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PROJECTIVE SYSTEMS SUPPORTED ON THE
COMPLEMENT OF TWO LINEAR SUBSPACES

MASAAKI HOMMA, SEON JEONG KIM, AND MI JA Yoo

ABSTRACT. We discuss the class of projective systems whose sup
ports are the complement of the union of two linear subspaces in
general position. We express the weight enumerators of the codes
generated by these projective systems using two simplex codes cor
responding to given linear subspaces. We also prove these codes are
uniquely determined upto equivalence by their weight enumerators.

1. Introduction and preliminaries

Let IFq be the finite field of order q and pm the m-dimensional pro
jective space over lFq. We denote the dual space of pm by pm* which
is the set of all hyperplanes in pm. A code C C JF; is said to be de
generate, if there is a position i (1 ::; i ::; n) such that Ci = 0 for any
codeword c = (Cl,··· ,en) E C; otherwise C is said to be nondegenerate.
Throughout this paper, a code means a nondegenerate code.

Let C be a nondegenerate rn, k]q-code with a generator matrix

G = (al,··· ,an),

where ~ is a column vector of length k. Since C is nondegenerate, we can
define a positive O-cycle I:~=l [~] on the projective space r-1, where [3i]
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is the point of the projective space represented by 8i. Note that the sup
port of the o-cycle L:~l [8i] spans the whole space pk-l because the rank
of G is k. If one chooses another generator matrix G' = (a'h ... ,a'n)
of C, then the o-cyc1e L:~""l[a'i] is projectively equivalent to the previ
ous one over lFq. Therefore, for a given nondegenerate [n, k]q-code C,
we can define a projective equivalence class of positive o-cycles on pit-I
whose supports span the whole space, and denote by Xc one of the 0
cycles. We call Xc a projective system associated to C after [4]. It is
obvious that a code C is equivalent to C' if and only if Xc is projectively
equivalent to Xc,. Moreover, there is oneto one correspondence between
the equivalence classes of nondegenerate" [n, k]q-codes and the projective
equivalence classes of positive o-cycles of length n in pk-l whose supports
span the whole space ([1], [2]).

We use the notation
qm+1_1

N(m) := = qm + qm-l + ... + q2 + q + 1 for m ;:::: 1,
q-l

which is the number of all points on a projective space pm over lFq. By
convention, we let N(O) = 1, N(-l) = O. Linear subspaces Li , i =
1,2, ... ,r (r ;:::: 2) in pm are said to be in general position if, for any subset
{ib •.. ,is} C {1,· .. ,r}, the dimension of the linear span < Uj""lL ij ) of
Uj""ILij is equal to min{m,L:;=1 dimLij + s -I}.

The code corresponding to the O-Cycle L:PEpk-l P is called a simplex
code, which is an [N(k - 1), k, qk-l]q-code, and its weight enumerator is
1 + (qk - l)sqk-l.

Let Ci" C lFi be an [nil ~]q-code for i = 1,2. Then we define their
direct sum by Cl EB C2 = {(Cl,C2) I Cl E Cl, C2 E C2}· Then Cl $ C2
is an [nl + n2, kl + k2]q-codeand its weight enumerator is WCl E&C2(S) =
WCl(S)· WC2 (s).

We use the following well-known facts.

LEMMA 1.1([3], [4}).(Griesmer bound) For any rn, k, d]q-code, we have

k-l d
n;:::: L:fil,

i""O q

where fx1means the smallest integer greater than or equal to x.
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LEMMA 1.2([3], [4]).(MacWilliams identity) Let C be an rn, k]q-code
and Cl.. the dual code of O. Then

1 1- s
WC.L(s) = k(l + (q - l)s)n . Wc( 1 ( 1))·

q + q- s

LEMMA 1.3([3]). If H is a parity check matrix of a code of length n,
then the minimum distance of the code is d if and only if every d - 1
columns of H are linearly independent and some d columns are linearly
dependent.

2. Weight enumerators

We compute the weight enumerators of codes corresponding to the
projective systems supported on linear subspaces or their complements.
For this we use the following lemmas.

LEMMA 2.1. Let S be a subset ofplc-l, and assume that the linear
spans of S and its complement SC are the whole space plc-I. Let

and let C i be the corresponding code to Xi for i = 1,2. Then we have

WC2(S) = 1+ (WCI(~) -1)· Sri-I.
s

Proof. Let ni be the length of the code C i for i = 1,2, Le., nl =# S
and nz =# SC. Since #(H n S) +# (H n SC) =# H = N(k - 2) for any
hyperplane H in pk-l, we have

nz -#(H n SC) #Sc -#(H n SC)

(N(k - 1) _# S) - (N(k - 2) -#(H n S))
qk-l _ (#S -#(H n S))

qk-l _ (nl -#(H n S)).

