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ABSTRACT 

 

The wearing course mixture or the surface layer in pavements is directly affected by the traffic 

loads and the weather conditions, thereby potentially resulting in cracking and rutting on the layer. The 

common methods for designing asphalt mixtures are the Marshall and Superpave methods, which are 

mainly based on volumetric evaluations. However, the current standards around the world (Marshall and 

Superpave) do not provide a clear guideline to comply with the volumetric requirements of hot mix 

asphalt (HMA) mixtures. In addition, the use of volumetric properties may be not sufficient to evaluate 

performance of HMA mixtures. Furthermore, the standards in developing countries such as Vietnam and 

Indonesia exclude rational test to evaluate mechanism performance of HMA mixtures. 

In mix design procedure, selecting an adequate aggregate gradation may improve cracking and 

rutting resistance of HMA mixtures. Based on the continuous maximum density (CMD) theory and the 

dominant aggregate size range (DASR) model, the present study aimed to apply and develop several 

gradation parameters to investigate the effect of aggregate gradation on the performance of HMA 

mixtures in terms of volumetric property (CMDarea), workability (WI and CMDarea-stone), cracking (GCI 

and CMDarea-DASR), rutting (RRI), and shear strength (Prms, CMDarea, and CMDsand). The results indicated 

that the gradation parameters based on the CMD and the DASR model have potential applications to 

evaluate the performance of HMA mixtures. Therefore, asphalt designers can apply these gradation 

parameters for designing a stable a gradation at the early stage of mix design procedures of HMA 

mixtures. 

The present study also investigated three asphalt binder parameters, i.e., the design asphalt 

content, effective asphalt content, and apparent film thickness (AFT), in order to examine the effects of 

the asphalt binder composition on the cracking resistance and shear strength of HMA mixtures. The 
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experiments demonstrated that among three asphalt binder parameters, the AFT has the most substantial 

effects on the cracking resistance and shear strength of asphalt mixtures. 

This study also examined if the notched semi-circular bending (SCB) test can replace the three-

point bending beam (TPBB) test to assess fracture resistance of asphalt mixtures at intermediate 

temperature conditions. In addition, the present study also applied the crack tip opening angle (CTOA) to 

evaluate the cracking propagation of HMA mixtures in the notched SCB test. The TPBB test was 

performed using the JRA B005 standard, and the notched SCB test was conducted using the following 

three standards: EN 12697-44, AASHTO TP 105-13, and AASHTO TP 124-16. The results indicated the 

notched SCB test using the EN 12697-44 standard may present a viable alternative to the TPBB test to 

characterise fracture resistance of asphalt mixtures. Furthermore, the CTOA is a candidate indicator for 

assessing the potential for cracking propagation. 

The present study also developed two simple protocols using the Marshall specimen to evaluate 

rutting resistance of HMA mixtures. The first protocol is the combination of the unconfined compression 

test and the shear circle test, and the second protocol is the indirect tension test using a reasonably low 

deformation rate and an adjusted testing temperature. The results indicated that both the cohesions 

estimated from the first protocol and the tension strength obtained from the second protocol have strong 

relationships with rutting resistance of HMA mixtures. Therefore, the proposed protocols are potential 

measures for ranking rutting performance of asphalt mixtures. 
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Chapter 1. Introduction 

 

 

1.1. Background 

In the last few decades, a hot mix asphalt (HMA) mixture, as a well-known road construction 

material, has become the leading choice for surface layer materials used in pavements. The surface layer 

of asphalt pavements or the wearing course mixture directly exposes to traffic loads and weather 

conditions. Accordingly, the increase in the traffic volume of heavy vehicles in combination with ambient 

conditions (temperatures or moistures) has increased the incidence of premature failures (rutting or 

cracking) in wearing course mixtures [1-3]. In fact, HMA design plays a critical role in preventing 

premature failures for HMA mixtures before the mixtures are applied in construction sites. 

In general, asphalt mixtures have two components, i.e., asphalt binder and mineral aggregate [3]. 

The mineral aggregates constitute the main component (approximately 92-96% of total mass) of HMA 

mixtures, and their physical properties have significant effects on the performance of mixtures [1-3]. 

During the HMA mixture design process, aggregates in the asphalt mixture are designed to comply with a 

permissible distribution of particles sizes. This size distribution (often as a percent of total weight) is 

known as aggregate gradation. Aggregate gradation may be the most important characteristic of a mineral 

aggregate within the mixture. It strongly influences almost all the fundamental properties of asphalt 

mixtures such as volumetric, workability, cracking, rutting, and moisture [1-7]. Therefore, designing an 

appropriate level of aggregate gradation is one of the primary tasks for mixture designers. 

Current asphalt design standards around the world have followed the Marshall and Superpave 

methods, which apparently focus on the volumetric properties of asphalt mixtures [1-3]. For aggregate 

gradation design, these standards recommend the upper and lower grading limits, namely permissible 

ranges of particles sizes. Pavement engineers have to determine a percentage of each classified aggregate 

so that the gradation curve falls inside of all permissible ranges. In general, each medium of the 

permissible ranges is taken as only one target gradation value of each sieve. However, selecting this target 

gradation may not result in the desired mixture that should comply with the specification of volumetric 

parameters [8]. Asphalt pavements must deal with that through trial and error for different aggregate 

gradations. As a result, this process is tedious and time-consuming. 

A current study tried to apply the Bailey method for gradation design in order to ensure proper 

volumetric parameters and adequate performance of asphalt mixtures in the Superpave method [8]. 

However, this study could not find a clear relationship between Bailey parameters and with the voids in 

mineral aggregate (VMA) of asphalt mixtures, which is the most important parameter in the Superpave 
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method. In fact, achieving a desired VMA is the most challenging task in the gradation design [9]. A 

recent study indicated a good relationship of aggregate gradation with the VMA using the continuous 

maximum density (CMD) theory [10]. However, this study only focused on the mixtures using the 

Superpave method while numerous countries have continued to use the Marshall method to design HMA 

mixtures such as Vietnam, Indonesia, Netherland, Japan, and Germany. There is therefore a need to 

conduct in-depth investigations that clarify the application of CMD theory on volumetric properties of 

HMA mixtures when using the Marshall design. 

After HMA mixture design, pavement engineers also face another challenge in ensuring excellent 

performance of HMA mixtures.  It has been reported that the specification of volumetric parameters alone 

is insufficient to guarantee high cracking or rutting resistance in asphalt mixtures [1, 2]. Therefore, in the 

last few decades, extensive studies have been conducted to render a rational approach to evaluate 

performance of HMA mixtures using aggregate gradation [1-14]. In this direction, several theories of 

aggregate gradation are developed to comprehensively understand the nature of performance of asphalt 

mixtures [11]. However, to the best of our knowledge, previous studies applied the theories of aggregate 

gradation to only investigate one or few behaviours of asphalt mixtures. The search of the literature found 

no well-established research that evaluates the relationship of aggregate gradation with almost all the 

important properties of asphalt mixtures. Therefore, a comprehensive evaluation of the effects of 

aggregate gradations on mechanism performance of asphalt mixtures is needed. 

1.2. Objective of research 

This study investigated a comprehensive evaluation of the effects of aggregate gradation on the 

various performance tests of HMA mixtures using the theory of CMD and the dominant aggregate size 

range (DASR). The primary objective of this study was to develop several gradation parameters that have 

potential application for ranking performance of HMA mixtures. In addition, the present study aimed to 

improve the specifications of mechanical tests that access the rutting and cracking potential of HMA 

mixtures. 

1.3. Organization, scopes, and approach of thesis 

The thesis is composed of nine chapters and organized as follows. 

Chapter 1: Introduction. This chapter explained the background, objectives, thesis organization, 

and potential benefits of this study. 

Chapter 2: Review and discussion on the current aggregate gradation design. This chapter 

presented a review on the theories and design methods of aggregate gradation. The advantages and 

limitations for each aggregate gradation theory and design were highlighted. 
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Chapter 3: Effect of aggregate gradation on asphalt mixture design. A concern in the mix design 

is how to choose an aggregate gradation which leads to a desired VMA value for the mixture. The 

objective of the study was to investigate an appropriate aggregate gradation parameter, namely the area of 

continuous maximum density (CMDarea), for achieving desired VMA properties of asphalt mixtures. 

Furthermore, the relationships of the CMDarea with the rutting resistance of HMA mixtures were 

evaluated. Thirty 19.0-mm nominal maximum particle size (NMPS) wearing course mixtures were 

designed using the Superpave method, and thirteen 12.5-mm NMPS wearing course mixtures were 

designed using the Marshall method. Three different fine aggregates from two sources (natural sand and 

manufactured screening) were used to fabricate these HMA specimens. The results indicated that the only 

principle of gradation designs in the Superpave and Marshall methods is insufficient to comply with the 

minimum requirement for the VMA. In addition, the experiments demonstrated that the CMDarea has 

potential applications to control the value of VMA, in spite of aggregates sources, typical aggregate 

gradation, and mixture designs. 

Chapter 4: Effect of aggregate gradation on the workability of asphalt mixtures. Simple indices 

easily help to evaluate the performance of hot mix asphalt mixtures. The present study aimed to develop a 

simple workability index and rutting resistance index for wearing course mixtures. Seven Vietnamese 

blends of different aggregate gradations were developed using the conventional Marshall mix design 

method. The Superpave gyratory compactor was employed to measure the workability of the seven blends, 

namely the workability energy parameter of asphalt mixtures. The wheel tracking test was also conducted 

to evaluate rutting resistance of those mixtures. The results showed a strong relationship between the 

workability index and the workability energy of hot mix asphalt mixtures. In addition, the workability 

energy value of an asphalt mixture may be high when the area of continuous maximum density for a 

proportion of stone is low. Furthermore, the rutting resistance index correlated well with rutting resistance 

of the hot mix asphalt mixtures. This chapter also applied the proposed workability and rutting resistance 

indexes to evaluate the workability of six Indonesian wearing course mixtures. The results indicated high 

relationships of the workability and rutting resistance indexes proposed by this study with the workability 

of six Indonesian wearing course mixtures. 

Chapter 5: Effect of aggregate gradation on the cracking of asphalt mixtures at service 

temperatures. Cracking is one of the main failure mechanisms of asphalt pavements. This chapter 

investigated the effects of aggregate gradation on the cracking performance of HMA mixtures at two 

stages, i.e., the cracking initiation and cracking propagation stages at a high service temperature (30 
o
C). 

Based on the CMD of aggregate gradation and the DASR model, a novel cracking performance index-

designated the gradations-based cracking resistance index (GCI) was developed to easily evaluate the 

cracking resistance of wearing course mixtures. This simple index was applied to comparatively 
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investigate cracking resistance in a variety of dense-, coarse-, and fine-graded mixtures with 12.5-mm 

NMPS. This study employed the notched semi-circular bending test to evaluate the cracking resistance of 

the HMA mixtures. The experiments demonstrated a strong relationship between GCI and cracking 

resistance at the cracking initiation stage (Jc). In addition, cracking resistance was observed to increase 

with increasing GCI value. Mixtures with low CMDareaDASR values of aggregate gradation have high 

cracking resistance at the cracking initiation (Jc) and propagation (KIc) stages. These findings indicate that 

the novel indexes have potential applications for evaluating the cracking performance of wearing course 

mixtures. The chapter also explored the effects of fine aggregate on the resistance of HMA mixtures to 

cracking resistance. Overall, fine aggregate significantly improved the cracking resistance of mixtures 

when the aggregate gradations were controlled to achieve the same gradations. 

Chapter 6: Effect of aggregate gradation on the cracking of asphalt mixtures design at low service 

temperatures. This chapter included two objectives. First, this chapter examined the effects of aggregate 

gradation and asphalt content on the cracking performance of asphalt mixtures at a low service 

temperature (15 
o
C) using the characteristics of continuous maximum density, the dominant aggregate 

size range model, and apparent film thickness. Second, this chapter investigated if the notched semi-

circular bending (SCB) test presents a viable alternative to the three-point bending beam (TPBB) test for 

assessing fracture properties of asphalt mixtures at intermediate temperature conditions. The TPBB test 

was conducted using the JRA B005 standard, and the notched SCB test was performed using the 

following three standards: EN 12697-44, AASHTO TP 105-13, and AASHTO TP 124-16. The 

experiments showed that the notched SCB test using the EN 12697-44 standard may be able to replace the 

TPBB test for assessing the cracking resistance of asphalt mixtures. 

Chapter 7:  Effect of aggregate gradation on the shear strength of asphalt mixtures. HMA 

mixtures may exhibit premature rutting when the shear strength of the mixtures is insufficient to resist 

repeated heavy loads in combination with high ambient temperatures. Based on the CMD theory, the 

present study investigated the effects of aggregate gradation on the shear strength properties of HMA 

mixtures, i.e., the cohesion (C), the internal friction angle (), and the compaction slope (K). In addition, 

this study aimed to evaluate relationships of the shear strength parameters with the rutting resistance of 

HMA mixtures. The C value and the  value of HMA mixtures were determined using a combination of 

the unconfined compression (UC) test and the indirect tensile (IDT) test. The K value was also obtained 

from the data of Superpave gyratory compaction. The experiments showed that the CMD theory of 

aggregate gradation has potential applications for evaluating not only aggregate interlock parameters ( 

and K) but also the C property of asphalt mixtures. In addition, the experimental study found that the 

apparent film thickness is a potential parameter that reflects the effect of asphalt composition on the C of 
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HMA mixtures. The statistical analysis also demonstrated that a rational model using the C and the K has 

a strong relationship with the rutting resistance of wearing course mixtures. 

Chapter 8: Use of compression test, circle shear test, and indirect tensile test for rutting potential 

assessment of wearing course mixtures. Rutting resistance of an asphalt mixture is significantly dependent 

on its shear strength. In order to characterize shear strength properties of asphalt mixtures, this chapter 

aimed to investigate relationships between two different methods, i.e., the combination of the UC and the 

IDT tests, and the combination of the UC and the circle shear (CS) tests. In addition, the UC test 

combined with the CS test was conducted using the Marshall cylindrical specimens to verify whether this 

protocol could address the shear strength of asphalt mixtures. This chapter also aimed to evaluate the 

relationship between the IDT strength of conventional Marshall specimens and the rutting resistance of 

wearing course mixtures using various fine aggregates. The results showed that the cohesion parameters 

of the two shear methods were correlated well, whereas there was not a strong relationship for the internal 

friction angle parameters between the two methods. Furthermore, the cohesion obtained from the 

combination of the UC and the CS tests using the Marshall specimens is a candidate indicator for ranking 

rutting performance of asphalt mixtures. In addition, the experimental results showed that the IDT test 

using Marshall cylindrical specimens has potential applications for evaluating rutting resistance, 

regardless of aggregate source. The study also explored the effects of fine aggregate on the resistance of 

HMA mixtures to permanent deformation. Overall, fine aggregate significantly influenced the rutting 

resistance of mixtures when the aggregate gradations were controlled to achieve the same gradations. In 

contrast, fine aggregates with different gradations were not strongly associated with the rutting resistance 

of HMA mixtures.  

Chapter 9: Conclusion, recommendation, and future research. This chapter summarized the 

findings and future works of the present study. 

1.4. Implementable findings 

The present study provided a comprehensive procedure for the design of aggregate gradation to 

ascertain the volumetric properties (VMA) of HMA mixtures. In addition, this study introduced new 

practical and cost-effective gradation parameters that help asphalt designers for selecting a proper 

aggregate gradation at the early stage. Furthermore, the present study developed new procedures that 

include simple mechanics testing methods for rutting and cracking potential assessments. Therefore, 

highway agencies, consulting laboratories, and contractors may implement these protocols depending on 

their experience and equipment. 
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Chapter 2. Review and discussion on the current aggregate gradation design 

 

 

2.1. Aggregate gradation design with permissible ranges   

The Marshall method is one of the old methods for designing HMA asphalt mixtures. In general, 

the Marshall design procedure is regularly divided in the following order: testing material sources, 

determining aggregate gradation, preparing samples, testing and analysing volumetric properties of 

mixtures, plotting the test results, and finally selecting a design asphalt content (AC). The manner of 

Marshall design is almost the same in various countries. However, the requirements of materials, the 

analysis of test results, and the interpretations of data are different for each country [1-4]. 

Table 1. Aggregate gradation design in Vietnam, Japan, and Europe for 12.5 NMPS mixtures 

Sieve size Vietnamese standard (2011) Japanese Standard (1989) European Standard (2013) 

 (mm) Range Mean Range Mean Range Mean 

12.5 90 - 100 95 95 - 100 97.5 90 - 100 95 

9.5 74 - 89 81.5 *** *** *** *** 

4.75 48 - 71 59.5 55 - 70 62.5 *** *** 

2.36 30 - 55 42.5 35 - 50 42.5 10 - 55 32.5 

1.18 21 - 40 30.5 *** *** *** *** 

0.6 15 - 31 23 18 - 30 24 *** *** 

0.3 11 - 22 16.5 10 - 21 15.5 *** *** 

0.15 8 - 15 11.5 6 - 16 11 *** *** 

0.074 6 - 10 8 4 - 8 6 2 - 12 7 

 

In the process of the Marshall method, designing aggregate gradation plays an important role in 

determining the physical properties and performances of HMA mixtures. Based on the experiments, each 

country individually issues a standard that introduces acceptable ranges for selecting aggregate gradation. 

As shown in Table 1, each standard presents the upper and lower grading limits for each sieve size of 

aggregate particles [5-7]. Designers have to design desired blends of different sizes of aggregates 

rationally so that the gradation curve falls inside of all acceptable ranges. In general, the conventional 

aggregate gradation taken from mean values of the permissible ranges is the de facto standard. Figure 1 

presents an example for a conventional aggregate gradation for the Vietnamese standard. However, the 

target gradation based on the medians of the ranges alone does not correctly ensure not only the desired 
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volumetric properties but also the excellent performance of HMA mixtures [1, 2, 4]. Therefore, with these 

acceptable ranges, it is complicated to understand and explain the relationship of aggregate gradation with 

the behaviour of asphalt mixtures. 

 

 

Figure 1. Vietnamese permissible ranges and conventional aggregate gradation 

2.2. The theory of maximum density curve (1907) 

Theoretically, the best aggregate gradation for asphalt mixtures should have the densest particle 

packing [3]. The maximum packing density provided by aggregate gradation creates proper contact points 

among aggregate particles within the mixtures and decreases air voids in the mixtures. As a result, this 

may increase the stability of the mixtures [8]. However, a packed aggregate should not be excessively 

tight because air voids of mixtures should be sufficient to prevent bleeding or rutting [8].   

In this direction, numerous studies have proposed the simplified ideal curve of parabola 

maximum density [3, 8, 9]. One of the best known of gradations for maximum density is the Fuller’s 

maximum density curve, and this curve can be presented by following equation [8, 9]: 

   100

n
d

p
D

 
  

 
 (1) 

Where, d is the diameter of the sieve size; D is the maximum size of the aggregate; n is grading 

parameter; and p is the percent passing of aggregates at the sieve d.  

A previous study indicated that when the n is equal to 0.5, a maximum packing density provided 

by aggregate gradation can be obtained [9]. However, numerous studies demonstrated that only the 

Fuller’s maximum density curve is insufficient to control volumetric properties and behaviours of HMA 

mixtures [9]. 
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2.2.1. Aggregate gradation design in the Superpave method (2015) 

At the beginning of the 1960s, based on the Fuller grading theory, the Federal Highway 

Administration developed an aggregate gradation chart which uses 0.45 as the value of the power n [8]. 

Figure 2 shows a maximum density line (MDL) on the 0.45 power gradation chart in the Superpave 

method. The maximum density line can be drawn from two points, the original point and the nominal 

maximum size points. This chart is conveniently adjusted in order to determine the distance of a practical 

aggregate gradation with the MDL. The Superpave method, which is the current American standard, 

recommends this aggregate gradation chart to be applied as part of the mix design procedure [10]. As 

shown in Figure 2, the Superpave method also provides control points for adjusting the aggregate 

gradation. 

 

 

Figure 2. Superpave gradation control points for a 12.5-mm NMPS gradation with the 0.45 power 

  The current Indonesian standard has proposed the control points and the restricted zone to 

design an aggregate gradation (Figure 3) [1]. However, the sieve size of this gradation chart is presented 

on a logarithmic scale instead of the 0.45 power. The restricted zone is initially introduced by the Federal 

Highway Administration for the Superpave method [8]. This restricted zone aimed to control the effect of 

fine aggregates on the VMA and void compaction problems during construction [8, 11]. In general, 

asphalt mixtures having aggregate gradations that fall below the restricted zone show good rutting 

resistance [8]. However, previous studies indicated that asphalt mixtures having aggregate gradations that 

fall in the restricted zone are able to meet the minimum VMA requirement and performs well for years in 

actual field conditions [8, 12]. As a result, the Federal Highway Administration excluded the restricted 

zone in the current Superpave standard [10].  
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Figure 3. Indonesian aggregate gradation design 

Even though the 0.45 power gradation chart in the Superpave method or a logarithmic gradation 

chart in the Indonesian standard is commonly applied by asphalt engineers, current aggregate design 

guidelines in these standards are unable to provide a guarantee for selecting a stable aggregate gradation. 

The previous study indicated that using the 0.45 power gradation chart in the Superpave method is 

difficult to determine an aggregate gradation that complies with the minimum VMA requirement [4]. In 

addition, asphalt mixtures having aggregate gradations that enter the control points still have low 

resistance to rutting [1, 4].    

 

2.2.2. The theory of continuous maximum density (2011) 

A concept associated with the maximum density gradation is continuously developed using the 

theory of CMD line. This theory proposed a method to calculate a value of percent passing on the CMD 

line for the next sieve size using the following equation [3]:  

 

0.45

1

1( ) ( )i

CMD i i
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d
P d P d
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



 
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 

                (2) 

Where, PCMD(di) is percent passing for sieve size di on the CMD line; di+1 is one sieve lager than 

di; P(di+1) is  percent passing for sieve di+1. 

Figure 4 also presents the meaning of parameters in the theory of the CMD line. This figure 

indicates that if the P(di+1) is the percent passing for sieve di+1, the PCMD(di) calculated using equation (2) 

is the expected percent passing for the next sieve size di that creates the densest particle packing. As a 

result, a CMD line, which parallels to the Fuller MDL and goes through the P(di+1), can be obtained by 
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using two points, i.e., the P(di+1) and the PCMD(di). Based on this theory, previous studies also proposed a 

CMD chart to evaluate the effects of aggregate gradation on the air voids and the VMA of asphalt 

mixtures [3, 13]. One of the components of this chart, a deviation from the CMD line to P(di) for sieve di, 

is calculated by the following equation [3]:  

 ( ) ( ) ( )dev i CMD i iP d P d P d                  (3) 

Where, P(di) is percent passing by weight at sieve di. 

