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1 Introduction

Competitive equilibrium in the overlapping generations (OLG) model might not achieve an optimal

allocation, even when markets operate perfectly, as in the Arrow-Debreu abstraction. It is understood

that this sort of inefficiency is caused by the lack of a transversality condition at infinity. Therefore,

lots of studies have tried to characterize equilibrium optimality of the OLG model in a various level of

generality : Peled (1984), Aiyagari and Peled (1991), Manuelli (1990), Chattopadhyay and Gottardi

(1999), Chattopadhyay (2001, 2006), and Bloise and Calciano (2008) are such examples.

These studies, however, considered models without demographic shocks. In order to design active

policies such as social security which remedy inefficiency, it is important to consider the presence of

demographic shocks. A triplet of studies per Demange and Laroque (1999, 2000, 2001) addressed this

issue on optimality under demographic shocks. They showed in several OLG frameworks that optimal-

ity of intergenerational transfer is characterized by the condition on the dominant root of the matrix of

marginal rates of substitution adjusted by population growth. More precisely, the dominant root must

be equal to one.

Here, we should note that Demange and Laroque considered a model with time running from －∞

to∞, which implies the fact that their model has no initial old , which is the oldest generation in the

initial period. In order to design social security systems, however, the policymaker might also con-

sider olds generations in the period wherein the policy begins. Therefore, this article aims to reexam-

ine optimality under demographic shocks in the model with the initial period and the initial old.

In order to shed light to the presence of demographic shocks and the initial old, we consider a very

simple, but rather canonical, pure-endowment model of overlapping generations. Time runs from the

initial period to infinity. The stochastic environment is described by a time-homogeneous Markov
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chain. At each date-event, there is a single perishable good and a new generation, consisting of homo-

geneous agents living for two periods, is born. The demographic shocks enter into the economy

through the growth rates of population. In this stochastic OLG model, we first find that the Demange

and Laroque (DL) criterion is equivalent to conditional golden rule optimality (CGRO), which is an op-

timality criterion completely ignoring welfare of the initial old.

Instead of CGRO, we also consider conditional Pareto optimality (CPO), which copes with welfare of

initial old, as a criterion of optimality.1 According to CGRO and CPO, agents’ welfare is evaluated by

conditioning their utility on the state at the date of their birth. Agents are therefore distinguished not

only by their type and date of birth but also by the state at that date, and an agent’s preference is de-

fined over a set of contingent consumption streams available in the two periods of that agent’s life-

time. CPO is then characterized by the condition on the dominant root of the matrix of marginal rates

of substitution adjusted by population growth. More precisely, the dominant root is allowed to be less

than one, whereas CGRO requires the dominant root begin equal to one.

This article also applies characterizations of CPO and CGRO to examine equilibrium welfare. It has

been known that a stationary equilibrium with circulating money achieves CPO. By applying our re-

sults to welfare on stationary monetary equilibrium, we can conclude that a stationary monetary equi-

librium achieves not only CPO but also CGRO. This result may be interpreted as the first welfare

theorem in a financial economy.

The organization of this paper is as follows : Section 2 presents details of the model. Section 3 in-

troduces the Demange and Laroque criterion for optimality and shows that it is equivalent to ignoring

the welfare of the initial olds. Section 4 define CPO and provides its characterization. Section 5 applies

previous results to equilibrium allocations. Proofs of results are provided in Section 6. Section 7 pro-

vides some concluding remarks.

2 The Model

This article considers a stationary, one-good, finite-state, pure-endowment stochastic overlapping

generations model with demographic shocks, wherein agents live for two periods.

Time and Stochastic Structures. Time is discretely runs from 1 to ∞. The stochastic environment is

modeled by a time-homogenous Markov process with its state space S , where S is a nonempty finite

set and satisfies that 0 ∈／ S . The state s0 ∈ S in (implicitly defined) period 0 is treated as given. The

date-event tree, Γ, is then defined as follows : (i) the root of the tree is s0 ; (ii) the set of nodes at date

t is denoted by Σt where we set Σ1
._._｛s0｝×S and, iteratively, Σt

._._Σt−1×S for t� 2 ; and (iii) Σ._._∪t�1 Σt

and Γ._._｛s0｝∪ Σ.2 Given any node σ ∈ Γ, its predecessor node is uniquely defined and denoted by σ −.