Hence the sum of weights of codewords in Cl and Oz, corresponding to
the same hyperplane H, is qk-l, which implies the desired formula. 0
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In the following lemmas, we deal with the case when the linear span
of B is not a whole space.

LEMMA 2.2. Let B be a subset ofr-1 whose linear span is not the
whole space r-1

• Then the linear span of BC is the whole space.

Proof. Choose arbitrary points P and Q in B and (B)C, respectively.
Then the line PQ intersects (B) at only one point P, otherwise Q should
be contained in (B). Thus the other q points on the line PQ is contained
in (BY, and hence in BC. Thus the line PQ is contained in (BC), and
hence P E (BC). 0

LEMMA 2.3. Let B be a subset ofr-1 with dim (B) = [ - 1 < k - l.
Let

and let Ci be the corresponding nondegenerate code to Xi for i = 1,2.
Then we have

Proof. Note that Cl is an [-dimensional code. Let ni be the length of
the code Ci for i = 1,2, Le., nl =# B and n2 =# BC. We may assume
(B) = pi-I C r-1

• Let H be any hyperplane in r-I.
If (B) c H, then

n2 -#(H n BC) = (N(k -1) _#S) - (N(k - 2) _# B) = qk-I.

If (B) et H, then

n2 -#(H n BC) (N(k - 1) _# B) - (N(k - 2) -#(H n B))

qk-I - (#B -#(H(s) n B))

- qk-I _ (nl -#(H(s) n B)),

where H(s} = H n (B) is the hyperplane in (B) = pi-I.
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Since the number ofhyperplanes in r- l containing (S) is N(k-1-1),
we have

WC2(S) = 1 + (N(k -1) - N(k - 1 -l))(WcI (~) - 1) . SI-I

+(q - l)N(k - 1 _l)sQk-1

k I 1 I-Il+(q-Wcl (-)-l)s ,
S

as desired. 0

REMARK 2.4.

(1) If 1 = k and dim(SC) = k - 1, then the formula in Lemma 2.3 is
same with that of Lemma 2.l.

(2) If 1 = k and dim (SC) < k - 1, we may change the role of S and
SC and use Lemma 2.3.

Now we compute the weight enumerators of codes corresponding to
O-cycle whose support is the complement of linear subspaces in general
position in r- l

.

THEOREM 2.5. Let Li, i = 1,2"" ,r, be linear subspaces of di
mension Si in r- l

, where Si'S satisfy 0 :s; SI :s; S2 :s; ... :s; Sr < k - 1
and L:~=1 Si + r :s; k. Assume that Li's are in general position. Let
T = r-l

\ Ui=1 Li , X = L:PET P be a O-cycle, and let C be the code
corresponding to X. Then

Wc(s) = 1 + (qk-l f( ~) - l)sl-l,
S

where 1- 1 = dim(Ui=ILi) = SI + S2 + + Sr + r - 1 and

f(s) = (1 + (qSI+l - l)s£1'I) (1 + (qSr+l _ l)sQST).

Proof. Since the nondegenerate code corresponding to the linear sub
space L i is a simplex code, its weight enumerator is 1 + (qs;+1 - l)sQS;.
Hence the weight enumerator of the code corresponding to the union of
L/s is just f(s), since it is a direct sum of the codes corresponding to Li ,

i = 1,2"" ,r. Now Lemma 2.3 completes the proof. 0

497



d -

-

>

Masaaki Homma, Soon Joong Kim, and Mi Ja Yoo

We prove a particular property of the codes in Theorem 2.5.

THEOREM 2.6. Ifr < q, then the code in Theorem 2.5 achieves the
Griesmer bound in Lemma 1.1.

Proof The length of the code is n = N(k - 1) - :E~=l N(Si)' For the
minimum distance d,we have

n - max{#(H n T) I H is a hyperplane in r-1
}

n - (#H - min{#(H n (Ui=lLi» IH is a hyperplane in r-1
})

r r

(N(k -1) - LN(Si») - (N(k - 2) - LN(Si -1»)
i=l i=l

r

k-t- """ Si- q - L-q ,
-i=l

and equality holds if and only if there exists a hyPerplane containing
no Li , i = 1,2,," ,r. To prove the existence of such a hyperplane, we
compute

#(all hyperplanes) - # (hyperplanes J Li for some i = 1, 2, ... ,r)
r

2 N(k -1) - LN(k -1- Si -1)
i=l

2 N (k-1)-rN(k-2)

2 N(k -1) - qN(k - 2) = 1.

Thus d = qk-l - :E~=l if; .
Since r < q by assumption, we have

'"" . """ 1 rL- qSi-J :::; L- - :::; - < 1,
Si<j Si<j q q

for all j = 1,2, ... , k - 1, and hence

Iqk-l-j - L qS;-j - L qSi-jl

Si?j Silj

r

k-l-j _ """ "si-j
q L-'l'

