D 30

10

Min
Max
Avg

i,SM
i f. ii: i i

. ^ n i
'< i i v-: • i

20 h : ,-.

A L™ , /vi AA»rA^-, AnI^U\lvAtAlW^J^^J^ n/^^MS^NM/Ar^M „WlN^A^H
50 100 150 200

Sample number

250 300

Figure 4.3: Average closeness of estimated to real time in a 40-node network.

80

70

60

"o 50 h

S 40

O 30

20

10

i l l !

l i ; :

3 :.k

i' i

A ,#i
i l*l r
' W

Min
Max
Avg :

,\f'

i 4N/J

L'l'
il
1

t

1 '

^^^^v^A^/H^^WA^y
50 100 150 200

Sample number

250 300

Figure 4.4: Experimental results of FTSP on the 40-node network.

tion, than the estimates obtained using FTSP in the same network. The statistics

were computed starting at query 100 so they are not affected by the initial state,

46

80

70

60

50

40

30

AVG
Std Dev

Avg FTSP
Std Dev FTSP

Figure 4.5: Comparison to FTSP.

which cannot be compared exactly since our algorithm starts with the reference node

already determined, while FTSP goes through an election process to determine what

node is the reference, i.e., the node with smaller ID.

47

CHAPTER 5

SECURITY AND CLOCK
SYNCHRONIZATION

In the previous chapter we presented a completely distributed and asynchronous

algorithm to achieve clock synchronization, where nodes communicate only with their

neighboring nodes, and which gives a better performance in terms of accuracy and

error variance when compared with a widely used protocol such as FTSP. However,

like the other protocols mentioned in Section 2.5, it assumes a benign environment,

that is, all nodes are cooperative and trustworthy.

It has been noted in Chapter 2 that clock synchronization is, in fact, a critical

service in many distributed applications. In an adversarial environment, its function­

ality could be adversely affected by attackers, which would ultimately render the clock

synchronization service useless. For instance, a malicious node could get control of a

link between two nodes and change the characteristics of the link, causing the nodes

to obtain faulty time estimates. This would then prevent the application using the

clock synchronization from working as it should, e.g., objects would not be tracked or

localized correctly, highway traffic would not be estimated adequately, etc. Therefore,

there is a need to develop protocols to provide a secure clock synchronization capable

of running in hostile environments and detecting the presence of attackers. In the

next two chapters, we present our work on secure clock synchronization. We first

present the results for a single link, and then on a network-wide scale. We begin by

discussing in this chapter some required background to better understand the attacks

that can be inflicted on a wireless sensor network, and how can we develop defenses

against such attacks.

48

5.1 Requirements for Sensor Network Security

In order to prevent most of the attacks, a wireless sensor network should be designed

to meet the following requirements [74]:

1. Data confidentiality. A node should keep sensitive data secret.

2. Data authentication. A node should be able to verify that a received message

was actually sent by the claimed sender.

3. Data integrity. A node should be able to detect alterations in the received

messages.

4. Data freshness. A node should be able to determine if a received message is

recent, and not a replayed one.

To achieve data confidentiality, the standard approach is to use cryptographic

techniques which could be symmetric (DES, RC5, or AES), or asymmetric (RSA,

ECC) [75]. Data authentication is achieved by computing a message integrity code

(MIC) using a private key (again, cryptography of some kind is involved) [76]. Data

integrity can be achieved through data authentication. Data freshness is achieved by

inserting a nonce (randomly generated value) or another time-related counter in the

messages [77].

5.2 Attacks

There are several possible attacks on a wireless sensor network, which could be cate­

gorized as follows [78]:

1. Eavesdropping. The attacker seeks to determine what is the information being

exchanged in the network. The attack could be passive, meaning that the

49

eavesdropper only listens to the messages, or active, meaning the eavesdropper

sends queries in order to elicit further message exchanges.

2. Disruption. The attacker seeks to stop the application from working correctly.

It does this by injecting messages, corrupting data, or by directly manipulating

the environment.

Specific types of attacks include [79]:

• Denial of service attack. Its goal is to make a service unavailable to the clients.

It could be performed by jamming, which is the transmission of a signal that

interferes with the radio frequencies used by the radio [80], by violating the

communication protocol at the link layer level, by refusing to route messages,

or by flooding.

• Sybil attack. This is defined as a "malicious device illegitimately taking on

multiple identities" [81]. This is an effective attack against routing algorithms,

data aggregation, voting and fair resource allocation.

• Node replication attack. An attacker adds a node to an existing sensor network

by replicating the node ID of an existing sensor node [82] leading to a disruption

of the performance of the network.

• Attacks against privacy. Sensitive information could be discovered by the at­

tacker by means of eavesdropping or traffic analysis [83].

• Wormhole attack. In this attack, the attacker receives a message at one location

in the network, tunnels it to another location and replays it at the second

location, introducing links that do not have the properties of the network (i.e.,

lower delay, higher bandwidth) [84].

50

• Man-in-the-middle attack. In this attack, the attacker intercepts messages ex­

changed between two nodes and relays such messages in a way that makes the

two nodes believe the link they share is valid, while in reality the characteristics

of the link have been modified [1].

• Physical attack. When deployed in hostile outdoor environments, given that

the sensors are small, unattended and distributed, physical attacks resulting in

physical damages to the node are highly likely [85,86].

5.3 Defenses

Cryptography is the standard defense against eavesdropping, injection and corruption

of messages. The different cryptographic methods require the establishment of a

key (or keys) among the nodes in the network so they can perform the necessary

operations to encrypt, decrypt or authenticate the messages exchanged. Symmetric

key cryptography uses the same key to encrypt and decrypt a message. Asymmetric

or public key cryptography uses different keys for encryption and decryption and

provides for a simpler way to achieve message authentication. While symmetric key

cryptography requires less computation resources, it involves a more complicated key

distribution scheme.

In terms of cryptography and key distribution, some of the most important pro­

tocols developed are:

• TinySEC [87] is the first fully-implemented link layer security architecture for

wireless sensor networks. Its goal is to guarantee data confidentiality, data

authentication and data integrity. It was implemented under TinyOS. Its choice

of block cipher is Skipjack, which the authors found to be the most suitable for

the hardware available at the time (MICA2). TinySEC always authenticates

51

messages, and for this, it uses CBC-MAC to compute and verify the MICs. It

relies on a single network-wide key, which is its main drawback.

• yuTESLA [74] offers an asymmetric cryptographic type of broadcast data au­

thentication using symmetric keys. The basic idea is to divide the time into

intervals of equal duration and use a different key to compute the MICs in each

interval. The disclosure of the key used in a given interval is delayed to a later

interval. It requires the nodes to be loosely clock synchronized.

• LEAP [88] (Localized Encryption and Authentication Protocol) is a key man­

agement protocol for sensor networks. It supports four types of keys for each

sensor, which the authors claim are adequate for all types of communications in

sensor networks. Sensors are preloaded with an initial key from which further

keys can be established.

• PIKE [89] is a protocol to establish a key between two sensors using as a trusted

intermediary a third node located somewhere within the sensor network.

• Probabilistic key pre-deployment scheme [90] consists of three phases: key pre-

distribution, shared-key discovery, and path-key establishment. In this work

it is shown that when nodes randomly draw and store a small number of keys

from a large pool, there is a considerably large probability that two neighboring

nodes will have a shared key.

For attacks such as denial of service, node replication, Sybil, and wormhole at­

tacks, several defenses have been proposed:

• For jamming at the physical layer, the standard defense involves various forms

of spread-spectrum communication [77]. To handle jamming at the MAC layer,

Wood and Stankovic [80] propose the utilization of a MAC admission control

that is rate limiting.

52

• For node replication attacks and Sybil attacks, Newsome et al. [81] propose

several defenses including wireless network testing, key space verification, and

central node registration.

• For wormhole attacks, Hu et al. [84] propose two different types of defenses,

geographic leashes, which use location information, and temporal leashes, which

use timestamps, in order to constrain wormholes to a small region. In [91],

Eriksson et al. propose a timing based defense called TrueLink. It does not rely

on precise clock synchronization, and uses a modified medium access protocol.

It is meant to be used together with a secure routing protocol.

5.4 Secure Clock Synchronization

Regarding clock synchronization, there are studies [92,93] describing possible attacks

that could be performed on some of the clock synchronization protocols mentioned

in Section 2.5. They can be summarized as follows:

• For RBS, a compromised node could send falsified synchronization information

to its neighbor during the exchange period leading to an incorrect estimation

of the phase and skew by the honest node.

• For TPSN, a compromised node can affect its children by sending them incorrect

timestamps, or it could also lie about its level in the tree.

• For FTSP, a compromised node could claim to be the root node with ID 0

and begin with a higher sequence number than the actual root node making all

nodes disregard the updates sent by the actual root node.

Very few secure clock synchronization algorithms have been proposed as defense

against these attacks.

53

5.4.1 SPS and SGS

In [94], using TPSN as a base, Ganeriwal et al. propose the Secure Pairwise Synchro­

nization (SPS) protocol to handle a pulse-delay attack, where an attacker delays the

time at which a synchronization packet is received, modifying the offset and delay

calculation performed at the receiver (Section 2.5.5 shows how these calculations are

made). SPS provides authentication to MAC layer timestamping by adding a times-

tamp and message integrity code (MIC) as the message is being transmitted, which

works only for sensors with low data rates such as MICA2, but not with higher data

rates as the ones present in more recent sensors such as the IMote2. SGS (Secure

Group Synchronization) uses SPS to synchronize a group of nodes, and assumes all

nodes are within range.

5.4.2 Secure and resilient clock synchronization

In [95], Sun et al. propose two statistical techniques for secure and resilient clock syn­

chronization. The level-based clock synchronization technique is targeted at static

sensors, and constructs a tree hierarchy where clock synchronization messages flow

from the root to the leaves. The diffusion-based clock synchronization allows sen­

sor nodes to synchronize to the common source through any neighbor nodes without

requiring any hierarchal structure. The goal of both techniques is to provide fault-

tolerance up to a specific number of malicious nodes, but they are not able to handle

pulse-delay and wormhole attacks since they have no way to authenticate the time­

liness of the synchronization messages. The techniques were improved in [96], and a

new approach called TinySeRSync emerged, using authenticated MAC layer times­

tamping for a single hop synchronization, and ^TESLA local broadcast authentication

protocol for global synchronization.

54

CHAPTER 6

SECURE CLOCK
SYNCHRONIZATION OVER A
SINGLE LINK
We will now present a secure clock synchronization protocol that is able to detect man-

in-the-middle attacks using only timing information under appropriate conditions.

We begin with a thorough theoretical description of the protocol [1], followed by a

description of the implementation that has been performed using IMote2 motes and

TinyOS 2.1, as well as the results of our experimental evaluation.

6.1 Protocol Description

6.1.1 Notation

Throughout this chapter we will be using the following notation

• TA denotes the turn-around time of node A, which is the context switch time

taken by a radio transceiver to switch from transmitting to receiving, or vice-

versa

• mABn denotes the delay induced by attacker on the n-th packet from A to B

• OA denotes the clock offset of node A, relative to a reference or master clock t

• SA denotes the clock skew of node A, relative to a reference or master clock t

• SAB denotes the relative clock skew of node B with respect to node A, SAB =

SB/SA

55

• 5AB denotes the one-way delay from A to B, which includes only the propaga­

tion delay between nodes A and B

• r denotes the round-trip time, which is the sum of 5AB and 5BA

• r' denotes the sum of the round-trip time r and the delay induced by the attacker

in both directions

• PAB{TI) denotes the local clock time at node B when the n-th packet from A is

received

• VAB{n) denotes the local clock time at node A's when it sends its n-th packet

t o B

• PAB{I^) denotes the n-th packet sent from A to B

6.1.2 Assumptions

• Clocks are affine. An affine clock is one where the local time at node A has the

value

A(t) = SAt + oA ,

where

t is the time at some master clock,

SA > 0, denotes the clock skew, which is the relative speed of the clock at node

A with respect to the master clock, and

OA denotes the offset of node A with respect to the master clock.

• Nodes can accurately timestamp packets, which, as we saw in Section 3.4, is

possible for MICA2 motes. In Section 6.2.2, we will see how this is possible in

IMote2 motes.

• If two nodes can communicate directly we say they share a link.

