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Introduction  

This paper shows representation theorems for quantales and 

complete idempotent left semirings.  

Quantales were introduced by Mulvey(1) in order to provide a 

constructive formulation of foundations of quantum mechanics. 

They are complete join semilattices together with a monoid 

structure satisfying the distributive laws. In the literature, they 

are also known as complete idempotent semirings or standard 

Kleene algebras(2). 

There is a relational quantale whose elements are binary 

relations on a set, whose order is given by inclusion, and whose 

monoid structure is given by relational composition and the 

identity relation. Relational quantales play an important role in 

computer science. For example, they are models for the 

semantics of non-deterministic while-programs(3,4), they also 

provides a sound and complete class of models for linear 

intuitionistic logic(5), and so on. 

In Stone's representation theorem for Boolean algebra or 

Priestley's representation theorem for bounded distributive 

lattices, a powerset is regarded as a standard Boolean algebra 

or a standard bounded distributive lattice(6,7). On the other hand, 

since a relational quantale has been regarded as a `standard 

quantale', some results called `relational representation theorem 

for quantales' have been shown in the literature. 

However, relational quantales in their results are not equal to 

the standard relational quantales. 

For example, Valentini(8) shows that a quantale is 

isomorphic to a sub-quantale of the quantale whose elements 
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are binary relations on . However, the order of the quantale 

is not given by inclusion, but the opposite order of inclusion. 

Brown and Gurr(9) show that a completely coprime algebraic 

quantale  is isomorphic to a sub-quantale of the quantale 

whose elements are binary relations on  and whose order is 

given by inclusion. However, the unit of the monoid structure 

of the quantale is not equal to the identity relation. 

Palmigiano and Re(10) give a sufficient condition for a 

quantale to be isomorphic to a sub-quantale of the quantale 

whose elements are binary relations on a set and whose order is 

given by inclusion and whose monoid structure is given by 

relational composition and the identity relation. Indeed, this 

result means `relational representation theorem'. It is important 

point to embed a quantale  in the relations not on  but on 

the set of all atoms of . 

However, the result given in the paper(10) is a relational 

representation theorem for `unital involutive quantales'. A 

quantale  is involutive if it is endowed with a unary 

operation . such that, for all  and every , 

1. , 

2. , 

3. . 

This paper gives a relational representation theorem for 

quantales which are not in general involutive. Similarly to the 

papers(10,11), our representation theorem shows that a quantale 

 satisfying some condition is isomorphic to a sub-quantale of 

the quantale whose elements are binary relations on the set of 

all atoms of (12,13). 

The main theorem Theorem 4 of this paper says that for a 

quantale , the following are equivalent. 

1.  has a relational representation in our way and it is 

CCP-invertible. 



 

2.  is isomorphic to  as complete join 

semilattice for some set . 

3.  is atom-algebraic and it is a frame. 

4.  is atom-algebraic and its atoms are completely 

coprime. 

5.  is completely coprime algebraic and its 

completely coprime elements are atoms. 

6.  is is completely coprime algebraic and the order of 

its completely coprime elements is discrete. 

This theorem asserts that a quantale has a relational 

representation, if it is isomorphic to a powerset as complete 

join semilattice. A powerset quantale has four other equivalent 

conditions. The notion of a CCP-invertible quantale is defined 

in this paper. When a quantale is CCP-invertible, it has a 

relational representation in our way if and only if it is 

isomorphic to a powerset as complete join semilattice. 

Powerset quantales are examples of `completely coprime 

algebraic quantales' which is the sufficient condition given in 

the paper(9). However, our result is not an application of the 

result in the paper(9) to powerset quantales, since our 

representation theorem embeds a quantale  in the relations 

not on  but on the set of all atoms of . 

Similarly to quantales, we also show a representation theorem 

for powerset complete idempotent left semirings(14). Complete 

idempotent left semirings are a relaxation of quantales by 

giving up strictness and distributivity of composition over 

arbitrary joins from the left. We show that powerset complete 

idempotent left semirings can be represented not only by 

relations but also by multirelations. 

This paper is organized as follows. Section 2 defines 

completely coprime algebraic quantales and Section 3 defines 

powerset quantales. Section 4 shows that a quantale has a 

relational representation, if it is isomorphic to a powerset as 

complete join semilattice. Section 5 shows that a quantale 

satisfies the condition, if it has a relational representation in our 

way and it is CCP-invertible. Section 6 shows a multirelational 

representation theorem for powerset complete idempotent left 

semirings. Section 7 summarizes this work and discusses 

future work. 

 

Completely Coprime Algebraic Quantales 

In this section, we recall the notion of completely coprime 

algebraic quantales and show some examples. A quantale is 

called completely coprime algebraic depending only on its 

underlying complete join semilattice structure. The 

terminology in this section relies on the paper(9). 