 

 

Figure 4. Concept of CMD and meaning of PCMD, Pdev 

 

Figure 5. Effect of aggregate gradations on VMA using the CMD chart 

The research reported by the American Association of State Highway and Transportation 

Officials demonstrated that the CMD chart is convenient and helpful to produce the proper air voids 
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content and VMA [3]. As shown in Figure 5, the CMD pilot illustrates how much the aggregate gradation 

is far away from the CMD line. Consequently, asphalt mixtures having aggregate gradations that are 

closer to the horizontal line (through the original) tend to have a lower value of VMA. However, this 

study did not mention specific guidelines for the application of the CMD chart.     

Based on the CMD chart, a recent study conducted by Nguyen also proposed a new parameter, 

namely CMDarea, to evaluate relationships of aggregate gradation with the VMA of HMA mixtures in the 

Superpave method [13]. The CMDarea is defined as the following equation [13]: 

     
0.075

NMPS

area iCMD A                  (4) 

Where Ai is the area between Pdev(di) and Pdev(di+1) as shown in Figure 6 . 

 

 

Figure 6. Meaning of Ai 

 A sieve size of the horizontal axis in Figure 6 is represented on a logarithmic scale, so that the 

distance of each sieve is almost the same. As the sequence, a value of Ai for two sieves, di and di+1, does 

not have a large difference between different sieve sizes [13]. The previous study also demonstrated that 

the CMDarea has a strong correlation with the VMA of asphalt mixtures [13]. Therefore, this parameter has 

potential applications for evaluating volumetric properties of asphalt mixtures. However, the past study 

did not establish the relationships of aggregate gradation parameters using the CMD theory with the 

performance of asphalt mixtures such as rutting, cracking, and workability. It has been reported that even 

though asphalt mixtures meet the requirements of volumetric properties, the mixtures still have bad 

rutting and cracking resistance [1, 2, 4]. 
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2.3. The Bailey method (2002) 

The Bailey method was proposed by Mr. Bailey of the Illinois Department of Transportation 

(DOT) to provide a rational method for selecting an adequate aggregate gradation [14]. The first step in 

the Bailey method is to decide a chosen the unit weight of coarse aggregate (CA CUW). When the CA 

CUW of mixtures is smaller than 90% of the loose unit weight of coarse aggregates (CA LUW), between 

95% and 100% of the CA LUW, and between 110% and 125% of the CA LUW, the mixtures are 

classified into fine-graded, coarse-graded, and stone mastic asphalt mixtures, respectively [14]. An 

aggregate gradation is evaluated using the control sieves. i.e., the half sieve (HS), the primary control 

sieve (PSC), the secondary control sieve (SCS), and the tertiary control sieve (TCS). The HS determines 

interceptor particles that are smaller than the HS. Interceptors are too large to fill air voids created by the 

larger coarse aggregate particles, thereby potentially disrupting the coarse aggregate structure. The PSC 

determines a sieve where splits particles into coarse and fine aggregates. Next, the SCS is considered as a 

sieve that breaks fine aggregates into coarse sand and fine sand. Finally, the TCS further divides fine sand 

into two categories. Based on these control sieves, the Bailey method proposed three ratios, namely CA 

ratio for coarse aggregate, FAc ratio for coarse sand, and FAf ratio for fine sand, to evaluate whether an 

aggregate gradation is stable. Table 2 presents the values of HS, PCS, SCS, TCS and proper ranges of the 

CA, FAc, FAf ratios for 12.5 mm NMPS mixtures [14]. 

Table 2. Values of Bailey parameters for 12.5 mm NMPS mixtures 

Bailey parameters 
Aggregate gradation 

Coarse-graded Fine-graded 

Control Sieves 

(mm) 

HS 6.25 1.18 

PCS 2.36 0.60 

SCS  0.60 0.15 

TCS 0.15 Not available 

Recommended 

values 

CA ratio 0.50 - 0.65 0.60 - 1.00 

FAc ratio 0.35 - 0.50 0.35 - 0.50 

FAf ratio 0.35 - 0.50 Not available 

 

The Bailey method aims to introduce a gradation design that results in a proper VMA and better 

performance mixtures in the Superpave procedure [14]. However, the recent study indicates that the use 

of the Bailey parameters is difficult for controlling the VMA and rutting resistance of HMA mixtures [4]. 

Furthermore, the low relationships of Bailey parameters with the VMA and rutting resistance of HMA 

mixtures were obtained [4]. 
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2.4. The dominant aggregate size range model (2009) 

The dominant aggregate size range (DASR) is an interactive range of aggregate particles that 

create the backbone aggregate of HMA mixtures [15-17]. The DASR model can be divided into three 

main components as shown in Figure 7. The first component is the coarse aggregates or the DASR 

aggregates that dominantly form the primary structural network of the aggregate and create the air voids 

in the mixture. The second components that are smaller than the DASR aggregates are defined as 

interstitial components (IC) [15]. The IC component includes asphalt binder and fine aggregates which 

fill voids created by the DASR aggregate. The final components that larger than the DASR aggregates 

simply float in the DASR matrix. As a result, the final component does not significantly contribute to the 

friction strength of HMA mixtures [15]. Aggregate interlock occurs within the aggregate structure 

effectively when relative volume proportions between contiguous size aggregates in the DASR is lower 

than 70/30 [15].  

 

 

Figure 7. Components of DASR model  

 

Figure 8. Components of DASR model with a range of i-j mm 
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Figure 8 also shows the components of the DARD model with a range of i-j mm. The previous 

studies also demonstrated that the characteristics of IC components have strong influences on the 

performance of HMA mixtures [16-17]. Based on aggregate gradation, the disruption factor (DF) was 

proposed to check whether the proportion of potential fine aggregate can disrupt the DASR structure. The 

DF value is calculated as the following equation [16]: 

     
Volume of potentially disruptive IC particles

Volume of DASR voids
DF                  (5) 

A high proportion of fine aggregates may destroy the points of interaction among coarse 

aggregate particles [16]. In contrast, a low proportion of fine aggregates may be insufficient to fill the air 

voids created by coarse aggregate particles, thereby reducing the dense packing of the backbone 

aggregate [16]. However, only the DF may be insufficient to evaluate the rutting and cracking 

performance of HMA mixtures [17]. Furthermore, the application of the DASR model for evaluating the 

workability of HMA mixtures has yet to be established.  

2.5. Summary 

Based on the search of the literature, the findings are summarized as follows. 

 The current standards of most countries used the permissible ranges to design an aggregate 

gradation. The conventional aggregate gradation obtained from the mean values of the permissible 

ranges is commonly applied. However, selecting the conventional aggregate gradation does not 

provide a guarantee for designing a stable aggregate gradation.       

 The Fuller’s maximum density theory seems to be a useful and practical tool for designing a 

proper aggregate gradation. Based on this theory, the 0.45 power gradation chart in the Superpave 

method is proposed to evaluate the effects of aggregate gradation on the air voids and the VMA of 

asphalt mixtures. Despite that, this chart also has not yet provided clear guidance to determine an 

adequate gradation that results in a stable asphalt mixture.      

 The CMD theory has potential applications for evaluating the effects of aggregate gradations the 

VMA of asphalt mixtures. However, to the best of our knowledge, no studies have previously 

conducted an in-depth discussion on the relationships of the CMD theory with performance (rutting, 

cracking, and workability) of asphalt mixtures. 

 The Bailey method proposes a gradation optimization tool to determine appropriate proportions 

of aggregates in the mixtures. Nonetheless, the gradations obtained from this method may not be 

insufficient to ensure the minimum VMA requirement and excellent behaviour of asphalt mixtures. 

 The DASR model provides a potential concept to evaluate aggregate interlock within asphalt 
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mixtures. However, there is a need to conduct an in-depth discussion on the application of the DF 

parameter of the DASR model. In addition, the correlation between this model and the workability of 

HMA mixtures has yet to be discussed.   
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Chapter 3. Effect of aggregate gradation on asphalt mixture design 

 

 

3.1. Introduction 

Wearing course mixtures is directly affected by repeated traffic loads and weather conditions. As 

a result, a combination of a high volume of heavy vehicle and a severe climate potentially causes this 

layer to failure mechanisms such as rutting or cracking [1, 2]. Therefore, designing a stable asphalt 

mixture plays an important role in controlling the failure mechanisms of asphalt mixtures. The 

Vietnamese standard proposed two types of mixtures, i.e., 9.5 mm and 12.5 mm NMPS mixtures to use 

for wearing course mixtures [3]. These mixtures are designed in accordance with the Marshall method, 

focuses on the volumetric properties of HMA mixtures to select a design AC [3]. 

Aggregate skeleton plays a fundamental role in determining the volumetric and physical 

properties of the HMA mixtures. Properties of the aggregate skeleton are significantly dependent on an 

aggregate gradation. In the process of gradation design, the current Vietnamese standard proposes the 

upper and lower grading limits called permissible ranges [3]. Asphalt designers have to choose a percent 

passing of aggregate at each sieve to achieve an aggregate gradation that enters inside of all permissible 

ranges. For practicality, the middle aggregate gradation of permissible ranges is commonly applied in 

Vietnam. The aggregate gradation design aims to obtain an asphalt mixture that satisfies with the 

volumetric requirements in the Marshall method. The VMA is one of the most important parameters in the 

Marshall method. However, the aggregate gradation procedure in the current Vietnamese standard does 

not provide a clear guideline to comply with the minimum VMA requirement. In fact, complying with the 

VMA requirement is the most difficult challenge for designers in the volumetric design process [4]. 

A previous study proposed the CMD theory to evaluate the effect of aggregate gradation on the 

VMA of asphalt mixtures [5]. The past results indicated this theory has a strong association with the 

VMA in the mixtures. However, this study only conducted for the Superpave method and to the best of 

our knowledge, no studies have previously investigated the relationships of the CMD theory with the 

VMA in the Marshall method, which is the current mixture design in most countries. 

The objective of this chapter was to investigate the relationship of aggregate gradation with the 

VMA of asphalt mixtures using the CMD theory. First, the present study conducted seven asphalt 

mixtures (dense-, coarse-, and fine-graded) that represents 12.5-mm NMPS Vietnamese wearing course 

mixtures. Next, this study evaluated the application of the CMD theory for the data obtained from 

previous studies. The relationship of the CMD theory with rutting performance of asphalt mixtures was 

also investigated.    
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3.2. Literature review 

3.2.1. The theory continuous maximum density 

The theory of CMD and the CMDare parameter have been described in chapter 2. 

3.2.2. The VMA of asphalt mixtures 

In the last few decades, using VMA to evaluate and design asphalt mixtures have received a 

growing interest in asphalt researchers [1-10]. As shown in Figure 9, the VMA includes two components, 

namely, the effective asphalt content (Vbe) and the air voids in mixture (VIM). The VMA is considered to 

be the most important parameter that strongly influences the performance of HMA mixtures [6, 7]. HMA 

mixtures having low VMA values generally show a low cracking resistance at low temperatures and low 

fatigue resistance at normal temperatures [7, 8]. In contrast, HMA mixtures having high VMA values tend 

to have a low rutting resistance at high temperatures [10]. Therefore, the VMA values should be high 

enough to ensure good rutting and cracking resistance [6, 7]. 

 

 

Figure 9. Definition of VMA 

In the mixture design procedure, almost asphalt standards have specified the minimum VMA 

requirement to obtain a stable asphalt mixture [1, 3, 9]. This requirement is also applied for an acceptable 

aggregate gradation. However, numerous studies have recently reported problems in achieving the 

minimum VMA requirement [5-7, 10]. The process of trial and error for choosing appropriate gradations 

is difficult and time-consuming. The current gradation designs such as permissible ranges in Vietnamese 

and Japanese standards, or the 0.45 power gradation chart in the American standard are not sufficient to 

ensure the minimum VMA requirement [2, 5, 10]. In recent years, the Bailey method was proposed to 
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design aggregate gradations for HMA mixtures. However, the current study also indicated that in the 

Superpave method, relationships of the VMA with the Bailey parameters were not high [10]. 

 Based on the CMD theory, the current study proposed the CMDarea to control the gradation 

design in Superpave mixtures [5]. The past results indicated that the CMDarea is strongly associated with 

the VMA mixtures [5]. The Superpave method controls a constant VIM value of 4% while the Marshall 

method requires from 3% to 6% for the VIM value. Because the VIM is one of the VMA components, 

different VIM values can lead to different VMA values of asphalt mixtures. However, the application of 

the CMD theory for Marshall mixtures has yet to be established. Therefore, the present study aimed to 

examine whether the CMD theory can be applied to the Marshall method. 

3.3. Experimental work 

3.3.1. Material sources 

The present study used a straight asphalt (virgin asphalt) with a penetration grade of 60/80 to 

fabricate the HMA specimens for the experiments. The available aggregates were divided into coarse 

(12.5 - 4.75 mm) and medium (4.75 - 2.36 mm) aggregates, as well as into coarse and fine sands. The 

aggregate classification helps to design the desired blends of different sizes of aggregates rationally. All 

materials used in the present study were produced in a specific area of Japan. 

3.3.2. Design of aggregate gradation 

 

Figure 10. Aggregate gradations for analysing 
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Seven aggregate gradations were designed to represent dense-, coarse- and fine-graded HMA 

mixtures. The first group (Blends 1 to 3) comprised dense-graded HMA mixtures, where Blend 3 

represented the conventional aggregate gradation that is commonly applied in Vietnam. The second group 

(Blends 4 and 5) comprised coarse-graded HMA mixtures. The aggregate retention on the 2.36-mm sieve 

for Blend 4 was selected to be slightly lower than 76%, which is the minimum requirement for this sieve 

for an aggregate gradation prepared for stone matrix asphalt mixtures [11]. The final group (Blends 6 and 

7) comprised fine-graded HMA mixtures. Because the minimum aggregate retention of 30% on a 2.36-

mm sieve is recommended for such mixtures [12], the aggregate retention on this sieve for Blend 7 was 

designed to be slightly over 30%.  

3.3.3. Mix design procedure 

Figure 11 shows the flow of mix design procedures. All the HMA mixtures were designed in 

accordance with the Marshall method, which is the current Vietnamese standard [13]. The design 

procedure was listed as the following steps:  

1. Prepare and evaluate aggregates, sands, filler and asphalt binder. 

2. Make two samples with a tentative asphalt content (AC) to conduct the rice test, and then 

calculate the theoretical maximum specific gravity (Gmm) of the loose asphalt mixtures and the 

effective specific gravity of aggregate (Gse).   

3. Fabricate Marshall briquettes in five asphalt contents. Seventy-five blows are applied on each 

side for the samples.     

4. Measure and determine properties of each sample (volumetric, stability and flow).  

5. Evaluate the asphalt mixture properties to determine an acceptable range of AC based on the 

specified requirements as presented in Table 3. 

6. Determine a design AC, namely the mean value of the acceptable AC range. 

7. Make five samples at the design AC. Compare the properties with the design criteria for three 

samples, and determine the residual stability index for the two samples.  

Table 3. Marshall requirements for 12.5-mm NMPS mixtures 

The properties of asphalt mixture Required values 

Voids in mineral aggregates (VMA)  ≥ 14 (%) 

Voids in mixture after 275 blows (VIM)  3 – 6 (%) 

Stability ≥ 8.0 (kN) 

Flow 2 – 4 (mm) 

Residual stability ≥ 75 (%) 
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Figure 11. Mix design flow for Vietnamese wearing course mixtures 

3.4. Results and discussion 

3.4.1. Result of mix design for Vietnamese wearing course mixtures 

Figure 12 shows results of mixtures design for the seven mixtures at five asphalt contents. It was 

found that Blends 2 and 3 could not comply with the minimum requirement of VMA. According to 
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TCVN 8820, for dense-graded HMA mixtures, the design AC can be established at the air voids of 4% 

[13]. Because the acceptable AC range did not appear, the design AC for Blends 2 and 3 was determined 

when air voids content of the mixtures yields 4.0%.   

 

 

Figure 12. Volumetric and Marshall properties of seven mixtures at five asphalt contents 

Table 4 shows the acceptable AC range and the design AC for the seven HMA mixtures. Table 5 

also presents results of volumetric properties for the seven blends at the design AC. As mentioned above, 

the VMA is the most important volumetric properties in the mix design procedures. Mixtures 2 and 3 did 

not meet the minimum VMA requirement even though the aggregate gradations of these mixtures fall 

inside the recommended ranges specified by the Vietnamese standard. In addition, the results illustrated 

that dense-graded mixtures were more difficult to satisfy the VMA requirement than coarse and fine-

graded mixtures. Among the dense-graded mixtures, only Blend 1 having the gradation curve that enters 

into all specified ranges meets the minimum VMA requirement. Therefore, it is a tough challenge for 

mixture designer to select an appropriate aggregate gradation that achieves a sufficient VMA for the 
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mixture even though the gradation complies with the control points. Mixture designers must conduct a 

trial and error process. 

Table 4. Acceptable AC range and design AC 

Mixture 
Acceptable AC range 

(%) 

Margin of acceptable AC 

range (%) 

Design AC 

(%) 

1 4.5  5.0 0.5 4.75 

2   4.70 

3   4.60 

4 5.5  6.5 1.0 6.00 

5 4.5  4.9 0.4 4.70 

6 5.5  6.5 1.0 6.00 

7 5.7  7.0 1.3 6.35 

Note: Design AC values of Blends 2 and 3 were determined for the VIM value of 4.0% 

Table 5. Volumetric properties and Marshall-stability results for seven mixtures at the design AC 

Mixture 
Design AC 

(%) 

VIM  

(%) 

VMA  

(%) 

Stability  

(kN) 

Flow  

(mm) 

Residual  

stability (%) 

Meet all 

requirements 

Dense-

graded 

1 4.75 5.3 14.0 11.4 3.9 88.5 Yes 

2 4.70 4.1 12.7 12.7 3.2 89.8 No 

3 4.60 4.0 12.2 12.2 3.8 86.4 No 

Coarse-

graded 

4 6.00 4.0 15.6 9.9 3.7 85.1 Yes 

5 4.70 5.5 14.3 12.0 3.0 90.9 Yes 

Fine-

graded 

6 6.00 4.2 15.3 11.0 3.1 92.7 Yes 

7 6.35 4.3 16.1 12.0 3.7 75.6 Yes 

 

3.4.2. Analysis of the effect of CMD on the VMA 

Table 6 presents CMDarea values for seven aggregate gradations, and Figure 13 shows the effect 

of the CMDarea on the VMA of the mixtures. A strong linear correlation (R
2
  0.92) was obtained between 

the CMDarea and the VMA. The trend line indicated that the VMA of HMA mixtures increases when the 

CMDarea of aggregate gradation increases. These results confirmed that the CMDarea of aggregate 

gradation is a helpful tool for a VMA assessment of asphalt mixtures. 

https://en.wikipedia.org/wiki/Correlation
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Table 6. CMDarea values for seven blends 

Blend 1 2 3 4 5 6 7 

CMDarea 5.9 4.6 3.4 8.3 7.4 7.0 9.8 

 

 

Figure 13. Relationship of CMDarea with VMA 

3.4.3. Analysis of the effect of CMD on the VMA with different factors 

3.4.3.1. Analysis of the effect of CMD on the VMA in the Superpave method 

This study evaluated the data performed by the former graduate students at 

Highway Engineering Laboratory, Nagaoka University of Technology, Japan. The Superpave method was 

applied to design 19-mm NMPS wearing course mixtures for airport pavements. In the Superpave method, 

the design AC can be determined when the air voids content of the HMA mixture is 4.0%. 

The Superpave gyratory compactor (SGC) was employed to compact the Superpave samples. 

Two aggregate sources, i.e., natural sand and manufactured screening, were used to fabricate HMA 

samples. The Superpave samples of eighteen aggregate gradations were compacted using both limestone 

screening and natural sand. On the other hand, the Superpave samples of twelve aggregate gradations 

were fabricated using natural sand sources only. Figure 14 also shows pictures of the limestone screening 

and granite sand. All the aggregate gradations are also depicted in Figure 15. Virgin straight asphalt of 

Pen 60/80 produced in Japan was used to fabricate all HMA samples. 
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Figure 14. Photographs of the (a) limestone screening and (b) granite sand 

 

  

Figure 15. Eighteen limestone screening gradations and twelve granite sand gradations 

Figure 16 and Figure 17 show the relationships of the CMDarea and Bailey parameters with the 

VMA for the eighteen screening and twelve sand mixtures. The results demonstrated that the VMA of 

mixtures had stronger relationships with CMDarea than with the Bailey parameters. The trend lines 

indicated that the mixtures having aggregate gradations that have higher CMDarea values showed greater 

VMA values. As shown in Figure 17, it is worth noting that the models demonstrated good R
2
 values 

(0.75 and 0.69) for both the eighteen screening and twelve sand mixtures, regardless of aggregate source. 

In addition, the relationships of CMDarea with VMA for all thirty wearing course mixtures (Figure 18) had 

a reasonably correlation coefficient (good R
2
: 0.69). In the Superpave method, The VMA values for 19-

mm NMPS wearing course mixtures must be a minimum of 13% [10]. Figure 18 also suggests that the 

(a) (b)
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CMDarea values of aggregate gradations should be higher than 4.0 to provide HMA mixtures with 

sufficient VMA values. 

 

Figure 16. The highest relationships of  Bailey parameters with VMA for the (a) eighteen limestone 

screening blends and (b) twelve granite sand blends  

 

Figure 17. Relationships of CMDarea with VMA for the (a) eighteen limestone screening blends and (b) 

twelve granite sand blends 
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Figure 18. Relationship of of CMDarea with VMA for the thirty blends  

3.4.3.2. Analysis of the effect of CMD theory on the VMA in the Marshall method 

The present study evaluated the effect of CMD theory on the VMA in two groups of 12.5-mm 

NMPS wearing course mixtures using the Marshall method. The first group included seven aggregate 

gradations that were designed as Vietnamese wearing course mixtures, and these gradations were 

previously described in subsection 3.3. All the Vietnamese wearing course mixtures were fabricated using 

natural sand sources. 

 

 

Figure 19. Six aggregate gradations for Indonesian wearing course mixtures  

The second group included six aggregate gradations that were designed in accordance with the 

Indonesian standard for wearing course mixtures (designated Blends I1–I6) based on Iman et al. [1]. The 
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six aggregate gradations of this second group are presented in Figure 19. The Indonesian standard 

stipulates control points and a restricted zone to design aggregate gradation [1]. Three aggregate 

gradations (I1, I2, and I3) were designed to pass below the restricted zone, and the remaining three 

aggregate gradations (I4, I5, and I6) were designed to pass above the restricted zone. The HMA samples 

of Blends I1, I3, I4, and I6 were fabricated using the limestone screening and the natural sand. On the 

other hand, the samples of Blends I2 and I5 were compacted using the natural sand only. 

 

 

Figure 20. Relationship of of CMDarea with VMA for the thirteen blends using the Marshall method 

Figure 20 presents the relationship between the CMDarea and VMA values for the thirteen 

mixtures. The trend line showed that the VMA of mixtures increased with the increases in CMDarea values 

of aggregate gradations. The analytical model showed a fair goodness of fit, where the R
2
 value was 0.62 

(A model with an R
2
 above 0.4 is regarded as having fair goodness of fit [14]). The results indicated that 

the correlation coefficient of the CMDarea with the VMA for the Marshall mixtures was lower than that of 

the CMDarea with the VMA for the Superpave mixtures. This may be explained by the following reasons. 