56

• Both endpoints of a link are half-duplex nodes, meaning they can only receive

or transmit, but not both concurrently. In this case rA is the time to switch

from transmit to receive, or vice-versa.

• Nodes sharing a link share a private key, which is used to provide authentication

and confidentiality. Using the private keys in this way eliminates traditional,

cryptographic man-in-the-middle attacks. Thus, nodes exchange unpredictable

and verifiable messages. A number of techniques exist for deriving the private

key [97].

• The attacker can be either half-duplex, as the endpoints are, or full duplex,

meaning it has the ability to transmit and receive concurrently.

• If the attacker is half-duplex, then the attacker's radio has a negligible turn­

around time, meaning it can switch from receiving to transmitting or vice-versa

practically immediately, with zero context switch time.

• The attacker is unable to break the cryptography used in the protocol.

• The attacker is free to do as it pleases, but desires to remain undetected.

• The attacker is free to use additional hardware such as directional antennas,

emissions detection hardware, etc.

6.1.3 Basic clock synchronization protocol

The basic clock synchronization for two nodes A and B, is achieved by exchanging

4 packets as shown in Figure 6.1. PAB(P) denotes the n-th packet sent from node A

to B and includes the time at which it is sent, aAB(n), as well as the last time at

which a packet was received in the reverse path, PAB{^ — !)• Once these 4 packets

have been exchanged, node A has enough information to estimate the relative skew

57

of B with respect to A, SAB, as well as the one-way delay from A to B, SAB, using

the following equations:

SAB =
pABJn) - pABJn - 1)
<7AB(n) -OAB^JI- \)''

(6.1)

SAB = PAB(n) - SAB°AB(n). (6.2)

Once another packet is sent from A to B, PAB{3), B is able to make similar

measurements in the reverse path.

SB A
I 1

PAB(1) crBA{l)

TB
I 1

PABV) <TBA(2)

i 1 SAB

PBAW TAB (2)
i 1 SAB

PBA(2)

Figure 6.1: Message exchanges to achieve basic clock synchronization

Freris and Kumar [50] show that after the completion of this basic clock synchro­

nization, legitimate nodes can exactly predict the time at which the packet P(n + 1)

will be received according to the receiving node's clock by using the following predic­

tion equation:

PAB(II + 1) = SAB<?AB{n + 1) + SAB- (6.3)

58

6.1.4 Adding security to the protocol

By using the basic clock synchronization protocol in the previous section, legitimate

nodes are able to impose restrictions on the kind of additional relaying delays a man-

in-the-middle attacker can impose on the packets exchanged between them. These

restrictions are described in the following theorem.

Theorem 6.1.1. If two nodes having affine clocks use a fixed network where the delay

between the nodes is constant, and are able to authenticate packets sent by each other,

then any attacker that delays packets by an amount of time that is not constant, can

be eventually detected using timing information alone.

Intuition: We will refer to the time given by the sender's clock at the time at which it

begins transmitting a packet (refer to Figure 2.3 on page 13) as the sender timestamp,

and the time according to the receiver's clock at which it begins receiving the packet

as the receiver timestamp. In the absence of an attacker, the receiver timestamps

for messages in a node B are affine in the sender timestamps by node A at the

transmission of such messages. Thus, if an attacker M wants to remain undetected,

the delay m^Bi it induces in message i must still result in a reception timestamp

affine in the sending timestamp. Node B can calculate its relative skew with respect

to A, SBA, using these timestamps. If the calculated skew is lower than the actual

skew then the delay the attacker M induces is decreasing, and once this induced delay

reaches zero, the attacker M will be detected since it cannot relay a message before

receiving it, i.e., it cannot induce negative delays. If we also use the fact that the

product of skews in both directions must be 1 (SABSBA=1), then M is not able to

increase the induced delay in either direction without being detected. Therefore, M

can impose only a constant delay that is the same for all packets if it wants to remain

undetected.

Proof. Let oi, a 2 , . . . , a^ be the transmission times of packets sent by A to B, and

59

&i, &2,..., bk be the transmission times of packets sent from B to A. All transmis­

sion times are according to the master clock t. Let us define 5AB to be the normal

(constant) delay from A to B, and mABi to be the delay the attacker additionally

imposes on the ith packet from A to B. Let us also define the affine transformation

functions A(t) = SAt + oA and B(t) = SBt + oB that receive the time from the master

clock t as input, and return the time as measured by nodes A and B, respectively.

Node B calculates the difference between the send and receive timestamps of

packet i as

di = B(a,i + 5AB + mABi) - A(a,i).

If we use the expansion B{di + 5AB + m>ABi) = B(a,i) + SB{$AB + mABi), and then

we add and subtract SABA(a,i), we get

di = SABA(ai) - A(at) + B{at) - SABA{ai) + SB(SAB + mABi).

This can be simplified using

B(di) - SABA(cii) = (SBa,i + oB) - {SBdi + SABoA)

— oB — SABoA ,

to get

di = (SAB - l)A(ai) + SBmABi + oB - SABoA + SB5AB .

Note that in the absence of the attacker, i.e., when mABi = 0, then di is affine in

dj. Hence, for the attacker M to remain undetected, it must choose a mABi such that

di continues to remain affine in a*.

60

From any two di, dj (i ^ j) and the corresponding send timestamps, A(ai),A(a,j),

B calculates its perceived skew relative to A using

AB ~ A{aj) - A(ai) '

Given that m ^ is affine, it must be either a constant, increasing, or decreasing func­

tion of A(a,i). When mABi is increasing, S'AB > SAB, and when rriABi is decreasing,

SAB < SAB •

In case rriABi is decreasing, after a large enough finite time, the affine delay rriABi

will become negative, mABi < 0, at which point the attacker would be caught due

to violating causality. This forces the attacker to choose SAB > SAB to remain

undetected. A similar argument for packets sent from B to A shows that for the

attacker to remain undetected, it must also choose S'BA > SBA- Then, for the attacker

to remain undetected it must choose S'ABS'BA > SABSBA = 1, but when S'ABS'BA ^ 1,

nodes can detect an attack since they can exchange their skew estimates and check to

see if their product deviates from 1. Therefore, the only option left for the attacker,

so it can remain undetected, is to choose SAB — SAB, which implies that m ^ is

constant. •

Therefore, to secure the basic clock synchronization protocol of Section 6.1.3, once

nodes A and B are synchronized:

1. the sender A includes the estimation of the time at which the packet n + 1 will

be received, PAB^ + 1)> calculated using (6.3),

2. the sender A appends a Message Integrity Code (MIC) to the packet contents,

which is calculated using a private key shared with the receiver,

3. the receiver B authenticates the packet contents,

61

4. the receiver B calculates the skew and delay using (6.1) and (6.2), and deter­

mines if the delay is consistent with prior delays. If not, the attacker is instantly

detected.

If the man-in-the-middle attacker is able to induce only a constant delay, we can

still detect it using only timing information under certain conditions which we now

describe in the sequel.

To reduce the possibility of cryptographic attacks, a neighbor discovery subpro-

tocol is used.

Detection of a half-duplex attacker

As previously mentioned, a half-duplex attacker is able to transmit or receive messages

but not perform both concurrently. To detect such an attacker, we can take advantage

of this limitation on concurrency. The protocol could send messages long enough for

the attacker to not be able to delay all messages by a constant time, violating the

synchronization requirements described above, and allowing its detection.

• tA-;r^'":; t A + p [•••:•;••••"•:•••:: t A + p + p T B ^ : ; - - ; t A + r ' + 2 p + t B

Figure 6.2: Detecting a half-duplex attacker. Source: [1]

To illustrate this protocol, we use Figure 6.2. We assume that node A synchronizes

with node B, that the round-trip time is measured as r when there is no man-in-

62

the-middle attacker present, and that when a man-in-the-middle attacker becomes

present between A and B, the round-trip time is measured as r'. As long as the delay

induced by the attacker, r' — r is a non-negative constant delay, the attacker remains

undetected, by Theorem 6.1.1.

Once nodes A and B are synchronized, node A registers the current time in its

clock, tA, and sends a timestamped message PAB{TI) of duration

P>\(r' + rB), (6.4)

where TB is the turnaround time of node B. On reception of this message, node B

switches from receiving to transmitting mode, and begins sending a timestamped

message PBA(P) of the same duration (5 to node A.

Once node A receives the completes message PBA{n), it calculates the elapsed

time, Teiapseci, from when it began the transmission of message PAB(P) to the com­

pletion of reception of message PBA(n), which is expected to be

Telapsed = f + TB + 2fi .

However, from (6.4), r' + rB < 2/5, and therefore,

Telapsed = r' + TB + 2p<4p.

This leads to the following lemma.

Lemma 6.1.2. The above detection protocol is able to detect a half-duplex man-in-

the-middle attacker.

Proof. Given that the attacker is half-duplex, it cannot transmit and receive con­

currently. Therefore, the attacker requires at least 4 times the message transmission

63

duration, /5, so that it will be able to buffer, delay, and forward both messages PAB(^)

and PBA{I^)- This amount of time is required by the the attacker since it cannot pre­

dict when the messages PAB{I^) and PBA(JI)
 w m De sent. This will result in an elapsed

time T'elapsed > 4/?, which exceeds the time expected by node A, Telapsed. Therefore

the attacker is detected. •

6.2 Implementation

The protocols above described have been implemented on a testbed comprised of

Crossbow's IMote2 sensor nodes [65], which include Zigbee compliant CC2420 radios

capable of transmitting at a rate of 250 kbps [98]. The implementation is built on

top of TinyOS 2.1 [60]. The first goal of the implementation is to determine whether

the assumptions and properties of the theoretical results found in [1] do in fact hold

in practice. This includes several verifications:

i) That practical clock drift will in fact show enough stability that delays can be

estimated with reasonable accuracy.

ii) The accuracy in estimating delays in the absence of an attacker is sufficient that

the product of the estimates of SAB and SBA is close to 1 to within a desirable

accuracy.

iii) The scheme for catching a half-duplex attacker works for practical turnaround

times.

The implementation consists of three major parts:

1. Exponential smoothing. It allows us to handle variability in the timestamps.

2. MAC layer timestamping. It allows to timestamp a packet at the actual time

the radio begins its transmission or reception. See Figure 2.3.

64

3. Neighbor discovery subprotocol. It allows the nodes to detect replayed packets.

6.2.1 Exponential smoothing

Exponential smoothing is a linear regression procedure which assigns exponentially

decreasing weights to the data being collected, as it becomes older. It helps us to

handle the variability in the timestamps, which is the data we are collecting. We

use exponential smoothing to estimate the clock skew, the one-way delay, and the

predicted time at which a receiving node will receive a packet, as follows.

The estimate of the skew of B with respect to A, which is the ratio of the speed

of the clock at B to the speed of the clock at A, made by A after the N-th packet

from B to A is received, is estimated as

y^N N-n PAB{n)-pABJn-l)
q / . « _ Z^n=2 / <TAB(n)-aAB(n-l) (R r\

SAB(N) , (6.5)
Ljn=2 I

where 0 < 7 < 1 is the exponential forgetting or smoothing factor, which in our

implementation is assigned a value of 0.99, after the simulation results discussed in

Section 3.3. The hat-notation indicates that the quantity under the hat is an estimate.

As mentioned in Section 6.1.1, PAB(^) denotes the time on B's clock at the time at

which the n-th packet from A arrived, and crAB(TI) denotes the time on A's clock

when A sends its n-th packet to B.

The one-way delay from node A to node B is estimated as

Sr^N PAB{n)-SAB{n-l)uAB{n) N-n

The time at which the n-th packet sent by node A will be received by node B,

65

according to the clock at node B, is estimated as (see (6.3))

pAB(n) = SAB(n - l)[aAB(n) + SAB(n - 1)]. (6.6)

Node B will similarly use exponential smoothing to arrive at the estimate of the

skew in the other direction SBA(N), the estimate of the one-way delay 6BA, and the

prediction of the time at which node A will receive the n-th packet sent by node B,

according to node A's clock, PBA{^)-

Now, if we were to use these equations as shown, the implementation would have

to store all the collected timestamps, which is not suitable for a sensor with limited

memory. However, we can apply the procedure described in Section 3.2 to derive

a recursive method to calculate the smoothed estimates. By doing this, we only

need to store the last timestamp obtained and the previous estimate value in our

implementation.

