## 1---Q---18 ヘルムホルツ共鳴器開口部の流動抵抗測定

○寺尾道仁, 関根秀久, △大端健治(神奈川大学)

1. はじめに ヘルムホルツ共鳴器 は重要な音響要素であり,開口および その近傍が基本的な形状で理論解析可 能な場合にたいする開口部の付加質量

(Mass end correction, 共鳴周波数を決定 する)についてはほぼ研究し尽くされ ている[1]が,流動抵抗とりわけ付加抵 抗(Resistance end correction,吸音力を 決定する)に関しては開口端部曲率に 依存し理論解析は困難である[2].とく に開口近傍形状が複雑で多孔質材層が 存在する場合には測定または数値解析 に頼らざるを得ない.そこで手始めと して簡便なチューブ内2点マイクロホ ン法[3]および流動抵抗条件を与えやす い境界要素法による開口部特性の測定 および算出の可能性について調べる. 2.ヘルムホルツ共鳴器の特性

Fig.1 のような共鳴器の開口部前面か らみた単位面積音響インピーダンス ZF は PF を共鳴器前面音圧, uN を開口断面 内速度, ω=2πf(f:周波数)として

 $z_F = p_F / u_N = R + j(\omega M - K/\omega)$  (1) ただし,  $K = \rho c^2 S_N / V$  は単位開口面積 当たりの背後空間のスティフネス,  $S_N$ は開口部断面積, V:共鳴器容積,  $\rho$ : 空気密度, c:音速,  $M = \rho (l_0 + \Delta L_M)$ は開口部単位面積等価質量,  $l_0$ :開口 長(板厚),  $\Delta L_M$ :両開口端にたいす る補正長である.  $R = R_S (l_0 + \Delta L_R) / r_0$ は流動抵抗係数,  $r_0$ :開口断面半径 (スリットのときはその幅)である.  $R_S = 1.65 \sqrt{f} \times 10^{-3} Rayl は開口内面摩擦$ による抵抗係数,  $\Delta L_R$  は付加抵抗補正 長で  $\Delta L_R \equiv 2 r_0$  程度 [2]とされている. 3. 測定および数値解析方法 Fig.1 に示したダクト端末型共鳴器について 測定および数値解析を行う.開口断面 内粒子速度  $u_N$  は背後空間音圧  $P_B$  を測 定し,  $u_N = j\omega P_B/K$ の関係により,ま た,共鳴器前面音圧 PF はダクト音源側 P1 と P2 の 2 点マイクロホン法による反 射係数  $p_1/p_1^{-1}$ の測定,進行波間の関係  $p_1 = p_1^{-1} + p_1^{-1}$ ,  $p_7^{-1} = p_1^{-1} \exp(-j\omega L_1/c)$ および  $p_{\overline{F}} = p_1^{-1} \exp(j\omega L_1/c)$ により求める [3].数 値解析は部分領域型境界要素法 [5] によ り,開口部で寸法1mmの一定要素でモ デル化している.

 4. 測定および数値解析結果 Fig.2 およびFig.3 にスリット開口および円断 面の測定および数値解析結果を示す.
(a) は P1 での吸音率と開口部での損失と の比較,共鳴周波数が Im (z<sub>F</sub>) = 0, その 吸音率が α<sub>M</sub> = (4R/ρcσ) / (1+R/ρcσ)<sup>2</sup>

(ここで σ=開口面積 / ダクト面積)に 一致することを確認したものである.

また,(b)には開口端補正長 ΔLM および 流動抵抗係数 R を示す. ΔLM について は、実験値と数値解析値とは一定の偏



Fig.1 Helmholtz resonator and test setup [Length in m].

\*On measurement of flow resistance at aperture of Helmholtz resonator. By M.Terao, H.Sekine and K.Ohata. 差がみられるが周波数への依存性は概 ね一致する.しかし,円断面 [2] の近似 理論値  $\Delta L_M / r_0 = 1.6 (1 - 1.4 \sqrt{\sigma}) \approx 1.2$ およびスリット [4] のそれ約1.0とは一 8 致しない.一方.流動抵抗係数 R につ いては,実験値は開口部以外の損失を 含む過大な値しか得られなかった. Ingard の実験式はその下限となってお り、その妥当性は高いものとみられ る。今回の数値解析では空気粘性を無 視しており流動抵抗係数 R は求め得な い.しかし、開口端断面に集中する流 動抵抗係数として実験値を与えた解析 値 (細点線) は低周波数側では比較的よ く一致する.しかし、周波数に比例的 に誤差が増大する傾向があり境界要素 寸法,抵抗の集中化や位置などの影響 についてなお検討中である.ただし、 開口流動抵抗の ΔLM への影響は少な 12.

5.まとめ ヘルムホルツ共鳴器 開口部の付加質量および流動抵抗係 数の簡易な測定法および数値解析法 を検討し,開口端補正長 ΔLM につい て実験値は従来の理論解析解 [1]とは 一致しないこと,これに比較して数 値解析結果は有望であること,ま た,流動抵抗について今回の測定精 度はその詳細を調べるには不十分で はあるが Ingard などの近似式は妥当 とみられることなどを示した.終わ りに本研究費の一部は平成4年度文 部省科学研究費一般研究 (C)の助成に よる.記して感謝の意を表したい.

## 参考文献

 L. Cremer et al, Principles and applications of room acoustics, IV.9, Applied sci. pub., 1982.
U. Ingard, JASA, (25), Nov., 1953.
ASTM standerd E1050, 1985.

[4] C.S.Kosten and I.M.Smits, Acustica, 1, 1951.[5] 寺尾ほか,境界要素法研究会論文集, 1987.





400

200

-766-

800

600