Definition 1 (complete join semilattice). 
A complete join semilattice is a tuple  with the 

following properties: 

1.  is a partially ordered set. 

2.  is the join (i.e., the least upper bound) for each 

subset  of . 

A complete join semilattice must have the least element, 

which is the join of the empty subset. We write  for it.  

A complete join semilattice must be a complete lattice, since 

the meet of a subset  is the join of all lower bounds of . We 

write  for the meet of . 

Definition 2. 
An element  of a complete join semilattice  is called 

completely coprime (or completely join-prime), if 

 

for each subset  of . 

We write  for the set of all completely coprime 

elements of . 

Remark 1. 
 is not completely coprime, since . 

Definition 3 (completely coprime algebraic). 
A complete join semilattice  is called completely coprime 

algebraic (or CCPA) if for each , the following equation 

holds. 

 

Definition 4 (quantale (or complete idempotent semiring)). 
A quantale is a tuple  with the following 

properties: 

1.  is a monoid. 

2.  is a complete join semilattice. 

3.  for each element  and 

each subset  of . 

4.  for each element  and 

each subset  of . 

A quantale  is called completely coprime 

algebraic if  is completely coprime algebraic. 

Example 1. 
For a set , the tuple  forms a 

quantale where 

  is the set of all binary relations on , 

  is the inclusion , 

  is the union operator , 



  is the composition of  and , and 

 is the identity (diagonal) relation on . 

Here, the composition  is defined as follows. 

) 

A binary relation on  is completely coprime in  if 

and only if it is a singleton subset of .  is 

completely coprime algebraic, since for , 

 

 

 

 

The powerset of a monoid forms a quantale. This paper 

gives only two examples for monoids. 

Example 2. 
For a set , the tuple  forms a 

quantale where 

  is the powerset of  where  is the set of all 

finite sequences of elements of , 

  is the inclusion , 

  is the union operator , 

  is , and 

 is the singleton set of the empty sequence on . 

A subset of  is completely coprime if and only if it is a 

singleton subset.  is completely coprime algebraic. 

Example 3. 
The tuple  forms a quantale where 

  is the powerset of the group 

, 

  is the inclusion , 

  is the union operator , 

  is , and 

 is the set . 

A subset of  is completely coprime if and only if it is a 

singleton subset. This quantale is completely coprime 

algebraic.  

Example 4. 
The tuple  forms a quantale where 

  is the set of all natural numbers and the additional 

element , 

  if and only if , , or  is a 

natural number greater than , 

  is the minimum number of except for 

, 

  is except for , and 

 is the zero number. 

This quantale is completely coprime algebraic and 

. 

 

Powerset Quantales 

In this section, we recall the notion of atom and define the 

notion of atom-algebraic. We compare a powerset semilattice 

with the four conditions based on completely coprime elements 

or atoms. Finally, we define the notion of powerset quantale. 

Definition 5 (atom). 
An atom of a complete join semilattice  is an element  with 

the following properties: 

1. . 

2.  implies . 

We write  for the set of all atoms of . 

Definition 6 (atom-algebraic). 
A complete join semilattice  is called atom-algebraic if for 

each , the following holds. 

 

We also recall the notion of frame. 

Definition 7 (frame). 
A complete join semilattice  is called a frame if 

 

for each element  and each subset  of . 

Example 5. 
In  of Example 1,  of Example 2, and   

of Example 3, an element is an atom if and only if it is a 

singleton subset. They are atom-algebraic and they are frames. 

Theorem 1. 
For a complete join semilattice , the following are equivalent. 

1.  is isomorphic to  for some set . 

2.  is atom-algebraic and it is a frame. 

3.  is atom-algebraic and its atoms are completely 

coprime. 

4.  is completely coprime algebraic and its completely 

coprime elements are atoms. 

5.  is completely coprime algebraic and the order of its 

completely coprime elements is discrete. 

Proof. 

 ( ) 



 

A subset  of  is an atom in  if and only if  is a 

singleton subset.  is an atom-algebraic frame. 

( ) 

Let us show that an atom  of a frame  is completely 

coprime, that is, 

 

for each subset  of . RHS implies LHS, since 

. To show that LHS implies RHS, assume that . 

Since  is a frame and , we have 

. Since is an atom, we have 

. Therefore, there exists  satisfying 

. Since is an atom and , we have 

.  Therefore, we have . 

( ) 

Let  be atom-algebraic and assume that its atoms are 

completely coprime.  is completely coprime algebraic, since 

the following holds. 

 

 

 

Let be completely coprime. The following holds. 