6.2.2 MAC layer timestamping

In order to eliminate the variable processing delay in the network stack in our calcu­

lations, we have modified the MAC layer of TinyOS 2.1 to allow the timestamping

of a packet at the time the first byte is sent, instead of doing it at the application

layer; see Figure 2.3. We also record the time at which the first byte is received by

the MAC layer at the receiver side for later use by the application layer, see Figure

2.3 again, in a way similar to what is described in Section 3.4.

To implement this in the new ChipCon CC2420 radio module found in the IMote2

sensor node, we use the ideas provided at the TEP 132 [99] and its reference implemen­

tation. The reference implementation timestamps packet transmission and reception

in an Atmel RF230 transceiver using a 32KHz timer, but since we need microsecond

resolution, we had to make the following changes in the TinyOS structure:

66

• a new module to provide a microsecond counter was built,

• the General Purpose I/O handler in charge of signaling the SFD interrupt was

modified to use our microsecond counter instead of the 32KHz counter, and

• the CC2420 modules in charge of packet transmission and reception were mod­

ified to use our microsecond counter instead of the 32KHz counter.

The changes were carefully made so as to avoid disrupting other modules or applica­

tions in TinyOS.

iiintiraiiijt:

W
Preamble! SFD I. 'UAC Headd Paytosd

Packet placed in
f-f TX buffer prior

to transmission

CRC

Sender

Receiver

Packet Transmission

Packet Reception

PtsamM© SFD MAC Header Payload

ft
CRC

SFD pifl
interrupt

[S w w] PACKET METADATA

Packet ptec«3 m
RX buffet

during reception

Figure 6.3: Illustration of MAC layer timestamping in the CC2420 radio.

The following process is illustrated in Figure 6.3. In the CC2420 [98], which is

a packet radio (unlike the CC1000 byte radio found in MICA2), we need to place

the message to transmit in the TX buffer prior to transmission; and once a packet

is received, we read the contents from the RX buffer. Transmission begins with a

preamble, which is used for radio calibration, followed by a Start Frame Delimiter

(SFD). On the sending side, once this SFD is sent, and on the receiving side, once the

67

SFD is received, the SFD pin in the CC2420 radio goes active, which in turn triggers an

interrupt in the IMote2. By modifying the corresponding interrupt service handler,

we can either

• record the current time with the metadata associated with the packet on the

receiving side, so that the upper layers are aware of the time at which the packet

was received, or

• directly modify the TX buffer to insert the current timestamp in the packet

that is currently being transmitted.

The idealized protocol described in Section 6.1.4, which inserts an estimated time

of arrival (ETA) in each packet as calculated using (6.3), as well as an authenticator

for the packet contents using a cryptographic scheme such as AES [100], cannot be

achieved in our implementation. The reason is that we are timestamping the packets

being sent at real time during transmission, and it takes 830 /is for the IMote2 to

compute a floating-point multiplication and 4650 /us to compute an AES encryption,

for instance. We therefore modified the way the ETA is calculated and the way the

authentication is performed. In the case of the ETA, it is now performed by the

destination, taking advantage of the fact that the information required for such task,

i.e., skew and one-way delay estimates, are already included in the packet since they

are necessary for the verification of skew consistency. As for the authentication, we

decided on including the authenticator for the current packet being sent in the next

packet. This approach has the drawbacks of increasing packet loss probability and

latency, but we are now able to timestamp the packets in the way we need it.

6.2.3 Neighbor discovery subprotocol

We include a neighbor discovery subprotocol to make sure that an attacker cannot re­

play packets between sessions by ensuring the freshness of each clock synchronization

68

packet. Otherwise an attacker could replay old synchronization packets and make a

node believe that a good link is not behaving correctly.

We assume that when two nodes A and B share a link, they also share a secret

key, referred to as the master key. There are several schemes to obtain this master

key: key pre-distribution schemes, pairwise key establishment, public key schemes,

among others [97]. Instead of using the master key to perform the cryptographic

operations, our protocols use a session key throughout a single session. A session

starts when the neighbor discovery subprotocol is executed, and it ends when the two

nodes stop being in each other's range or when the packet number space is exhausted

in either direction. In the latter case, the neighbor discovery subprotocol is run again

to establish a new session key.

To create a session, when node A believes that node B is its neighbor, the following

exchange of packets takes place:

A —> B: INITIATE, A, B, rjA, MIC(packet)icAS

A sends an INITIATE packet to B which contains the addresses of A, B, a

nonce TJA, and an authenticator calculated using the master key KAB-

B —> A: RESPOND, B, A, r)A, r}B, MIC(packet)^B

B generates its own nonce r\B to ensure that r\A corresponds to a fresh request

from A, and sends A a RESPOND packet which contains the addresses of B, A, the

nonce T]A, the nonce rjB, and an authenticator calculated using the master key KAB-

A -* B: ACCEPT, A, B, r)A, rjB, MIC(packe t) K m n ,

If the RESPOND packet is received as a timely response to its INITIATE packet,

it knows that r]B is fresh (because it is tied to r]A, so the pair {r)A,r}B) corresponds

to a fresh session). A then generates the session key Ksessi(m=lii(r)A\\'riB\\KAB) and

returns an ACCEPT packet containing A and B's addresses, both nonces r)A and rjB,

and an authenticator calculated using the new session key Ksession.

If B receives the ACCEPT packet as a timely response to its RESPOND packet,

69

it knows that TJA is fresh (because it is tied to r}B, so the pair (T]A,VB) corresponds to

a fresh session). B can then compute the session key Kses8icm=K(VA\\VB\\KAB) and

can proceed to send clock synchronization packets to A using the new session key

K
• " session-

6.3 Evaluation

We now present the results from our implementation, as described in the previous

section. First we show that the clock synchronization assumptions hold and that we

can predict packet arrival times at remote nodes with very good accuracy.

6.3.1 Clock synchronization

The full clock synchronization algorithm was implemented using the MAC layer times-

tamping described in Section 6.2.2. We run several experiment involving two nodes

A and B, where nodes exchange messages in the way depicted in Figure 6.1, every 3

seconds. The packets sent from node A to node B contain the following information:

• Packet number. Used to identify the clock synchronization packets and for the

neighbor discovery subprotocol, which is run once the packet number wraps

around, to ensure the freshness of every packet.

• Acknowledgment number. Used to refer to the most recent packet received in

the reverse direction.

• PBA{n — l). Time at which the last packet (n-th packet) sent by B was received

by A.

• SAB- The current estimate of the one way delay from A to B.

70

• SAB- The current estimate of the skew of B with respect to A, as an IEEE 754

double-precision floating point value.

• MIC(P^s(n — 1)). Authenticator of the previous packet sent. It is calculated

using HMAC [76], with SHA1 [101] as the hash function.

• 0"AB(^)- Time at which the current packet was sent. This is actually the last

field in the packet in order for the interrupt service handler for the SFD pin to

have enough time to place the timestamp once the SFD interrupt is triggered.

6.3.2 Validation of clock synchronization

The clock synchronization behavior depends on two assumptions:

1. The product of skews SABSBA ~ 1, even when the two are independently

measured.

2. Our timestamps are sufficiently accurate to detect small perturbations in the

RTT.

To validate these assumptions, we ran the protocol using two motes with no

attackers present. Samples were collected from over 1600 runs of the synchronization

protocol. Each sample corresponds to one exchange of packets: one packet from node

A to B and one packet from B to A. We examined the behavior of the skews, the

product of the skews, and the accuracy of our calculations of the ETA.

Figure 6.4 shows the results obtained from calculating skew. We subtracted 1

from each of the skew values in order to allow the y-axis labels to be meaningful. We

can observe that even though each skew is measured independently by each of the

nodes, and even though the skews drift over time, the product of the measured skews

stays very close to 1, confirming the first assumption mentioned above.

71

0.8

0.6

0.4

0.2

xj£f

E 0

<»

-0.2

-0.4

-0.6

-0.8

~ 6

® 5

Skew A->B
Skew B->A

Product of Skews

200 400 600 800 1000

Sample Number

1200 1400 1600 1800

Figure 6.4: Linear skew

800 1000
Sample Number

1200 1400 1600 1800

Figure 6.5: Accuracy of packet arrival time prediction and RTT behavior

Figure 6.5 shows the accuracy of our ETA calculations and the RTT behavior over

time. The median error for the data shown is 0 jis and the average error is 0.5 /xs,

72

1 1.90 —

0.80

>•

«J

f
o,40 ^ :

0.20

0 o o -i , ^^™™™™^™T™~_™™—_™ :—.. :

0 1 2

ETA Error {in microseconds}

Figure 6.6: CDF of the errors in the arrival time prediction

indicating a high level of accuracy given that the clocks we used had 1 fis resolution.

For a better perception of the accuracy obtained, Figure 6.6 shows the cumulative

distribution function of the errors observed. This result shows that nodes are able to

accurately predict the time at which a receiver will receive a packet according to the

receiver's clock, and validates the second assumption.

6.3.3 Man-in-the-middle attacker

To test our clock synchronization protocol under the influence of man-in-the-middle

attackers, we implemented the man-in-the-middle functionality in a mote.

Setup

The setup, which is shown in Figure 6.7, consists of nodes A and B, a man-in-

the-middle attacker (MITM) (which simply relays all packets heard with a higher

73

Figure 6.7: Experimental setup with an MITM attacker

transmission power, this relaying is done at the lowest possible level in the network

stack of TinyOS in order to reduce the variability in forwarding latency), and two

observer nodes that log all traffic they hear for later analysis.

The observer nodes are used in order to avoid impacting the calculations per­

formed by nodes A and B, one is placed near node A and the other one near B.

Nodes A and B are configured to transmit at a very low transmission power so that

it is the MITM who connects A and B even though they are incapable of direct

communication with each other.

Validation of skews with a man-in-the-middle attacker

In the idealized protocol, we argued that for an attacker to remain undetected, it

needs to delay packets only by a constant amount of time. We now proceed to

validate this by measuring the skews when a man-in-the-middle attacker is present.

If the attacker introduces a non-constant delay with sufficient variation, the skews

would be affected and the attacker would be detected. For this validation, we ran our

74

clock synchronization protocol on the link created by a man-in-the-middle attacker,

which as we have just described, simply relays all packets heard.

x » *

0,5 -

0.3

"g!.o •

I
-0.3 -

-OS' -

-s.s -

* * * • * « « » —

" " "

i 201 401 SSI sai
Sample Number

1001

— S k e w A->B

• Skew 8->A

— P r o d u c t of Skews

iaoi um

Figure 6.8: Skews observed with an MITM attacker present

The resulting skews are plotted in Figure 6.8. Once again, we subtracted 1 from

each of the skew values to allow the y-axis labels to be meaningful. We can observe

that the product of skews still stays very close to 1, although not as close as the ones

observed when there is no man-in-the-middle attacker present. Figure 6.9 shows a

comparison of the product of skews with no MITM and with MITM present.

We can also observe in Figures 6.10 and Figure 6.11 that the RTT variability is

slightly higher, and that the prediction accuracy is slightly reduced when comparing

with the results obtained when there was no man-in-the-middle attacker present.

These results verify our assumptions that when a man-in-the-middle attacker

imposes a constant or near-constant delay it does not modify the skew observed

by the nodes, and the product of the skews remains very close 1, leaving the man-

75

X l O *

-HOMITM

-MiTM

c
I o
•I

104 2W 304 404 504 604 704 S04 504 1004 1104 1204 1304 1404 1504

Sample number

Figure 6.9: Comparison of skews with no MITM and with MITM

28544

28542 -

i 2 8 s 4 ° - |

2SS38-

28536

P 28534

28532

28530

LL

1 101 201 30) 401 50! 601 701 801 301 1001 1101 1201 1.301 140) 1S01

SampJe Number

Figure 6.10: Round-trip time observed with MITM present

in-the-middle undetected. The higher variability and reduced accuracy are due to

the variable processing delay at the man-in-the-middle attacker, caused by its limited

76

computation and communication capabilities. Even with this higher variability, the

predicted time of arrival is still highly accurate, and therefore, if an attacker linearly

increases the delay it induces, it will affect the product of skews and our protocol will

be able to detect it.

4.5 -.

