S. On Rings Having G-Global Dimension Zero

Y. Kurata, K. Koike and K. Hashimoto

Let R be a ring with identity. There have been several interesting results which assert under suitable assumption that R is a ring direct sum $R = R_0 + R_1$ where R_0 is semisimple and R_1 has, for example, essential singular ideal. However, it seems to us that these decomposition theorems can be treated in a mass. In this paper we shall try to unify these theorems.

Let $I = (\operatorname{soc}(_{R}R))^{2}$ and let

$$C = \{ {}_{R}M | IM = M \}, T = \{ {}_{R}M | IM = 0 \} \text{ and } F = \{ {}_{R}M | r_{M}(I) = 0 \},$$

where $r_M(-)$ means the right annihilator in M.

First, we shall characterize rings R with the ring decomposition of the form $R = I + r_R(I)$. Generalizing a previous result, we shall show that, over a ring R with a complete orthogonal set of primitive idempotents, R has the decomposition of this form if and only if the Jacobson radical J of R is in T. Semiperfect left P-injective rings and semiperfect left mininjective rings are examples of R having the decomposition of this form.

Next, we shall characterize rings R with the ring decomposition of the form R = I + G(R). It is shown that R has the decomposition of this form if and only if R has G-global dimension zero.

Finally, we shall treat semilocal rings. Every semilocal ring R has a decomposition $R = R_0 + R_1$ of left ideals R_0 and R_1 , where R_0 is semisimple and J is essential in R_1 . It is shown that this decomposition coincides with $R = I + r_R(I)$ if and only if $J \in T$ and it coincides with R = I + G(R) if and only if $J \in T(G)$. If R is a semilocal ring with essential left socle and $J \in T$, then (C, T, F) has length 2 and hence R has G-global dimension zero. Examples of such rings are semisimple rings, QF-rings, dual rings, left GPF rings, left min-PF rings, and also left PF-rings.

The detailed version of this paper will be submitted in publication elsewhere.