First, in the Superpave method, the VIM value is designed at 4%. This means that only one value of the 

design AC or the VMA was found for the constant air void. As a result, the determination of the VMA of 

mixtures in the Superpave method follows the same protocol and only a VMA value is found for an 

aggregate gradation. In contrast, the Marshall method stipulates a range of values (3% to 6%) for VIM, 

thereby resulting in the large variability for the determination of the VMA. This means that there is a 

range of VMA values for an aggregate gradation. Next, because the Marshall requirements for 12.5-mm 

NMPS mixtures in Vietnamese and Indonesian standards (Table 7) are different, there is a principle 

difference in VMA determination between the two standards.  
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Table 7. Comparison of Marshall requirements for 12.5-mm NMPS mixtures for Vietnam and Indonesia 

The properties of a HMA mixture 
Required range 

Vietnam Indonesia 

Voids in mineral aggregates (VMA) ≥ 14 (%) ≥ 15 (%) 

Voids in mixture (VIM), after 752 blows 3 - 6 (%) 4.9 - 5.9 (%) 

VIM at refusal density  –  4 - 6 (%) 

Voids filled with asphalt (VFA)  –  ≥ 65 (%) 

Stability ≥ 8.0 (kN) ≥  8.0 (kN) 

Flow 2 - 4 (mm) ≥ 2 (mm) 

Residual stability ≥ 75 (%) ≥ 85 (%) 

Marshall quotient  –  ≥ 2 (kN/mm) 

Asphalt absorption  –   1.2 (%)

 

To gain a clearer understanding of the different mixtures, the aggregate gradations were evaluated 

using two methods where each blend was mixed with the same and distinct aggregate gradations. For the 

same aggregate gradation, we produced three pairs of duplicate aggregate gradations (Blends I1 and V4, 

I4 and V6, and I6 and V7); the blends in each pair generally showed the same passing percentage at each 

sieve. Table 8 presents the characteristics of all aggregate gradations investigated for the Marshall method.  

The VMA of an asphalt mixture includes two components, i.e., the VIM and the effective AC (Vbe). 

Table 8 shows that the design ACs or of Blends V4, V6, and V7 were higher than those of Blends I1, I4, 

and I6, respectively. As mentioned above, while the specimens of Blends I1, I4, and I6 were compacted 

using the limestone screening, the specimens of Blends V4, V6, and V7 were compacted using the granite 

sand. This corroborates the findings of a previous study that demonstrated that the design AC of HMA 

mixtures with limestone screening was lower than that of mixtures with granite material [15]. An increase 

in design AC in combination without controlling the VIM can lead to a difference in VMA determination. 

Consequently, three pairs of duplicate aggregate gradations (Blends I1 and V4, I4 and V6, and I6 and V7), 

which have same aggregate gradations or CMDarea values, may not necessarily provide same VMA values 

as shown in Table 8. Therefore, this may decrease the relationship of CMDarea with VMA when the same 

aggregate gradation was evaluated using different fine aggregates and the Marshall method.   
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Table 8. Aggregate gradations and mixture design results of the thirteen mixtures 

Sieve Size 

(mm) 
19 12.5 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075 CMDarea 

Design 

AC (%) 

VIM 

(%) 

Vbe 

(%) 

VMA 

(%) 

V
ie

tn
a
m

es
e 

V1 100 99.7 76.6 52 33.9 25.7 16.5 11.2 8.4 7 5.9 4.75 5.3 8.6 14.0 

V2 100 99.7 79 55.1 38.4 28.8 18.9 11.8 9 7.6 4.6 4.70 4.1 8.6 12.7 

V3 100 99.8 81.4 59.5 42.4 31.2 20 12.7 10 8.6 3.4 4.60 4.0 8.2 12.2 

V4 100 99.8 85.2 47.6 25.5 20.5 15 10.6 8.2 6.9 8.3 6.00 4.0 11.6 15.6 

V5 100 99.7 76.5 47 28.9 22.4 15.2 10.2 7.6 6.2 7.4 4.70 5.5 8.7 14.3 

V6 100 99.9 91.7 75.5 59.3 43.2 26 14.8 10.2 8.1 7.0 6.00 4.2 11.1 15.3 

V7 100 99.9 95.1 82.4 66.3 48 27.8 15.7 10.2 8 9.8 6.35 4.3 11.7 16.1 

In
d

o
n

es
ia

n
 

I1 100 100 87.1 48.4 25 20.9 15 11.8 9.1 7.7 8.7 5.34 4.6 10.7 15.3 

I2 100 100 86 53.9 28.4 23.5 17.8 11.3 6.8 4.9 7.7 5.83 5.6 11.3 16.9 

I3 100 100 90.2 60.2 32 25.9 15.6 10.7 5.6 4.2 6.9 5.31 5.9 11.0 16.9 

I4 100 100 91.7 75.2 59.3 47.2 26.9 19.9 12.6 9.6 7.0 5.41 6.0 11.8 17.8 

I5 100 100 92.7 74.8 55.2 45.2 34.1 20.9 11.7 7.9 6.2 5.62 5.2 10.2 15.3 

I6 100 100 95.2 82.3 66 53 31.2 22.3 13.5 10.1 9.4 5.37 5.9 11.6 17.5 

Note: Identical colors indicate the same aggregate gradations. 
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3.4.3.3. Evaluation of the effect of CMDarea with VMA with different fine aggregate sources, mixture 

design methods, and nominal maximum particle size 

 

Figure 21. Relationship of CMDarea with the VMA for forty-three blends. 

Figure 21 shows the effect of the CMDarea on VMA values for the forty-three mixtures. The data 

indicate a wide variety of asphalt mixtures for different fine aggregate sources (limestone screening and 

granite sand), mixture design methods (Superpave and Marshall), and nominal maximum particle size 

(19-mm and 12.5-mm NMPS). As expected, the coefficient of determination (R
2
) of the regression was 

0.77, which indicates that approximately 77% of the variability in the VMA observed from those forty-

three mixtures can be explained by the sole independent variable, the CMDarea of aggregate gradation. 

Therefore, the CMDarea is a potential parameter that indicates a positive effect of aggregate gradation on 

the VMA of HMA mixtures. Based on Figure 21, the CMDarea value of aggregate gradation should be 

more than 4.0 and 5.0 to comply with the minimum VMA requirement of 13.0 % and 14.0 % for 12.5-mm 

and 19.0-mm NMPS mixtures, respectively.  

3.4.3.4. Evaluation of the effect of CMDarea with the rutting resistance of HMA mixtures 

This section evaluated the relationship between CMDarea of aggregate gradation and rutting 

resistance of HMA mixtures using two types of rutting test. First, for Superpave mixtures, the asphalt 

pavement analyzer (APA) test was conducted to characterize the resistance of the HMA mixtures to 

permanent deformation using SGC specimens. Prior to the test, the SGC specimens were heated for six 

hours at a temperature of 60 °C. The APA machine automatically stops when the wheel traverse reaches 

8000 cycles [16]. Rut depth of specimens was measured at every traverse. Second, for Marshall mixtures, 
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the wheel tracking test was performed to evaluate the rutting resistance of asphalt mixtures. The test was 

also conducted at 60 °C using slab samples. Based on the relationship between the rut depth and the cycle 

of the wheel, the dynamic stability (DS) was estimated, which indicates the cycles of the wheel per 1-mm 

rut depth.   

The present study investigated the relationship of CMDarea of aggregate gradation with rutting 

resistance of HMA mixtures using linear regression analysis. Table 9 summaries the regression results, 

and Figure 22 and Figure 23 depict the relationships of CMDarea with rutting resistance for each test. P-

values and coefficients in the linear regression analysis determine whether there are statistically 

significant relationships and the characteristics of those relationships between variables.  The sign of the 

coefficient indicates if there is a positive or negative relationship between each independent variable and 

the dependent variable. The p-value for each coefficient describes whether the relationship between each 

independent variable and the dependent variable is statistically significant. If the p-value is smaller than 

the chosen significance level (0.05 was chosen in this present study), the sample data sufficiently 

illustrates the statistically significant relationships between variables.  

Table 9. Regression analysis between CMDarea and rutting resistance 

Model Term Coefficient Se t value p value  R
2
 

Rut depth ~ CMDarea Intercept 2.01 0.69 2.93 0.010 0.232 

(Superpave - with screening) CMDarea 0.36 0.16 2.20 0.043   

Rut depth ~ CMDarea Intercept 6.91 1.10 6.31 < 0.001 0.069 

(Superpave - with natural sand) CMDarea -0.20 0.24 -0.86 0.410   

DS ~ CMDarea Intercept 229.41 684.36 0.34 0.754 0.157 

(Marshall - with screening) CMDarea 76.40 88.55 0.86 0.437   

DS ~ CMDarea Intercept 1716.10 202.48 8.48 < 0.001 0.846 

(Marshall - with natural sand) CMDarea -153.27 29.22 -5.25 0.003   

Note: Se is standard error. 

Table 9 shows that while the relationship of CMDarea with the rut depth was statistically 

significant for eighteen Superpave-screening blends (p-value < 0.05), this relationship was not 

statistically significant for twelve Superpave-sand blends (p-value > 0.05). In contrast, the relationship 

between the CMDarea and the DS was not statistically significant for six Marshall-screening blends, and 

this relationship was statistically significant for seven Marshall-sand blends. Furthermore, there were 

differences between the signs of regression coefficients for each group, indicating both positive and 

negative correlations between the CMDarea and the rutting resistance. The positive relationships of 

CMDarea with rutting resistance were not statistically significant while the negative relationships of 
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CMDarea with rutting resistance were statistically significant. In most cases, the low coefficients of 

determination (R
2
) indicate that the sole CMDarea is insufficient to explain the percentage of variance in 

the rutting resistance of HMA mixtures.   

 

 

Figure 22. Relationships of CMDarea with rut depth for the (a) eighteen limestone screening blends and (b) 

twelve granite sand blends using Superpave method 

 

Figure 23. Relationships of CMDarea with DS for the (a) six limestone screening blends and (b) seven 

granite sand blends using Marshall method 

As described in the previous section, the increase in CMDarea of aggregate gradation increases the 

VMA of HMA mixtures. It has been reported that the VMA has a fair negative relationship with the 

rutting resistance of HMA mixtures [8, 17]. Therefore, the CMDarea may have a negative effect on the 

rutting resistance of asphalt mixtures. The complicated relationship between the CMDarea and the rutting 

resistance of HMA mixtures may be explained through components of the VMA. The VMA includes two 

components, i.e., the effective asphalt content (Vbe) and the voids in the mixture (VIM). While most 
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studies have consistently reported a negative relationship between the Vbe and rutting resistance [2, 8], the 

influence of the VIM on rutting resistance is more ambiguous. It has been reported that increasing the VIM 

at a range of 2.6 to 5.7% improved the rutting resistance of HMA mixtures [18] while another study 

reported that increasing the VIM at a range of 2 to 7% reduced the rutting resistance of HMA mixtures 

[19]. In the Superpave mixtures, the VIM has a constant value of 4% [8]. Therefore, increasing CMDarea 

only increases the remaining component of the VMA, i.e., the Vbe. When the CMDarea increases, the VMA 

of HMA mixtures increases and additional air voids within are created. The extra air voids in aggregate 

structure may be occupied by increasing asphalt binder to obtain the target air voids content (4%). As a 

result, the CMDarea may influence the rutting resistance of HMA mixtures through the Vbe only, leading to 

a negative effect of the CMDarea on the rutting resistance of HMA mixtures. On the other hand, the 

Marshall method requires a range of from 3 to 6% for the VIM [2, 8]. As a result, the relationships of 

CMDarea with the components of the VMA (VIM and Vbe) become more complicated. The increase in VMA 

can result in the following five effects: (i) increase Vbe only; (ii) increase VIM only; (iii) increase both Vbe 

and VIM; (iv) increase Vbe but decrease VIM; and (v) decrease Vbe but increase VIM. Therefore, the 

unclear relationship of VIM with the rutting resistance in combination with the complicated relationship 

of CMDarea with the VIM may result in the low correlation coefficients between the CMDarea and the 

rutting resistance. 

3.5. Summary 

Based on the experiments presented in this chapter, the following conclusions are relevant: 

 New seven blends of aggregate structures, namely coarse-, dense-, and fine-graded asphalt 

mixtures were investigated for 12.5 mm NMPS Vietnamese wearing course mixtures. In the Marshall 

design procedure, it was challenging to meet the minimum VMA requirement for the dense-graded 

mixtures. Only one of three blends in dense-graded mixtures complied with the minimum VMA 

requirement. 

 The CMDarea parameter proposed from the concept of the CMD has a potential application to 

evaluate the effect of aggregate gradation on the VMA of asphalt mixtures. The VMA of asphalt 

mixtures increases with the increase in the CMDarea of aggregate gradation, regardless of aggregate 

source, mix design, and nominal aggregate particle size. The relationship of CMDarea with VMA 

decreased when the aggregate gradations were controlled to reach the same gradations using different 

fine aggregates and volumetric requirements of the Marshall method. 

 The sole CMDarea may be insufficient to evaluate the rutting resistance of HMA mixtures. There 

is therefore a need to conduct in-depth investigations that clarify the effect of additional potential 

factors (properties of aggregates and asphalt binders) on rutting resistance. 
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Chapter 4. Effect of aggregate gradation on the workability of asphalt 

mixtures 

 

 

4.1.  Introduction 

Workability of HMA mixtures indicates characteristics associated with the construction of the 

HMA layer, e.g., being placed, worked by hand, and compacted [1]. An asphalt mixture, which has higher 

workability, can be more easily compacted. Low workability may affect the durability and stability of the 

HMA mixtures in field construction. On the other hand, it is not proper to use an HMA mixture which is 

very workable, because it may show a poor rutting performance under repeated traffic loads at high 

temperatures [2]. 

Previous studies reported that some compaction devices such as torque-meter, Superpave 

gyratory compactor (SGC) and modified roller compactor are able to measure the workability of HMA 

mixtures [1, 3, 4]. In addition, Asphalt Pavement Analyzer and Wheel Tracking Test (WTT) are 

commonly applied to assess rutting resistance of HMA mixtures. The dynamic stability (DS) of the WTT 

is a potential parameter for evaluating resistance of asphalt mixtures to rutting [5]. However, those 

devices are not widely available in developing countries such as Vietnam and Indonesia [6, 7]. The 

Marshall compactor is still basic equipment to fabricate asphalt samples. Therefore, based on the Marshall 

method, there is a need to develop HMA indices that have good relationships with the workability and the 

rutting resistance of HMA mixtures. Those indices may help asphalt designers to select a stable asphalt 

mixture. 

Aggregate gradation significantly influences the workability properties of HMA mixtures. A 

previous study reported that asphalt mixtures having aggregate gradations that are close to the MDL may 

be compacted more easily [2]. Furthermore, asphalt mixtures having aggregate gradations that pass below 

the restricted zone could be more workable than mixtures having aggregate gradations that pass above the 

restricted zone [2, 3]. An asphalt mixture with a higher fraction of sand may show lower workability [2]. 

However, to the best of our knowledge, the search of the literature found no well-established research that 

evaluates the relationship of aggregate gradations with the workability of asphalt mixtures. There are not 

unique guidelines for designers who do not have enough experience in designing an adequate aggregate 

gradation that leads to proper workable mixtures.  

This chapter aimed to develop a simple index and applied it to investigate the effect of aggregate 

gradations on the workability of 12.5 mm NMPS wearing course mixtures with three compactors, i.e., the 
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Marshall compactor, the SGC, and the roller compactor. The study also discussed another simple 

performance index for assessing rutting resistance of HMA mixtures. Moreover, relationships between the 

workability and the rutting susceptibility of HMA mixtures were also investigated. The present study also 

applied the proposed workability and rutting resistance indexes for other data.  

4.2. Literature review of the workability of asphalt mixtures 

In recent years, the SGC is the important equipment for compacting HMA samples in the 

Superpave mix design. The standard SGC provides a vertical pressure of 600 kPa and the angle of 1.25 

to an asphalt sample during compaction [8]. The computer system automatically measures and records the 

height of the sample at each gyration. As a result, the change of the sample height can be used to evaluate 

the workability of HMA mixtures [1]. The previous study also used the SGC compaction curve to develop 

two indices associated with the field construction. The first index, namely the workability energy index 

(WEI), presents the workability of an asphalt mixture when the volume of the mixture changes from the 

beginning of compaction to 92% of the Gmm [1]. The second index, namely the compact ability energy 

index (CEI), is calculated by the change in the volume of sample from 92% to 96% of the Gmm [1]. The 

96% of the Gmm indicates the air voids content in the mixture is 4 %, which is the requirement of the 

Superpave method. It has been reported that the CEI indicates the shear strength of HMA mixtures or the 

interlocking between aggregate particles [1]. The WEI and the CEI are described by the following 

equations [1]: 
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Where, d is the diameter of sample; P is the compaction pressure of the SGC (600 kPa); h0 is the 

height of the sample before compacting; h92% is the height of the sample when air voids of the mixture 

reach 8%; hf is the height of sample with Ndes; N92% is the number of gyrations as air voids of the mixture 

reaches 8%, and Ndes is the number of design gyrations.  

4.3. Development of workability index 

Aggregate gradation plays an important role in determining the workability of HMA mixtures. 

The previous study reported that a stone fraction (aggregates retains on the 2.36-mm sieve for 12.5 NMPS 

mixtures) significantly influences the workability of asphalt mixtures [2]. Asphalt mixtures having high 
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stone fractions show low workability [2]. The CMD pilot illustrates how much the aggregate gradation is 

far from the Fuller MDL at each sieve [7, 9]. In addition, it has been reported that it is easy to compact an 

asphalt mixture having an aggregate gradation that fits the MDL [2]. Therefore, the present study posited 

that the area of CMD for stone proportion (CMDareastone) has a strong relationship with the workability of 

HMA mixtures. When the CMDareastone of an aggregate gradation is high, this asphalt mixture may not be 

compacted easily. Figure 24 also shows the meaning of the CMDareastone for an aggregate gradation. 

 

 

Figure 24. Meaning of CMDareastone 

An asphalt mixture having a proper apparent film thickness (AFT) may be compacted easily. The 

AFT indicates an average thickness of asphalt binder that coats aggregate particles. It has been reported 

that when the effective asphalt content (Vbe) increases, the AFT of the mixture also increases [10], thereby 

increasing the workability of HMA mixtures. Therefore, the Vbe parameter may be a positive factor that 

affects the workability of HMA mixtures [2]. In addition, a proportion of fine aggregate has a strong 

effect on the AFT. When a proportion of fine aggregate in a mixture increases, the surface area of 

aggregates (Ss) within the mixture also increases [10]. As a result, the AFT value reduces due to the 

asphalt absorption by the fine aggregate. For this reason, the workability of the HMA mixture deteriorates. 

Too many interceptor particles may disrupt dense packing of the aggregate structure and create 

additional voids. Asphalt binder may fill the new air voids, thereby improving the workability of the 

HMA mixture [2]. To the best of our knowledge, no studies have previously conducted an in-depth 

discussion on the effect of interceptors on the aggregate interlock which is related to the workability of 

asphalt mixtures. This study employed the disruption factor (DF) of the DASR model as a parameter to 

illustrate the effect of aggregate interlock on the workability of HMA mixtures. Coarse particles in the 

DASR model play the main role in forming a backbone aggregate structure. Aggregate particles that are 

D
ev

ia
ti

o
n

 f
ro

m
 C

M
D

 l
in

e 
(%

)

Sieve size (mm)    

1.18 2.36 

0.075  0.3   0.6      9.5       

12.5      4.75       

8.0

4.0

0.0

- 4.0

- 8.0

CMDarea-stone



 

41 

 

smaller than the DASR aggregates, i.e., asphalt binder and fine aggregates, tend to occupy the air voids 

created by the DASR particles. The DF value determines whether fine aggregate disrupts the coarse 

structure [11]. When the DF value is high, a high proportion of fine aggregates may reduce the backbone 

aggregate, thereby decreasing the aggregate interlock of asphalt structure and creating additional air voids 

within aggregate structures. As a result, compacted loads easily shift aggregate particles or the HMA 

mixture’s workability increases [2]. 

The previous study has recommended the smallest sieve size for the aggregate particles of the 

DASR model to be 1.18 mm to calculate the DF [11]. In the Bailey method, a secondary control sieve 

(SCS) is used to split a sand fraction into coarse sand and fine sand. This means that at the SCS, the 

coarse sand fraction can still create air voids which can be occupied by fractions smaller than the coarse 

sand fraction (fine sand, asphalt binder). The SCS for 12.5 mm NMPS aggregate gradation is 0.6 mm 

sieve [12]. Therefore, the present study determined 0.6 mm as the smallest sieve size of coarse aggregate 

particles in the DASR model. 

Based on the above analysis, this study investigated a new workability index (WI) that would 

describe the relationship between the aggregate gradation and workability of an HMA mixture. The 

present study hypothesized that an HMA mixture’s workability increases with increasing values of WI. 

The WI is derived from three factors of aggregate gradation, i.e., CMDarea-stone, Ss, and DF, and one factor 

of asphalt binder, i.e., Vbe; these respectively address the effects of stone content, aggregate-surface areas, 

aggregate interlock, and the proportion of asphalt binder on the workability performance of a mixture. 

The present study built a hypothesis that WEI increases with increasing WI. The WI value can be obtained 

from the stage of the mix design procedure. The WI can be calculated by the following equation and other 

associated variables.  
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Where, P0.30, P0.15, and P0.075 are the aggregate contents passing 0.30-mm, 0.15-mm, and 0.075-

mm sieves, respectively. The equation (9), which was proposed the previous study, indicates an effect of 

fine aggregates on the area of the aggregate surfaces [9]. 

4.4. Development of rutting resistance index  

The past study reported that the resistivity property of asphalt mixtures is an effective parameter 

to evaluate the rutting resistance of HMA mixtures. At high temperatures, because of the reduction in 
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viscosity, asphalt binder tends to flow through aggregate structures [10]. The resistivity property indicates 

the resistance of an aggregate structure to oppose asphalt binder that flows in the mixture. The resistivity 

also illustrates a contrary characteristic of permeability for an HMA mixture [10]. The resistivity of an 

asphalt mixture, which is derived from the Ss, the bulk specific gravity of aggregates (Gsb), and the VMA, 

simultaneously expresses rutting resistance of HMA mixtures [10]. The relationship between the mixture 

resistivity and the rutting resistance of HMA mixtures may be explained as follows. The strength of 

adhesion existing in HMA mixtures increases with increasing Ss. As a result, the indirect tensile strength 

of HMA mixtures increases when the adhesion strength of mixtures increases [13]. The indirect tensile 

strength is strongly associated with the cohesion of asphalt mixtures, which is one of shear strength 

properties and has a good relationship with the rutting resistance of HMA mixtures [6, 14]. Therefore, the 

rutting resistance of HMA mixtures increases with increasing the mixture resistivity. 

Characteristics of aggregate gradation have significant effects on the VMA of asphalt mixtures. 