 

 

 

 

Therefore,  is an atom. 

( ) 

Let  be completely coprime algebraic and assume that its 

completely coprime elements are atoms. Assume that there are 

completely coprime elements  satisfying  and 

. Since  is also an atom, .  But since  is also 

an atom, . It is a contradiction. Therefore, the order of 

completely coprime elements is discrete. 

( ) 

Let  be completely coprime algebraic and assume that the 

order of its completely coprime elements is discrete. Let  be 

a function  such that 

. Let  be a function 

 such that . We have 

 for all , since 

 and  is completely coprime algebraic. 

Since the order of  is discrete, an arbitrary subset of 

 is down-closed. Therefore,  satisfies 

 

 

 

.  

 

When these conditions are satisfied by a quantale, we call it 

a powerset quantale. Every powerset quantale  satisfies 

.  

Example 6. 
 in Example 1,  in Example 2, and  in 

Example 3 are powerset quantales.  

We also give an example of completely coprime algebraic 

quantale which is not a powerset quantale. 

Example 7. 
 in Example 4 is completely coprime algebraic and it 

is a frame. However, it has no atoms. Therefore, it is not a 

powerset quantale. 

 

Representation Theorem for Powerset Quantales 

This section shows that a powerset quantale has a relational 

representation. 

Theorem 2. 
Let   be a quantale. If  is a powerset 

quantale, then the following function  

is an injective homomorphism of quantales. 

 

Proof. 

By Theorem 1,  is completely coprime algebraic and the 

order of its completely coprime elements is discrete. 

(  preserves joins) 

 

 

 

          (by ) 

 

 

(  preserves ) 

 



 

 

 

 

 

(  preserves )  

 

 

 

     (since CCP(Q) is discrete) 

(  is injective) 

For all , we have the following equation. 

 

 

 

 

 

 

 

Here, if  satisfy , then we have 

 as follows. 

 

 

 

 

 

Since the above function  is an injective homomorphism, 

the image of  by  is isomorphic to  and it is a 

sub-quantale of . 

We give some examples. 

Example 8. 
 in Example 1 is a powerset quantale.  Therefore, by 

Theorem 2,  has a relational representation. The 

injective map  from  to  is 

given as follows. 

 

Since  is the set of singleton subsets of , 

 can be also given as follows. 

 

  

  

 

Example 9. 
Similarly,  in Example 2 has a relational representation. 

The map  is injective from  to 

. The map  is given as 

follows. 

 

Since  is the set of singleton subsets of ,  

can be also given as follows. 

 

 

 

Example 10. 
Similarly,  in Example 3 has a relational representation. 

The injective map  from  to  

is given as follows. 

 

Since  is the set of singleton subsets of ,  

can be also given as follows. 

 

 

 

Example 11. 
For a frame , the tuple  is a quantale 

where T is the greatest element. If it is also atom-algebraic, 

then it has a relational representation by Theorem 2 and 

Theorem 1. 

 

CCP-invertible Quantale 

Section 4 shows that a powerset quantale has a relational 

representation. Conversely, if a quantale has a relational 

representation in the same way as Section 4, is it then a 

powerset quantale? The answer is 'Yes', if it is CCP-invertible. 

Definition 8 (CCP-invertible). 
A quantale  is called CCP-invertible, if for all 

, for all , the following holds. 

 

Theorem 3. 
Let  be a quantale.  The following are 

equivalent. 



 

1. The following function 

  

is an injective homomorphism of quantales and  is 

CCP-invertible. 

2.  is a powerset quantale. 

Proof. 

( ) 

Let  be an element of . Since  is a homomorphism of 

quantales and  is CCP-invertible, we have the following 

diagram. 

 

 

 

 

 

 

Moreover, since  is injective, we have

 

Therefore,  is completely coprime algebraic. 

Since  preserves 1, for ,  if and 

only if  Therefore, the order of completely coprime 

elements of  is discrete. 

( ) 

By Theorem 2,  is an injective homomorphism of quantales. 

Let  be an element of  and  elements of . 

Since  is completely coprime algebraic, we have 

  

 

 

 

Therefore,  is CCP-invertible. 

 

Example 12. 
 in Example 1 is CCP-invertible, since  in 

Definition 8 is given by  where  is the opposite 

relation of . 

Example 13. 
 in Example 2 is CCP-invertible, since  in Definition 

8 is given by  where  and .  

Example 14. 
 in Example 3 is CCP-invertible, since  in Definition 

8 is given by  where  and 

. 

Example 15. 
 in Example 4 is CCP-invertible, since  in 

Definition 8 is given by . However, the order of its 

completely coprime elements is not discrete. Therefore, by 

Theorem 3,  is not an injective homomorphism of quantales.  