1 101 201 301 401 SO) 601 701 801 901 1001 1101 1201 1301 1401 1501

Sample Number

Figure 6.11: Accuracy of packet arrival time prediction with MITM present

Implementation of half-duplex attacker detection

According to Lemma 6.1.2, after having performed the clock synchronization protocol

and having measured the round-trip time, the sender needs to transmit a packet to

the receiver which is long enough to make the duty cycle of a half-duplex attacker's

radio exceed 100%. Due to the CC2420 radio's packet length limit of 127 bytes, it

is not possible to send such a long packet. One possibility that first suggests itself is

to contiguously transmit several small packets, each of length I with a gap of length

g between each successive transmission in order to raise the duty cycle of the link

above 50%, which in turn becomes a 100% duty cycle for a half-duplex attacker. We

77

specifically need to send n packets such that

nl 1
nl + (n - l)g + r 2 '

which means that

Unfortunately, there is an obstacle to pursuing this approach. The very low speed of

the serial interface that connects the CC2420 radio to the memory takes more time

to load a packet into the radio's buffer than to transmit the packet, making g > I.

Thus, we pursue an alternative solution. We load a packet in the radio's buffer,

and then we pseudo-randomly choose to change 1-4 bytes in the buffer between every

successive retransmission of the same packet, in a manner known to the sender and

receiver, but not to any other nodes. On the receiving side, we selectively copy only

the bytes that we know will change in each packet, instead of reading the whole

packet. In this way, the time between each successive transmission, becomes smaller

than the time to transmit a packet, meaning the man-in-the-middle in the attacker

will not have enough time to read and relay each packet.

Validation of half-duplex attacker detection

We built the half-duplex attacker detection mechanism just described and validated

it by running it with and without the man-in-the-middle attacker. Without the man-

in-the-middle attacker, all tested packets arrived at the estimated time or within

3 fis of it. With the man-in-the-middle attacker present, the average RTT reaches

28540 /J,S, so we send 10 successive packets in our challenge. The attacker is forced

to drop some packets because it is unable to send and receive at the same time, and

our defense mechanism is able to catch the attacker in each of the over 100 times

78

that we tested our scheme. This shows that we can consistently catch a half-duplex

man-in-the-middle attacker.

6.4 Security Analysis

We now proceed to analyze the security properties of the proposed protocols. We

specifically want to make sure that

1. an attacker is not able to modify the skew in a consistent way, and

2. an attacker can impose only a constant delay.

To verify that we achieve these goals in our experimental testbed, we need to

take into account the results presented in Section 6.3, and allow for certain tolerances

that reflect the behavior of the system when there is no attacker. By setting these

tolerances, we prevent the man-in-the-middle attacker from making changes such as

1. consistently modifying the skew by more than one part in 108,

2. changing the one-way delay by more than 6 jis from one packet to the next

6.4.1 Consistent skew

If we set the tolerance of the product of skews to be \SABSBA — 1| < £, with e > 0;

then the man-in-the-middle attacker will not be able to consistently modify the skew

by more than 2e without detection. Suppose an attacker wants to decrease S'AB (the

perceived skew of B with respect to A). Then the attacker needs to make node A

think that node B's clock is running slower that it actually is. This can be achieved

by linearly decreasing the delay TUAB it induces. But, from the proof of Theorem

6.1.1, the attacker would be caught after a finite time due to a causality violation.

Therefore, the attacker is not able to consistently make S'AB < SAB- A similar

79

file:///SabSba

argument can be made to demonstrate that an attacker will not able to consistently

make S'BA < SBA-

Suppose now that the attacker wants to increase S'AB. It needs then to linearly

increase the delay VHAB it induces. But the increase in S'AB results in an increase of

the product of skews, and given that the system has established the environmental

restriction \SABSBA — 1| < £, the attacker needs to make sure that \S'ABS'BA — 1| < e

to avoid detection. Then,

SABSBA > I — e

SAB^BA ^ 1 + £,

resulting in

ql < q 1 + e
oAB S JAB Y_S '

and therefore

S'AB<SAB(l + 2e).

Furthermore, if the man-in-the-middle attacker does not simultaneously decrease

the latency in the reverse direction, the resulting RTT variation will allow the detec­

tion of the attacker.

6.4.2 Consistent one-way delay

Empirically, by the use of the formula for calculating the estimated arrival time, as

given by (6.6), we can obtain a bound on the tolerable change in perceived one-way

delay from one packet to the next. In particular, we can see from Figure 6.5, that

when there is no man-in-the-middle attacker, \PAB(JI) — PAB(n)\ < 2 JJ,S. Let pAB(n)

denote the receive time when there is no attacker, and p'AB{n) denote the receive time

with an attacker present, with m,AB{n) = P'AB^^) ~ PAB{^) > 0 by causality, mAB(n)

80

file:///SabSba

being the delay induced by the attacker.

We have established the tolerance |/3AB(™)
 —

 PAB{^)\ < 2 yus, and since we will

also require that \p' Asi71) ~ PAsi71)} — 2 A ,̂ we can bound

\mAB(n) -mAB(n- 1)| < 4 (is.

Therefore, for an attacker to remain undetected, the delay TUAB it induces should

not vary more than 4 fj,s from one packet to the next.

6.4.3 Security of delayed authentication

Let us now evaluate the security of the delayed authentication mentioned in Section

6.2.2.

• All timing information regarding a particular packet is included entirely within

that packet. This ensures that if an attacker is not capable of forging or mod­

ifying the packet, then the attacker is not able to prevent the receiver from

correctly timestamping the packet reception. Furthermore, the attacker cannot

make a node choose wrong values for the timing information required (skew,

delay) as a result of the delayed authentication.

• Since a session key is never disclosed, forging a delayed authenticator is as

hard as forging a non-delayed authenticator. Therefore, the use of delayed

authentication does not introduce new authentication attacks.

• Delayed authentication could be vulnerable to Denial-of-Service attacks, where

the attacker floods the receiver with spurious packets looking to overflow the

receiver's memory and make it discard legitimate packets. However, in the case

of the IMote2, there is enough memory to store the spurious packets. This is

because the interval for the clock synchronization is 3 seconds and the CC2420

81

communication rate is 250 kbps, which corresponds to around 92 KB (IMote2

has 256 KB of RAM and 32MB of DRAM) [65].

6.4.4 Security against inter-session replay

For this analysis, we use the following observations:

• It is almost impossible to confuse a packet authenticated using the master key

with a packet authenticated with a session key given that both keys are different

with a very high probability.

• It is also almost impossible to confuse a pair of packets authenticated with

two session keys from different sessions since the session keys are derived using

SHAl and are therefore different with very high probability.

• The only possible confusion is between two packets sent with the master key.

• Only the two first messages sent in the neighbor discovery protocol (INITIATE

and RESPOND) are authenticated using the master key.

From the above observations, it is clear we only need to consider the possibility of

replay of INITIATE and RESPOND messages. Both of these messages are identified by

a type field (to indicate if the message is either an INITIATE or a RESPOND message)

and a nonce, which as we mentioned in Section 6.2.3, is a randomly generated number

used to ensure the request for a session is fresh.

• If an attacker replays an old INITIATE message to node B, and the receiver

accepts it as authentic, it will create a RESPOND packet with a fresh nonce TJB,

which would result in a different session key that the attacker is not able to

generate.

82

• If an attacker replays an old RESPOND message to node A, then node A will

find out that the nonce T\A does not correspond to any outstanding INITIATE

message it has, ignoring the message.

Therefore, the replay of messages between different sessions is not more likely to

succeed than sending a forged message authenticated with a random key.

83

CHAPTER 7

SECURE NETWORK-WIDE
CLOCK SYNCHRONIZATION
AND TOPOLOGY DISCOVERY
We now address the problem of secure clock synchronization in a multihop network.

Further, we show how the network-wide synchronization can be used for secure topol­

ogy discovery. In turn, secure topology discovery can be used for network operation,

including routing and transport. Our approach to network-wide synchronization will

build upon the link synchronization scheme described in Chapter 6.

We use the same notation as in Section 6.1.1, and assume the following:

• The network is modeled as a graph G — (V, E), where V represents the set of

nodes in the network, and E represents the links connecting the nodes.

• Clocks are affine.

• Nodes in V can accurately timestamp packets.

• The endpoints of every link in E share a private key, which they use to provide

authentication and confidentiality.

• The endpoints of every link in E are legitimate, that is, no node in the set V

has been compromised.

• The nodes in V are half-duplex.

• A man-in-the-middle attacker

1. is a node not included in V, which modifies the characteristics of a link

(a, b) G E, in order to disrupt the clock synchronization between a and b,

84

2. is not able to break the cryptography used in any link in E,

3. can be half-duplex, or full duplex, and

4. is free to do as it pleases, but desires to remain undetected.

• In every well-behaved link (a,b) G E, the product of the skews a and b have

with respect to each other, is approximately 1 (i.e., Sat,Sba « 1), and the RTT

stays fairly constant. This stems from the results in Section 6.3.2.

The main properties of the protocol presented in this chapter are:

Detection The protocol can detect links that misbehave (i.e., compromised links),

and tag them.

Dissemination On detection of a compromised link, a node can disseminate an

"alert" throughout the network.

Isolation Whenever a node A needs to communicate with another node B, and

the set of paths between them contains one or more paths with misbehaving

links, node A can remove the path(s) that contain the misbehaved links after a

verification process, effectively isolating them.

This protocol therefore results in a network-wide consistent clock. That is, for any

two nodes A and B in the network, the skews obtained through the k different paths

between them, Pi, P2,Ps, ••-, Pk, are all approximately equal. If the skews obtained

do not obey this property, then we say the skews are inconsistent, which implies

that one or more links have been compromised, and we therefore need to remove the

incorrectly behaving ones.

85

7.1 The Main Ideas

To achieve the secure network-wide clock synchronization, each node in the network

examines every path it uses to reach the other nodes in search of misbehaving links,

i.e., links under the control of man-in-the-middle attackers. When a misbehaving link

is found, its usage is discontinued. In order for a node A to examine every path to

all other nodes in the network, node A first learns the topology of the network. The

topology learning process, and the detection of misbehaving links, proceed hand-in-

hand in an incremental fashion. This process is divided into four steps:

1. Single link checking. Nodes synchronize with their neighbors, and check if the

direct link they share is behaving correctly.

2. Neighborhood check. Every node A sends a list to its valid neighbors that

includes information about each of them.

3. Network consistency check. The valid neighbor lists are processed by each of

the nodes in a way that allows them to discover the existence of new nodes,

and check for possible misbehaving links in the newly learned paths.

4. Removal of network inconsistencies. When the different paths learned by node

A to reach node B are inconsistent, a test is performed on each of the paths to

determine which one(s) must be removed from use.

7.1.1 Single link checking

The goal in this step is for nodes to synchronize with their neighbors and check if the

direct link is behaving correctly. This is done by the following procedure:

• Every node in the network synchronizes with each of its neighbors using the

protocol described in Section 6.1, with the goal of detecting the existence of

misbehaving links.

86

• To detect the misbehaving links, every pair of nodes A and B sharing a link,

verifies that SABSBA ~ 1- Otherwise, they conclude that an attacker has taken

control of the link and its changing its behavior.

With this step, we are guaranteeing the detection of misbehaving links.

7.1.2 Neighborhood check

In the second step, we use the information collected in the first step to isolate the

misbehaving links through the following procedure:

• Each of the nodes in the network forms a list of valid neighbors. Node A

considers node B a valid neighbor if SABSBA ~ 1-

• The valid neighbor list will only be sent to each of the valid neighbors, and it

will be encrypted using the private key shared with such valid neighbor.

• The neighbor list includes the following information for each of the valid neigh­

bors: neighbor ID, skew, and one-way delay.

By not including information regarding the compromised links in the valid neigh­

bor lists, we prevent their use not only by the nodes that detected them, but by any

other node in the network since they will not be aware of the existence of such links.

We are, therefore, guaranteeing the isolation of the compromised links detected in

this step.

7.1.3 Network consistency check

The goal in this step is for nodes to discover the existence of nodes not directly

connected to them, as well as checking the learned paths for possible misbehaving

links. This is done by the following procedure:

87

• Each node A processes the lists of valid neighbors it has received, and updates a

table that includes the information for the nodes reachable from A, henceforth

referred to as reachable nodes table. This table contains the following informa­

tion for each node which node A can reach, either directly or by multihop: node

ID, validity flag, aggregate skew, aggregate one-way delay, distance (number of

hops), and path (sequence of intermediate hops).