Moreover, its Markov (terminal) state is denoted by s(σ).

Demographic Structure. Demographic shocks are assumed to enter the economy through the

1 CPO was first proposed by Muench (1977).
2 This is a standard de finition of the date-event tree. See Chattopadhyay (2001) for example.
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growth rates of population. At each node σ ∈ Σ, a new generation consisting of homogenous agents

living for two periods is born. The population of the generation born at each σ ∈ Σ is denoted by N

(σ) and assumed to satisfy that N (σ) ＝ ns(σ) N (σ－), where ns ＞ 0 is the growth rate of population at

state s ∈S and N (s0) is a given positive number.

Endowments and Preference Structures. We assume that the economy is stationary, i.e. : the en-

dowments and preference structures of each agent depend only on the realizations of the Markov

state during his/her lifetime, not on time or on past realizations. Therefore, (i) the endowment stream

of each agent born at state s ∈S is denoted by ωs ＝ (ω 1
s , (ω 2

ss′)s′∈S) ∈�＋＋×�S
＋＋ and (ii) his/her life-

time utility function is denoted by U s :�＋×�S
＋→�, where ω 1

s and (ω 2
ss′)s′∈S describe the endowments

at birth and all states in the following period. It is assumed that ωs ≫ 0 and U s is strictly monotone in-

creasing, strictly quasi-concave, and continuously differentiable on the interior of its domain.3

Initial Olds. In addition, a one-period lived generation, the members of which are called initial old

agents or simply initial olds, is born after the realization of state s1 ∈ S in period 1. The population of

the initial olds is given by N (s0) as defined above. Each initial old born at state s1 in the initial period

is assumed to be endowed with ω 2
0s1

._._ ω 2
s0 s1 units of the consumption good in his/her lifetime and his/

her consumption streams c 2
0s1∈�＋ is ranked according to a utility function u0(c 2

0s1)._._c 2
0s1.

Stationary Feasible Allocations. We denote by cσ (σ′) the amount of the consumption good at node

σ′consumed by an agent born at node σ (by an initial old if σ＝s0). Then, the resource constraints of

this economy can be given by

(∀σ∈ Σ1) N (σ)cσ(σ) ＋ N (s0)c 2
0 ＝ N (σ)ω 1

s(σ) ＋ N (s0)ω 2
0s(σ)

(∀t� 2)(∀σ∈ Σt) N (σ)cσ(σ)＋ N (σ −) cσ−(σ) ＝ N (σ)ω 1
s(σ) ＋ N (σ −)ω 2

s(σ−)s(σ)

or equivalently

(∀σ∈ Σ1) ns(σ)cσ(σ) ＋ c 2
0 ＝ ns(σ)ω

1
s(σ) ＋ ω 2

0s(σ)

(∀t � 2)(∀σ ∈ Σt) ns(σ)cσ(σ) ＋ cσ−(σ) ＝ ns(σ)ω
1
s(σ) ＋ ω 2

s(σ−)s(σ).

In order to bring out the sharp contrast between our results and those of Demange and Laroque

(1999), we concentrate our attention on “stationary” feasible allocations, not on “all” feasible alloca-
－tions, throughout the rest of this paper. Let S0

._._ {0} ∪S and ωss′
._._ ns′ω

1
s′＋ω 2

ss′for each (s, s′) ∈ S0 ×

S , which is the total endowment when the current and preceding states are s′and s, respectively.4 A

stationary feasible allocation of this economy is a pair c ＝ (c 1, c 2) of functions c 1 : S → �＋ and c 2 : S0