Si?j
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Hence

(the right hand side of Griesmer bound)
r r r

= (qk-1 _ LqSi) + rqk-2 - LqSi-11 + ... + r1- LqSi-(k-1)1
i=1 i=1 i=1

r

= (qk-1 _ LqSi) + (qk-2 _ LqSi-1) + (1-3 _ LqSi-2)
i=1 Si2=: 1 Si2=:2

+ ... + (q - L qSi-(k-2)) + 1
si2=:k-2

r

= N(k - 1) - LN(Si) = n.
i=1

Thus the proof is complete. o

The following example shows that the condition r < q is necessary in
Theorem 2.6.

EXAMPLE 2.1. In the projective space p3 over JF2, let 8 be the union
of two skew lines. Let

X= L P,
PEp3\S

and C be the code corresponding to o-cycle X. Then we can easily prove
that C is [9,4, 4h-code but it does not satisfy the equality in Griesmer
bound.

3. Uniqueness for r = 2

In this section we prove that any two codes with the same weight
enumerator appeared in Theorem 2.5 are equivalent to each other.

THEOREM 3.1. Let 8 be a subset ofIlJ>n with #8 = N (s )+N (t), s ~ t,
and S + t = n - 1. Suppose that for any hyperplane H in Jll>n,

#(H n 8) = N(s) + N(t -1), N(s -1) + N(t), or N(s -1) + N(t -1),
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and

{
#{H E pm 1# (H n S) = N(s) +N(t -I)} = N(t),
#{H E pm 1# (H n S) = N(s - 1) + N(t)} = N(s).

)Then S is the union of two linear subspaces in general position ofdimen
sion s and t, respectively.

Proof. We divide the proof into five claims.

Claim 1. If a line contains at least 3 points of S, then it is contained
in S.

Proof of Claim 1. Let

{

P, a point not contained in S
M, a line through P
~, the set of all hyperplanes containing P
M, the set of all hyperplanes containing M.

Then #(P \ M) = N(n -1) - N(n - 2) = qn-l. Let #(M n S) = u. By
assumption, #(H n S) ~ N(s -1) +N(t -1) for all hyperplane H, so we
have

L #(H n S) > #(P\M)· (N(s -1) + N(t-l»
HEP\M

_ ~-l. (N(s - 1) + N(t - 1)).

On the other hand, for any point Q E S \ M,

#(all hyperplanes in P \ M containing Q) - #((p n Q) \ (M n Q))
- N(n - 2) - N(n - 3)
_ ~-2.

Hence we have

L #(HnS) - #(S\M)·#((PnQ)\(MnQ))
HEP\M

= (N(s) + N(t) - u) . qn-2.

Comparing above two formulas, we have

(N(s) + N(t) - u) . qn-2 ~ qn-l . (N(s - 1) + N(t -1»,

which is equivalent to u ~ 2. Thus Claim 1 is proved.
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Claim 2. Let Ho be a hyperplane such that #(Hon S) = N(s -1) +
N(t). Then every line containing two points in S \ Ho meets Ho at a
point in S.

Proof of Claim 2. Suppose not. Then there exists a line M such that

{
#(Mn(S\Ho)) 2 2
MnHo ft S.

Let P = M n Ho. By Claim 1, #(M n S) = 2. In the computation
in the proof of Claim 1, we have equality, which means #(H n S) =
N (s - 1) + N (t - 1) for any hyperplanes H E P \ M. This contradicts
the choice of Ho.

Claim 3. S contains a linear subspace of dimension s. More precisely,
S contains the linear span Lo= (Ho n S) of Ho n S and dim Lo = s.

Proof of Claim 3. By Claim 1 and 2, we conclude that Lo is contained
in S. Thus Ho n Lo = Ho n S. Let dimLo = r. Then

N(r) =# (Lo) - #(H8 n Lo) +# (H9n Lo)
= #(Hg n S) +#(Hon Lo)

(N(s) - N(s - 1)) + N(r - 1),

since Ho n Lo = Ho n Sand Lo is not contained in Ho.
Thus we have r = s and we have proved Claim 3.

Claim 4. Let S' = S \ Lo. Then #(S') = N(t) and

#(H n S') = N(t) or N(t - 1)

for any hyperplane H in JPTI. Moreover, there exist H l and H2 such that

{
#(Hl n S') = N(t)
#(H2 n S') = N(t - 1).