• Updating the reachable nodes table involves calculating the aggregate skew,

and aggregate one-way delay for nodes included in the lists received, for which

there is no information in the reachable nodes table. It also involves verifying

the consistency of the end-to-end skews for nodes for which there is already

information in the reachable nodes table. The latter needs to be done in case a

different aggregate skew for a node is calculated over a path that is different to

the one previously discovered. For instance, if node A previously found a path

Pi to node B through node X with an aggregate skew <SAB,PI = SAXSXB, and

now finds another path P2 to node B through node Y with an aggregate skew

SAB,P2 = SAYSYB, then P\ and P2 are considered consistent if SAB,PX ~ SAB,P2

within an acceptable tolerance.

• After processing the lists of valid neighbors received, every node has informa­

tion in its reachable nodes table on how to reach its direct neighbors and their

two-hop neighbors. In order for the nodes to discover their three-hop neigh­

bors, the information in the reachable nodes tables must be exchanged between

neighbors. For this, every node copies the contents of its reachable nodes table

to a reachable list, and sends it to its valid neighbors (in a similar fashion as

the valid neighbor list exchange of step 2)

• The processing of the reachable lists received, similar to the processing of the

valid neighbors lists, allow the nodes to discover nodes one hop farther. If every

88

node sends a reachable list to its neighbors every time there is a change in its

reachable nodes table, i.e., a new node or an inconsistency is discovered as a

result of the processing of the reachable lists received, eventually every node will

discover the network topology. It should be noted that we are actually carrying

out a procedure similar to the one performed by the distributed Bellman-Ford

algorithm [43], only that instead of computing a minimum cost path, we are

aggregating the skew and one way-delay.

With this step, we are guaranteeing the detection of inconsistent skews, and the

dissemination of information regarding such inconsistencies throughout the network.

7.1.4 Removal of network inconsistencies

The goal of the last step is for nodes to remove any inconsistency in the set of paths

connecting them. This is carried out by the following procedure:

• This step is executed by a node A only when it needs to communicate with

another node B. Our approach is an on-demand approach. There is no need

for node A to pro-actively execute this step for each node it can reach.

• This step allows for the removal of inconsistencies in the set of paths connecting

A and B, by testing each path. The testing process involves sending a packet

along the nodes in the path to be tested, and determining if such packet arrived

at the estimated time of arrival, which is calculated using (6.3). If the packet

does not arrive by the estimated time of arrival (within a certain tolerance),

then the path is deemed inconsistent, and is removed from the reachable nodes

table.

• This step uses public key signatures to provide authentication and integrity, in

order assure nodes as to the origin and content of the messages received [102].

89

With this step, we are preventing the use of any path that include compromised

links.

7.1.5 An example

Figure 7.1: Example network to illustrate secure multihop protocol execution

We now illustrate the way in which the nodes discover other nodes outside their

neighborhood, and the way in which they handle the possible skew inconsistencies,

by using the example network shown in Figure 7.1. Each vertex represents a node in

the network, and each edge represents a link which effectively makes them neighbors

(i.e., node 7 has nodes 3, 6 and 8 as neighbors, while node 1 has nodes 2 and 5 as its

neighbors). All of the nodes in the network synchronize with their neighbors. After

that, they each check the links to their neighbors to detect misbehaving links.

Assume nodes 5 and 3 have already synchronized with their neighbors, and that

node 3 has detected that the link it shares with node 4 is misbehaving (63,454,3 7̂

1). As shown in Figure 7.2, node 5 would then exchange the following list with its

neighbors, nodes 1 and 6

ListOf Neighbors*, = {(1, 55,i, <55,i)> (6, 55,6, S6J)} ,

90

Algorithm 1 Securely synchronize clocks in a multihop network
Require: Node's clocks are trustworthy
Ensure: Nodes have a network-wise consistent clock

Step 1: Single link check (between all neighboring nodes A and B)
A performs clock synchronization with B.
Node A obtains the skew SAB and the one-way delay 5AB-
Node B obtains SBA and SBA-
Both nodes check that SAB * SBA ~ 1-

Step 2: Neighborhood check
Each of the nodes in the network verifies the validity of the links shared with its
neighbors, and forms a valid neighbor list which is to be sent to all valid neighbors.
The list includes the measured skew and one-way delay for each of the valid neigh­
bors.

Step 3: Network consistency check
Once it has been determined that a link is valid and can be used, currentNode
sends a list to the currentValidNeighbor. The list contains all reachable nodes
that have valid skews, where valid skew means:

1. if a node is a direct neighbor, then an inverse skew relationship holds.
2. if a node is multihop reachable, then the aggregate skews from different paths

are consistent.
This step is run until all paths have been explored, that is, all valid reachable nodes
have been discovered. If a node is reachable from node A, but does not have valid
aggregate skews, node A tags the node as invalid, and propagate the tags out to
inform the other nodes of the inconsistency.

Step 4: Eliminate network skew inconsistencies
If a node A needs to communicate with a node B that is not a direct neighbor,
and node A has detected inconsistent skews in the set of paths between A and B,
node A then tests each of the inconsistent paths by sending a signed message to
node B.
The reception timestamps of the messages sent by A are returned by B and are used
to discard paths that do not yield the true skew. This is determined by comparing
the estimated time of arrival with the actual time of arrival of the messages sent.

91

while node 3 would exchange the following list with nodes 2 and 7,

ListOf Neighbors* = {(2, S3,2, h,i), (7, 53i7) 83J)} .

Figure 7.2: Neighborhood check step in nodes 3 and 5

To simplify the illustration we will only describe the events in node 7 for the

remainder of the example, noting that similar operations are executed for each node

in the network.

Figure 7.3: Lists of neighbors received in node 7

92

The different shades in the nodes appearing in Figures 7.3-7.7 denote the distance

they have with respect to the node of interest. If a node is not shaded, then node 7

is still not aware of its existence yet. In Figure 7.3 we observe that node 7 receives

the neighbor list from its neighbors, nodes 3, 6, and 8. Node 7 proceeds to update

its reachable nodes table with the information contained in these lists; for instance,

the processing of the list received from node 3 results in the following operations:

• Node 3, which sent ListOf Neighbors?, is already in the reachable nodes table

since it is a direct neighbor of node 7, with a distance of 1, a valid flag, 67,3 as

skew, and ^ 3 as one-way delay

• Node 2, included in ListOf Neighbor s3 is not in the reachable nodes table.

Node 7 calculates its distance, which is calculated to be 2, since it comes from

a neighbor list (1 hop to node 3 plus another hop to node 2), the aggregate

skew as 67,2 = £7,353,2) and the aggregate one-way delay as <57i2 = £7,3 + <53)2.

This information, along with (3) as the sequence of intermediate hops, is stored

in the reachable nodes table and it is marked as valid since this is the first

aggregate skew node 7 calculates with respect to node 2.

Figure 7.4: Node 7 exchanges its reachable list with its neighbors

93

When all the lists of neighbors received in node 7 are processed, node 7 is able

to reach nodes 3,6,8,4,2, and 5. The fact that the processing of these lists resulted

in changes in the reachable nodes table of node 7, means that now node 7 needs to

inform the neighboring nodes of such changes, as can be seen in Figure 7.4. For this,

node 7 copies the contents of its reachable nodes table into the list ReachableList-j.

To illustrate the content of the reachable list, we show the ReachableList7 being

sent in Figure 7.4 (the fields for each of the nodes included are node ID, validity flag,

distance, skew, one-way delay, and path):

ReachableList7 = {

(6, valid, 1, SV.eA.e, ()),

(2, uaZid, 2, 57,2, £7,2, (3)),

(5 , ^ ^ , 2 , 5 7 , 5 , 57>5, (6))}

(3,uaZid,l,57,3,*r,3,()),

(S, valid, 1,57,8,^7,8, ()),

(4,uaW,2,57,4,57,4,(8)),

Distance from node ?: t) (*) • (•

ReaetaMeLisig

Figure 7.5: Node 7 receives reachable lists from its neighbors

All the other nodes conduct a similar processing of the neighbors lists they receive,

which results in updates to their reachable nodes tables. For instance, nodes 3 and 6

become aware of new nodes they can reach, and therefore form a reachable list that

94

is sent to node 7 (and their other neighbors), as can be seen in Figure 7.5.

Figure 7.6: Node 7 exchanges its reachable list with neighbors again

The arrival of a reachable list in node 7 triggers an update of the reachable nodes

table, as do the neighbor lists. In this case, the update results in the addition of node

1, which previously was not reachable from node 7, which in turn results in the need

for node 7 to send another reachable list to its neighbors, as shown in Figure 7.6

Let us assume now that the aggregate skews that node 7 has calculated with

respect to node 1 are different for the two paths it has learned so far, that is,

<5,7,3'S'3,2'S'2,i 7̂ 5,7)6<S,6;5S'5]i. This means that node 7 needs to store the information

for both paths, as well as mark node 1 as invalid in the table. The fact that node

1 has been marked as invalid will be communicated to the other nodes in the net­

work by means of the reachable list that will propagated due to the changes in the

reachable nodes table.

If at a later time, node 7 needs to communicate with node 1, then node 7 will first

have to remove the inconsistent skews. This removal of inconsistencies will involve

the following message exchanges illustrated by Figure 7.7, where A —» B: M means

A sends message M to B, and {M}^A means message M is signed by node A:

• 7 —• 3: resynchronize with 2, and append the message {noncei}^7

95

Distance from node 7: *-; (*) C3

inconsistencies found to node
1, test first skew

(a) Signed message sent to node 1 to test for inconsistency in first path

Distance from node 7: fcfti™} P*H-'I felfe

(b) Signed reply that includes the time of reception

Figure 7.7: Node 7 wants to communicate with node 1 but needs to first remove the
inconsistencies

• 3 —> 2: resynchronize with 1, and append the message {noncei}#7

2 —* 1: {noncei}/c7

1 -* 2: p7,iO), (P7,i(n). {noncei}^}*!

2 ^ 3 : p7,i(n)i {P7,i(w)> {nonce i}^}^

3 -> 7: {p7,i(n), {nonce i}^}^ .

96

Once this message exchange is complete, node 7 is able to determine if the aggre­

gate skew in this path is valid, by verifying if the message arrived at node 1 at the

estimated time of arrival. This estimated arrival time is calculated using(6.3). If the

skew along this path is valid, we remove the remaining skews, otherwise we proceed

to test the next skew in the table.

Using the protocol described by Algorithm 1, the nodes in a network are able to se­

curely synchronize their clocks by detecting and discontinuing the use of misbehaving

links created by man-in-the-middle attackers. At the same time, the protocol allows

the nodes to securely learn the topology of the network.

7.2 Implementation

The main goal of the prototype implementation is to verify the properties of Algo­

rithm 1. We note that at this stage we do not address efficiency aspects, which can

employ several optimizations.

7.2.1 Setup

The implementation has been performed on a testbed comprised of 25 Crossbow

IMote2 sensor nodes, shown in Figure 7.8, using TinyOS 2.1, and the implementation

discussed in Section 6.2 as a starting point. Figure 7.8 also shows the presence of

6 additional motes that log every packet they hear for later analysis. The reason

for using these additional six motes is to keep the nodes participating in the clock

synchronization process from having to handle all the interrupts caused by the packet

logging, which could adversely affect the timestamp measurements on the motes.

The link topology used in the experiments is shown in Figure 7.9. This topology

was enforced by software (MAC filtering), similar to the implementation discussed in

97

it .» / •

4 (• . ""i . i
V T - '* .

t* ' ' '" "•

- i ' i .

Figure 7.8: Testbed for the implementation of the secure network-wide synchroniza­
tion protocol

Section 4.2.

We now discuss the implementation of the valid neighbor list and reachable list

exchanges, as well as of the process of removing the inconsistent skews.

7.2.2 Exchange of valid neighbor lists

When the clock synchronization between two neighboring nodes A and B is complete,

each of these two nodes has enough information to execute a single link check. This

is done by multiplying the estimated skew of one node with respect to the other

(SAB * SBA) and checking if the product is approximately 1. As mentioned in Section

6.3.1, a skew is represented by an IEEE 754 double-precision floating point value.

