C-5.

1996年度 総合理学研究所 共同研究報告書

1. テーマ

<ベンゼンのヒドロキシル化反応に対する修飾ヘテロポリ酸塩を利用した触媒設計>

2. 研究メンバー

代表者 野宮健司 (神奈川大学理学部 教授) 共同研究者 力石紀子 (神奈川大学理学部 助手)

- 3. 研究期間 平成8 年4 月1 日 ~ 平成9 年3 月31日
- 4. 研究の概要

Using selectively site-substituted vanadium(V) Keggin and Dawson heteropolytung states (HPA), the catalytic activities for hydroxylation of benzene in the presence of 30 % aqueous H_2O_2 were examined at room temperature under atmospheric pressure in a two liquid phase, aqueous and organic process. In particular, potassium salts of di- and tri-vanadium(V) substituted Keggin HPAs, α -1,2-PW₁₀V₂ and α -1,2,3-PW₉V₃, showed 0.81 and 8.69 catalytic turnovers for phenol production with excellent selectivity, respectively, for 48 h reaction under the conditions: 0.1 mmol catalyst, 1 mL (11.3 mmol) benzene, 2 mL of acetonitrile and 2 mL of 30 % H_2O_2 . The activity of tri-substituted, PW₉V₃, HPA was initially high, but it maximized after 48 h and its structure completely decomposed, whereas that of di-substituted, PW₁₀V₂, HPA gradually increased and exceeded that of the PW₉V₃ after 120 h. The polyoxoanion structure of the PW₁₀V₂ was maintained even after 576 h. Their activities and stabilities as catalysts were compared with those of vanadium(V)-substituted Dawson HPAs (α -P₂W₁₇V and α -1,2,3-P₂W₁₅V₃), vanadium(V)-containing isopolyanions (IPA; VW₅ and V₁₀), the Milas reagent (V₂O₅ and aqueous H₂O₂), and the picolinato-vanadium(V) oxo peroxo complex.

Keywords: hydroxylation, benzene, vanadium(V)-substituted polyoxoanions, Keggin-type, Dawson-type, heteropolytungstate, catalyst precursor

<発表論文>

K. Nomiya, H. Yanagibayashi, C. Nozaki, K. Kondoh, E. Hiramatsu, and Y. Shimizu, J. Mol. Catal, A114, 181 - 190 (1996).