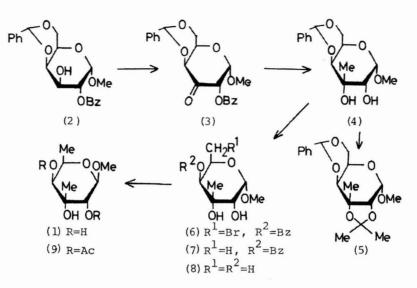
SYNTHESIS OF METHYL β -D-VIRENOSIDE

Juji YOSHIMURA, Namgi HONG, and Ken-ichi SATO Laboratory of Chemistry for Natural Products, Faculty of Science, Tokyo Institute of Technology, Nagatsuta, Midoriku, Yokohama 227


Methyl 6-deoxy-3-C-methyl- β -D-gulopyranoside (1: methyl β -D-virenoside) has been synthesized from galactose. The introduction of methyl branching at C-3 position was achieved by the Grignard reaction.

Virenosa is a new naturally occuring branched-chain sugar found as a component of the antitumor antibiotic virenomycin produced by *Actinomyces virens* sp. nov.¹⁾ Kulyaeba²⁾ and her co-werkers have reported the isolation of virenosa as a methyl glycoside and established its structure as methyl 6-deoxy-3-C-methyl- β -D-gulo-pyranoside from NMR, MS, and IR spectral data, and Δ [M]^{cupra A,B} rotational values.

In this communication we would like to describe the first synthesis of methyl β -D-virenoside through the stereoselective introduction of C-methyl group by the Grignard reaction of methyl 2-O-benzoyl-4,6-O-benzylidene- α -D-xylo-hexopyranosid-3-ulose (3) followed by the same 6-deoxygenation used for the preparation of D-evernicose³⁾ and D-everlose.⁴⁾

According to the method of Szeja, the starting material methyl 2-O-benzoyl-4,6-O-benzylidene- α -D-galactopyranoside (2) was obtained in good yield.⁵⁾ Oxidation of (2) with dimethyl sulfoxide-trifluoroacetic anhydride in methylene dichloride gave the corresponding 3-ulose [3: syrup, $[\alpha]_D^{27}$ +142° (c 1.8, CHCl₃), NMR (CDCl₃): δ 6.1 $(d, J_{1,2}=3.8 \text{ Hz}, \text{H}-1), 5.36(d, \text{H}-2), 4.54(d, J_{4,5}=1.5 \text{ Hz}, \text{H}-4), 3.97(m, \text{H}-5), 4.42$ (dd, $J_{6,6}$ = 13, $J_{5,6}$ = 1.5 Hz, H-6), 4.15(dd, $J_{5,6}$ = 2.0 Hz, H-6'), 3.48(s, OMe), 7.8-8.2 and 7.2-7.6(m, Ph and PhCO), 5.59(PhCH); IR: v 1730 cm⁻¹ (C=0)] in 80% yield. Treatment of (3) with methylmagnesium iodide in ether gave one isomer, methyl 4,6-O-benzylidene-3-C-methyl- α -D-gulopyranosid [4: syrup, $\left[\alpha\right]_{D}^{28}$ +102° [c 1.9, CHCl₃), 6'), 2.64(d, OH-2), ca. 3.8(OH-3), 3.46(s, OMe), 1.35(s, CMe), 7.2-7.52(m, Ph), 5.50 (s, PhCH)] predominantly⁶⁾ in 85% yield. The configuration of (4) was confirmed by the conversion into the corresponding 2,3-0-isopropylidene derivative [5: syrup, $[\alpha]_{D}^{26}$ +8.6° (c 0.6, CHCl₃), NMR (CDCl₃): δ 5.18(d, $J_{1,2}$ =1.2 Hz, H-1), 3.71(d, H-2), 4.18(s, H-4), 4.0(m, H-5), 4.34(dd, $J_{6,6}$ = 12.2, $J_{5,6}$ = 2.0 Hz, H-6), 3.92(dd, $J_{5,6}$ = 2.0 Hz, H-6'), 3.62(s, OMe), 1.46, 1.50 and 1.52 each (s, 3 x CMe), 7.5-7.2(m, Ph)] with the usual method.