Given that there can be variations due to interrupt-handling in the nodes, as well

as changes in voltage or temperature that affect the clock drift [103], we allow the

product to be within a certain tolerance, which in our case is 10~7.

Every node in the network performs the same verification for all the neighbors

it has, and after every verification, the information it has regarding the neighboring

node is updated to reflect the validity of the link they share. In order to handle a

98

Figure 7.9: Link topology of the 25 nodes in the testbed

dynamic topology, a linked list structure is used to store this information.

Once a node has checked all the direct links it has, it constructs a packet (or set

of packets given the CC2420 radio's packet size limit of 127 bytes), that includes the

following information for each of its valid neighbors: neighbor ID, validity, distance

to the neighbor (1 for direct link neighbors), skew and one-way delay. The packets

are encrypted using the session key generated with the protocol described in Section

6.2.3 before sending them to each of the valid neighbors.

7.2.3 Exchange of reachable lists

Whenever node A receives a valid neighbor list sent by node B, the reachable node

table in A is updated according to the following rules:

• If the valid neighbor list includes information for a node C not currently in A's

99

table, then A calculates the aggregate skew and aggregate one-way delay by

combining the corresponding values advertised in the list for node C, with the

skew and one-way delay that node A has with respect to node B. The aggregate

values are then placed in a new record in the table for node C, along with the

updated distance, validity and set of intermediate nodes in the path.

• If the valid neighbor list includes information for a node C already in A's

table, then A calculates the aggregate skew and aggregate one-way delay by

combining the corresponding values advertised in the list for node C, with the

skew and one-way delay that node A has with respect to node B, and compares

the computed aggregate skew with the one already stored in the table. If the

computed aggregate skew is consistent (e.g., their values are within a tolerance

of 10 -6), then the information for node C remains as valid; otherwise, the

computed aggregate values are added to the record for node C, along with the

distance and set of intermediate nodes in the path, and node C is now marked

invalid.

Rather than having the nodes sending the reachable lists every time a change in

their reachable nodes table is made, which could lead to a high traffic load, the nodes

do the following: When a list is received, a timer is started to allow for the arrival

of more lists that could trigger additional updates. Once the timer is fired, the node

determines whether the reachable nodes table was modified or not by the processing

of the received lists. If the table has changed, the node constructs a packet (or set

of packets) in the same way it constructed the valid neighbor list, that includes the

same information for each node as in the valid neighbor list, with the addition of the

set of intermediate nodes that form the path to the node. This list is then encrypted

using the corresponding session key and sent to each of the neighbors.

100

Although in Section 7.1 we referred to the neighbor list and the reachable list

as different entities, in the implementation, given that their contents are practically-

identical, the same data structure is used to represent either one of them. By using

the same data structure, the size complexity of the code is reduced.

7.2.4 Removal of network inconsistencies

In the description given in Section 7.1.4, we mentioned that this step uses public key

signatures to provide authentication and integrity. Although it has been shown that

public key cryptography is feasible on sensor nodes [104-106], the resources required

in terms of running time and memory are still to high. For this reason, for the

implementation of this part of Algorithm 1, we substituted the public key signature

scheme by a delayed authenticator scheme. This latter scheme is the same as the

one we used to handle the problem mentioned in Section 6.2.2, of not having enough

time to compute an authenticator for the packet being currently sent, and therefore

including it in the next packet. By doing this substitution, we are also able to reuse

the code already developed to solve that problem.

7.3 Evaluation

We now present the results of the implementation.

Several experiments have been run on the testbed with the following scenarios:

1. No attackers in the network.

2. Attackers in the network. To make the nodes think there is an attacker present

in the network, we proceed as follows:

(a) We make two nodes A and B sharing a link L advertise incorrect skews

to each other, resulting in the immediate isolation of the link since SAB *

101

SBA ± 1.

(b) We make one of the neighbors of a given node A advertise an incorrect

skew with respect to A to its other neighbors. Whenever any of the nodes

in the network uses this incorrect information with respect to A to update

their reachable nodes table, it will result in inconsistencies that will be

propagated throughout the network. These inconsistencies in the reachable

nodes tables of the nodes with respect to A, will force a node that wants

to communicate with node A to remove the inconsistencies first.

All the experiments that were run exhibited similar results in all the scenarios

mentioned above:

1. The product of the skews between nodes in the network stayed very close to 1,

deviating only about one part in 107, even on multihop links.

2. The invalid links are either isolated from the beginning (since they are not

advertised), or the nodes stop using them as a result of the last step of the

protocol (removal of network skew inconsistencies).

In Figures 7.10-7.12, we show the resulting skew estimates of nodes 1, 13, and

22 with respect to all other network nodes (the x-axis represents the ID of the other

nodes, referring to Figure 7.9 for the underlying link topology) in a particular run

with the following characteristics:

• Nodes 4 and 5 advertised incorrect skews to each other, resulting in the isolation

of the link between them. By analyzing the data collected by the loggers, we

could verify that the link was not included in the valid neighbor list exchanged

by either node, and therefore, that no path in the network included this link.

• Node 6 advertises an incorrect skew with respect to node 7, resulting in skew

inconsistencies with respect to node 7 in the reachable nodes tables of all the

102

other nodes. This was verified by looking at the reachable lists exchanged

by the nodes. To verify that the removal of network inconsistencies actually

works, node 1 is asked to establish communication with node 7, resulting in the

elimination of path (1, 6, 7).

We can see in Figures 7.10-7.12 that the product of the measured skews stays very

close to 1, deviating only about one part in 107, even with nodes that are not direct

neighbors.

To summarize, using the ideas described in Chapter 6 to secure the clock synchro­

nization over a single link as a foundation, we have developed a secure network-wide

clock synchronization protocol capable of detecting man-in-the-middle attackers that

cannot be prevented by the sole use of cryptographic techniques and that could dis­

rupt the clock synchronization service, or other services such as routing. This protocol

also allows us to securely discover the network topology, a functionality that enables

us to provide further services such as secure link state routing. The prototype imple­

mentation, which has not been optimized for efficiency, has shown the feasibility of

the protocol.

103

Skews observed by node 1

• Own Skew

• Other Node's Skew

-*-Productof Skews

2 3 4 5 8 7 8 S 10 11 12 13 14 IS 18 17 IS IS

Otter Node'sl»

21 22 23 24 25

Figure 7.10: Skews observed by node 1 in a particular run of the experiment.

Skews observed by node 13

«Wj»»>:«a

• Own Skew

m Other Node's Skew

«"•» Product of Skews

1 2 St 5 S ? S 10 11 .12 14 IS 1? IS 19 JO 22

OttKfSodrtIO

Figure 7.11: Skews observed by node 13 in a particular run of the experiment.

104

Skews observed by node 21

ismtmQ 4

® Own Skew

m Other Node's Skew

"^-PfCKluet of Skews

1 2 2 4 5 8 ? *» io n 12 is IA is is a? is as 23 21 as 24 25

Figure 7.12: Skews observed by node 22 in a particular run of the experiment.

105

CHAPTER 8

CONCLUSIONS AND FUTURE
WORK

In this dissertation we have studied clock synchronization protocols for multihop

wireless sensor networks.

In Chapter 4, we presented a clock synchronization protocol tailored to wireless

networks, that exploits the broadcast nature of the wireless medium, is fully dis­

tributed, uses asynchronous messages, and requires no topological constructions such

as rooted trees or hierarchies. These features make the protocol more suitable for

dynamic topologies, which can be caused by mobility or node failures, than other

protocols such as TPSN [16], where a change in the topology requires running an

algorithm to reconstruct the hierarchical structure needed for the synchronization

phase.

The protocol has been successfully implemented in TinyOS 1.1 [60] using a testbed

of MICA2 motes. Its performance has been evaluated and compared with the leading

protocol in use, FTSP [17]. We have shown that our protocol provides a better

accuracy and a lower variance. A lower variance may actually be even more important

than a good accuracy for some applications such as TDMA communication.

In Chapter 6, we present a secure clock synchronization protocol designed to de­

tect man-in-the-middle attacks. These attacks cannot be prevented by merely using

cryptographic techniques, but this protocol is capable of detecting them using timing

information alone, with certain conditions. The protocol has been implemented in

TinyOS 2.1 using IMote2 motes with very positive results. The evaluation of the im­

plementation shows that a misbehaving link caused by a man-in-the-middle attacker

106

can be detected if it causes inconsistent skews and variable round-trip delays that

result from the non-constant delays induced by the attacker, and that a misbehaving

link caused by a half-duplex man-in-the-middle attacker can be detected even when

it induces only a constant delay.

In Chapter 7, we presented a secure network-wide clock synchronization proto­

col. It extends the secure clock synchronization protocol for a single link presented

in Chapter 6. The protocol is capable of detecting man-in-the-middle attacks and

removing the compromised links from use. The protocol has been implemented in

TinyOS 2.1 using a testbed of 25 IMote2 motes, showing the feasibility of the protocol.

8.1 Future Work

A more efficient implementation needs to be built in order to reduce the number

of messages exchanged as well as the cryptographic operations involved. A more

thorough evaluation of the implementation with different topologies and the presence

of a real man-in-the-middle attacker needs to be performed as well as a complete

study to determine the number of attackers that the secure clock synchronization

protocol could withstand, while still providing a good synchronization. Construction

of services such as secure source routing on top of the secure network-wide clock

synchronization protocol, is an important next step.

107

REFERENCES

[1] J.T. Chiang, J.J. Haas, Yih-Chun Hu, P.R. Kumar, and Jihyuk Choi, "Funda­
mental limits on secure clock synchronization and man-in-the-middle detection
in fixed wireless networks," in INFOCOM 2009. The 28th Conference on Com­
puter Communications. IEEE, April 2009, pp. 1962-1970.

[2] Gyula Simon, Miklos Maroti, Akos Ledeczi, Gyorgy Balogh, Branislav Kusy,
Andras Nadas, Gabor Pap, Janos Sallai, and Ken Frampton, "Sensor network-
based countersniper system," in SenSys '04-' Proceedings of the 2nd interna­
tional conference on Embedded networked sensor systems, New York, NY, USA,
2004, pp. 1-12, ACM.

[3] J. Yick, B. Mukherjee, and D. Ghosal, "Analysis of a prediction-based mobility
adaptive tracking algorithm," in Broadband Networks,. 2005. BroadNets 2005.
2nd International Conference on, Oct. 2005, pp. 753-760 Vol. 1.

[4] Tia Gao, D. Greenspan, M. Welsh, R. Juang, and A. Aim, "Vital signs monitor­
ing and patient tracking over a wireless network," in Engineering in Medicine
and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Con­
ference of the, Jan. 2005, pp. 102-105.

[5] G. Werner-Allen, K. Lorincz, M. Ruiz, O. Marcillo, J. Johnson, J. Lees, and
M. Welsh, "Deploying a wireless sensor network on an active volcano," Internet
Computing, IEEE, vol. 10, no. 2, pp. 18-25, March-April 2006.

[6] Deborah Estrin, Ramesh Govindan, John S. Heidemann, and Satish Kumar,
"Next century challenges: Scalable coordination in sensor networks," in Mobile
Computing and Networking, 1999, pp. 263-270.

[7] J. M. Kahn, R. H. Katz, and K. S. J. Pister, "Next century challenges: Mobile
networking for "smart dust"," in International Conference on Mobile Comput­
ing and Networking (MOBICOM), 1999, pp. 271-278.

[8] Crossbow Technology, "MICA2 Motes," http://www.xbow.com/Products/
productsdetails.aspx?sid=174.

[9] Barbara Liskov, "Practical uses of synchronized clocks in distributed systems,"
in Proceedings of the Tenth Annual ACM Symposium on Principles of Dis­
tributed Computing, Montreal, Quebec, Canada, 19-21 1991, pp. 1-9.

108

http://www.xbow.com/Products/

[10] K. Plarre and P.R. Kumar, "Object tracking by scattered directional sensors,"
in Decision and Control, 2005 and 2005 European Control Conference. CDC-
ECC '05. 44th IEEE Conference on, Dec. 2005, pp. 3123-3128.