×S → �＋ such that

－(∀(s, s′) ∈ S0 ×S ) ns′c 1
s′＋ c 2

ss′＝ωss′,

3 In the rest of this study, we denote by U s
1 (c1, c2) and U s

s′(c1, c2) the partial derivatives ∂U s(c1, c2)/∂c1

and∂U s(c1, c2)/∂c2
s′for all s, s′∈S and all (c1, c2) ∈�＋×�S

＋, respectively.
4 We introduce S0 to distinguish initial olds’ consumption from consumption in the second period of newly

born agents.
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where c 2
0s1∈ �＋ is the consumption of initial olds born at period 1 state s1, and cs ＝(c 1

s , (c 2
ss′)s′∈S) ∈ �＋

× �S
＋ is the consumption stream of the agent born at the Markov state s. Note that the stationary fea-

siblity of an allocation c does not necessarily imply that c 2
0s′＝c 2

ss′for each s, s′∈S , whereas it holds
－ －that ω0s′－c 2

0s′＝ωss′－c 2
ss′. Let A be the set of all stationary feasible allocations with its generic element

c . Note that A is nonempty, bounded, closed, and convex. A stationary feasible allocation c is interior

if c 1
s ＞ 0 and c 2

ss′＞ 0 for all s, s′∈S .

3 Conditional Golden Rule Optimality

Optimality under demographic shocks in a stochastic overlapping generations model is already stud-

ied per Demange and Laroque (1999, 2000, 2001). However, they considered a model without the in-

itial period and therefore there exists no initial old in their model. Therefore, this section aims to re-

examine their characterization of optimality in a model with the initial period (and the initial olds).5

In order to present Demange and Laroque’s results, we introduce several notations. Given an inte-

rior stationary feasible allocation c ＝ (cs)s∈S, let mss′(c ) ＝ U s
s′(cs)/U s

1 (cs) and let M (c )＝［ns

mss′(c)］s,s′∈S, which is the matrix of the marginal rates of substitution adjusted by population growth.

The current restrictions on preferences imply that M (c) is a positive square matrix. By the Perron-

Frobenius theorem,6 any positive square matrix M has a unique dominant root. This paper denotes by

λf(M ) the dominant root of a positive square matrix M . Given these notations, we can present the De-

mange and Laroque (DL) criterion of optimality as follows :

DL Criterion. An interior stationary feasible allocation c satisfies the DL criterion if it satisfies that

λf(M (c)) ＝ 1.

The DL criterion says that the dominant root of the matrix of marginal rates of substitution, ad-

justed by population growth, is equal to one. In order to examine this criterion, we also introduce a

criterion of optimality, conditional golden rule optimality (CGRO). For any two stationary feasible allo-

cations b , c ∈A , we say that b CGRO-dominates c if

(∀s ∈ S ) U s(bs)�U s(cs)

with strict inequality somewhere. CGRO is then defined as follows :

Conditional Golden Rule Optimality. A stationary feasible allocation c is conditionally golden rule op-

timal if there exists no stationary feasible allocation b that CGRO-dominates c .

Note in this definition of CGRO that agents’ welfare is evaluated by conditioning their utility on the

state at the date of their birth. Agents are thus distinguished not only by their type and date of birth

5 Precisely, Demange and Laroque (1999, 2001) considers productive labour supply and storage technology.
However, their argument can be easily tailored to our pure-endowment environment.

6 See, for example, Debreu and Herstein (1953) and Takayama (1974) for more details on the Perron-
Frobenius theorem.
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but also by the state at that date, and an agent’s preference is defined over a set of contingent con-

sumption streams available in the two periods of that agent’s lifetime. Obviously, CGRO does not cope

with welfare of the initial olds.

Our first finding is the equivalency between the DL criterion and CGRO.

Theorem 1 An interior stationary feasible allocation satisfies the DL criterion if and only if it is condi-

tionally golden rule optimal.

In other words, we can find that the DL criterion of optimality does not consider welfare of the in-

itial olds at all. Although there exists no doubt that the DL criterion is one of important criteria of opti-

mality, there seems no reason to allow to ignore welfare of the initial olds. Therefore, we will incorpo-

rate welfare of the initial old into the concept of optimality and provide its characterization in the next

section.