The previous study showed that the VMA value of HMA mixtures increases as the CMDarea value of 

aggregate gradations increases [7]. Therefore, the CMDarea parameter indicates the effects of aggregate 

gradation on the resistivity of the mixture. As a result, when calculating mixture resistivity, the present 

study used the CMDarea parameter instead of the VMA. The mixture resistivity increases with decreasing 

the CMDarea of aggregate gradation. 

The volume of effective asphalt or the Vbe also significantly influences rutting performance of 

asphalt mixtures. Asphalt mixtures with low Vbe values generally show high resistivity values, thereby 

increasing the rutting resistance of the HMA mixtures [10]. This means that the Vbe presents a negative 

effect of asphalt binder on the mixture resistivity. Furthermore, asphalt mixtures having higher Vbe values 

have a greater AFT value, which further reduces rutting resistance of the HMA mixtures [9]. 

As mentioned above, when an HMA mixture has high workability, this mixture may show poor 

rutting performance under repeated traffic loads [2]. Equation (10) presents the rutting resistance index 

(RRI) formulation. The present study hypothesised that the rutting resistance of HMA mixtures increases 

as RRI increases. Equation (11) was modified based on the equation to calculate a resistivity of an asphalt 

mixture [10]. Because all the components are not enough to calculate mixture resistivity, Equation (11) 

was only used to determine resistivity index (RI), which presents the effect of aggregate gradation on the 

mixture resistivity. 
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4.5. Experience work 

4.5.1. Preparation of HMA materials 

Preparation of HMA materials had been described in chapter 3. 

4.5.2. Design of aggregate gradation 

 Aggregate gradation design had been described in chapter 3. 

4.5.3. Mix design procedure 

Asphalt mixture design procedure had been described in chapter 3. 

4.5.4. Superpave gyratory compactor 

The present study compacted samples using the SGC to evaluate the workability of seven asphalt 

mixtures. Two samples at the design AC were fabricated to determine Ndes for each blend. The Ndes was 

regarded as the number of gyrations where the HMA mixture had the same Gmb as that of the Marshall 

specimen. Next, two samples were fabricated with the design AC and the Nde to check the Gmb value of 

the HMA mixture. 

4.5.5. Roller compactor and wheel tracking test 

This study also used a laboratory steel roller compactor to fabricate the slab specimen in order to 

evaluate workability of HMA mixtures. Slab samples of the mixtures with the dimension of 30030050 

mm were prepared. The present study fabricated the slab samples at two methods. First, the compaction 

process was conducted at a passing number of 25 times, which was suggested from the previous study for 

investigating the workability of HMA mixtures [2]. Second, the passing number was set up where the slab 

samples have the same air voids (or Gmb) as the Marshall samples, which is commonly applied in Japan 

[5].  

The present study also conducted the WTT for evaluating rutting resistance of slab samples. The 

WTT was performed at a temperature of 60 
o
C, a wheel speed of 42 passes/min, and a wheel load of 

686 N [2, 5]. Based on the WTT data, the DS parameter, which indicates passage times of wheel load per 

1-mm rut depth, was obtained. The DS is a common parameter in the Japanese WTT standard for the 

rutting evaluation of HMA mixtures [2, 5]. A value of DS is described by the following equation: 
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Where, d45 and d60 are the rut depth at 45
th
 and 60

th
 minutes, respectively; and C is the index 

depending on the type of wheel load (C = 1 for one wheel, and C = 1.5 for chain wheels).  

4.6. Results and discussions 

4.6.1. Results of mix design 

The results of mixture design had been described in chapter 3. 

4.6.2. Effect of aggregate gradations on workability of HMA mixtures 

Table 10. Properties of SGC samples at the design AC 

Mixture Ndes (gyration) Gmb VIM (%) Vbe (%) WEI (Nm) CEI (Nm) 

Dense-grade 1 70 2.366 5.2 8.6 6.99 0.96 

2 48 2.396 3.9 8.6 11.17 1.61 

3 48 2.394 4.2 8.2 11.56 1.61 

Coarse-grade 4 120 2.341 4.3 11.6 5.84 0.36 

5 70 2.353 5.5 8.7 6.03 0.95 

Fine-grade 6 45 2.335 4.4 11.1 10.68 1.62 

7 70 2.317 4.6 11.7 7.45 0.97 

 

Table 11. Properties of slab-shaped samples at the design AC 

Mixture 
Slab samples at 25 passes Slab samples at design air voids 

Gmb VIM (%) Vbe (%) Passes Gmb VIM (%) Vbe (%) 

Dense-grade 1 2.318 7.1 8.52 40 2.363 5.3 8.7 

2 2.372 4.9 8.54 25 2.372 4.9 8.5 

3 2.385 4.5 8.18 25 2.385 4.5 8.2 

Coarse-grade 4 2.285 6.6 11.23 50 2.344 4.2 11.5 

5 2.307 7.4 8.62 45 2.351 5.7 8.8 

Fine-grade 6 2.355 3.6 11.18 35 2.343 4.0 11.1 

7 2.296 5.5 11.61 45 2.319 4.5 11.7 

 

Properties of SGC and slab samples for the seven mixtures are shown in Table 10 and Table 11. 

Among all the blends, Blend 4 having the coarsest aggregate gradation showed the smallest WEI value. 

This means that Blend 4 is the most difficult to be compacted. In general, the workability of the coarse-
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graded HMA mixtures was lower than those of the dense- and fine-graded HMA mixtures. Figure 25 

shows the effect of the stone content on the workability of seven HMA mixtures. The significantly 

reasonable correlation coefficient (R
2
  0.84) was obtained between the stone content and the WEI. The 

trend line indicates that the workability of the HMA mixture is high when the aggregate gradation fits the 

MDL. It has been reported that when aggregate gradation is close to the MDL, individual aggregate 

particles easily interlock to fit together and create the densest packing of backbone aggregate [2]. 

Therefore, the findings of this study corroborate those from a previous analysis. 

 

 

Figure 25. Relationship of stone content with WEI  
a
 In Fuller curve, mineral aggregates retained on the 2.36-mm sieve size is 61% [2]. 

Table 12. WI of Marshall, SGC, and slab-shaped specimen 

Mixture 
Ss  

(m
2
/kg)  

CMDarea-stone 
DASR 

(mm) 
DF 

WI (10
-2

) of Marshall 

and SGC samples 

WI (10
-2

) of slab samples 

25 passes Design passes 

1 5.32 4.28 9.5-0.6 0.70 26.52 26.20 26.66 

2 5.68 3.00 9.5-0.6 0.89 44.68 44.58 44.59 

3 6.26 1.61 9.5-0.6 0.83 67.33 67.29 67.28 

4 5.14 6.50 4.75-0.6 0.72 24.99 24.19 24.86 

5 4.80 5.98 9.5-0.6 0.75 22.83 22.53 22.99 

6 6.62 3.18 9.5-0.6 0.95 50.15 50.47 50.30 

7 6.78 4.81 4.75-0.6 0.91 32.72 32.38 32.79 

 

Table 12 presents individual proportions that were used to calculate the WI of HMA mixtures. 

The WI value of each Marshall mixture was equal to that of the SGC mixture. The WI values of Marshall 

and SGC specimens were slightly different from that of slab-shaped specimens because of the little 
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difference in the Vbe. At each mixture, the Marshall, SGC, and slab samples at the design air voids had the 

same Vbe even though all the Marshall samples had the same compaction energy while the SGC and slab 

samples individually had the different compaction energy. In addition, the Vbe values of the Marshall, 

SGC, and slab samples at the design air voids were generally higher than those of slab samples at the 25 

passes. The Vbe indicates the ratio between a volume of effective asphalt and the total volume of the 

mixture. During the compaction procedure, with the help of compaction energy, air voids in the mixture 

gradually reduce. This leads to a decrease in the total mixture volume and increases in both the Vbe and 

the Gmb of HMA mixtures. Therefore, when fabricated various devices, asphalt mixtures with higher Gmb 

values generally have larger Vbe values. 

Figure 26 shows a linear relationship of the CMDareastone with the WEI of seven mixtures. The 

correlation coefficient for the two parameters was high (R
2
  0.89). The results indicated that when an 

aggregate gradation falls close to the MDL, the aggregate gradation of the mixture has a low CMDareastone 

and the mixture can be more workable. Furthermore, the correlation coefficient between the CMDareastone 

and the WEI was higher than that between the stone content and the WEI. This means that CMDareastone is 

more proper parameter than the stone content in order to indicate the degree of the distance between an 

aggregate gradation and the MDL, which strongly affects the workability of HMA mixtures. 

 

 

Figure 26. Relationship of CMDareastone with WEI 

Figure 27 presents relationships of WI values of samples using various devices with the WEI. The 

high correlation coefficients (Marshall, SGC, and slab samples with WEI: R
2
  0.92; and slab samples at 

25 passes with WEI: R
2
  0.93) were obtained. The trend lines, as expected, indicated that the workability 

of HMA mixtures increases with the increase in the WI. It seems that the WI has a potential application to 

assess the workability of HMA mixtures even though the samples are fabricated with different devices 

and compaction energies. 
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Figure 27. Relationships of WI of Marshall, SGC, and slab samples with WEI 

4.6.3. Evaluation of relationship between rutting resistance index and dynamic stability 

Table 13 shows RRI values of samples using various compactors and DS values for the seven 

mixtures. Relationships of RRI values with DS values are depicted in Figure 28 and Figure 29. The results 

showed that all relationships between RRI and DS had high correlation coefficients. As expected, the 

rutting resistance of HMA mixtures increases with increasing RRI. The experiments also illustrated that 

three RRI values of Marshall, SGC and slab-shaped specimens may be employed for the same objective, 

namely assessment of rutting resistance for 12.5 mm NMPS wearing course mixtures.  
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Table 13. Results of RRI and DS values 

Mixture 

RRI (10
2

) DS of slab 

samples at 

25 passes 

(cycles/mm) 

DS of slab 

samples at 

design air voids 

(cycles/mm) 
Marshall and 

SGC samples 

Slab samples at 

25 passes 

Slab samples at 

design air voids 

1 41.06 42.09 40.63 755 863 

2 57.96 58.23 58.24 1130 1130 

3 119.41 119.58 119.67 1168 1168 

4 10.94 11.67 11.05 422 435 

5 19.37 19.9 19.10 667 670 

6 15.38 15.19 15.28 340 342 

7 8.59 8.78 8.56 284 293 

 

 

Figure 28. Relationships of RRI of Marshall, SGC with DS 

 

Figure 29. Relationships of RRI of slab samples with DS 
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4.6.4. Relationships of workability energy index and compact ability energy index with 

dynamic stability 

Figure 30 presents relationships of SGC parameters (WEI and CEI) with the DS for the seven 

mixtures. It was found that the correlation coefficients of WEI and CEI values with DS values were low. 

This means that the WEI and the CEI were not potential parameters to evaluate rutting resistance of HMA 

mixtures. It has been reported that the gyration angle, i.e., 1.25 degree, in SGC is not adequate to assess 

the shear stress that can induce rutting in HMA mixtures [15]. This angle should increase to sufficiently 

characterise the rutting potential of HMA mixtures [15]. 

 

 

Figure 30. Relationships of WEI and CEI with DS 

4.6.5. Potential practical use of workability and rutting resistance indexes 

The present study examined the WI values proposed by the present study and by the previous 

study [2]. The previous study developed the WI and applied the index to evaluate the workability of six 

Indonesian mixtures that were previously described in section 3.4.3.2. The previous study calculated the 

WI based on the reduction in air voids of mixtures before and after compaction [2]. The air voids content 

of HMA mixtures before compaction were measured using the rodding procedure outlined in the 

AASHTO T-19 standard [2]. The determination of WI is detailed in the previous publish [2]. Table 14 

also summaries all WI and RRI results for six Indonesian wearing course mixtures. 

Figure 31 shows linear relationships between WI values for Marshall and slab samples proposed 

by the present study and Iman et al. The relationships show high coefficients of determination (Marshall 

samples: R
2
 = 0.82; and slab samples: R

2
 = 0.78). The results indicated that the WI proposed by the 

present study and Iman et al. may consistently characterise the workability property of HMA mixtures for 
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both the Marshall and slab samples. However, while the determination of WI proposed by the present 

study is essentially based on characteristics of aggregate gradation, the WI proposed by Iman et al. 

required the rodding test that determines individual porosity of the mineral aggregates source [2]. This 

may confirm that the WI proposed by the present study is cost-effective to describe the workability 

performance of HMA mixtures. 

Table 14. WI results of six mixtures proposed by the present study and Iman et al 

  Mixture 

  I1 I2 I3 I4 I5 I6 

CMDarea-stone 6.49 4.91 3.56 3.12 2.18 4.71 

Ss(m
2
/kg)  5.72 4.6 4.1 8.42 8.1 9.18 

DF 0.53 1.01 0.59 0.58 1.57 0.70 

Vbe of Marshall samples (%) 10.66 11.31 11.00 11.83 10.15 11.60 

Vbe of slab samples (%) 10.65 10.95 10.6 11.85 10.3 11.25 

Gsb 2.623 2.606 2.644 2.673 2.598 2.670 

WI of Marshall samples (10
-2

) 15.21 50.56 44.45 26.14 90.34 18.79 

WI of Marshall samples - Iman 1.20 1.51 1.59 1.54 2.29 0.84 

RRI of Marshall samples (10
-2

) 21.29 5.47 7.17 47.47 20.71 32.72 

WI of slab samples (10
-2

) 15.19 48.95 42.83 26.18 91.67 18.23 

WI of slab samples - Iman 1.20 1.46 1.46 1.22 1.97 0.66 

RRI of Marshall samples (10
-2

) 21.33 5.84 7.72 47.31 20.11 34.79 

DS (cycles/mm) 759 505 676 993 790 1160 

 

 

Figure 31. Comparison of WI values proposed by the present study and Iman et al 
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Figure 32. Relationships of RRI of slab and Marshall samples with DS 

Figure 32 presents the relationships of RRI of the slab and Marshall samples with the DS. The 

results also demonstrated that the relationships of RRI of the slab and Marshall samples with the DS were 

high. The rutting resistance of HMA mixtures was low when the RRI value was small. This means that 

the RRI proposed by the present study is applicable for ranking the rutting performance of HMA mixtures.   

4.7. Summary 

The findings of this chapter can be summarized as follows. 

 The present study has developed the WI for assessing the workability of HMA mixtures. The WI 

consisted of CMDareastone, Vbe, Ss, and DF has a potential application for evaluating the workability of 

HMA mixtures. 

 The strong relationship was observed between the CMDarea-stone of aggregate gradations and the 

workability of HMA mixtures. When the CMDarea-stone values of aggregate gradation are low, the 

HMA mixtures are properly workable under compaction energy. 

 The relationships of RRI values and DS values were high, regardless of compaction energies or 

compactors. Rutting resistance of HMA mixtures tended to increase with the increases in RRI values. 

On the Marshall design, RRI can be easily obtained. Therefore, without requirements for any 

mechanical tests, the RRI value of Marshall cylindrical specimens has a potential application to 

evaluate rutting resistance of wearing course mixtures. 
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Chapter 5. Effect of aggregate gradation on the cracking of asphalt mixtures 

at service temperatures 

 

 

5.1. Introduction 

Wearing course mixtures with low cracking resistance at normal service temperatures are 

susceptible to ductile fracture [1]. In Vietnam, a rise in the traffic volume of heavy vehicles in 

combination with high ambient temperature has increased the incidence of premature cracking in wearing 

course mixtures of asphalt pavements. However, current Vietnamese guidelines do not stipulate any 

evaluation procedures to ensure adequate cracking resistance for these mixtures. There is therefore a need 

to conduct rational evaluation tests for cracking performance under these conditions. These tests should 

be able to assess the tensile fracture characteristics of HMA mixtures. 

For more than one decade, the simplicity of the notched semi-circular bending (SCB) test has 

gained increasing interest in evaluating the cracking behavior of HMA mixtures [1-4]. Several parameters 

have been specified for analyzing cracking performance of asphalt mixtures at two distinct stages. The 

first stage is cracking initiation, which occurs when a load reaches the bonding strength of the mixtures 

[1]. Based on the concept of elastic-plastic fracture mechanics (EPFM), the J-integral (Jc) parameter was 

introduced to evaluate the cracking resistance of asphalt mixtures during the cracking initiation stage [1, 

2]. As this parameter indicates the accumulated fracture energy at the point where a crack originates in an 

asphalt mixture, it is therefore applicable for examining ductile fracture in HMA mixtures during cracking 

initiation [1]. It also has been reported that the Jc value is closely associated with the field cracking rate at 

construction sites [2]. The second stage for assessing cracking performance is cracking propagation. 

During the propagation stage, the crack length increases until the applied load decreases to the failure 

limit [1]. A fracture toughness parameter (KIc) was also developed to assess the potential for the cracking 

propagation [5]. 

In the flow of mix design procedures, cracking resistance of HMA mixtures may be improved 

through the design of an appropriate aggregate gradation. Aggregate interlock plays a critical role in 

preventing premature cracking. When backbone aggregate particles are in close contact with one another, 

aggregate interlock can occur more effectively and improve a mixture’s frictional strength [1]. Because 

aggregate gradation has a strong effect on aggregate interlock, there is a need for an in-depth examination 

of the relationship between the characteristics of aggregate gradation and the cracking resistance of HMA 

mixtures. However, to the best of our knowledge, the effects of aggregate gradation on cracking 
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resistance in asphalt mixtures at normal temperatures have yet to be discussed in detail. Previous studies 

have generally focused on the influence of coarse aggregates, asphalt binders, and temperature on the 

cracking resistance of HMA mixtures [1-4, 6]. 

The present study aimed to develop a simple cracking performance index and to investigate the 

effects of aggregate gradation on the cracking performance of HMA mixtures with a 12.5-mm NMPS at 

the cracking initiation and propagation stages. The notched SCB test was conducted to evaluate cracking 

resistance in seven blends of HMA mixtures that were designed in accordance with Vietnamese 

guidelines for wearing course mixtures. In addition, this study examined the relationship between the Jc 

and the KIc. Furthermore, combinations of three different fine aggregates were examined to evaluate the 

effects of fine aggregate on the cracking resistance of HMA mixtures.   

5.2. Literature review 

5.2.1. Previously identified parameters of HMA mixture cracking resistance 

 

 

Figure 33. Configuration of the notched SCB test specimens 

The cracking initiation stage occurs in an asphalt mixture when the applied load reaches the 

bonding strength of the mixture. Jc is defined as a path-independent line integral around the crack location, 

and has been used to measure the accumulated external energy required to form a new surface crack [1, 7]. 

A high Jc value illustrates high cracking resistance in a mixture [1, 2]. Based on a load-deformation curve 

obtained in the notched SCB test, the following equation is applied to determine the critical value of Jc [1-

4, 7]: 
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specimens with notch depths of a1 and a2, respectively. The strain energy value of an HMA specimen is 

determined as the area under the loading portion (from the initial load to the maximum load) of the load-

deformation curve. The configuration and dimensional information of the notched SCB specimens are 

shown in Figure 33. 

The cracking propagation stage describes an increase in crack length after cracking initiation. The 

European Standards utilize the notched SCB test to evaluate the cracking resistance of HMA mixtures 

during the cracking propagation stage. The tensile strength (or fracture toughness) parameter KIc is 

calculated by the following equations and other associated variables [5]: 

     
Ic max
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Where, max is the maximum horizontal stress at failure; Pult is the maximum force; D is the 

diameter of the specimen; and
a

f
h

 
 
 

 and h are the geometric factor and the height of the specimen, 

respectively. 

5.2.2. Development of a novel parameter of HMA mixture cracking resistance 

The presence of air voids within an asphalt mixture may negatively affect its cracking resistance, 

and increases in air voids reduce the fracture resistance and the fatigue life of a mixture at normal 

temperatures [7, 8]. The air voids content is a part of the VMA of HMA mixtures. Because the 

characteristics of aggregate gradation greatly influence the amount of air voids in an HMA mixture, it 

may be possible to obtain the target VMA by controlling these characteristics. A previous study 

investigated the relationship between aggregate gradation and the VMA using the area of continuous 

maximum density (CMDarea) [9]. It has been reported that the VMA of asphalt mixtures increases with 

increasing CMDarea [9]. Another study demonstrated that the KIc of HMA mixtures decreases with 

increasing VMA [10]. The KIc and Jc parameters are used to indicate the cracking resistance of HMA 

mixtures and are closely correlated: when the KIc of a mixture decreases, Jc also decreases [11]. An 

increase in CMDarea may increase the amount of air voids in the aggregate structure and reduce cracking 
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resistance. The present study posited that CMDarea is a potential parameter that indicates a negative effect 

on the cracking resistance of HMA mixtures. 

The DASR refers to the interactive size range of particles that form the backbone of an aggregate 

structure. Dominant particles of coarse aggregate in the DASR create a structural network and produce 

voids. The interstitial components (fine aggregate, filler, and asphalt binder) or the IC fill the void spaces 

between the DASR aggregate particles [12]. Among these, fine aggregate has a particularly substantial 

effect on cracking resistance [13]. Figure 34 shows the effects of fine aggregate on cracking performance 

of HMA mixtures. When the proportion of fine aggregate is low, there is inadequate interaction among 

the DASR particles. The fine aggregate does not support any applied loads and does not contribute 

frictional strength to the DASR aggregate [13]. Therefore, low IC aggregates result in low cracking 

resistance. In contrast, an excessively large quantity of IC particles may disrupt the coarse aggregate 

structure and cause the mixture to become more brittle [13]. Consequently, there is a reduction in the 

points of contact among the DASR aggregate particles, thereby reducing the cracking resistance of HMA 

mixtures [13]. An optimal amount of IC aggregate may provide high cracking resistance to an asphalt 

mixture [13]. 

 

 

Figure 34. Effects of IC aggregate composition on cracking resistance in HMA mixtures [13] 

It has been reported that the ratio of the aggregate fraction volume with a greater proportion to the 

aggregate fraction volume with a smaller proportion is a potential parameter that indicates the degree of 

aggregate interlock in HMA mixtures [14]. Based on that study, this study assumed that the ratio of the 

CMD area of DASR aggregate particles (CMDareaDASR) to the CMD area of IC aggregate particles 

(CMDareaIC) would be a useful indicator of interlocking strength for asphalt mixtures. Figure 35 shows an 

illustration of CMDarea-DASR and CMDarea-IC when the DASR ranges from 9.5 mm to 0.6 mm. It should be 
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noted that the CMDarea has been previously introduced to evaluate the effect of aggregate gradation on the 

VMA of asphalt mixtures [9]. 