[11] Scott Graham and P. R. Kumar, "Time in general-purpose control systems:
The control time protocol and an experimental evaluation," in Proceedings of
the 43rd IEEE Conference on Decision and Control, Bahamas, dec 2004, pp.
4004-4009.

[12] D.L. Mills, "Internet time synchronization: the network time protocol," Com­
munications, IEEE Transactions on, vol. 39, no. 10, pp. 1482-1493, Oct 1991.

[13] K. Romer, "Time synchronization in ad hoc networks," in Proceedings of the
2nd ACM international symposium on Mobile ad hoc networking and comput­
ing. 2001, pp. 173-182, ACM Press.

[14] Jeremy Elson, Lewis Girod, and Deborah Estrin, "Fine-grained network time
synchronization using reference broadcasts," in Proceedings of the 5th ACM
Symposium on Operating System Design and Implementation (OSDI-02), New
York, 9-11 2002, Operating Systems Review, pp. 147-164, ACM Press.

[15] M. Sichitiu and C. Veerarittiphan, "Simple, accurate time synchronization for
wireless sensor networks," in Proceedings of the IEEE Wireless Communications
and Networking Conference (WCNC), 16-20 2003.

[16] Saurabh Ganeriwal, Ram Kumar, and Mani B. Srivastava, "Timing-sync pro­
tocol for sensor networks," in Proceedings of the first international conference
on Embedded networked sensor systems (SenSys-03), New York, 5-7 2003, pp.
138-149, ACM Press.

[17] Miklos Maroti, Gyula Simon, Branislav Kusy, and Akos Ledeczi, "The flooding
time synchronization protocol," in Proceedings of the 2nd international confer­
ence on Embedded networked sensor systems, Baltimore, MD, USA, nov 2004,
pp. 39-49.

[18] Jana van Greunen and Jan Rabaey, "Lightweight time synchronization for
sensor networks," in Proceedings of the 2nd ACM international conference on
Wireless sensor networks and applications, apr 2003, pp. 11-19.

[19] S. Palchaudhuri, A. K. Saha, and D. B. Johnson, "Adaptive clock synchroniza­
tion in sensor networks," in Proceedings of the 3rd International Symposium on
Information Processing in Sensor Networks, apr 2004.

[20] Kyoung lae Noh, E. Serpedin, and K. Qaraqe, "A new approach for time syn­
chronization in wireless sensor networks: Pairwise broadcast synchronization,"
Wireless Communications, IEEE Transactions on, vol. 7, no. 9, pp. 3318-3322,
September 2008.

109

[21] Kyoung-Lae Noh, Yik-Chung Wu, Khalid Qaraqe, and Bruce W. Suter, "Ex­
tension of pairwise broadcast clock synchronization for multicluster sensor net­
works," EURASIP J. Adv. Signal Process, vol. 2008, pp. 1-10, 2008.

[22] Philipp Sommer and Roger Wattenhofer, "Gradient clock synchronization in
wireless sensor networks," in IPSN '09: Proceedings of the 8th international
conference on Information processing in sensor networks, New York, NY, USA,
2009, ACM.

[23] L. Schenato and G. Gamba, "A distributed consensus protocol for clock syn­
chronization in wireless sensor network," in Decision and Control, 2007 46th
IEEE Conference on, Dec. 2007, pp. 2289-2294.

[24] Branislav Kusy, Prabal Dutta, Philip Levis, Miklos Maroti, Akos Ledeczi, and
David Culler, "Elapsed time on arrival; a simple and versatile primitive for
canonical time synchronisation services," Int. J. Ad Hoc Ubiquitous Comput.,
vol. 1, no. 4, pp. 239-251, 2006.

[25] Gang Xiong and Shalinee Kishore, "Discrete-time second-order distributed con­
sensus time synchronization algorithm for wireless sensor networks," EURASIP
J. Wirel. Commun. Netw., vol. 2009, pp. 1-12, 2009.

[26] Yingchun Shen and Hai Jin, "Agent-based timing-sync algorithm for sensor net­
works," Networks Security, Wireless Communications and Trusted Computing,
International Conference on, vol. 1, pp. 338-344, 2009.

[27] Markus Wlchli, Reto Zurbuchen, Thomas Staub, and Torsten Braun, "Gravity-
based local clock synchronization in wireless sensor networks.," in Networking,
Luigi Fratta, Henning Schulzrinne, Yutaka Takahashi, and Otto Spaniol, Eds.
2009, vol. 5550 of Lecture Notes in Computer Science, pp. 907-918, Springer.

[28] Nitthita Chirdchoo, Wee-Seng Soh, and Kee Chaing Chua, "Mu-sync: a
time synchronization protocol for underwater mobile networks," in WuWNeT
'08: Proceedings of the third A CM international workshop on Wireless network
testbeds, experimental evaluation and characterization, New York, NY, USA,
2008, pp. 35-42, ACM.

[29] Philipp Blum, Lennart Meier, and Lothar Thiele, "Improved interval-based
clock synchronization in sensor networks," in IPSN '04-' Proceedings of the 3rd
international symposium on Information processing in sensor networks, New
York, NY, USA, 2004, pp. 349-358, ACM.

[30] K. Shahzad, A. Ali, and N.D. Gohar, "Etsp: An energy-efficient time syn­
chronization protocol for wireless sensor networks," in Advanced Information
Networking and Applications - Workshops, 2008. AINAW 2008. 22nd Interna­
tional Conference on, March 2008, pp. 971-976.

110

[31] Alan Mainwaring, David Culler, Joseph Polastre, Robert Szewczyk, and John
Anderson, "Wireless sensor networks for habitat monitoring," in Proceedings
of the First ACM International Workshop on Wireless Sensor Networks and
Applications (WSNA-02), New York, 28 2002, pp. 88-97, ACM Press.

[32] Gilman Tolle, Joseph Polastre, Robert Szewczyk, David Culler, Neil Turner,
Kevin Tu, Stephen Burgess, Todd Dawson, Phil Buonadonna, David Gay, and
Wei Hong, "A macroscope in the redwoods," in SenSys '05: Proceedings of
the 3rd international conference on Embedded networked sensor systems, New
York, NY, USA, 2005, pp. 51-63, ACM.

[33] I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, and P. Corke, "Data collection,
storage, and retrieval with an underwater sensor network," in SenSys '05:
Proceedings of the 3rd international conference on Embedded networked sensor
systems, New York, NY, USA, 2005, pp. 154-165, ACM.

[34] Mo Li and Yunhao Liu, "Underground structure monitoring with wireless sensor
networks," in Information Processing in Sensor Networks, 2007. IPSN 2007.
6th International Symposium on, April 2007, pp. 69-78.

[35] Chris R. Baker, Kenneth Armijo, Simon Belka, Merwan Benhabib, Vikas Bhar-
gava, Nathan Burkhart, Artin Der Minassians, Gunes Dervisoglu, Lilia Gut-
nik, M. Brent Haick, Christine Ho, Mike Koplow, Jennifer Mangold, Stefanie
Robinson, Matt Rosa, Miclas Schwartz, Christo Sims, Hanns Stoffregen, An­
drew Waterbury, Eli S. Leland, Trevor Pering, and Paul K. Wright, "Wireless
sensor networks for home health care," in AINAW '07: Proceedings of the 21st
International Conference on Advanced Information Networking and Applica­
tions Workshops, Washington, DC, USA, 2007, pp. 832-837, IEEE Computer
Society.

[36] Hairong Yan, Youzhi Xu, and Mikael Gidlund, "Experimental e-health applica­
tions in wireless sensor networks," in CMC '09: Proceedings of the 2009 WRI
International Conference on Communications and Mobile Computing, Wash­
ington, DC, USA, 2009, pp. 563-567, IEEE Computer Society.

[37] B. Sinopoli, C. Sharp, S. Schaffert, L. Schenato, and S. Sastry, "Distributed
control applications within sensor networks," in IEEE Proceedings Special Issue
on Distributed Sensor Networks, Nov 2003.

[38] Chih-Yu Lin, Wen-Chih Peng, and Yu-Chee Tseng, "Efficient in-network mov­
ing object tracking in wireless sensor networks," IEEE Transactions on Mobile
Computing, vol. 5, no. 8, pp. 1044-1056, 2006.

[39] Scott Graham and P. R. Kumar, "The convergence of control, communication
and computation," Proceedings of PWC 2003: Personal Wireless Communica­
tion, Lecture Notes in Computer Science, vol. 2775, pp. 458-475, Jan 2003.

I l l

[40] Scott Graham, Girish Baliga, and P. R. Kumar, "Issues in the convergence of
control with communication and computing: Proliferation, architecture, design,
services, and middleware," in Proceedings of the 43rd IEEE Conference on
Decision and Control, Bahamas, dec 2004, pp. 1466-1471.

[41] C. Fischione, K. H. Johansson, F. Graziosi, and F. Santucci, "Distributed coop­
erative processing and control over wireless sensor networks," in IWCMC '06:
Proceedings of the 2006 international conference on Wireless communications
and mobile computing, New York, NY, USA, 2006, pp. 1311-1316, ACM.

[42] R. Rozovsky and P. Kumar, "SEEDEX: A MAC protocol for ad hoc networks,"
in Proceedings of the 2nd ACM international symposium on Mobile ad hoc net­
working and computing, 2001, pp. 67-75.

[43] D. Bertsekas and R. Gallager, Data networks, Prentice-Hall, Englewood Cliffs,
New Jersey, 1987.

[44] Nicolas Burri, Pascal von Rickenbach, and Roger Wattenhofer, "Dozer: ultra-
low power data gathering in sensor networks," in IPSN '07: Proceedings of
the 6th international conference on Information processing in sensor networks,
New York, NY, USA, 2007, pp. 450-459, ACM.

[45] L. Lamport, "Time, clocks, and the ordering of events in a distributed system,"
in Communications of the ACM, jul 1978, pp. 558-565.

[46] Danny Dolev, Joe Halpern, and H. Raymond Strong, "On the possibility and
impossibility of achieving clock synchronization," in Proceedings of the sixteenth
annual ACM Symposium on Theory of Computing, Washington, DC, April 30-
May 2, 1984, ACM, Ed., New York, NY, USA, 1984, pp. 504-511, ACM Press.

[47] Jennifer Lundelius and Nancy Lynch, "An upper and lower bound for clock
synchronization," Information and Control, vol. 62, no. 2/3, pp. 190-204, /
1984.

[48] Saad Biaz and Jennifer L. Welch, "Closed form bounds for clock synchronization
under simple uncertainty assumptions," IPL: Information Processing Letters,
vol. 80, 2001.

[49] Omer Gurewitz, Israel Cidon, and Moshe Sidi, "One-way delay estimation using
network-wide measurements," IEEE/ACM Trans. Netw., vol. 14, no. SI, pp.
2710-2724, 2006.

[50] N.M. Freris and P.R. Kumar, "Fundamental limits on synchronization of affine
clocks in networks," Decision and Control, 2007 46th IEEE Conference on, pp.
921-926, Dec. 2007.

[51] Parameswaran Ramanathan, Kang G. Shin, and Ricky W. Butler, "Fault-
tolerant clock synchronization in distributed systems," Computer, vol. 23, no.
10, pp. 33-42, oct 1990.

112

Leslie Lamport and P. M. Melliar-Smith, "Byzantine clock synchronization," in
Proceedings of the Third Annual ACM Symposium on Principles of Distributed
Computing, Vancouver, B.C., Canada, 27-29 1984, pp. 68-74.

J. Lundelius and N. Lynch, "A new fault-tolerant algorithm for clock syn­
chronization," in 3rd ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, aug 1984, pp. 75-88, ACM.

Dolev, Halpern, Simons, and Strong, "Dynamic fault-tolerant clock synchro­
nization," J ACM: Journal of the ACM, vol. 42, 1995.

Leslie Lamport and P. M. Melliar-Smith, "Synchronizing clocks in the presence
of faults," Journal of the ACM, vol. 32, no. 1, pp. 52-78, jan 1985.

F. Cristian, "A probabilistic approach to distributed clock synchronization,"
Distributed Computing, vol. 3, pp. 146-158, 1989.

K. Arvind, "Probabilistic clock synchronization in distributed systems," IEEE
Transactions on Parallel and Distributed Systems, vol. 5, no. 5, pp. 474-487,
may 1994.