The compound (4) was treated with N-bromosuccinimide in carbon tetrachloride to give methyl 4-O-benzoyl-6-bromo-6-deoxy-3-C-methyl- α -D-gulopyranoside [6: syrup, $[\alpha]_D^{27}$ +120.7° (c 1.8, CHCl₃), NMR (CDCl₃): δ 4.92(d, J_{1,2}=3.8 Hz, H-1), 3.79(d, H-2), 5.26

(s, H-4), 4.46(dd, $J_{5,6}=8.0$, $J_{5,6}=4.0$ Hz, H-5), 3.44(dd, $J_{6,6}=11.0$ Hz, H-6'), 3.26 (dd, H-6), 3.54(s, OMe), 1.26(s, CMe), 7.9-8.1 and 7.3-7.5(m, PhCO)] in 75%, yield. Reduction of (6) in benzene with tributylstannane in the presence of α, α' -azobis-isobutyronitrile gave the corresponding 6-deoxy derivative [7: mp 133-134°C, $[\alpha]_{D}^{28}$ +142° (c 1.0, CHCl₃), NMR (CDCl₃): δ 4.87(d, $J_{1,2}=4.0$ Hz, H-1), 3.78(dd, $J_{2,OH}=12.0$ Hz, H-2), 5.12(s, H-4), 4.41(g, $J_{5,6}=6.0$ Hz, H-5), 1.17(d, H-6), 3.52(s, OMe), 3.84 (s, OH-3), 2.40(d, OH-2), 1.25(s, CMe), 8.0-8.16 and 7.30-7.60(m, PhCO)] in 85% yield. Treatment of (7) with sodium methoxide gave the required de-O-benzoylated product [8: $[\alpha]_{D}^{27}$ +123° (c 0.3, CHCl₃)] as a syrup in quantitative yield.

Anomerization of (8) with cationic ion exchange resin IR 120 in methanol by refluxing for 20 hr gave the methyl β -D-virenoside (1) as crystals (n-hexane-chloroform) [yield 80%, mp 134-135°C, $[\alpha]_D^{29}$ -30° (c 0.3, CHCl₃), lit.²⁾ mp 131°C, $[\alpha]_D^{20}$ -39° (c 0.35, CHCl₃)]. NMR (CDCl₃) parameters of (1) [δ 4.41(d, J_{1,2}=8.0 Hz, H-1), 3.39 (d, H-2), 3.26(d, J_{4,5}=1.2 Hz, H-4), 4.22(q, J_{5,6}=6.5 Hz, H-5), 1.28(d, H-6), 1.40 (s, CMe), 3.54(s, OMe)] were in very good agreement with those reported.²⁾ Finally, acetylation of (1) in pyridine with acetic anhydride gave the di-O-acetyl derivative [9: mp 140-141°C, $[\alpha]_D^{28}$ -24° (c 0.3, CHCl₃); NMR (CDCl₃): δ 4.58(d, J_{1,2}=8.0 Hz, H-1), 4.81(d, H-2), 4.80(d, J_{4,5}=1.2 Hz, H-4), 4.23(q, J_{5,6}=6.5 Hz, H-5), 1.14(d, H-6), 1.12(s, CMe), 2.14(s, 2 × Ac), 3.54(s, OMe)], physical constants of which were also identical with those of reported [lit.²] mp 140°C, $[\alpha]_D^{20}$ -27° (c 0.3, CHCl₃)].

References

- M. G. Brazhnikova, M. K. Kudinova, V. V. Kulyaeva, N. P. Potapova, and V. I. Ponomalenko, Antibiotiki, <u>11</u>, 967 (1977).
- V. V. Kulyaeva, M. K. Kudinova, N. P. Potapova, L. M. Rubasheva, N. G. Brazhnikova, B. V. Rosynoi and A. R. Bekker, Bioorg. Khim., 4, 1087 (1978).
- 3) M. Funabashi, N. Hong, H. Kodama, and J. Yoshimura, Carbohydr. Res., 67, 139(1978).
- 4) J. Yoshimura, N. Hong, and K. Sato, Chem. Lett., 1979, 1263.
- 5) W. Szeja, Synthesis, 1979, 821.
- 6) G. B. Howarth, W. A. Szarek, and J. K. N. Jones, Carbohydr. Res., 7, 284 (1968).

(Received July 1, 1980)