 

Figure 35. CMDarea-DASR and CMDarea-IC 

Therefore, the CMDareaDASR and CMDareaIC parameters may indicate the relative volumes of air 

voids in mixtures due to the DASR aggregate particles and IC aggregate particles, respectively. When the 

DASR aggregate particles have good contact with one another, the DASR aggregate fraction acts as a 

backbone aggregate and is the predominant cause of voids. In this case, the value of CMDareaDASR is 

significantly larger than that of CMDareaIC when the proportion of IC aggregate particles is low. However, 

when the proportion of IC aggregate particles is high, the amount of air voids created by the IC 

aggregates is also large. A high proportion of IC aggregate particles may therefore interfere with the 

dense packing of the backbone aggregate [13]. Figure 34 also presents that the DASR aggregate particles 

tend to separate when the quantity of IC aggregate particles is too high. This means that there is an 

increase in the amount of air voids created by the DASR aggregate particles as the IC aggregate particles 

disrupt aggregate structure. A previous study also noted that the disruption of aggregate structure by fine 

aggregate leads to the creation of additional voids in the mixture [14]. 

In all HMA mixtures, the CMDareaIC value cannot be higher than the CMDareaDASR value. In the 

DASR model, DASR aggregate particles are defined as the main aggregate fraction that creates voids in a 

mixture [12]. Therefore, the present study assumed a larger amount of air voids created by DASR 

aggregate particles than those created by IC aggregate particles. This means that the CMDareaDASR value 

(which signifies the relative volume of air voids in a mixture created by DASR aggregate particles) must 

be higher than the CMDareaIC value (which signifies the relative volume of air voids in a mixture created 

by IC aggregate particles). The ratio of CMDareaDASR to CMDareaIC (CMDareaDASR / CMDareaIC) may 

illustrate the balance between the volumes of air voids created by the DASR aggregate and IC aggregate 
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particles. This ratio is expected to be high as the IC aggregate fraction is substantially lower and does not 

completely fill the voids between the DASR aggregate. In addition, when the IC aggregate fraction is too 

high, the DASR structure will become unstable and additional air voids are created within the DASR 

aggregate; this would result in a high CMDareaDASR / CMDareaIC value. Based on this assumption, the 

present study proposes the CMDareaDASR / CMDareaIC ratio as a parameter to indicate the degree of 

aggregate interlock in crack resistance of HMA mixtures. The cracking resistance of mixtures decreases 

as CMDareaDASR / CMDareaIC increases. 

The film thickness of the asphalt binder that coats aggregate particles is strongly associated with 

the cracking resistance of an HMA mixture. This is because tensile stress tends to be concentrated on the 

asphalt binder. Cracking can occur easily when the asphalt binder is thin [8]. Accordingly, film thickness 

should also be established to improve cracking resistance of asphalt mixtures. Enriching the fine 

aggregate fraction may reduce effective asphalt thickness [8]. When the amount of fine aggregate 

increases, the aggregate specific surface area (Ss) coated by the asphalt binder also increases [8]. As a 

result, the effective asphalt content may decrease due to an increase in aggregate surface voids that absorb 

the asphalt binder. Therefore, an increase in Ss may decrease effective asphalt content and reduce cracking 

resistance. 

Based on the above, the present study investigated a new cracking resistance index that would 

describe the relationship between the aggregate gradation and cracking resistance of an asphalt mixture. 

This index was designated the “gradation-based cracking resistance index”, or GCI. This study 

hypothesized that an HMA mixture’s cracking resistance increases with increasing values of GCI. The 

GCI parameter is derived from three factors of aggregate gradation, i.e., CMDarea, CMDareaDASR / 

CMDareaIC, and Ss; these address the effects of air voids, aggregate interlock, and film thickness of the 

asphalt binder, respectively, on the cracking performance of a mixture. The GCI value of aggregate 

gradations is calculated using the following equation: 

     1 1 1

area DASR

area IC

area s
CMD

CM

GCI
D

D
CM S



  
 
 
 

                (17) 

Where Ss is calculated using Equation (9) in chapter 4. 

5.3. Experience work 

5.3.1. Preparation of HMA materials 

Preparation of HMA materials had been described in chapter 3. 
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5.3.2. Design of aggregate gradation 

 Aggregate gradation design had been described in chapter 3. 

5.3.3. Mix design procedure 

Asphalt mixture design procedure had been described in chapter 3. 

5.3.4. Notched SCB test method  

Figure 36 shows the configuration of a notched SCB specimen and the loading equipment. A 

series of notched SCB tests with different notch depths can determine the critical strain energy release 

rate, or Jc value. The specimens for these tests were fabricated using a Superpave gyratory compactor 

(SGC). The test employed two nominal notch depths (a1 = 25 mm and a2 = 32 mm) based on those 

reported in previous studies [2-4]. The number of design gyrations (Ndes) was set as the gyration number 

where the HMA specimens have the same bulk specific gravity (Gmb) as specimens produced by Marshall 

compaction. The specimens had a thickness of 50 mm in accordance with the European Standards for the 

notched SCB test [5]. The thickness should be at least four times that of the NMPS of the mixtures [15]. 

As the present study investigated 12.5-mm NMPS wearing course mixtures, the 50-mm thickness fulfilled 

the above recommendations. 

 

 

Figure 36. Photographs of the notched SCB test 

The test was conducted at a temperature of 30 
o
C and a deformation rate of 2 mm/min. The 

deformation rate of the notched SCB test should range from 1 to 5 mm/min for analyses of cracking 

resistance at normal temperatures [15]. Before starting the test, the specimens were kept in an 

environmental chamber at the testing temperature for 15 hours. A minimum curing time of 12 hours has 

been recommended [16]. The temperature of the notched SCB test was set 20 
o
C lower than the highest 
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average pavement temperature in the southern region of Vietnam (i.e., 50 
o
C) [16]. The designated testing 

temperature was based on the test protocol proposed by Christensen et al.[17]. 

A previous study proposed the adjusted strain rate ( a ) to evaluate the validity of both the test 

temperature and the deformation rate that can induce ductile fracture of an asphalt film [1]; a values 

were calculated using the following equations [1, 19]: 

     
0 1

exp
( )

a

g

Q

R T T
 





                (18) 

     
deformation rate

R a
 


                (19) 

Where,  is the normal strain rate; a is the notch depth; R is the radius of the notched SCB 

specimen (75 mm); Q is the activation energy, where Q = 210 kJ/mol is applied for HMA mixtures [1, 

20]; Rg is the universal gas constant, where Rg = 8.314 J/mol/K [1]; T0 is the reference temperature; and T1 

is a testing temperature. T0 and T1 were provided in Kelvin (T0 = 273.15 K and T1= 303.15 K). 

The a values for the notch depths of a1 and a2 were 0.0015 s
-1 

and 0.0018 s
-1

, respectively. Past 

studies have also reported that ductile fracture of an asphalt film can occur when the a value is lower than 

0.01 s
-1 

[1, 19]. This indicates that both the test temperature and deformation rate were suitable for 

assessing the cracking resistance of the HMA mixtures. 

5.4. Results and discussion 

5.4.1. Results of mix design and the SGC parameters 

Asphalt mixture design procedure had been described in chapter 3, and the SGC results had been 

presented in chapter 4. 

5.4.2. Results of the notched SCB tests 

Figure 37 presents the load-deformation curves obtained from the notched SCB tests. Jc values 

for all seven mixtures were also shown in Table 15. In general, the Jc values of the dense-graded HMA 

mixtures were generally higher than those of the coarse- and fine-graded HMA mixtures. The Jc values 

ranged from 0.13 to 0.89 kJ/m
2
. A previous study reported that the Jc values for 12.5-mm NMPS mixtures 

ranged from 0.13 to 0.76 kJ/m
2
 using notched SCB tests conducted at 30 

o
C with a 2.4-mm/min 

deformation rate [1]. Therefore, there is a large degree of overlap between the notched SCB test results of 

the present study and the previous study.  
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Figure 37. The load-deformation curves obtained from the notched SCB tests 

Table 15. Jc values calculated from the results of the notched SCB tests 

Mixture 
Ui 

(J) 

bi 

(mm) 

Ui /bi  

(J/m) 

Average of Ui / bi  

(J/m) 

Jc 

(kJ/m
2
) 

Dense -

graded 

1 

a1-1 0.449 48.2 9.326 
8.121 

0.44 
a1-2 0.329 47.6 6.915 

a2-1 0.280 48.7 5.759 
5.060 

a2-2 0.216 49.5 4.361 

2 

a1-1 0.478 47.2 10.133 
11.740 

0.70 
a1-2 0.621 46.5 13.347 

a2-1 0.380 48.3 7.858 
6.812 

a2-2 0.294 51.0 5.767 

3 

a1-1 0.738 51.3 14.378 
13.016 

0.89 
a1-2 0.557 47.8 11.654 

a2-1 0.208 46.8 4.451 
6.763 

a2-2 0.437 48.2 9.076 

Coarse - 

graded 

4 

a1-1 0.506 48.5 10.441 
9.546 

0.61 
a1-2 0.430 49.7 8.650 

a2-1 0.235 47.8 4.913 
5.275 

a2-2 0.272 48.2 5.637 

5 

a1-1 0.446 51.5 8.657 
9.593 

0.13 
a1-2 0.509 48.3 10.528 

a2-1 0.478 50.7 9.440 
8.690 

a2-2 0.388 48.8 7.941 

Fine - 

graded 

6 

a1-1 0.552 50.3 10.965 
10.208 

0.39 
a1-2 0.447 47.3 9.451 

a2-1 0.410 51.8 7.909 
7.474 

a2-2 0.367 52.2 7.040 

7 

a1-1 0.483 51.8 9.313 
9.634 

0.44 
a1-2 0.503 50.5 9.956 

a2-1 0.375 51.8 7.244 
6.530 

a2-2 0.297 51.0 5.816 
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Table 16. KIc values calculated from the results of the notched SCB tests 

Mixture 
Pulti 

(N) 

bi 

(mm) 

hi 

(mm) 
max 

(N/mm
2
) 

f (ai / hi) 
Kici 

(N/mm
1.5

) 

Average of 

KIc 

(N/mm
1.5

) 

Dense -

graded 

1 

a1-1 427 48.2 74.3 0.252 9.693 2.441 

2.5 
a1-2 419 47.6 74.2 0.250 9.703 2.425 

a2-1 377 48.7 74.1 0.220 12.290 2.706 

a2-2 334 49.5 73.2 0.192 12.471 2.390 

2 

a1-1 496 47.2 74.5 0.299 9.668 2.887 

3.1 
a1-2 534 46.5 73.7 0.327 9.748 3.183 

a2-1 471 48.3 73.8 0.277 12.361 3.423 

a2-2 404 51.0 73.1 0.225 12.486 2.811 

3 

a1-1 683 51.3 74.3 0.378 9.693 3.665 

3.4 
a1-2 537 47.8 73.9 0.319 9.727 3.106 

a2-1 339 46.8 74.1 0.206 12.292 2.526 

a2-2 582 48.2 73.6 0.343 12.389 4.253 

Coarse - 

graded 

4 

a1-1 375 48.5 73.2 0.220 9.802 2.154 

2.1 
a1-2 396 49.7 73.2 0.218 9.804 2.223 

a2-1 258 47.8 73.2 0.147 12.484 1.911 

a2-2 279 48.2 72.5 0.155 12.626 2.075 

5 

a1-1 344 51.5 73.0 0.190 9.822 1.863 

2.2 
a1-2 370 48.3 74.0 0.217 9.723 2.114 

a2-1 324 50.7 73.3 0.182 12.445 2.263 

a2-2 346 48.8 74.6 0.201 12.199 2.457 

Fine - 

graded 

6 

a1-1 520 50.3 74.2 0.293 9.700 2.846 

2.6 
a1-2 484 47.3 74.2 0.291 9.701 2.820 

a2-1 389 51.8 73.2 0.213 12.471 2.659 

a2-2 326 52.2 75.1 0.177 12.100 2.148 

7 

a1-1 463 51.8 73.8 0.254 9.743 2.473 

2.7 
a1-2 500 50.5 74.2 0.281 9.699 2.728 

a2-1 392 51.8 73.2 0.215 12.482 2.683 

a2-2 421 51.0 74.5 0.235 12.212 2.866 

 

Table 16 summarizes the calculated KIc values for all the mixtures; the values ranged from 2.1 to 

3.4 N/mm
1.5. A previous study found that for 26.5-mm NMPS mixtures, the KIc value ranged from 4.0 to 

13.0 N/mm
1.5 at 30 

o
C [10]. The disparity between our findings and those of the previous study may be due 

to the following: First, the previous study had conducted the tests with a deformation rate of 5 mm/min, 

whereas our experiment used a deformation rate of 2 mm/min. This higher deformation rate may result in 

higher cracking resistance [15]. Next, the notch depth used in the previous study was 10 mm, which was 

smaller than those used in our experiment. It has been reported that the failure load of the SCB test 

decreases with increasing notch depth [15]. This may account for the lower KIc values obtained in our 

study relative to those reported in the previous study. 
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As shown in Table 4 in chapter 3, the design AC values of Blends 4, 6, and 7 were high, which 

can lead to thicker films in the asphalt binder and improved cracking resistance. In addition, Blends 4, 6, 

and 7 had relatively high values of Jc. However, this trend was not observed in the KIc values. Among all 

the mixtures, Blend 4 showed the lowest KIc value. While an increase in AC may improve cracking 

resistance at cracking initiation [21], increases in the thickness of the asphalt binder may decrease the 

fracture toughness of mixtures at cracking propagation [10]. 

 

 

Figure 38. Relationships of Jc with max and KIc 

Figure 38 shows the relationship of Jc with max and KIc for the notched SCB tests. These 

variables did not demonstrate a high correlation coefficient. Jc is commonly used in EPFM analyses, 

whereas KIc is used in linear-elastic fracture mechanics (LEFM) analyses [1, 6, 10]. Although the LEFM 

approach is generally not applicable for measuring Jc values, it can be adopted for calculating Jc values 

for laboratory evaluation purposes using load-deformation curves [1-4, 7]. The principle difference in Jc 

calculation between the LEFM and EPFM approaches is that a variety of notch depths for the notched 

SCB test are applied only in EPFM analyses [1-4, 7]. Jc values calculated with different notch depths 

provide insight into the cracking initiation stage, whereas KIc is more indicative of the fracture toughness 

of HMA mixtures during the cracking propagation stage [1, 5, 7]. As the cracking initiation and 

propagation stages are distinct, it is important to distinguish between the two during analyses [1]. A 

previous study reported a relatively weak linear correlation between Jc and KIc [11], and a recent analysis 

also found a low correlation coefficient between these two parameters [22]. However, the trend line in our 

analysis indicated that the KIc and Jc values of HMA mixtures increased or decreased together when the 

aggregate gradation of the mixtures was changed. The findings of this study corroborate those from a 

previous analysis [11]. 
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5.4.3. Effect of aggregate gradation on cracking resistance 

Table 17. Values of GCI and other associated variables 

Mixture DASR (mm) CMDarea CMDarea-DASR CMDarea-IC Ss (m
2
/kg) GCI (10

-3
) 

1 9.5–0.6 5.91 4.43 1.48 5.32 10.62 

2 9.5–0.6 4.63 2.97 1.66 5.68 21.30 

3 9.5–0.6 3.43 1.75 1.68 6.26 44.69 

4 4.75–0.6 8.29 5.10 3.19 5.14 14.68 

5 9.5–0.6 7.42 6.17 1.25 4.80 5.69 

6 9.5–0.6 7.01 4.68 2.33 6.62 10.74 

7 4.75–0.6 9.79 4.94 4.84 6.78 14.76 

 

 

Figure 39. Relationships of CMDarea-DASR with Jc and KIc 

Table 17 shows the values of GCI for the seven HMA mixtures. The CMDarea-DASR values are 

higher than the CMDarea-IC values for all the mixtures, indicating that the DASR range in the study is 

compliant with the assumption of the DASR model described in subsection 5.2.2. Figure 39 shows the 

relationships of CMDarea-DASR with the cracking resistance parameters at the cracking initiation and 

propagation stages. The correlation coefficients of CMDarea-DASR were high for both parameters (Jc: R
2
  

0.82 and KIc: R
2
  0.86). The trend lines indicated that the Jc and KIc values of the HMA mixtures 

increased as CMDarea-DASR decreased. This tendency may be explained by the following reasons: Coarse 

aggregate in the DASR model forms the backbone of the aggregate structure and creates voids in HMA 

mixtures. When the CMDarea-DASR value is high, the DASR aggregate creates a large quantity of air voids 

that may reduce cracking resistance [12]. Furthermore, when there are numerous air voids, the proportion 

of IC aggregate may be insufficient to fill these voids. This can interfere with the interlocking between the 

DASR and IC aggregates in HMA mixtures, thereby further reducing their cracking resistance [13]. The 
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results also showed that the CMDarea-DASR of aggregate gradation has a stronger association with the 

cracking propagation stage than with the cracking initiation stage. 

5.4.4. Relationships of GCI with Jc and KIc 

 

Figure 40. Relationships of GCI with Jc and KIc 

Figure 40 shows the relationships of GCI with Jc and KIc values for the seven HMA mixtures. A 

high correlation coefficient (R
2
  0.94) was obtained between GCI and Jc. However, contrary to the 

authors’ expectations, the correlation coefficient between GCI and KIc was not as high (R
2
  0.70). The 

trend lines, as expected, indicated that the Jc and KIc values are high when the GCI value of the aggregate 

gradation is high. It is therefore apparent that the GCI parameter is more closely associated with the 

cracking initiation stage than the cracking propagation stage. This is in direct contrast to the CMDarea-DASR 

parameter of aggregate gradation. As described in subsection 5.2.2, Ss (one of components used to 

develop the GCI parameter) provides information on the effects of asphalt binder on crack resistance of 

HMA mixtures. The cracking initiation stage is significantly dependent on the asphalt binder component 

[22]. 

The Jc value indicates cracking resistance at the cracking initiation stage, which suggests that the 

GCI parameter has potential applications for evaluating the cracking performance of HMA mixtures. The 

previous study has noted that the Jc value of 12.5-mm NMPS mixtures should be higher than 0.43 kJ/m
2 

to guarantee high cracking resistance [3]. Figure 40 presents that the aggregate gradation of HMA 

mixtures using the natural sands should be designed such that the value of GCI exceeds 1210
3

 in order 

to achieve an appropriate Jc value.  
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5.4.5. Evaluation of cracking resistance with different fine aggregate sources 

The present study investigated the effects of fine aggregate on the cracking resistance of 12.5-mm 

NMPS mixtures by using two groups. The first group included seven aggregate gradations that were 

designed as Vietnamese wearing course mixtures (designated Blends V1–V7). The results of the cracking 

test were mention in section 5.4.2.  

The second group included six aggregate gradations that were designed as Indonesian wearing 

course mixtures (designated Blends I1–I6) based on Iman et al. [1]. The gradation and mixture design 

were also mentioned in section 3.4.3.2. Iman et al. conducted the notched SCB test at a temperature of 30 

o
C and a deformation rate of 2.4 mm/min [1]. The test used the Marshall specimens with two nominal 

notch depths (a1 = 15 mm and a2 = 22.5 mm) [1]. The characteristics of aggregate gradations and the 

results of the notched SCB test conducted by Iman et al. were summarized in Table 18. Because the 

dimension of testing specimens was not enough, the present study determined the maximum horizontal 

stress at failuremax) instead of the KIc for the six Indonesian mixtures. 

Table 18. Cracking resistance parameters and results of the notched SCB test 

  Mixture 

  I1 I2 I3 I4 I5 I6 

DASR (mm) 4.75-0.6 9.5-0.6 4.75-0.6 9.5-0.6 9.5-0.6 4.75-0.6 

CMDarea 8.67 7.71 6.95 7.01 6.16 9.44 

CMDarea-DASR 5.56 6.63 4.69 5.32 3.81 5.39 

CMDarea-IC 3.11 1.08 2.26 1.70 2.34 4.05 

Ss (m
2
/kg) 5.72 4.60 4.10 8.42 8.10 9.18 

GCI (10
-3

) 11.29 4.59 16.93 5.41 12.32 8.67 

max(kN/m
2
)  274 247 286 406 303 277 

Jc(kJ/m
2
) 0.76 0.60 0.23 0.23 0.13 0.76 

 

To gain a clearer understanding of the effects of fine aggregate on cracking performance of 

asphalt mixtures, this study applied the fine aggregate angularity (FAA) as the main indicator of the 

degree of fine aggregate internal friction. The testing procedure outlined in the AASHTO T304-11 

standard provides a method to determine the individual uncompacted void content of fine aggregate or the 

FAA of mineral aggregate sources [23]. The FAA value describes shape characteristics, i.e., the angularity 

and surface texture roughness, of fine aggregate particles. A high FAA value indicates that the aggregate 

particles have more angular and fractured faces, which increase the points of contact among the aggregate 

particles and promote shear strength [24]. The FAA testing procedure is shown in Figure 41.  
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Figure 41. Test setup for assessing fine aggregate angularity 

Table 19. Individual fine aggregate angularity values for the mineral aggregate sources 

  Fine aggregate 

  Limestone screening Coarse granite sand Fine granite sand 

FAA (%) 46.0 43.4 38.5 

 

Table 20. Summary of measured FAA values of the thirteen mixtures 

  Mixture 
Combination  

LS/ CGS/ FGS*  
FAA  

(%) 

V
ie

tn
a
m

es
e 

V1 0/ 100/ 0 43.2 

V2 0/ 75/ 25 43.1 

V3 0/ 68/ 32 42.9 

V4 0/ 100/ 0 42.9 

V5 0/ 100/ 0 42.7 

V6 0/ 80/ 20 42.3 

V7 0/ 89/ 11 43.0 

In
d

o
n

es
ia

n
 

I1 68/ 32/ 0 45.4 

I2 0/ 100/ 0 43.3 

I3 91/ 0/ 9 45.3 

I4 99/ 0/ 1 46.0 

I5 0/ 19 /81 39.2 

I6 91/ 6/ 3 45.9 

*LS=limestone screening; CGS=coarse granite sand; FGS=fine granite sand. 
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The result of FAA test for each fine aggregate source is presented in Table 19. The FAA values of 

fine sand and coarse sand were 38.5% and 43.4%, respectively. These values were consistent with those 

of a previous study, which reported that the FAA values for natural sand ranged from 38.6% to 44.1% 

[25]. Only the limestone screening, which was used to fabricate the Indonesian mixtures, complied with 

the FAA requirements (≥45% of high traffic volume of heavy vehicles) for Superpave mix design [24]. 

Figure 42 presents the comparison of max and Jc values between the Vietnamese and Indonesian 

wearing course mixtures. It should be noted that the aggregate gradation in each pair of mixtures 

presented in these figures has the same aggregate gradations. In accordance with expectations, the results 

indicated that the tensile strength and cracking resistance of Indonesian wearing course mixtures were 

higher than those of Vietnamese wearing course mixtures.  

 

Figure 42. Comparison of max and Jc values between the Vietnamese and Indonesian mixtures. 