4 Conditional Pareto Optimality

This section introduces “conditional Pareto optimality” (CPO), which is a criterion of optimality of

stationary feasible allocations considering welfare of the initial old, and provide its characterization.7

For any two stationary feasible allocations b and c , we say that b CPO-dominates c if

(∀s ∈ S )
b 2

0s� c 2
0s,

U s(bs)�U s(cs)

with strict inequality somewhere. CPO is then defined as follows :

Conditional Pareto Optimality. A stationary feasible allocation c is said to be conditionally Pareto op-

timal if there exists no other stationary feasible allocation b that CPO-dominates c .

Differently from CGRO, CPO considers the welfare of the initial olds. This section now character-

izes CPO.

Theorem 2 An interior stationary feasible allocation c is conditionally Pareto optimal if and only if

λf (M(c)) is less than or equal to unity.

This theorem says that the dominant root of the matrix of marginal rates of substitution, adjusted

by population growth, is less than or equal to one. By Theorems 1 and 2, we now know that a station-

ary feasible allocation c satisfying the DL criterion implies that λf(M (c))� 1 and therefore it is CPO.

Remark that this characterization of CPO extends Aiyagari and Peled (1991, Theorem 1) by character-

izing the CPO of not an interior stationary “equilibrium” allocation but of an interior stationary “feasi-

ble” allocation under demographic shocks.

7 More precisely, conditional Pareto optimality can be applied to not only “stationary” feasible allocations but
also all feasible allocations. See for example Chattopadhyay and Gottardi (1999).
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This section characterized optimality criteria of stationary feasible allocations by the dominant root

of a matrix related to them in an economy with strictly convex preferences. While the dominant root

of a matrix related to a CGRO allocation must be equal to one, whereas that related to a CPO alloca-

tion is allowed to be less than one. By their characterizations, we might say that the CGRO is a

stronger criterion of optimality than CPO.

5 Optimality of Stationary Equilibrium Allocations

The previous two sections characterized CPO and CGRO of stationary “feasible” allocations. The re-

sults also correspond to welfare analysis of stationary equilibrium. This section examines the relation-

ship between optimality criteria and stationary “equilibrium” allocations.

5.1 Complete Market

We define a stationary equilibrium with complete market, i.e. : a stationary equilibrium at which

agents can buy and sell all contingent commodities in a centralized market.

Denition 1 A pair (Π*, c*) of a positive price matrix Π* ＝ [π*ss′］s, s′∈S of contingent commodities and a

stationary feasible allocation c* ＝ (c*s )s∈S is called a stationary equilibrium if

• for all s ∈ S , c*s belongs to the set
arg max

(cys , cos )∈�＋×�S
＋

�
�
�

U s(cs) : c 1
s ＋�

����

c 2
ss′π*ss′�ω

1
s ＋�

����

ω
2
ss′π*ss′

�
�
�

given π*s ; and
－• for all s, s′∈S , ns′c*1

s′＋c*2
ss′＝ωss′.

In this definition, the former condition is the optimization problem of each agents ∈ S subject to a

lifetime budget constraint, and the latter is the market clearing conditions.

Let (Π, c) be a stationary equilibrium with cs ≫ 0 for all s ∈ S , if any. Since, for all s ∈ S , cs must

be a solution of the optimization problem of agent born at state s, it follows from the Kuhn-Tucker

theorem that there exists some λs� 0 such that

U s
1 (cs) ＝∂U s

∂c 1
s

(cs) ＝ λs,

(∀s′∈ S ) U s
s′(cs) ＝∂U s

∂c 2
s′

(cs) ＝ λsπss′,

where λs is the Lagrange multiplier of the lifetime budget constraint. Note that λs ＞ 0 because U s is

strictly monotone increasing. Thus, we can observe that

(∀s, s′∈ S ) πss′＝ U s
s′(cs)

U s
1 (cs) ＝ mss′(c),

Therefore, the stationary equilibrium contingent claim price matrix Π can be always represented by

the matrix of marginal rates of substitution at the stationary equilibrium allocation c .

