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INTRODUCTION

The acoustic performance of a splitter duct silencer of the sound stream type with gourd-shaped absorbers was

studied. Silencers of this type are applied to obstruct the transmission waves that pass directly through the straight

airways when silencers of the parallel baffle type are used. These splitter duct attenuators are usually installed in a

HVAC duct or an air passage of large sectional dimensions, and the lowest order several modes in it come into the

important audible range. When the number of the far-field modes possible in all of the connecting straight ducts is

M , the number of the transmission factors between every mode incidence and every mode transmission is amount

to M squared. To determine these transmission factors, the incoming and outgoing wave pressures of N +1 modes

at each interface must be decomposed generally from the sound pressures at 2(N + 1) positions around each

interface for M independent sound field conditions. A significant preciseness is required in the sound pressure

observation to achieve this. Last year [1], we presented transmission factors obtained from sound pressures by a
measurement and a BEM numerical simulation at frequencies below second mode cutoff. The agreement of these

was satisfactory. However, as the number of the possible far-field modes increases, difficulty increases in meeting
the preciseness in the pressure measurement. In this study, we carried out the numerical simulations rigorously to

obtain precise sound pressures in the duct. Consequently, for 2D attenuators of a sound-stream type and a parallel

baffle type as shown in Figure 1, we attained the purpose to determine and to compare the transmission factors

between the incidence and transmission modes possible at frequencies below eighth mode cutoff

DECOMPOSITION INTO TRAVELING WAVE PRESSURES

Taking an interface, the coordinates and the origin (0,0) as shown in Figure 2 in the straight duct region of each

duct connected to the attenuator where evanescent modes from the discontinuities have died out, the sound

pressure p(x, y) is represented as
N N

p(x,y) = LQ(n) exp(-jk~n)x)cos(k~n)y) + Lb(n) exp(+jk~n)x)cos(k~n)y) (1)
n=O n=O

where n(=0,1,2, ... ,N) represents the number of the pressure nodes in the y direction, and lV is the highest

number of the propagating modes for the frequency of interest in the straight duct. The quantities k~n) = n1r / Wand

k~n) = {(m/ c)2 - (k~n)2 }1/2 are the wave numbers of the nth mode in the y and x directions, respectively.

The quantities Q(n) and ben) denote the outgoing and incoming plane wave pressures, respectively, of the nth
mode at the origin. These traveling wave pressures can be determined by solving simultaneously a set of equations
(1) corresponding to the sound pressures p(x, y) at 2(N + 1) positions. These sound pressures were observed by

conducting a BE numerical simulation [2] for both types ofFigure 1 (a) and (b). Typical results of these are shown in

Figure 3.
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DETERMINATION OF CHARACTERISTIC FACTORS

The outgoing wave pressure, al(n) , of the nth mode on a interface f is represented by the superposition of the

contributions of the incoming waves, be'(n') ' of all of the modes n' of all of the interfaces f' as
L NI.'

af(n) = L L 7:fen) P.'(n·)bP.'(n') ' for f =I,ll"", L ,and n =0,1,2,"', N f (2)
P.'= I n'= 0

where N f. and N f' are the highest orders of the propagating modes in the f th and f' th straight duct sections,

respectively, L denotes the number of the ducts connected to the attenuator, and 7:e(n)e'(n') represents the

characteristic transmission (or reflection when f = f') factor between an incoming wave bf.'(n') and its

contribution to an outgoing wave aP.(n)' To determine these factors, M deferent cases of the sound fields were

generated and measured, where M = NI +NIl +... + N L + L. Having and solving a set of M independent

equations (2) for every f(n), we can determine the unknowns 7:l(n)l'(n') of total M without using anechoic

terminations.

TRANSMISSION FACTORS

Figure 4 shows the amplitude of the transmission factors 7:11(0) 1(0) of the attenuators installed in a straight duct

section as shown in Figure 1. The glass fiber blanket of 32 kg 1m3 and the flow resistance of 8500 kg .s 1m3 was

supposed. The empirical formulae by Delany and Bazley [2] were employed to give the acoustic properties of the

blanket. Since the attenuators have symmetry in shape and were installed in a straight duct section, the transmission

and reflection factors related to the non-zero order modes, though these results are omitted here, were negligibly
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Fig.! Splitter duct attenuators studied
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Fig.2 Pressures, traveling wave pressures and transmission factors
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(c) Parallel baffle type 6000Hz (2 W/'A=7.06)

Fig.3 Pressure (in dB) and net-intensity distributions around absorbers

small compared with those for the fundamental mode incidence and the fundamental mode transmission, 'fII(O) 1(0)

and 'fI(O) 1(0). The frequency of the maximum transmission loss of the fundamental mode (the least attenuation
mode) for the parallel baffle attenuator of finite length is higher than that given by the Scott's theory [3] for infinite

length liners. The obstruction effect of the zigzag airway on the passing-through transmission shows a tendency to be
cancelled out by the sound waves passing through the absorbers of the sound-stream attenuator. This passing­

through transmission in the absorbers is interrupted significantly by a plate inserted in a absorber as shown in the

Figure 5.
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Fig.4 Characteristic transmission factors (oth mode incidence and oth mode transmission)

bl(OIl-. .'Y'JV --;
I ~OO i

a I(Or*I~...·.:.I_vv:\ I

I with plate I

~ 0~~---~2----;-1-3----.--14---oI-S-2-W;-'I'A.-,

~ I V).ZV I
4+++ Y"'\J\:..

~!~ ~ I

••••••••.,...".. •••••• I w.o.plate I

" -:\l j ·.:..•..•..••·.."~~·-.j~~

~10

e
~

::20
b.Ooo

N
I 30

CI.!'"
Cl.!
o
~
s:: 40
o

'r;;
Cl.!

·s 50
CI.l

~
~

601::..- ---'- -L...-__---'- ~

~ 0 1 2 4 IS 2WI'A.

::~ -t~::I-I+-~
2-10 '" I \J\J
§ ~ i /\./V\. I
P 't1l(0)1(0) .~\ ~ /w.o.plate'
020 '. ~ _____

130 \···· ·7 ····· ..
~. ! \.A..£:J ! ··•·..·v..·
~40 bl«()F ~ ~I~all(OI
o I ~ I

.~ I /\J\J\. I

.~ 50 with plate I

~r=
60c=..-__-L-__----L ....I.-__-----''--__---LI

1000 2000 3000 4000 5000 1000 2000 3000 4000 5000

Frequency [Hz] Frequency [Hz]
(a) Transmission factors (b) Reflection factors

Fig.5 Effect of insertion of a plate on charastristic transmission and reflection factors
(oth mode insidence and Othmode transmission)

CONCLUSIONS

The transmission and reflection coefficients of splitter duct attenuators of a parallel baffle type and a sound-stream

type were determined for the incidence and transmission modes possible at frequencies below eighth mode cutoff in

each connecting ducts. It was found that the frequency of the maximum transmission loss of the fundamental mode

for the parallel baffle attenuator of finite length was higher than that given by the Scott's theory for infinite length

liners. The obstruction effect of the zigzag airways on the passing-through transmission shows a tendency to be

cancelled out by the sound waves passing through the absorbers of the sound-stream attenuator.
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