With the same aggregate gradation, the Indonesian mixtures had a higher cracking resistance than 

the Vietnamese mixtures, and these results may be explained by the following reasons. Firstly, the 

proportions of limestone screening (percentage of blend mass) in Blends I1, I4, and I6 were 15%, 72%, 

and 73%, respectively. When these mixtures were compared with Blends V4, V6, and V7, we found that 

higher quantities of limestone screening (relative to natural sands) were associated with improved 

cracking resistance. Consequently, as shown in Table 20, the FAA values of fine aggregate in the 

Indonesian blends were higher than those in the Vietnamese blends, which means that the fine aggregate 

particles in the former were more angular and fractured than those in the latter. Consequently, the 

aggregate particles in the Indonesian wearing course mixtures were able to form an adequate packing 

state, and the backbone aggregates improved their shearing resistance. Low tensile strength potentially 
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induces the initial cracking failure in HMA mixtures [26], and the use of limestone screening instead of 

natural sand may improve the tensile strength and interfacial strength of the asphalt mixtures [1, 27]. As a 

result, with the same aggregate gradation, the Jc and max values of Indonesian mixtures were greater than 

those of Vietnamese mixtures. Secondly, the results may also be explained by the higher design ACs of 

the Vietnamese blends. Table 8 shows that the design ACs of Blends V4, V6, and V7 were higher than 

those of Blends I1, I4, and I6, respectively. As described in section 3.4.3.2, the present study used the 

granite sand to fabricate specimens of Blends V4, V6, and V7, while Iman et al. used the limestone 

screening to compact the specimens of Blends I1, I4, and I6. This finding was consistent with the finding 

of the previous study that indicated the design AC of asphalt mixtures with granite sand was higher than 

that of asphalt mixtures with limestone screening [28]. An increase in design AC can lead to an increase 

in the apparent film thickness of binding that coats aggregate particles in mixtures [8]. As a result, the 

excessively thick asphalt binder in combination with a decrease in viscosity at high temperatures may 

interfere with the points of contact among aggregate particles. Aggregate interlock is thus weakened and 

the aggregate particles are more easily shifted by the applied loads. This in turn reduces the peak load 

(Pult) and max values with high AC in the notched SCB test at normal temperatures. 

 

 

Figure 43. Relationships of FAA with Jc and max 

Figure 43 presents the relationships of FAA with Jc and max for the thirteen mixtures. Contrary to 

the authors’ expectations, the low correlation coefficients of these relationships were observed when 

mixtures with different aggregate gradations were compared. These results demonstrated that the FAA of 

fine aggregate alone may be insufficient to rank the Jc and max of HMA mixtures with various aggregate 

gradations. 

Figure 44 shows the relationship of Jc with max in the notched SCB test for six Indonesian 

wearing course mixtures. Contrary to the authors’ expectations, the results showed the negative 
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relationship between Jc and max that was not consistent with the results obtained from seven Vietnamese 

wearing course mixtures and previous studies [11, 22]. Figure 45 and Figure 46 also show relationships of 

CMDareaDASR and GIC with Jc and max for six Indonesian mixtures. The trend line, as expected, indicated 

that the CMDarea-DASR and GIC had negative and positive effects on the max, respectively. However, the 

data showed an outlier with excessively high max (Mixture I4) which reduced the relationships of 

CMDareaDASR and GIC with max. Comparing to Blend V6 that has the same aggregate gradation with the 

Blend I4, Blend I4 was comprised of a particularly large amount of limestone screening (72% of blend 

mass), which strongly increased the max value but slightly increased the Jc value. In addition, the 

relationships CMDareaDASR and GIC with Jc were low and the trend lines did not corroborate those 

reported in the present study. Therefore, further research and more data are required to confirm the 

application of these cracking parameters for asphalt mixtures compacted with different aggregate sources.  

 

 

Figure 44. Relationship between Jc and max for six Indonesian mixtures 

 

Figure 45. Relationships of CMDarea-DASR with Jc and max for six Indonesian mixtures 
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Figure 46. Relationships of GIC with Jc and max for six Indonesian mixtures 

5.5. Summary 

The summaries of this chapter are the following. 

 The present study found a high relationship between the CMDareaDASR of aggregate gradation and 

cracking resistance in HMA mixtures at a normal temperature. An asphalt mixture with a higher 

CMDareaDASR value may have lower cracking resistance at the cracking initiation and propagation 

stages. The CMDareaDASR parameter, which is indicative of the amount of air voids created by the 

DASR aggregate in the mixtures, had a stronger association with the cracking propagation stage than 

with the cracking initiation stage. 

 A simple index, designated GCI, was developed to evaluate the cracking resistance of HMA 

mixtures at the cracking initiation and propagation stages. GCI values present a composite description 

of the effect of air voids, aggregate interlock, and the film thickness of asphalt binder on cracking 

performance. A strong correlation of the GCI with the Jc was observed, indicating that GCI was more 

strongly associated with the cracking initiation stage than with the cracking propagation stage. The 

analysis found that Jc and KIc values tended to increase with increases in GCI. GCI is a candidate 

indicator for assessing the cracking potential of wearing course HMA mixtures. 

 The use of limestone screening instead of natural sands may improve cracking resistance of HMA 

mixtures. The combination of different fine aggregate source reduced the relationships of 

CMDareaDASR and GCI with  Jc and max. 
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Chapter 6. Effect of aggregate gradation on the cracking of asphalt mixtures 

design at low service temperatures 

 

 

6.1. Introduction 

The surface layer of asphalt pavements (i.e., the wearing course mixture) is directly exposed to 

repeated traffic loads and a variety of temperature conditions. A high volume of heavy vehicle traffic 

combined with seasonal climatic effects can lead to dramatic energy-dissipation processes in asphalt 

mixtures. These processes can reduce the adhesion and ductility of the asphalt binder, thereby inducing 

cracks in the mixtures [1, 2]. Current asphalt design procedures in developing countries (such as Vietnam 

and Indonesia) tend to follow the Marshall method, which focuses on the volumetric properties of HMA 

mixtures [1, 3]. However, the specification of volumetric parameters alone is insufficient to ensure high 

cracking resistance in asphalt mixtures [1]. 

In recent years, researchers have explored experimental fracture mechanics to link laboratory 

tests with the actual cracking performance of asphalt mixtures in the field. To evaluate the fracture 

behaviour of HMA mixtures, the Japanese standard uses the three-point bending beam (TPBB) test [4]. In 

contrast, the notched SCB test is more frequently employed in European and American standards [5-7]. 

For the TPBB test, slab-shaped specimens are compacted using a laboratory steel roller compactor. 

However, this type of specimen fabrication is complex, tedious, and time-consuming. In fact, it is difficult 

to control the characteristics of air voids in the slab-shaped specimens during this process. On the other 

hand, notched SCB specimens can be directly cored from a pavement or fabricated using the SGC 

designed for laboratory evaluation purposes. It should be noted that the SGC used to prepare the notched 

SCB specimens makes it easier to achieve the desired air voids than the roller compactor used to prepare 

the TPBB specimens. 

The notched SCB test may potentially replace the TPBB test as a mechanical test for evaluating 

the cracking performance of HMA mixtures. Several distinctions in the analytical criteria must first be 

addressed before investigating the correlations between the TPBB test and the notched SCB test. First, 

there is a difference in directions between the compaction and stress–strain analyses used in these tests. 

For slab-shaped specimens in the TPBB test, the direction is identical between these two types of analyses. 

In contrast, the direction of the stress-strain analysis on notched SCB specimens is perpendicular to that 

of the compaction method [8]. Next, the TPBB test only specifies a deformation rate of 50 mm/min, 

whereas the notched SCB test can be performed under a variety of deformation rates and sample 
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thicknesses (Table 21). It has been reported that different deformation rates and sample thicknesses can 

lead to different cracking resistances in HMA mixtures [9, 10]. To the best of our knowledge, no studies 

have previously conducted an in-depth comparative discussion of the cracking resistance parameters 

between the two tests. 

Table 21. Testing conditions of the notched SCB test among the different standards 

  Deformation rate (mm/min) Specimen thickness (mm) 

AASHTO TP 105-13 0.03* 25 

AASHTO TP 124-16 50 50 

EN 12697-44 5 50 

Note: *Crack mouth opening displacement 

Aggregate gradation plays a fundamental role in improving the cracking resistance of HMA 

mixtures [1, 11]. First, the characteristics of aggregate gradation significantly affect aggregate interlock. 

Close contact between backbone aggregates can promote adequate aggregate interlock, which helps to 

avoid premature cracking [1, 12]. Furthermore, the interlocking of coarse aggregate particles decreases 

when the fine aggregate fraction is excessively high [1, 12]. Despite the recognized importance of 

aggregate gradation in cracking resistance, the search of the literature found no well-established research 

that evaluates the relationship between aggregate gradation and the cracking resistance of HMA mixtures 

at low intermediate temperature conditions. 

Here, the present study conducted an experimental study to compare the fracture properties of 

HMA mixtures at an intermediate temperature between the TPBB test and the notched SCB test. The 

TPBB test was performed in accordance with the JRA B005 standard, whereas the notched SCB test was 

conducted in accordance with three different standards (EN 12697-44, AASHTO TP 105-13, and 

provisional AASHTO TP 124-16). The experiments were conducted using seven asphalt mixtures (dense-, 

coarse-, and fine-graded) representing wearing course mixtures with a 12.5-mm NMPS. In addition, this 

study examined the relationships of aggregate gradation and asphalt composition with the cracking 

resistance of asphalt mixtures based on the characteristics of continuous maximum density (CMD), the 

dominant aggregate size range (DASR) model, and apparent film thickness. This study was conducted 

from the perspective of asphalt mixtures with potential applications in Vietnam. 
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6.2. Literature review 

6.2.1. The role of aggregate gradation in the cracking performance of HMA mixtures 

The characteristics of aggregate gradation have been reported to be strongly associated with the 

voids in mineral aggregate (VMA) of asphalt mixtures [3, 13]. A previous study found a strong correlation 

between the area of CMD (CMDarea) and the VMA of HMA mixtures [3], where CMDarea indicates a 

degree of total deviation from the CMD line. Higher CMDarea values of aggregate gradation may result in 

higher VMA values [3]. 

The DASR is the interactive size range of aggregate particles that form the primary network of 

the aggregate structure [14]. Dominant coarse aggregate particles in the DASR model constitute the 

backbone of the aggregate structure and create void spaces in the asphalt mixture. The air voids within the 

DASR aggregate particles are occupied by interstitial components (IC), which are composed of fine 

aggregates, fillers, and asphalt binders [14, 15]. The interaction of aggregate particles occurs within the 

HMA mixtures when relative proportions between contiguous size particles are lower than 70/30 [14, 15]. 

For a 12.5-mm NMPS aggregate gradation, the previous study has suggested the smallest sieve size for 

the aggregate particles of the DASR model to be 0.6 mm [3].  

Based on CMD properties and the DASR model, chapter 5 introduced the CMDarea-DASR and 

CMDareaIC parameters to evaluate the effects of aggregate gradation on the cracking resistance of HMA 

mixtures at a normal temperature. The CMDarea-DASR and CMDarea-IC parameters represent the CMD areas 

of DASR aggregate particles and IC aggregate particles, respectively. A high CMDarea-DASR value indicates 

that a DASR aggregate creates an excessively large proportion of air voids within the mixtures, which can 

reduce their cracking resistance [13]. In addition, when there is a large quantity of air voids, the 

proportion of IC aggregate particles may not sufficiently fill these voids. This reduces the points of 

contact or aggregate interlock between the DASR and IC aggregate particles, which subsequently leads to 

lower cracking resistance [15]. 

6.2.2. Effect of apparent film thickness on the cracking performance of HMA mixtures  

Apparent film thickness (AFT) refers to the average thickness of the asphalt binder that coats 

aggregate particles in HMA mixtures [13]. In recent years, researchers have applied the AFT parameter 

instead of asphalt content (AC) to evaluate the rutting performance of asphalt mixtures [3, 13]. It has been 

reported that the cracking performance of HMA mixtures is also associated with the design AC [10, 13]. 

Although the fracture energy of asphalt mixtures was found to increase with increasing design AC, the 

correlation coefficient between these two parameters was not high [13]. To the best of our knowledge, the 

relationship between AFT and the cracking resistance of asphalt mixtures at low service temperatures has 
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yet to be established. Therefore, this study aimed to use the AFT parameter to characterize the effect of 

AC on cracking performance. The AFT value of each mixture can be calculated by the following equation. 

     1000 be

s s mb

V
AFT

S P G




 
                (20) 

Where, Vbe is the effective AC; Ss is the aggregate specific surface area; Ps is the aggregate 

content; and Gmb is the bulk specific gravity of the asphalt mixture.  Equations (20) can be applied to a 

wide range of mineral aggregates sources (slag, limestone, gravel, and granite) and asphalt binder types 

(virgin asphalt and modified asphalt) [16]. In addition, the equation has potential applications for 

calculating AFT in a variety of dense-, coarse-, and fine-graded mixtures [16]. 

6.3. Experimental work 

6.3.1. Material sources and mixture design 

The characteristics of materials and the results of mixture design had been described in chapter 3. 

6.3.2. TPBB test method 

 

 

Figure 47. Experimental workflow 

Figure 47 summarizes the workflow of the experiments conducted in this study. Slab-shaped 

specimens (dimensions: 300  300  50 mm) were prepared for the TPBB test using a laboratory steel 
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roller compactor. The steel roller compaction process used is commonly applied to fabricate slab-shaped 

specimens in Japan. The air void value of a Marshall specimen at the design AC is defined as the standard 

air void value when compacting slab-shaped specimens [4]. Therefore, at the design AC, the design 

number of passes for steel roller compaction was regarded as the number of passes required to produce a 

slab-shaped specimen with the same air void value (or Gmb) as a Marshall specimen. Each of the original 

slab-shaped specimens was trimmed into two prismatic TPBB specimens (dimensions: 300  100  50 

mm). This specimen preparation process is depicted in Figure 48. 

 

 

Figure 48. Prismatic TPBB specimen preparation and testing 

Previous studies have generally conducted fracture tests at low temperatures to assess the 

mechanical properties of asphalt binders. However, under low-temperature conditions, asphalt mixtures 

become more brittle than they are at service temperatures [9]. The fracture tests for asphalt mixtures 

should therefore be performed at intermediate service temperatures to accurately evaluate fracture 

performance [9]. It has been reported that at intermediate service temperatures, the critical strain energy 

release rate of the notched SCB test is associated with the actual field cracking performance of asphalt 

mixtures [17]. In accordance with the AASHTO M 320-16 standard, a range of 4 
o
C to 31 

o
C is regarded 

as intermediate asphalt temperatures to evaluate the mechanical property of asphalt binder [18]. Based on 

average pavement temperatures in Vietnam, the Vietnamese standard recommends a low service 

temperature of 15 °C to evaluate the cracking performance of 12.5-mm NMPS wearing course mixtures 

[19]. Therefore, the TPBB test in this study was also conducted at this temperature. In addition, the TPBB 

test was performed at a deformation rate of 50 mm/min in accordance with JRA B005 standards. In order 

to match these conditions, the prismatic TPBB specimens were placed in an environmental chamber at the 

test temperature for 6 h before being used in the experiments [4]. 
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Table 22. Requirements of cracking resistance parameters among the different standards 

Parameter JRA B005 EN 12697-44 AASHTO TP 124-16 AASHTO TP 105-13 

Fracture toughness f f and Ic f and Ic* f and Ic 

Cracking propagation f CTOA* CTOA* CTOA* 

Fracture energy Gf* Gf* Gf Gf 

Note: * These parameters are not required in the indicated standards. 

Table 22 shows the requirements of the cracking resistance parameters among the different 

standards. Maximum horizontal tension stress at failure (f) and tension strain at failure (f) were 

evaluated for the TPBB test. The JRA B005 standard does not require the determination of fracture 

energy (Gf) for asphalt mixtures. Nevertheless, this study determined the Gf of the TPBB test to enable 

comparisons with the Gf of the notched SCB test. The three parameters of the TPBB test can be calculated 

as follows [4]: 
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Where, Pult is the maximum force; L is the span of the bending support (200 mm); h is the height 

or thickness of the prismatic specimen; b is the width of the prismatic specimen; u is the deformation at 

the peak load; Wf is the work of fracture or the area under the load-deformation curve; and Alig is the 

ligament area. For the calculation of Wf, the area under the extrapolated tail of the load-deformation curve 

can be reasonably calculated by fitting data in the post-peak region; this process is detailed in the 

AASHTO TP 105-13 standard [5]. 

6.3.3. Notched SCB test method 

6.3.3.1. Notched SCB specimen preparation and testing conditions 

Standard specimens with a 150-mm diameter and 115-mm thickness were fabricated using the 

SGC [20]. These specimens were also prepared to achieve the same degree of compaction as the slab-

shaped specimens and Marshall specimens at the design AC. Therefore, at the design AC, the design 
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gyration number (Ndes) was set as the gyration number required to produce an SGC specimen with the 

same air void value (or Gmb) as a Marshall specimen. The SGC standard specimens were trimmed into 

SCB specimens with two different thicknesses: 50 mm [6, 7] and 25 mm [5]. Figure 49 illustrates the 

preparation procedure of these notched SCB specimens. Although the EN 12697-44 standard dictates a 

strict requirement for a notch width of 0.35 mm, it is difficult to cut the specimens to meet this 

requirement. Therefore, all SCB specimens were trimmed with a nominal notch depth of 15 mm and a 

notch width of 1.5 mm in accordance with the AASHTO TP 124-16 and AASHTO TP 105-13 standards. 

 

 

Figure 49. Notched SCB specimen preparation and testing 

In order to conduct a comparison of various deformation rates, the notched SCB test using 50-

mm–thick specimens was performed at the following four rates: 5, 10, 20 and 50 mm/min. As shown in 

Table 1, the deformation rates of 5 mm/min and 50 mm/min are recommended by the EN 12697-44 

standard and the AASHTO TP 124-16 standard, respectively. 

The loading conditions specified by the AASHTO TP 105-13 standard for notched SCB 

specimens with 25-mm thickness are complex (crack mouth opening displacement of 0.03 mm/min). In 

general, researchers have selected a deformation rate of 5 mm/min to conduct the notched SCB test when 

this standard is applied [21]. Therefore, the present study decided to test the 25-mm-thick specimens at 

three rates: 5, 10, and 20 mm/min. The deformation rate of 50 mm/min was not applied for the 25-mm-

thick specimens because of the thinness of the specimens. A previous study found that the cohesive 

strength of the 25-mm-thick specimens is not sensitive to the deformation rate when the deformation rate 

is more than or equal to 50 mm/min [9]. As a result, this combination of parameters was not evaluated in 

the present study. 
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The notched SCB tests were also conducted at a temperature of 15 °C. Before the test, the 

specimens were placed in an environmental chamber at this test temperature. Curing times of 4 h and 2 h 

were used for specimens with thicknesses of 50 mm and 25 mm, respectively [5, 6]. 

6.3.3.2. Previously identified parameters of the cracking resistance of HMA mixtures 

For 25-mm–thick specimens, the AASHTO TP 105-13 standard prescribes procedures to 

calculate the Gf and fracture toughness (KIc) of HMA mixtures. Gf can be determined using Equation (22), 

whereas KIc is calculated using the following equations and variables [5]: 

     (0.8)Ic f IK a Y                    (24) 

     ult
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D t
 


                (25) 
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                (26) 

Where, D is the diameter of the specimen; t is the thickness of the specimen; a is the notch depth 

of the specimen; R is the radius of the specimen; and YI(0.8) is the normalized stress intensity factor. 

For 50-mm-thick specimens, the determination of KIc and other variables were described in 

section 5.2.1.  

Table 22 shows that the EN 12697-44 standard only includes the procedure for calculating KIc. In 

this study, the determination of Gf as described in the AASHTO TP 105-13 standard was also applied to 

the specimens under the EN 12697-44 standard. In addition, the AASHTO TP 124-16 standard does not 

include the definition of KIc. For the purpose of laboratory-based evaluations, the calculation of KIc as 

outlined in the EN 12697-44 standard was also used for the AASHTO TP 124-16 specimens. 

6.3.3.3. Application of the crack tip opening angle to evaluate the cracking propagation resistance 

of HMA mixtures 

In this study, the notched SCB test did not use linear variable differential transducers to measure 

the strain at failure. A previous study proposed the use of the crack tip opening angle (CTOA) as a 

potential indicator for evaluating the cracking propagation of HMA mixtures [1]. Figure 50 provides a 

visual illustration of the CTOA, which has a constant value during the cracking propagation stage. Asphalt 

mixtures with higher CTOA values therefore demonstrate slower cracking propagation [1]. As shown in 

Figure 50, higher CTOA values indicate greater deflection at crack extension. Therefore, the present study 
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adopted the CTOA parameter from the notched SCB test for comparisons with the f parameter of the 

TPBB test. 

 

 

Figure 50. Descriptions of CTOA, r0, P0, and WP0 

It has also been reported that the procedure to calculate the CTOA is complicated, with various 

notch depths required in the notched SCB test [1]. Therefore, the present study decided to use the 

Martinelli-Venzi model to determine the CTOA of the notched SCB test. This model is commonly applied 

to ascertain the CTOA of ductile metals and soils [22]. Using only the load-deformation curve of the 

notched SCB test with the single notch depth, the CTOA is calculated through the following equations and 

variables [1, 22]: 
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Where, M0 is the applied momentum; WP0 is the value of strain energy, which is calculated as the 

area under the load-deformation curve from the beginning of the test to point P0; P0 is the load value in 

the descending branch of the load-deformation curve; L is the distance between the two bottom supports 

(120 mm); and ro is the plastic rotation parameter (0.45) [22]. Descriptions of WP0, P0, and r0 are also 

provided in Figure 50. 

 

Pult

Deformation, u

Load, P

WP0

a

r0(R-a)

CTOA

0

1

2
ultP P



 

83 

 

The CTOA is commonly used in elastic-plastic fracture mechanics analyses to evaluate the ductile 

failure mechanisms of asphalt mixtures [1]. As mentioned in section 5.3.4, based on the test temperature 

and deformation rate, previous studies have proposed the adjusted strain rate ( a ) to determine if ductile 

fracture of a viscoelastic film can occur [1, 23]. At the test temperature of 15 °C, the a values of the 

notched SCB at deformation rates of 5, 10, 20 and 50 mm/min were found to be 0.007, 0.015, 0.030
 
and 

0.075 s
1

, respectively. It has been reported that an asphalt mixture undergoes ductile fracture when the

a value is lower than 0.01 s
1

 [1, 23]. This means that at 15 °C, only the deformation rate of 5 mm/min 

has a potential application for assessing the ductile failure mechanisms of asphalt mixtures. 

6.4. Results and discussion 

6.4.1. Cracking resistance parameters 

Table 23 shows the compaction properties of the seven HMA mixtures fabricated by the Marshall 

compactor, the SGC, and the steel roller compactor. The values for the SGC and slab-shaped specimens 

are mean values calculated from two samples. The cracking resistance parameters estimated from the 

TPBB test and the notched SCB test are also summarized in Tables 24 to 26. All cracking resistance 

parameters were obtained from four specimens for each mixture, and the mean values were calculated. In 

general, the fracture toughness (f and KIc) values of the dense-graded HMA mixtures were higher than 

those of the coarse- and fine-graded HMA mixtures. In contrast, the cracking propagation (f and CTOA) 

and Gf values of the dense-graded HMA mixtures were generally lower than those of the coarse- and fine-

graded HMA mixtures. 