The next two propositions follow immediately from the previous observation and Theorems 1 and 2,
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respectively.

Proposition 1 For every stationary equilibrium (Π, c) with cs ≫ 0 for all s ∈ S, c is conditionally Pa-

reto optimal if and only if λf (［ns πss′］s,s′∈S)� 1.

Proposition 2 For every stationary equilibrium (Π, c ) with chs ≫ 0 for all s ∈ S, c is conditionally

golden rule optimal if and only if λf (［nsπss′］s,s′∈S) ＝ 1.

These propositions characterize optimality of stationary equilibrium allocations. While the CPO of

stationary equilibrium allocations is characterized by the dominant root of the contingent claim price

matrix, adjusted by population growth, being less than or equal to one, their CGRO has the dominant

root exactly equal to one. These are natural extensions of Propositions 1 and 2 of Ohtaki (2013) to an

environment with demographic shocks. Remark in these propositions that both the equilibrium price

matrix, Π, and the growth rates of population, n , are observable variables. This indicates that we can

examine equilibrium welfare by observing these variables and do not necessarily require information

about preferences and the initial endowments. This fact is often called the testability or observability of

optimality (Barbie et al., 2007).

5.2 Sequentially Complete Markets with Money

As shown in the previous proposition, a stationary equilibrium itself might not be optimal even

when markets operate perfectly. However, we can construct a market mechanism which generates an

optimal allocation by introducing an infinitely-lived outside asset, which yields no dividend, money.

Suppose in the this subsection that there exists one unit of money. We denote by p (σ) and q(σ) the

real money price and the per-capita real money balance at node σ ∈ Σ, respectively. Obviously, these

have a one-to-one relation to each other, i.e. : p(σ) ＝q(σ)N (σ)at each node σ . Also suppose that spot

markets of one-period contingent claims exist and are complete.

Denition 2 A triplet (q*, Π*, c*) of a positive per-capita real money balance vector q* ∈ �S
＋＋, a posi-

tive price matrix Π* ＝ [π*ss′］s,s′∈S of contingent claims, and a stationary feasible allocation c*＝ (c*s ) s∈S

is called a stationary equilibrium with circulating money if there exists some money holding process

m* : Σ → �and some contingent claim portfolio process θ* : Σ → �S such that

• at each node σ ∈ Σ, (c*s(σ), m*
σ , θ*

σ) belongs to the set
arg max

(cys ,cos ,m ,θ)

�
�
�

U s(cs) :
cys ＝ ω ys − q*s N (σ) m − Σs′∈S θσ(s′) πs(σ)s′

(∀s′∈S ) cos(σ)s′＝ ωos(σ)s′＋q*s′N (σ , s′) ms ＋ θσ(s′)

�
�
�

given q* and p*s ; and

• at each node σ ∈ Σ, m*
σ ＝ 1 and θ*

σ＝ 0.

In this definition, the former condition is the optimization problem of each agent s ∈ S subject to se-

quential budget constraints, and the latter is the asset market clearing conditions. One can easily ver-

ify that the good market equilibrium condition also holds at a stationary equilibrium with circulating
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money. We can then find that an introduction of money may generate a CGRO allocation :

Proposition 3 An interior stationary feasible allocation of a stationary equilibrium with circulating

money, if any, is always conditionally golden rule optimal.

In other words, when a stationary equilibrium with circulating money exists, it always generates a

CGRO allocation. This financial intermediate role of money for remedying inefficiency in the OLG

model is a well-known result in the literature and the last theorem showed that the result still holds

even in the presence of demographic shocks.

6 Proofs

Proof of Theorem 1 . We first claim that c 2
0s ＞ 0 for each interior stationary feasible allocation c and

each s ∈ S . In order to verify this claim, let c be an interior stationary feasible allocation and s ∈ S .

Because c is a stationary feasible allocation, we can obtain that

nsc 1
s ＋ c 2

s0s ＝ ωs0s ＝ ω0s ＝ nsc 1
s ＋ c 2

0s,

which implies that

0 ＜ c 2
s0s ＝ c 2

0s,

where the first inequality follows from the fact that c is interior.