Proof of Claim 4. For any hyperplane H, note that

{
#(H n S) =# (H n Lo) +# (H n S')
#(H n Lo) = N(s) or N(s -1),

and by assumption of the theorem

#(H n S) = N(s) + N(t - 1), N(s - 1) + N(t), or N(s - 1) + N(t - 1).
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If s > t, then N(s) is bigger than N(s - 1) + N(t) and N{s - 1) +
N(t - 1). Hence, for a hyperplane H with #(H n Lo) = N(s), we have
#(H n S) = N(s) +N(t -1). Indeed,

#{H E pn* 1# (H n Lo) = N(s)} - #{H E pn* ILo C H}

- N(n - s - 1) = N(t),

which is equal to

#{H E pn* \# (H n S) = N(s) + N(t -I)}.

Thus #(H n Sf) = N(t) or N(t - 1) for any H E p~ and

{
#{H E pn* 1# (H n Sf) = N(t)} = N(s)
#{H E r 1# (H n Sf) = N(t - I)} = N(n) - N(s).

If s = t, then N(s) >N{s -'- 1) + N(t-..:- 1) and N(s) + N(t - 1) =
N(s - 1) +N(t). Counting the number of hyperplanes again, we have

{
#{H Er /# (H n Sf) = N(t)} = N(s)
#{H E pn* /#(H n Sf) = N(t -I)} = N(n) - N(s).

Thus we have proved the Claim 4.

Claim 5. S' is a t-dimensionallinear subspace of pn.
Proof of Claim 5. We modify the proof of Claim 1 to show that any

line through two points in Sf is contained in Sf.
Let

{

P, a point not contained in Sf
M, a line through P
P, the set of all hyperplanes containing P
M, the set of all hyperplanes containing M.

Then #(P \ M) = N(n -1) - N(n - 2) = qn-l. Let #(M n Sf) = u. By
assumption, #(H n Sf) 2: N(t -1) for all hyperplane H, so we have

L #(HnSf
) > #(P\M)·N(t-l)

HeP\M

_ qn-l. N(t - 1).
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On the other hand, for any point Q E 8' \ M,

#(all hyperplanes in P \ M containing Q) - #((p n Q) \ (M n Q))
- N(n - 2) - N(n - 3)
_ qn-2.

Hence we have

:E #(H n S') = #(S' \ M) .#((p n Q) \ (M n Q))
Hef>\M

= (N(t) - u) . qn-2.

Comparing above two formulas, we have

(N(t) - u) . qn-2 ~ qn-l . N(t - 1)

which is equivalent to u ~ 1. That means that any line not contained
in S' has at most one point of S', or equivalently, any line containing
two points in 8' is contained in S'. Hence S' is a linear subspace, and
dim 8' = t since #(S') = N(t).

Combining above 5 claims, we conclude that 8 is the union of two
linear subspaces of dimension s and t, and they are in general position
since there is no hyperplane containing both of them and s+t = n-1. 0

Finally we prove a uniqueness theorem using the following lemma.

LEMMA 3.2. Let C and C' be nondegenerate codes with the same
weight enumerator. If every coefIi.cient in the o-cycle Xc is ~ 1, i.e.,
Xc = :EpeSupp(.:!<:) P, then Xc' = :EpeSuPp(xcl) P. In this case, we can
identify O-cycle with its support.

I

Proof. The assumption .:\::C = :EpeSupp(.:!<:) P means that any two
columns of a generator matrix of C are linearly independent, which is
equivalent to the minimum distance of Cl. being ~ 3, by Lemma 1.3.
Since the weight enumerators of Cl. and c'l. are same by MacWilliams
identity, we conclude that the minimum distance of c'l. is ~ 3, and hence
the lemma is proved. 0

THEOREM 3.3. If a code C' over lFq has the same weight enumerator
with the code in Theorem 2.5 with r = 2, then C' is equivalent to C.
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Proof By Lemma 3.2, we have Xc' = LpeSuPp(Xet) P, and we identify
the o-cycle Xc' with its support. Let T = Supp(Xc') and let S = re in
pk-l. Then, by Lemma 2.3, we can check that S satisfies the conditions
in Theorem 3.1 where n = s + t + 1. Hence S is the union of two linear
subspaces in general position in JPl'l. Therefore, we can find a projective
automorphism on pk-l which maps S onto Ll UL2 in Theorem 2.5. Thus
the code C' is equivalent to C. 0

The following example shows that a code appeared in Theorem 2.5 is
not determined by its parameters [n, k, d] alone.

EXAMPLE 3.1. In the projective space p3 over lF2, let S, X, C be same
as Example 2.1. Let 8 1 be a punctured plane. Let

Xl = L P,
Pep3\Sl

and let Cl be a code corresponding to o-cycle Xl. Then we can prove
easily that Cl is [9,4, 4h-code, same as C. However their weight. enumer
ators are

{
Woes) = 1 + 9s4 + 6s6

WC1(s) = 1 + 6s4 + 8s5 + s8.

Note that the weight enumerator WcCs) is the polynomial appeared in
Theorem 2.5.
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