Example 16. 
The ordered set of Fig 1 forms a quantale where 

 except for . It is not CCP-invertible, 

since the set of its completely coprime elements is  and 

 but . 

 

Fig.1. A quantale which is not CCP-invertible 

Example 17. 
The ordered set of Fig 2 forms a quantale where 

 except for . This quantale is 

CCP-invertible. However, this quantale is not completely 

coprime algebraic, since the set of its completely coprime 

elements is , but . Therefore, by Theorem 3, 

 is not an injective homomorphism of quantales. 

 

Fig. 2. A quantale which is CCP-invertible 
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  Remark that there exist other relational representations of 

Example 17, for example, the following function 
(9). 

 

 

 

 

 

Example 18. 
 in Example 11 is CCP-invertible, since  in 

Definition 8 is given by . 

We can summarize our results for quantales as follows. 

Palmigiano and Re(10) show `relational representation theorem' 

for `unital involutive quantales'. On the other hand, our 

relational representation theorem can be applied to quantales 

which are not in general involutive. 

Theorem 4. 
For a quantale , the following are equivalent. 

1. The following function  

 

is an injective homomorphism of quantales and  is 

CCP-invertible. 

2.  is isomorphic to  as complete join semilattice 

for some set . 

3.  is atom-algebraic and it is a frame. 

4.  is atom-algebraic and its atoms are completely 

coprime. 

5.  is completely coprime algebraic and its completely 

coprime elements are atoms. 

6.  is completely coprime algebraic and the order of its 

completely coprime elements is discrete. 

Proof. 

This theorem is implied by Theorem 1 and Theorem 3. 

 

 

Representation Theorem for Powerset Complete 

Idempotent Left Semirings 

This section shows a representation theorem for powerset 

complete idempotent left semirings.  

It is known that the set of up-closed multirelations over a set 

forms a complete idempotent left semiring together with union, 

multirelational composition, the empty multirelation, and the 

membership relation. Similarly to quantales, this section shows 

the powerset condition is sufficient for a complete idempotent 

left semiring to be isomorphic to a complete idempotent left 

semiring consisting of up-closed multirelations, in which all 

joins, the least element, multiplication, and the unit element are 

respectively given by unions, empty multirelations, the 

multirelational composition, and the membership relation.  

Definition 9 (complete idempotent left semiring). 
A complete idempotent left semiring is a tuple  

with the following properties: 

1.  is a monoid. 

2.  is a complete join semilattice. 

3.  for each element  and 

each subset  of . 

A complete idempotent left semiring  is called 

completely coprime algebraic if  is completely 

coprime algebraic. A powerset complete idempotent left 

semiring is a complete idempotent left semiring which is 

isomorphic to  as complete join semilattice for some set 

. 

Definition 10 (multirelation). 
A multirelation on a set  is a subset of . A 

multirelation  on a set  is called up-closed if  

and  imply . 

Example 19. 
For a set , the tuple  forms a 

complete idempotent left semiring where 

  is the set of all multirelations on , 

  is the inclusion , 

  is the union operator , 

  is defined by 

, 

 is . 

The next theorem means that a powerset complete 

idempotent left semiring has a multirelational representation. 

This theorem is proved in the paper(14).  

Theorem 5. 
Let  be a complete idempotent left semiring. If 

 is a powerset complete idempotent left semiring, then the 

following function  is an 

injective homomorphism of complete idempotent left semirings. 

 

Here, we write  for the following set of completely 

coprime elements. 

 

Example 20. 
The ordered set of Fig 3 forms a complete idempotent left 

semiring where  except for  



 

and . It is a powerset complete idempotent left 

semiring but not a powerset quantale.  

 

Fig. 3. A powerset complete idempotent left semiring 

 

Our multirelational representation theorem for powerset 

complete idempotent left semirings can be also extended as 

follows. The proof is described in the paper(14). 

Theorem 6. 
Let  be a complete idempotent left semiring.  

The following are equivalent. 

1. The following function  is 

an injective homomorphism of complete idempotent left 

semirings,  is CCP-invertible, and  reflects the 

order.  

 

2.  is a powerset complete idempotent left semiring. 

 

Conclusion 

Our main theorem is a relational representation theorem for 

powerset quantales. Conversely, if a quantale has a relational 

representation in the same way and it is CCP-invertible, then it 

is a powerset quantale. Similarly, a multirelational 

representation theorem for powerset complete idempotent left 

semirings is also proved. 

It is future work to extend our representation theorem to a 

Stone-type duality(7). 

As shown in Example 15,  for  is not an 

injective homomorphism. However, we do not know whether 

there exist other relational representations of  than . 

It is also future work. 
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