Let c be an interior stationary feasible allocation. It is easy to verify that c is a CGRO allocation if

and only if there exist Pareto weights γ : S → �＋＋ such that

c ∈ arg max
b∈A

�
���

γ sU s(bs).

Define the Lagrangian L by

－L＝�
���

γ sU s(cs) － �
�����������

λss′
�
�ωss′－(ns′c 1

s′＋c 2
ss′)］,

where λ is the Lagrange multipliers for the resource constraint. Note that the objective function is

strictly quasi-concave. Therefore, by Arrow and Enthoven (1961), the CGRO of c can be completely

characterized by the existence of Pareto weights γ : S → �＋＋and Lagrange multipliers λ : S0 ×S →

�＋ which satisfy that

(∀s ∈ S ) γ sU s
1 (cs) ＝�

����

λs's ns ＋λ0s ns, (1)

(∀s ∈ S )(∀s′∈ S ) γ sU s
s′(cs) ＝ λss′, (2)

(∀s ∈ S )－λ0s� 0 with equality if c h2
0s ＞ 0. (3)

Note that, as observed above, we can treat λ0s as zero for each s ∈ S , because c 2
0s ＞ 0 for each s ∈

S . Therefore, we can ignore Eq.(3) and remove λ0sns from Eq.(1).

We should now claim the equivalence between the existence of γ and λ satisfying Eqs.(1)and (2)

with λ0s ＝ 0 and λf (M (c)) ＝ 1. Assume the existence of γ and λ satisfying Eqs.(1)and (2) withλ0s ＝

0 to show λf (M (c)) ＝ 1. Note that, by strict monotonicity of U s, mss′(c) is positive for alls, s′∈ S .
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We can then obtain from Eqs.(1) and (2) with λ0s ＝ 0 that

(∀s, s′∈S ) ns′mss′(c) ＝ λss′
Στ∈Sλτs

.

Then, it follows that

(∀s, s′∈ S ) λss′＝�
���

λτsnsmss′.

Summing this equation over s ∈ S , we have

(∀s, s′∈S ) α = αM (c),

where αs
._._Στ∈S λτs. Note that M (c) is an S × S matrix with positive coefficients. Therefore, it follows

from the Perron-Frobenius theorem that λf (M (c)) ＝ 1.

Assume now that λf (M (c)) ＝ 1. Because M (c) is an S × S matrix with positive coefficients, we

can pick up the row eigenvector α ≫ 0 of M (c). Note that it satisfies that α・ (I－M ) ＝ 0, where I

is the S × S identity matrix. For all s, s′∈ S , define γs and λss′by

γ s ._._ αsns
U s

1 (cs),
λss′

._._ γ sU s
s′(cs).

By their definitions, we can obtain that

(∀s, s′∈S ) λss′＝ αsns
U s

s′(cs)
U s

1 (cs) ＝ αsnsmss′,

so that αs′＝ Σs∈Sλss′for all s′∈ S . It is now easy to verify that γ and λ satisfies Eqs.(1) and (2) with

λ0s ＝ 0. This completes the proof. Q.E.D.

Proof of Theorem 2 . Let c be an interior stationary feasible allocation. It is easy to verify that c is CPO

if and only if there exist Pareto weights γ : S → �＋＋ and γ0 : S → �＋ such that

c ∈ arg max
b∈A

�
�����γ

sU s(bs)＋�
���

γs
0 b 2

0s
�
�.