Table 23. Compaction properties of the Marshall, SGC, and slab-shaped samples at the design AC 

Mixture 
Marshall Compactor SGC Steel roller compactor 

Gmb (275 blows) Ndes (gyration) Gmb Passes Gmb 

1 2.364 70 2.363, 2.369 (2.366) 40 2.366, 2.371 (2.369) 

2 2.392 48 2.395, 2.397 (2.396) 35 2.397, 2.401 (2.399) 

3 2.398 48 2.390, 2.397 (2.394) 35 2.389, 2.400 (2.395) 

4 2.347 120 2.338, 2.343 (2.341) 50 2.346, 2.341 (2.344) 

5 2.356 70 2.348, 2.358 (2.353) 45 2.350, 2.352 (2.351) 

6 2.339 45 2.334, 2.335 (2.335) 35 2.341, 2.345 (2.343) 

7 2.324 70 2.314, 2.320 (2.317) 45 2.317, 2.321 (2.319) 
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Table 24. Cracking resistance parameters obtained from the TPBB test 

Mixture f (MPa) f (10
-3
mm/ mm) Gf (kJ/m

2
) 

Dense-graded 

1 4.44 20.80 3.77 

2 5.26 21.18 4.16 

3 6.24 16.33 3.54 

Coarse-graded 
4 4.31 32.00 6.30 

5 4.40 19.38 3.85 

Fine-graded 
6 4.91 22.72 4.61 

7 4.63 25.95 4.91 

 

Table 25. Cracking resistance parameters obtained from the notched SCB test using 50-mm-thick 

specimens 

Deformation  

rate (mm/min) 

Cracking resistance 

 parameters 

Mixture 

1 2 3 4 5 6 7 

5 

f (MPa) 2.19 2.37 2.70 1.87 1.95 2.12 2.09 

KIc (N/mm
1.5

) 17.07 18.39 20.91 14.61 15.11 16.39 16.23 

Gf (kJ/m
2
) 3.43 3.24 2.84 4.90 3.46 4.23 4.17 

CTOA (°) 3.16 2.57 1.70 5.29 3.35 3.61 3.74 

10 

f (MPa) 2.68 2.80 3.16 2.30 2.62 2.66 2.50 

KIc (N/mm
1.5

) 20.84 21.72 24.27 17.76 20.25 20.59 19.32 

Gf (kJ/m
2
) 3.55 3.69 3.84 5.42 4.03 4.64 5.01 

CTOA (°) 2.30 2.26 1.79 4.10 2.75 2.99 3.21 

20 

f (MPa) 3.32 3.55 3.81 2.81 3.11 3.23 2.94 

KIc (N/mm
1.5

) 26.03 27.85 29.62 22.04 24.07 25.05 22.82 

Gf (kJ/m
2
) 3.56 3.45 3.22 5.53 4.15 4.71 4.86 

CTOA (°) 1.68 1.53 1.15 3.20 2.04 2.24 2.61 

50 

f (MPa) 4.60 4.83 4.79 4.04 4.08 3.97 3.53 

KIc (N/mm
1.5

) 35.54 37.27 37.31 31.18 31.62 30.89 27.49 

Gf (kJ/m
2
) 2.61 2.83 2.07 4.64 3.48 3.90 4.29 

CTOA (°) 0.75 0.87 0.46 1.68 1.22 1.07 1.55 
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Table 26. Cracking resistance parameters obtained from the notched SCB test using 25-mm-thick 

specimens 

Deformation  

rate (mm/min) 

Cracking resistance 

 parameters 

Mixture 

1 2 3 4 5 6 7 

5 

f (MPa) 0.54 0.63 0.62 0.42 0.55 0.5 0.45 

KIc (MPam
0.5

) 0.66 0.77 0.76 0.51 0.67 0.61 0.56 

Gf (kJ/m
2
) 4.01 3.49 3.62 6.37 4.37 4.51 4.37 

CTOA (°) 3.54 2.74 2.9 9.06 3.94 4.13 4.74 

10 

f (MPa) 0.62 0.64 0.69 0.52 0.59 0.57 0.55 

KIc (MPam
0.5

) 0.75 0.79 0.84 0.63 0.73 0.7 0.67 

Gf (kJ/m
2
) 4.12 4.09 3.91 5.15 4.45 4.44 4.64 

CTOA (°) 3.11 3.1 2.51 6.11 3.81 3.79 4.16 

20 

f (MPa) 0.84 0.85 0.94 0.74 0.68 0.68 0.59 

KIc (MPam
0.5

) 1.02 1.04 1.15 0.91 0.83 0.82 0.73 

Gf (kJ/m
2
) 4.2 4.62 3.89 6.08 4.62 4.58 5.38 

CTOA (°) 2.26 2.61 1.76 3.66 3.09 2.88 3.73 

 

The experiments showed that increasing the deformation rates in the notched SCB test increased 

the fracture toughness (f and KIc) and decreased the CTOA of the samples (Table 25 and Table 26). 

Because of the viscoelastic properties of asphalt binders, a decrease in deformation rates induces a 

reduction in the elastic component of asphalt mixtures [24]. This in turn reduces the stiffness of the 

asphalt binder and the cohesion strength of the HMA mixtures. Therefore, the lower deformation rate 

results in reduced fracture toughness and greater deformation at failure. These findings are consistent with 

those of previous studies [9, 24]. 

Table 25 and Table 26 also indicate that the Gf values of the notched SCB test generally increased 

with increasing deformation rates across a range of 5 mm/min to 20 mm/min. The findings corroborate 

those reported in a previous study [9].  However, when the deformation rate increased to 50 mm/min, the 

Gf value of the 50-mm-thick SCB specimens decreased. The results presented in Table 25 and Table 26 

also indicate that the Gf values of the notched SCB tests were generally smaller than the Gf values of the 

TPBB tests at a deformation rate of 50 mm/min. Gf values generally increase with increasing size of 

specimens [25]. However, at each deformation rate in the notched SCB test, the Gf values of the 25-mm–

thick specimens were generally higher than those of the 50-mm-thick specimens. 
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6.4.2. Comparison of cracking resistance between the notched SCB test and the TPBB test 

6.4.2.1. Comparison of the accuracy and repeatability of the cracking resistance parameters 

The present study compared and contrasted the accuracy and repeatability of cracking resistance 

parameters in the notched SCB test and the TPBB test using the coefficient of variation (COV). Table 27 

presents the COV values of fracture toughness estimated from these two tests. Although a maximum 

COV value of 15% has been recommended [21], the f values obtained from TPBB tests of the present 

study exhibited a lower COV (mean: 5.7%). The KIc estimated from the notched SCB tests also showed 

low COV values across a wide range of deformation rates, which corroborates previously reported 

findings [21]. These COV values tended to increase with increasing deformation rates, indicating 

reductions in the accuracy and repeatability of KIc in the notched SCB test. In addition, the COV values 

indicate that the KIc values of the notched SCB test using 50-mm-thick specimens were more precise than 

25-mm-thick specimens at each deformation rate. 

Table 27. COV of fracture toughness calculated for the notched SCB and TPBB tests 

Fracture 

toughness 

Deformation  

rate (mm/min) 

COV of fracture toughness of each mixture (%) Mean 

COV (%) 
Ratio* 

1 2 3 4 5 6 7 

Notched  

SCB  

(50 mm) 

KIc 

5 6.7 4.8 5.1 7.8 5.5 5.3 4.3 5.6 7/7 

10 5.0 5.4 7.1 12.6 10.0 3.4 7.1 7.2 7/7 

20 9.7 8.5 1.5 6.5 17.5 4.7 3.7 7.4 6/7 

50 11.4 10.2 8.9 4.1 4.7 3.6 4.9 6.8 7/7 

Notched  

SCB  

(25 mm) 

KIc 

5 4.6 7.2 11.4 1.5 11.6 5.4 10.4 7.4 7/7 

10 3.8 9.7 5.4 18.0 18.6 4.2 5.7 9.3 5/7 

20 12.3 9.4 10.7 9.3 14.8 9.5 4.7 10.1 7/7 

TPBB  f 50 5.6 11.0 3.5 4.9 10.3 0.8 3.5 5.7 7/7 

* Ratio of mixtures with a COV below 15% to all mixtures. 

Table 28 shows the COV values of cracking propagation obtained from the notched SCB and 

TPBB tests. The f values of the TPBB test had a low COV, demonstrating that this method has a high 

repeatability for evaluating the cracking propagation stage of HMA mixtures. The results also indicate 

that the CTOA of the notched SCB test using 50-mm-thick specimens had a lower COV value (higher 

precision) than the 25-mm–thick specimens at each deformation rate. In addition, increasing the 

deformation rates of the notched SCB test increased the COV values of the CTOA, indicating the 

decreasing repeatability of the CTOA. This may be explained by the following: As described in section 
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6.3.3.3, ductile fracture may occur in asphalt mixtures at 15 °C when the notched SCB test is conducted at 

a deformation rate of 5 mm/min. As a result, this low deformation rate may be applicable for determining 

the CTOA when examining the ductile behaviour of asphalt mixtures. On the other hand, when the 

notched SCB test was conducted at higher deformation rates (10, 20, and 50 mm/min), brittle fracture 

may occur in the asphalt mixture. The higher deformation rates can therefore reduce the repeatability of 

the CTOA in the notched SCB test, and may not be appropriate for assessing ductile fracture properties. 

Table 28. COV of cracking propagation calculated for the notched SCB and TPBB tests 

Cracking 

propagation 

Deformation  

rate (mm/min) 

COV of cracking propagation of each mixture (%) Mean 

COV (%) 
Ratio* 

1 2 3 4 5 6 7 

Notched  

SCB  

(50 mm) 

CTOA 

5 17.0 5.9 4.6 5.3 15.7 8.1 6.3 9.0 5/7 

10 14.8 13.6 16.9 21.9 9.1 17.6 18.5 16.0 3/7 

20 19.3 9.5 11.4 2.5 29.4 27.4 8.3 15.4 4/7 

50 25.2 71.5 8.5 12.5 46.3 9.4 20.2 27.7 3/7 

Notched  

SCB  

(25 mm) 

CTOA 

5 6.0 18.7 9.9 9.9 16.6 15.7 10.2 12.4 4/7 

10 15.5 19.1 20.3 23.5 16.4 18.8 4.4 16.8 1/7 

20 34.0 41.3 15.2 23.3 23.6 12.7 11.4 23.1 2/7 

TPBB  f 50 12.7 7.3 6.2 12.8 7.9 5.6 8.4 8.7 7/7 

* Ratio of mixtures with a COV below 15% to all mixtures. 

Table 29. COV of fracture energy calculated for the notched SCB and TPBB tests 

Fracture energy 
Deformation  

rate (mm/min) 

COV of fracture energy of each mixture (%) Mean 

COV (%) 
Ratio* 

1 2 3 4 5 6 7 

Notched  

SCB  

(50 mm) 

Gf 

5 6.1 8.8 11.0 9.6 10.5 4.8 7.0 8.2 7/7 

10 7.5 11.7 20.2 7.9 10.9 7.7 9.1 10.7 6/7 

20 12.5 8.0 7.9 12.7 15.6 25.1 4.6 12.4 5/7 

50 18.1 28.4 5.7 14.8 24.5 10.0 13.5 16.4 4/7 

Notched  

SCB  

(25 mm) 

Gf 

5 7.1 10.9 16.3 13.2 13.7 16.9 7.6 12.2 5/7 

10 14.4 16.8 11.9 10.5 14.3 13.5 9.1 12.9 6/7 

20 19.8 27.2 12.3 22.5 25.2 9.5 25.9 20.3 2/7 

TPBB  Gf 50 24.3 5.3 9.7 8.7 11.2 6.4 6.7 10.3 6/7 

* Ratio of mixtures with a COV below 15% to all mixtures. 
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Table 29 presents the COV values of fracture energy calculated from the notched SCB and TPBB 

tests. The Gf values obtained from the TPBB test showed low COV (<15%). Similarly, low COV values 

of Gf were also observed for the notched SCB test at deformation rates of 5 and 10 mm/min. The results 

indicate that at each deformation rate, the notched SCB test using 25-mm–thick specimens had less 

precise and repeatable Gf than 50-mm–thick specimens. These results may be explained by the following: 

The COV value of Gf is reported to increase with decreasing thickness of the notched SCB specimens 

[10]. Therefore, when the notched SCB test is conducted within a temperature range of 15 
o
C to 40 

o
C, the 

thickness of the notched SCB specimens should be at least four times (i.e., 40-50 mm) that of the NMPS 

of the test mixtures [10]. Because this study investigated 12.5-mm NMPS wearing course mixtures, only 

the 50-mm–thick specimens complied with the above recommendation. Moreover, a previous study also 

demonstrated that the AASHTO TP 105-13 standard (25-mm–thick specimens) offers a method to 

determine high COV, low precision, and low repeatability of Gf at intermediate temperature conditions 

[21]. In this way, the results of this study corroborate those of previous analyses. 

These findings appear to confirm that the TPBB test using the JRA B005 standard and the 

notched SCB test using the EN 12697-44 standard are viable methods to measure the cracking resistance 

properties of HMA mixtures with high precision and repeatability. 

6.4.2.2. Relationships of the cracking resistance parameters between the notched SCB test and the 

TPBB test 

The present study investigated the relationships of the cracking resistance parameters between the 

notched SCB test and the TPBB test using the linear correlation coefficient (R
2
) and Pearson correlation 

coefficient (PCC). PCC indicates the linear dependence between two different measurement systems, and 

ranges from 1 to +1. Values of 1 and +1 indicate that two variables have total negative correlation and 

total positive correlation, respectively; a value of 0 indicates that there is no correlation between the two 

variables. 

Table 30 shows the correlations between the cracking resistance parameters from the notched 

SCB and TPBB tests estimated using linear regression analyses. The fracture toughness (f and KIc) 

parameters from the TPBB test and the notched SCB test using 50-mm-thick specimens had the highest 

correlation coefficient when the latter was conducted at a deformation rate of 5 mm/min. The correlation 

coefficients of the fracture toughness parameters between the TPBB test and the notched SCB test using 

50-mm–thick specimens decreased with increasing deformation rates in the latter. However, this trend 

was not observed for the notched SCB test using 25-mm-thick specimens. In addition, these parameters 

between the TPBB test and the notched SCB test using 25-mm-thick specimens had low correlation 

coefficients at all three deformation rates. In fact, in the notched SCB test using 25-mm-thick specimens, 
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the f and KIc parameters may not be viable indicators for evaluating the cracking resistance of HMA 

mixtures at service temperatures [5, 21], as the temperature of this test should be 10 
o
C higher than the 

lower limit of the asphalt binder’s performance grade [5]. 

Table 30. Correlations between the cracking resistance parameters of the notched SCB and TPBB tests 

Test 
Deformation  

rate (mm/min) 

R
2
 (PCC) 

f_SCB - f_TPBB Ic_SCB - f_TPBB CTOA_SCB - f_TPBB Gf_SCB - Gf_TPBB 

Notched  

SCB  

(50 mm) 

5 0.89 (+0.94) 0.89 (+0.94) 0.87 (+0.93) 0.87 (+0.93) 

10 0.81 (+0.90) 0.80 (+0.89) 0.88 (+0.94) 0.82 (+0.91) 

20 0.76 (+0.87) 0.74 (+0.86) 0.89 (+0.94) 0.83 (+0.91) 

50 0.35 (+0.59) 0.38 (+0.61) 0.75 (+0.87) 0.76 (+0.87) 

Notched  

SCB  

(25 mm) 

5 0.49 (+0.70) 0.50 (+0.71) 0.68 (+0.82) 0.81 (+0.93) 

10 0.65 (+0.81) 0.64 (+0.80) 0.88 (+0.94) 0.86 (+0.93) 

20 0.45 (+0.67) 0.45 (+0.67) 0.83 (+0.91) 0.91 (+0.95) 

 

Table 30 also shows strong correlations between the f values from the TPBB test and the CTOA 

values of the notched SCB test at each deformation rate. In accordance with expectations, the PCC values 

indicate that f tended to increase with increases in CTOA. In general, the CTOA parameter is used to 

evaluate the cracking propagation of metal alloys and metal composites instead of heterogeneous 

materials such as asphalt mixtures [1, 22]. However, the findings of the present study suggest that the 

CTOA parameter also has potential applications for investigating the cracking propagation stage of HMA 

mixtures. 

The analysis also revealed strong linear correlations between the Gf values from the TPBB test 

and all notched SCB tests (Table 30), although the COV of the Gf values for the notched SCB test using 

25-mm–thick specimens was inordinately high at the deformation rate of 20 mm/min (Table 29). These 

strong correlations indicate that the Gf estimates from the notched SCB and TPBB tests may be employed 

for the same objective of evaluating the cracking performance of HMA mixtures. These results may be 

explained by the following: Gf has been found to be less sensitive to the linear elasticity and homogeneity 

of materials than other cracking resistance parameters, such as the KIc and the J-integral [10, 26]. 

Therefore, although asphalt mixtures are heterogeneous and nonlinear inelastic, the Gf parameter may 

have potential applications for assessing and evaluating their fracture characteristics. 

The experiments found that the pairs of cracking resistance parameters between the TPBB test 

using the JRA B005 standard and the notched SCB test using the EN 12697-44 standard had the highest 

correlation coefficients. Based on the COVs and linear regression analysis results, the notched SCB test 
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using the EN 12697-44 standard may present a viable alternative to the TPBB test for assessing the 

cracking resistance of HMA mixtures. Therefore, agencies or organizations may use the TPBB test using 

the JRA B005 standard or the notched SCB test using the EN 12697-44 standard depending on their 

experience and equipment. 

6.4.3. Effect of mixture composition on the cracking resistance of HMA mixtures 

Based on the results described in section 6.4.2, this study investigated the effects of aggregate 

gradation and AC on the cracking performance of HMA mixtures estimated from the TPBB test using the 

JRA B005 standard and the notched SCB test using the EN 12697-44 standard. 

6.4.3.1. Effect of aggregate gradation on the cracking resistance of HMA mixtures 

Table 31 presents the aggregate gradation parameters and AFT values for the seven HMA 

mixtures, and Table 32 shows the correlations of the aggregate gradation and asphalt binder parameters 

with the fracture characteristics of these mixtures. Increasing the CMDarea reduced the fracture toughness 

(f and KIc) and increased the cracking propagation resistance (f and CTOA) and Gf of the HMA mixtures. 

These relationships may be explained by the following: When the CMDarea of an aggregate gradation 

increases, the VMA of the HMA mixture also increases, thereby creating additional air voids in the 

mixture (VIM) [3]. To obtain the desired VIM, the additional voids in the aggregate structure are occupied 

by increasing the AC. This means that increasing VMA increases the viscoelastic property of asphalt 

mixtures. Accordingly, the asphalt mixtures become softer and have more extended deformation at the 

crack tip [2]. This may manifest as reductions in fracture toughness (f and KIc) and increases in cracking 

propagation resistance (f and CTOA) and Gf. The observed correlations between VMA and the cracking 

resistance parameters are consistent with the findings of a previous study [2]. 

Table 31. Gradation and asphalt binder parameters for the seven HMA mixtures 

Mixture DASR (mm) CMDarea CMDarea-DASR AFT (mm) 

1 9.5-0.6 5.91 4.43 7.2 

2 9.5-0.6 4.63 2.97 6.61 

3 9.5-0.6 3.43 1.75 5.71 

4 4.75-0.6 8.29 5.10 10.23 

5 9.5-0.6 7.42 6.17 8.11 

6 9.5-0.6 7.01 4.68 7.63 

7 4.75-0.6 9.79 4.94 7.99 
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Table 32. Correlations between the mixture compositions and fracture characteristics of the mixtures 

Parameter 

R
2
 (PCC) 

JRA B005 EN 12697-44 

f f Gf KIc CTOA Gf 

CMDarea 0.60 (0.77) 0.52 (+0.72) 0.43 (+0.66) 0.71 (0.84) 0.64 (+0.80) 0.64 (+0.80) 

CMDarea-DASR 0.84 (0.92) 0.23 (+0.48) 0.16 (+0.40) 0.91 (0.95) 0.53 (+0.73) 0.37 (+0.61) 

VMA 0.55 (0.74) 0.59 (+0.77) 0.51 (+0.71) 0.68 (0.82) 0.71 (+0.84) 0.79 (+0.89) 

VIM 0.26 (0.51) 0.11 (0.33) 0.20 (0.45) 0.12 (0.35) 0.00 (0.03) 0.07 (0.26) 

Vbe 0.22 (0.47) 0.70 (+0.84) 0.71 (+0.84) 0.38 (0.62) 0.63 (+0.79) 0.85 (+0.92) 

Design AC 0.16 (0.40) 0.61 (+0.78) 0.61 (+0.78) 0.29 (0.54) 0.51 (+0.71) 0.77 (+0.88) 

AFT 0.63 (0.79) 0.79 (+0.89) 0.76 (+0.87) 0.81 (0.91) 0.96 (+0.98) 0.81 (+0.90) 

 

The correlation coefficients of the CMDarea with the cracking resistance parameters were lower 

than expected. This may be due to the following: the VMA of an asphalt mixture comprises two 

components, i.e., the VIM and the effective AC (Vbe). As shown in Table 32, VIM negatively affects all 

cracking resistance parameters. On the other hand, Vbe negatively affects fracture toughness (f and KIc), 

but increases cracking propagation resistance (f and CTOA) and Gf. In the Superpave method, the VIM 

value is controlled at 4%. When the value of VIM is constant, increasing the CMDarea of aggregate 

gradations only increases the remaining component of VMA, i.e., the Vbe of asphalt mixtures. This means 

that the CMDarea may affect the cracking resistance of HMA mixtures only through Vbe. In contrast, the 

Marshall method stipulates a range of values (3% to 6%) for VIM [27]. Therefore, CMDarea may influence 

the cracking resistance of HMA mixtures through both Vbe and VIM. The results presented in Table 5 in 

chapter 3 indicate that when VMA increases due to increases in CMDarea, the following four effects can 

occur: (i) increase in Vbe (e.g., Blends 3 and 4), (ii) increase in VIM (e.g., Blends 1 and 2), (iii) increase in 

both Vbe and VIM (e.g., Blends 3 and 5), and (iv) increase in Vbe but decrease in VIM (e.g., Blends 1 and 

4). Consequently, increasing CMDarea may affect asphalt mixtures positively or negatively, and results in 

decreases or increases to cracking resistance. Therefore, the relationships of CMDarea with the fracture 

characteristics of asphalt mixtures may not have high correlation coefficients when applying the Marshall 

method. 

CMDarea-DASR had high correlation coefficients with the fracture toughness (f and KIc) parameters 

obtained from the notched SCB and TPBB tests. The relationships between CMDarea-DASR and the fracture 

toughness parameters are shown in Figure 51. By observing the trend lines, the HMA mixtures showed 

strong fracture toughness when the CMDareaDASR values of aggregate gradation were low. These findings 

were similar to those of a previous study, in which the notched SCB test was conducted at a normal 
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temperature of 30 °C [11]. However, the present study did not observe strong relationships between 

CMDareaDASR and the cracking propagation resistance (f and CTOA) and Gf of HMA mixtures. 