H. Kopetz and W. Ochsenreiter, "Clock synchronization in distributed real­
time systems," IEEE Transactions on Computers, vol. C-36, no. 8, pp. 933-940,
1987.

Jason Hill, Robert Szewczyk, Alec Woo, Hollar Hollar, David Culler, and
Kristofer Pister, "System architecture directions for networked sensors," ACM
SIGPLAN Notices, vol. 35, no. 11, pp. 93-104, nov 2000.

"TinyOS Community Forum," http://www.tinyos.net/.

David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and
David Culler, "The nesC language: A holistic approach to networked embedded
systems," i^PLDI '03: Proceedings of the ACM SIGPLAN 2003 conference on
Programming language design and implementation, New York, NY, USA, 2003,
pp. 1-11, ACM.

Jason Hill and David Culler, "A wireless embedded sensor architecture for
system-level optimization," Tech. Rep., UC Berkeley, 2001.

Crossbow Technology, "Wireless Sensor Network Platforms," http://www.xbo
w.com/Products/wproductsoverview.aspx.

Crossbow Technology, "MICA Motes," http://www.xbow.com/Products/Prod
uct_pdf_files/Wireless_pdf/MICA.pdf.

113

http://www.tinyos.net/
http://www.xbo
http://www.xbow.com/Products/Prod

Robert Adler, Mick Flanigan, Jonathan Huang, Ralph Kling, Nandakishore
Kushalnagar, Lama Nachman, Chieh-Yih Wan, and Mark Yarvis, "Intel Mote
2: an advanced platform for demanding sensor network applications," in SenSys
'05: Proceedings of the 3rd international conference on Embedded networked
sensor systems, New York, NY, USA, 2005, pp. 298-298, ACM.

The TinyOS 2.x Working Group, "TinyOS 2.0," in SenSys '05: Proceedings of
the 3rd international conference on Embedded networked sensor systems, New
York, NY, USA, 2005, pp. 320-320, ACM.

V. Handziski, J. Polastre, J.-H. Hauer, C. Sharp, A. Wolisz, and D. Culler,
"Flexible hardware abstraction for wireless sensor networks," in Wireless Sensor
Networks, 2005. Proceeedings of the Second European Workshop on, Jan.-2 Feb.
2005, pp. 145-157.

Moteiv, Tmote Sky Datasheet http://www.sentilla.com/pdf/eol/tmote-sky-
datasheet.pdf 2006.

P. R. Kumar and P. P. Varaiya, Stochastic Systems: Estimation, Identification,
and Adaptive Control, Prentice Hall, Englewood Cliffs, NJ, 1986.

"ECS oscillators, inc," http://www.ecsxtal.com.

Miklos Maroti, Branislav Kusy, Gyula Simon, and Akos Ledeczi, "The flooding
time synchronization protocol," Tech. Rep., Vanderbilt, 2004.

A. Giridhar and P.R. Kumar, "Distributed clock synchronization over wireless
networks: Algorithms and analysis," in Decision and Control, 2006 45th IEEE
Conference on, Dec. 2006, pp. 4915-4920.

Richard Karp, Jeremy Elson, Deborah Estrin, and Scott Shenker, "Optimal
and global time synchronization in sensornets," Tech. Rep., UCLA, 2003.

Adrian Perrig, Robert Szewczyk, Victor Wen, David Culler, and J. D. Tygar,
"Spins: security protocols for sensor networks," in MobiCom '01: Proceedings
of the 7th annual international conference on Mobile computing and networking,
New York, NY, USA, 2001, pp. 189-199, ACM.

Bruce Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code
in C, John Wiley & Sons, Inc., New York, NY, USA, 1995.

H. Krawczyk, M. Bellare, and R. Canetti, "HMAC: Keyed-hashing for message
authentication," http://www.ietf.org/rfc/rfc2104.txt, February 1997.

Ross J. Anderson, Security Engineering: A Guide to Building Dependable Dis­
tributed Systems, Wiley, 2 edition, April 2008.

114

http://www.sentilla.com/pdf/eol/tmote-sky-
http://www.ecsxtal.com
http://www.ietf.org/rfc/rfc2104.txt

[78] Madhukar Anand, Eric Cronin, Micah Sherr, Matt Blaze, Zachary Ives, and
Insup Lee, "Sensor network security: more interesting than you think," in
HOTSEC'06: Proceedings of the 1st USENIX Workshop on Hot Topics in Se­
curity, Berkeley, CA, USA, 2006, pp. 5-5, USENIX Association.

[79] John Paul Walters, Zhengqiang Liang, Weisong Shi, and Vipin Chaudhary,
"Wireless sensor network security: A survey, in book chapter of security," in in
Distributed, Grid, and Pervasive Computing, Yang Xiao (Eds. 2007, pp. 0-849,
CRC Press.

[80] A.D. Wood and J.A. Stankovic, "Denial of service in sensor networks," Com­
puter, vol. 35, no. 10, pp. 54-62, Oct 2002.

[81] James Newsome, Elaine Shi, Dawn Song, and Adrian Perrig, "The sybil attack
in sensor networks: analysis & defenses," in IPSN '04-' Proceedings of the 3rd
international symposium on Information processing in sensor networks, New
York, NY, USA, 2004, pp. 259-268, ACM.

[82] B. Parno, A. Perrig, and V. Gligor, "Distributed detection of node replication
attacks in sensor networks," in Security and Privacy, 2005 IEEE Symposium
on, May 2005, pp. 49-63.

[83] Haowen Chan and A. Perrig, "Security and privacy in sensor networks," Com­
puter, vol. 36, no. 10, pp. 103-105, Oct. 2003.

[84] Y.-C. Hu, A. Perrig, and D.B. Johnson, "Packet leashes: a defense against
wormhole attacks in wireless networks," in INFO COM 2003. Twenty-Second
Annual Joint Conference of the IEEE Computer and Communications Societies.
IEEE, March-3 April 2003, vol. 3, pp. 1976-1986 vol.3.

[85] X. Wang, Sriram Chellappan, W. Gu, W. Yu, and D. Xuan, "Search-based
physical attacks in sensor networks," in Computer Communications and Net­
works, 2005. ICCCN 2005. Proceedings. 14th International Conference on,
2005, pp. 489-496.

[86] Xun Wang, Wenjun Gu, Kurt Schosek, Sriram Chellappan, and Dong Xuan,
"Sensor network configuration under physical attacks," Int. J. Ad Hoc Ubiqui­
tous Comput, vol. 4, no. 3/4, pp. 174-182, 2009.

[87] Chris Karlof, Naveen Sastry, and David Wagner, "Tinysec: a link layer security
architecture for wireless sensor networks," in SenSys '04-' Proceedings of the
2nd international conference on Embedded networked sensor systems, New York,
NY, USA, 2004, pp. 162-175, ACM.

[88] Sencun Zhu, Sanjeev Setia, and Sushil Jajodia, "LEAP: efficient security mech­
anisms for large-scale distributed sensor networks," in CCS '03: Proceedings
of the 10th ACM conference on Computer and communications security, New
York, NY, USA, 2003, pp. 62-72, ACM.

115

[89] Haowen Chan and A. Perrig, "Pike: peer intermediaries for key establishment
in sensor networks," in INFOCOM 2005. 24th Annual Joint Conference of
the IEEE Computer and Communications Societies. Proceedings IEEE, March
2005, vol. 1, pp. 524-535 vol. 1.

[90] Laurent Eschenauer and Virgil D. Gligor, "A key-management scheme for dis­
tributed sensor networks," in CCS '02: Proceedings of the 9th ACM conference
on Computer and communications security, New York, NY, USA, 2002, pp.
41-47, ACM.

[91] J. Eriksson, S.V. Krishnamurthy, and M. Faloutsos, "Truelink: A practical
countermeasure to the wormhole attack in wireless networks," in Network
Protocols, 2006. ICNP '06. Proceedings of the 2006 14th IEEE International
Conference on, Nov. 2006, pp. 75-84.

[92] Michael Manzo, Tanya Roosta, and Shankar Sastry, "Time synchronization
attacks in sensor networks," in SASN '05: Proceedings of the 3rd ACM workshop
on Security of ad hoc and sensor networks, New York, NY, USA, 2005, pp. 107-
116, ACM.

[93] A. Boukerche and D. Turgut, "Secure time synchronization protocols for wire­
less sensor networks," Wireless Communications, IEEE, vol. 14, no. 5, pp.
64-69, October 2007.

[94] Saurabh Ganeriwal, Srdjan Capkun, Chih-Chieh Han, and Mani B. Srivastava,
"Secure time synchronization service for sensor networks," in WiSe '05: Pro­
ceedings of the 4th ACM workshop on Wireless security, New York, NY, USA,
2005, pp. 97-106, ACM.

[95] Kun Sun, Peng Ning, and Cliff Wang, "Secure and resilient clock synchroniza­
tion in wireless sensor networks," Selected Areas in Communications, IEEE
Journal on, vol. 24, no. 2, pp. 395-408, Feb. 2006.

[96] Kun Sun, Peng Ning, and Cliff Wang, "Tinysersync: secure and resilient time
synchronization in wireless sensor networks," in CCS '06: Proceedings of the
13th ACM conference on Computer and communications security, New York,
NY, USA, 2006, pp. 264-277, ACM.

[97] Yang Xiao, Venkata Krishna Rayi, Bo Sun, Xiaojiang Du, Fei Hu, and Michael
Galloway, "A survey of key management schemes in wireless sensor networks,"
Comput. Commun., vol. 30, no. 11-12, pp. 2314-2341, 2007.

[98] "Chipcon CC2420 Datasheet: http://focus.ti.com/lit/ds/symlink/cc2420.pdf,
Texas Instruments," 2007.

[99] Miklos Marotti and Janos Sallai, "Packet timestamping," TinyOS Extension
Proposal : 132 , may 2008.

116

http://focus.ti.com/lit/ds/symlink/cc2420.pdf

[100] "Specification for the advanced encryption standard (AES)," Federal Informa­
tion Processing Standards Publication 197, 2001.

[101] D. Eastlake and P. Jones, "US secure hash algorithm 1 (SHA1)," http://www.
ietf.org/rfc/rfc3174.txt, September 2001.

[102] W. Diffie and M. Hellman, "New directions in cryptography," Information
Theory, IEEE Transactions on, vol. 22, no. 6, pp. 644-654, Nov 1976.

[103] John R. Vig, "Introduction to quartz frequency standards," Tech. Rep., Army
Research Laboratory, Electronics and Power Sources Directorate, October 1992.

[104] Gunnar Gaubatz, Jens-Peter Kaps, Erdinc Ozturk, and Berk Sunar, "State of
the art in ultra-low power public key cryptography for wireless sensor networks,"
in PERCOMW '05: Proceedings of the Third IEEE International Conference
on Pervasive Computing and Communications Workshops, Washington, DC,
USA, 2005, pp. 146-150, IEEE Computer Society.

[105] D.J. Malan, M. Welsh, and M.D. Smith, "A public-key infrastructure for key
distribution in tinyos based on elliptic curve cryptography," in Sensor and
Ad Hoc Communications and Networks, 2004• IEEE SECON 2004• 2004 First
Annual IEEE Communications Society Conference on, Oct. 2004, pp. 71-80.

[106] An Liu and Peng Ning, "TinyECC: A configurable library for elliptic curve
cryptography in wireless sensor networks," in IPSN '08: Proceedings of the 7th
international conference on Information processing in sensor networks, Wash­
ington, DC, USA, 2008, pp. 245-256, IEEE Computer Society.

117

http://www
http://ietf.org/rfc/rfc3174.txt

AUTHOR'S BIOGRAPHY

Roberto Solis Robles was born in Zacatecas, Mexico, on July 21, 1971. He graduated

from Instituto Tecnologico de Zacatecas, Mexico, in 1992 with a degree in Ingenieria

en Sistemas Computacionales. He has worked in such institution as a professor since

February 16, 1993, and also in Universidad Autonoma de Zacatecas, where he lec­

tures courses on Operating Systems, Compilers, Networking, and Object Oriented

Programming. He completed a graduate degree of Maestria en Ciencias de la Com­

putation from Instituto Tecnologico y de Estudios Superiores de Monterrey in 1999

and, in 2000, he relocated to Urbana, Illinois to pursue a Ph.D. degree in computer

science having been awarded a Fulbright scholarship.

118