Define the Lagrangian L by

－L＝�
���

(γ sU s(cs)＋γ s
0c 2

0s) － �
�����������

λss′
�
�ωss′－�

����

(ns′c 1
s′＋c 2

ss′)�	,

where λ is the Lagrange multipliers for the resource constraint. Note that the objective function is

strictly quasi-concave. Therefore, by Arrow and Enthoven (1961), the CPO of c can be completely

characterized by the existence of Pareto weights γ : H×S→�＋＋ and γ0 : H×S→�＋ and Lagrange

multipliers λ : S0 × S→�＋, which satisfy that

(∀s ∈ S ) γ sU s
1 (cs) ＝�

����

λs'sns ＋ λ0sns, (4)

(∀s ∈ S )(∀s′∈S ) γ sU s
s′(cs)＝λss′, (5)

(∀s ∈ S ) γs
0－λ0s� 0 with equality if ch2

0s＞ 0. (6)

Therefore, we should claim equivalence between the existence of γ, γ0, and λ, and λ0 satisfying Eqs.(4)

–(6) and λf (M (c))�1. However, we omit the proof of this claim because its proof strategy is nearly
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identical to that of Theorem 1 of Aiyagari and Peled (1991). Q.E.D.

Proof of Proposition 3 . By the sequential budget constraints of an agent, we can obtain the agent’s life-

time budget constraint such that : at each node σ ∈ Σ,

c 1
s(σ)＋�

����

c 2
s(σ)s′πs(σ)s′�ω ys(σ)＋�

����

ωos(σ)s′πs(σ)s′＋������� qs′ns′πss′－qs(σ)
�
�N (σ) m .

By this equation, we can obtain the no arbitrage condition when the per-capita real money balance is

positive, i.e. : q ＝ Π・q for any stationary equilibrium with circulating money, (q , Π, c), with cs ≫ 0 for

each s ∈ S . In order to verify this, we should show that

(∀s∈S ) qs ＝�
����

qs′ns′πss′.

Suppose the contrary that qs≠Σs′∈S qs′ns′πss′for some s∈S . If qs ＜Σs′∈S qs′ns′πss′ , then agent born at

state s will choose ∞ as m and his/her optimization problem has no solution. On the other hand, if qs

＞ Σs′∈S qs′ns′πss′, then agent born at state s will choose －∞ as m and his/her optimization problem

has no solution.8 In any cases, we obtain a contradiction, so that qs ＝ Σs′∈S qs′ns′πss′for all s ∈S .

Suppose now that there exists at least one stationary equilibrium with circulating money, (q , Π, c),

satisfying that cs ≫ 0 for all s ∈ S . We have obtained that［nsπss′］s',s∈S・q＝q , at which the lifetime

budget constraint coincides with that in the complete market. Because qs is now positive for all s ∈ S ,

it follows from the Perron-Frobenius theorem that the S ×S matrix［nsπss′］s',s∈S with positive coeffi-

cients has the dominant root equal to unity. Now it follows from Proposition 2 that the equilibrium al-

location c is CGRO. This completes the proof of Proposition 3. Q.E.D.

7 Concluding Remarks

This article examines optimality under demographic shocks in a stochastic overlapping generations

model with the initial old. It has been shown that the well-known characterization of optimality in the

previous studies is equivalent to conditional golden rule optimality (CGRO), which is a criterion ignor-

ing welfare of initial old. Therefore, we have introduced conditional Pareto optimality (CPO) to our

model and characterized it. We have shown that both these criteria are characterized by conditions on

the dominant root of the agents’ matrix of marginal rates of substitution adjusted by population

growth. While CGRO requires that the dominant root is exactly equal to unity, CPO allows it to be

less than unity, because CPO copes with an initial condition, whereas CGRO does not. Thus, on the

basis of their characteristics, we might say that CGRO is stronger than CPO as a criterion of optimal-

ity.

It has been known that a stationary monetary equilibrium achieves CPO. By applying our results to

welfare on stationary monetary equilibrium, we can conclude that a stationary monetary equilibrium

achieves not only CPO but also CGRO. This result can be interpreted as the first welfare theorem.

Finally, we have concentrate our attention to the space of all “stationary” feasible allocations. Charac-

8 When one wished to impose the lower bound for possible m , m � 0 for example, the agent born state s
chooses 0 as the amount of money holding. However, this contradicts the fact that m should be equal to 1 at
a stationary equilibrium with circulating money.

経済貿易研究 No.４０ ２０１４58



terizations of optimality of general feasible allocations under demographic shocks are left to the future

research.
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