 

Figure 51. Relationships of CMDarea-DASR with f of the TPBB test and KIc of the notched SCB test 

6.4.3.2. Effect of AC on the cracking resistance of HMA mixtures 

Table 32 also presents the correlations between the asphalt binder parameters and the fracture 

characteristics of the HMA mixtures. The results highlighted that asphalt binder parameters (i.e., the Vbe, 

design AC, and AFT) have the same effects on cracking resistance. These asphalt binder parameters 

negatively affect fracture toughness (f and KIc), but positively affect cracking propagation resistance (f 

and CTOA) and Gf. The correlation coefficients of Vbe and the design AC with the cracking resistance 

parameters were not high, which corroborates findings from previous studies [2, 10]. The experiments 

showed that among the three asphalt binder parameters, AFT is a potential indicator of the effects of AC 

on the fracture mechanics of asphalt mixtures. The strong associations of AFT with cracking resistance 

are also shown in Figures 52 to 54. 

 

Figure 52. Relationships of AFT with f of the TPBB test and KIc of the notched SCB test  
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Figure 53. Relationships of AFT with f of the TPBB test and CTOA of the notched SCB test 

 

Figure 54. Relationships between AFT and Gf 

The relationships between the asphalt binder parameters and the fracture characteristics of asphalt 

mixtures may be explained by the following: Increasing AC increases AFT, thereby increasing mixture 

viscosity, adhesion, and ductility [2]. High AFT may reduce the number of contact points between 

aggregate particles within the asphalt mixtures. As a result, the mixtures become softer and the aggregate 

particles are more easily moved or displaced when subjected to applied loads. Therefore, increasing AC 

can result in reductions in peak load (Pult) and fracture toughness (f and KIc). In addition, asphalt 

mixtures with increased viscoelasticity may increase the cracking propagation time before reaching 

failure [1, 2]. Therefore, asphalt mixtures with higher AC may have more protracted deformation at the 

crack tip and slower cracking propagation (f and CTOA). Furthermore, slower deformation and cracking 

propagation may result in a larger area under the load-deformation curve [2], thereby leading to a higher 

Gf for HMA mixtures. 
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6.5. Summary 

Based on the experiments presented in this chapter, the following conclusions are relevant: 

 At a low service temperature, the cracking resistance parameters of the notched SCB test using 

the EN 12697-44 standard were most strongly correlated with those of the TPBB test using the JRA 

B005 standard. The experiments demonstrated that the notched SCB test using the EN 12697-44 

standard provides a viable alternative to the TPBB test for evaluating the fracture characteristics of 

asphalt mixtures at intermediate temperatures. 

 This study employed the CTOA parameter to assess the cracking propagation stage of HMA 

mixtures in the notched SCB test. CTOA from the notched SCB test was strongly associated with f in 

the TPBB test. HMA mixtures with greater CTOA values also had higher f values. CTOA is a 

potentially useful parameter for assessing the cracking propagation stage of asphalt mixtures. 

 When the Marshall method is applied to design HMA mixtures, CMDarea may not be effective for 

evaluating the cracking resistance of these mixtures. 

 There were strong correlations between the CMDareaDASR and the fracture toughness (f and KIc) 

values calculated from the notched SCB and TPBB tests. Asphalt mixtures with higher CMDareaDASR 

values of aggregate gradations may have lower fracture toughness (f and KIc). 

 AFT is a candidate indicator of the effects of AC on the cracking performance of HMA mixtures. 

Increases in AFT reduced the fracture toughness (f and KIc) values, but increased cracking 

propagation resistance (f and CTOA) and Gf values. 
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Chapter 7. Effect of aggregate gradation on the shear strength of asphalt 

mixtures 

 

 

7.1. Introduction 

The surface layer of asphalt pavements, i.e., the wearing course mixture, may be vulnerable to 

rutting at high service temperatures [1]. An increase in the traffic volume of heavy vehicles combined 

with high temperatures may increase the incidence of permanent deformation in wearing course mixtures. 

Therefore, the rutting resistance of asphalt mixtures has become one of the primary considerations in the 

mix design procedure. Previous studies have indicated that the shear strength of hot mix asphalt (HMA) 

mixtures is strongly associated with rutting performance of HMA mixtures [1-3]. In general, the viscosity 

of asphalt binder decreases with increasing temperatures. Consequently, asphalt mixtures become softer 

and aggregate particles are more easily shifted under repeated load applications, thereby inducing rutting 

[4]. It has been reported that HMA mixtures with higher shear strength may resist the applied loads more 

adequately, thereby decreasing the incidence of rutting in wearing course mixtures [1].  

Recently, asphalt researchers have applied the Mohr-Coulomb theory to analyse shear strength 

properties of HMA mixtures [1, 3, 5, 6]. The Mohr-Coulomb theory characterizes the rutting performance 

of mixtures using the cohesion (C) and the internal friction angle (). In HMA mixtures, the C is related 

to the cementation of asphalt binder while the  is associated with aggregate interlock [3, 6]. 

Previous studies also demonstrated that a compaction slope of a mixture (K) obtained from a 

Superpave gyratory compactor (SGC) can illustrate the ability of mineral aggregates in contributing to 

shear strength of the asphalt mixture at high temperatures [7, 8]. It has been reported that the K is 

markedly dependent on shape characteristics of aggregates, i.e. angularity and surface texture of 

aggregate particles [8]. On the other hand, the K is not associated with the content and the grade of 

asphalt binder [8]. 

Aggregate gradation significantly influences the internal friction property of HMA mixtures. 

When HMA mixtures have aggregate gradations that are closer to the maximum density line (MDL), the 

HMA mixtures show lower values of  [3]. In addition, it has been reported that an increase in the sand 

content (SC) reduces the K values of HMA mixtures [2, 9]. Because the aggregate gradation has strong 

effects on the internal friction property of HMA mixtures, there is a need for an in-depth examination of 

the relationships of the aggregate gradation with the internal friction parameters ( and K). However, 

there has been little discussion on the effects of aggregate gradation on the  and the K of HMA mixtures. 
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In addition, to the best of our knowledge, no studies have previously investigated the relationship of 

aggregate gradation with the C of asphalt mixtures. The C is a function of asphalt binder, and the design 

asphalt content (AC) of HMA mixtures is strongly associated with the aggregate gradation. As a result, 

changes in aggregate gradation potentially affect the C of HMA mixtures through the asphalt binder 

component. Therefore, there is a need to conduct in-depth investigations that clarify the effects of 

aggregate gradation on the C of HMA mixtures.  

The main objective of this study was to verify the effects of aggregate gradation on shear strength 

characteristics of HMA mixtures. In addition, this experimental study investigated the relationships of the 

shear strength properties with the rutting resistance of HMA mixtures. Seven HMA mixtures with a 12.5-

mm NMPS were designed in accordance with the Marshall method. The unconfined compression (UC) 

test combined with the indirect tensile (IDT) test was performed to determine the C and  values for those 

mixtures. In addition, the SGC was conducted to obtain K values for the seven wearing course mixtures. 

Rutting resistance of these mixtures was also evaluated using the wheel tracking test (WTT).  

7.2. Literature review 

7.2.1. Shear strength of HMA mixtures  

Asphalt researchers have commonly conducted the triaxial test to determine C and  of HMA 

mixtures [3, 5, 6]. However, the triaxial testing device is expensive, and the test procedure is complicated. 

Christensen et al. (2000) have proposed a combination of UC and IDT tests as an abbreviated protocol to 

calculate the C and the  values [3]. It has been reported that this abbreviated protocol provides the C and 

 estimates as good as or even better than those obtained from the triaxial test [3]. In this direction, the 

combination of UC and IDT tests has received increasing interest in assessing shear strength properties of 

HMA mixtures due to its simplicity [1, 3, 6, 10, 11]. Furthermore, it has been reported that the C property 

obtained from the abbreviated protocol had good relationships with rutting resistance of asphalt mixtures 

[1, 3]. Therefore, the combination of the UC and the IDT tests is a potential measure for evaluating both 

the shear strength and the rutting resistance of HMA mixtures. Figure 55 presents the combination of UC 

and IDT tests to determine Mohr-Coulomb parameters. C and  values are calculated by the following 

equations [1, 3]: 

     1 4
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Where T is the IDT strength; and C is the uniaxial compressive strength. 

 

Figure 55. Mohr-Coulomb parameters using the UC and IDT tests [3] 

 

Figure 56. The determination of K 

Previous studies also investigated the K obtained from the SGC data to evaluate the interaction 

among aggregate particles in HMA mixtures [7, 8]. The binder stiffness and the cohesion of HMA 

mixtures decrease with an increase in temperatures, thereby reducing the shear strength of mixtures [12]. 

At high temperatures, because asphalt binder apparently does not support any load and does not 

contribute to the mixture strength, aggregate interlock gradually plays a critical role in supporting the 

applied loads [7]. HMA mixtures with better interlocking of backbone aggregates generally have higher 

shear strength and better rutting resistance [1, 7, 8]. As shown in Figure 56, the following equation is used 

to determine the K value [7]: 
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Where, Ndes and Nini are the design and the initial number of gyrations, respectively; and Cdes and 

Cini are the level of density at Ndes and Nini, respectively. 

7.2.2. Development of aggregate gradation parameters for the internal friction of HMA 

mixtures 

It has been reported that the root-mean-square deviation between the aggregate gradation and the 

MDL (Prms) has a significant influence on  values of HMA mixtures [3]. The  value of HMA mixtures 

tends to increase when the Prms value of aggregate gradation increases [3]. Recent studies also 

investigated the fundamental role of aggregate gradation on voids in mineral aggregate (VMA) of HMA 

mixtures based on the concept of continuous maximum density (CMD) [13, 14]. An area of CMD, or 

CMDarea, was introduced to reflect the total deviation of aggregate gradation with the MDL [14]. The 

previous study found that the CMDarea is a potential parameter to provide information on a degree of the 

distance between the aggregate gradation and the MDL [14]. The determination of CMDarea was 

previously described in section 2.2.2. 

In order to investigate the effects of the aggregate gradation on the  property of HMA mixtures, 

this experimental study crucially compared the effects of Prms and CMDarea on the  of HMA mixtures. 

Even though the Prms was introduced by the previous study [3], the discussion on the method for the 

determination of Prms was not sufficient. Therefore, based on the concept of CMD, the present study 

proposed the following equation to calculate the Prms:  

     
 

2
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( )
NMPS

dev i

rms

P d

P
n



                 (33) 

Where, n is the number of sieves from the 0.075-mm sieve to the NMPS sieve. 

A previous study reported that the sand fraction (the content of aggregates passing the 2.36-mm 

sieve) strongly influences the K of asphalt mixtures [2]. The mixtures with higher SC values generally 

show lower K values, resulting in poorer aggregate structures [2]. A previous study also noted that a high 

proportion of fine aggregate particles may interfere with the dense packing of the backbone aggregates 

[15]. Therefore, based on the concept of CMD, this study investigated a new aggregate gradation index 

that would describe the relationship between the aggregate gradation and the K of an asphalt mixture. 

This index was designated the “area of CMD for the sand fraction”, or CMDsand. The meaning of the 
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CMDsand is also presented in Figure 57. This study hypothesized that the K of an asphalt mixture 

decreases with increasing values of CMDsand. The CMDsand is calculated as the following equation: 

     
2.36-mm sieve

0.075-mm sieve
sand iCMD A                  (34) 

Where, Ai is the area between two contiguous sieve sizes (Figure 6). 

 

Figure 57. Meaning of CMDsand 

7.2.3. Application of aggregate gradation parameters for the cohesion of HMA mixtures 

Aggregate gradation has a significant effect on the volumetric composition of asphalt mixtures, 

which in turn influences the C values of HMA mixtures. The previous studies showed that further 

distances between aggregate gradation and the MDL (or the higher values of the Prms and the CMDarea) 

may lead to higher VMA values of HMA mixtures [13, 14, 16]. The VMA is subdivided into two 

components, namely, the effective asphalt content (Vbe) and the air voids in mixture (VIM). The Vbe 

presents the remaining volumetric composition of asphalt binder after aggregate surface voids absorb the 

asphalt binder. On the other hand, the VIM indicates the remaining air voids that exist within the asphalt 

binder and between aggregate particles in the mixtures [13]. The increase in VMA creates additional air 

voids within the aggregate structure, resulting in increasing the VIM. When an asphalt mixture has an 

excessively large quantity of air voids, fine aggregates and asphalt binder may be insufficient to fill these 

air voids. This can generate inadequate interaction among aggregate particles, thereby potentially 

disrupting the aggregate structure [15]. The previous study also noted that the increase in VIM can 

interfere with C properties of HMA mixtures [5]. In addition, the extra voids in aggregate structure can be 

occupied by increasing the proportion of asphalt binder in order to obtain the desired VIM. The increase in 

the proportion of asphalt binder generally reduces the C of mixtures at high temperatures [5, 12]. 
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Consequently, both Vbe and VIM components of the VMA negatively affect the C of mixtures. Therefore, 

the present study posited that the Prms and the CMDarea are potential parameters that indicate a negative 

effect on the C of HMA mixtures. 

HMA mix design methods may influence the relationships of Prms and CMDarea with the C. The 

Superpave and the Marshall are common methods for designing HMA mixtures. In the Superpave method, 

the VIM value is held constant at 4% [13]. Therefore, the increases in Prms and CMDarea only increase the 

remaining component of the VMA, i.e., the Vbe. This means that the Prms and the CMDarea may affect the C 

of HMA mixtures through the Vbe only. In contrast, in the Marshall method, the VIM value is designed 

within a range of 3-6% [13]. As a result, the relationships between the gradation parameters (Prms and 

CMDarea) and the components of the VMA (VIM and Vbe) become more complicated. These complicated 

relationships may reduce the correlations of Prms and CMDarea with the C. Therefore, this experimental 

study also aimed to verify the effect of the Marshall method on the relationships of aggregate gradation 

parameters (Prms and CMDarea) with the C of HMA mixtures. 

7.2.4. Relationship between asphalt composition and cohesion of HMA mixtures  

The proportion of asphalt binder significantly affects the C of HMA mixtures at high 

temperatures. It has been reported that viscosity of asphalt binder decreases with increasing temperatures, 

thereby reducing the binder stiffness and the C of HMA mixtures [4, 12]. As a result, an excessive asphalt 

binder may reduce shear strength and rutting resistance of HMA mixtures at high temperatures [12]. 

Although the quantity of asphalt binder is widely considered to be the most important factor that strongly 

influences the C, the relationship of AC with the C has not been well established yet. The previous study 

demonstrated that the design AC cannot be a potential index to evaluate the C property [1]. Therefore, the 

present study determined to investigate the effect of asphalt composition on the C property of asphalt 

mixtures using another parameter, namely, the apparent film thickness (AFT). 

The AFT indicates an average thickness of asphalt binder that covers aggregate particles in HMA 

mixtures [13]. The idea of applying the AFT parameter to evaluate rutting performance of HMA mixtures 

was actively pursued by recent asphalt researchers [13, 14]. The determination of AFT for an asphalt 

mixture was previously presented in section 6.2.2. 

7.3.  Experimental work 

7.3.1. Material sources and mixture design 

The material preparation and mixture design were described in chapter 3. Table 33 also 

summaries the characteristics of seven aggregate gradations and the results of mixture design. 
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Table 33. Aggregate gradations and results of the Marshall mix design 

  
                   Blend 

Sieve (mm) 
1 2 3 4 5 6 7 

Percentage 

passing (%) 

at standard 

sieves  

19.00 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

12.50 99.7 99.7 99.8 99.8 99.7 99.9 99.9 

9.50 76.6 79.0 81.4 85.2 76.5 91.7 95.1 

4.75 52.0 55.1 59.5 47.6 47.0 75.5 82.4 

2.36 33.9 38.4 42.4 25.5 28.9 59.3 66.3 

1.18 25.7 28.8 31.2 20.5 22.4 43.2 48.0 

0.60 16.5 18.9 20.0 15.0 15.2 26.0 27.8 

0.30 11.2 11.8 12.7 10.6 10.2 14.8 15.7 

0.15 8.4 9.0 10.0 8.2 7.6 10.2 10.2 

0.075 7.0 7.6 8.6 6.9 6.2 8.1 8.0 

Mixture Design AC (%) 4.75 4.70 4.60 6.00 4.70 6.00 6.35 

VIM (%) 5.3 4.1 4.0 4.0 5.5 4.2 4.3 

Vbe (%) 8.6 8.6 8.2 11.6 8.7 11.1 11.7 

VMA (%) 14.0 12.7 12.2 15.6 14.3 15.3 16.1 

 

7.3.2. Indirect tensile strength test method 

SGC samples with a dimension of 150  115 mm were prepared for the IDT test. The SGC 

sample preparation is based on the protocol outlined in the AASHTO T-312 standard [17]. At the design 

AC, the number of Ndes and mass of the SGC sample were determined to obtain desired air voids, which 

were the same as the results obtained from the Marshall method. Two thinner specimens, as shown in 

Figure 58, were trimmed from the SGC sample. The thickness of testing specimens was 50 mm in 

accordance with the AASHTO T322-07 standard [18]. 

 

 

Figure 58. The IDT specimen preparation and test 
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The IDT test should be performed at a relatively slow deformation rate and an appropriate 

temperature to be approximately equal to the traffic loads and temperature conditions that can cause 

rutting to form [3, 11].  Therefore, this study conducted the IDT test at a temperature of 30 C, which 

should be 20 C lower than the highest average pavement temperature (50 C for the southern region of 

Vietnam) [3, 11, 19]. The present study also performed the IDT test at a deformation rate of 3 mm/min. In 

order to determine the shear strength properties, the previous study conducted the IDT test at a 

deformation rate of 3.75 mm/min for SGC specimens with a dimension of 150  100 mm [3]. The 

deformation rate used in our study was slightly lower than that conducted by the past study, because the 

thickness of IDT specimens in our experiment was smaller than that used in the previous study. Before 

starting the test, the specimens were maintained in an environmental chamber at the same testing 

temperature for 15 hours. The curing time should be at least 12 hours [20]. The IDT strength (T) is 

calculated using the following equation [18]: 

     
2 ult

T

P

Dt



                 (35) 

Where, Pult is the maximum force; D is the diameter of the specimen; and t is the thickness of the 

specimen. 

7.3.3. Unconfined compression test method 

 

Figure 59. The compression specimen preparation and test 

The present study conducted the UC test using prismatic specimens. In order to prepare the 

prismatic specimens, slab-shaped samples with a dimension of 300  300  50 mm were compacted using 

a laboratory steel roller compactor. At the design AC, the passing number for compaction was also 

determined as the appropriate number of passes, where the slab samples have the similar air voids as 

3
0
0

m
m

300 mm

1002 = 200 mm

5


5
 =

 2
5
0

m
m

Passing direction of roller compactor

50 mm

50 mm

100 mm



 

105 

 

samples fabricated by the Marshall compactor [21]. Next, the compacted slab-shaped samples were cut 

into prismatic specimens with a dimension of 100  50  50 mm as shown in Figure 59. In the UC test, 

the ratio of height to diameter for the specimens should be equal to 2.0 in order to obtain reliable strength 

values [20]. Therefore, this experimental study prepared the dimension of the testing specimens based on 

this suggestion. 

The present study conducted the UC test at a deformation rate of 5 mm/min and a testing 

temperature of 30 C. In order to assess the shear strength properties, the previous study conducted the 

UC test at a deformation rate of 7.5 mm/min using SGC specimens with dimensions of 70  140 mm and 

150  150 mm [3]. The slightly lower deformation rate for the specimens used in our study was due to 

their smaller dimension. Prior to the test, the specimens were also placed in an environmental chamber at 

the testing temperature for 15 hours to make conditioning for the mixtures sufficiently. The following 

equation is applied to calculate the compression strength (C): 

     ult
C

P

A
                  (36) 

Where, A is the cross-session area of the specimen.  

7.3.4. Wheel tracking test method 

The WTT was conducted to characterize the resistance of the HMA mixtures to permanent 

deformation under high temperatures. Slab-shaped samples having a dimension of 300  300  50 mm 

were prepared for the WTT in accordance with the JRA-B003 standard. The slab sample was also 

prepared to have similar air voids as samples fabricated by the Marshall compactor. Note that this chapter 

presents the slab sample preparation for the WTT that is different from chapter 4, which applied the same 

compaction energy (a constant passing number of 25 times) for all mixtures to evaluate the workability of 

the HMA mixtures. The WTT results of Blends 2 and 3 were obtained from chapter 4 because the 

differences in air voids of the slab samples and the Marshall samples were lower than 1%. On the other 

hand, the WTT for other blends was conducted again. A dynamic stability (DS) parameter was also 

determined to evaluate the rutting susceptibility of the HMA mixtures under the wheel-load. 

7.4. Results and discussion 

7.4.1. Results of shear strength parameters 

Table 34 and Table 35 show the estimations of C and T for each mix type, respectively. The C 

and the T were determined with four replicates for seven asphalt mixtures. The accuracy and 
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repeatability of these parameters were evaluated using the coefficient of variation (COV), which 

empirically requires a maximum value of 15% [22]. The experiments indicated that both C and T 

obtained from the UC and IDT tests exhibited low COV values across a wide range of asphalt mixtures, 

demonstrating that the tests conducted in this experimental study have a high repeatability for evaluating 

the tensile and compressive strength of HMA mixtures. 

Table 34.C determination of seven asphalt mixtures 

Mixture Rep_1 Rep_2 Rep_3 Rep_4 Average (kPa) COV (%) 

Dense-graded 1 1137 1095 1049 1037 1080 4.2 

2 1262 1226 1256 1249 1248 1.3 

3 1330 1477 1363 1312 1371 5.4 

Coarse-graded 4 804 913 820 836 843 5.7 

5 1014 952 943 920 957 4.2 

Fine-graded 6 1047 1040 1035 1031 1038 0.7 

7 955 934 961 946 949 1.2 

 

Table 35.T determination of seven asphalt mixtures 

Mixture Rep_1 Rep_2 Rep_3 Rep_4 Average (kPa) COV (%) 

Dense-graded 1 161 164 164 166 164 1.4 

2 190 199 189 197 194 2.5 

3 206 221 197 223 212 5.9 

Coarse-graded 4 115 105 104 110 108 4.8 

5 138 141 135 155 142 6.1 

Fine-graded 6 140 149 154 143 147 4.0 

7 123 133 125 127 127 3.5 

 

The values of shear strength parameters for seven HMA mixtures are summarized in Table 36. 

The results indicated that the C values of the dense-graded mixtures were higher than the C values of the 

coarse- and fine-graded mixtures, and this tendency was in direct contrast to the  values. These results 

corroborated the findings reported by the previous study [9]. In addition, a range ratio of C to T from 

1.74 to 1.78 was found in our experiments. These values were consistent with those of previous studies, 

which reported that adequate ratios of C to T ranged from 1.73 to 1.75 [3, 6]. The above experimental 

results also demonstrated that both the relatively low deformation rate and the moderate testing 

temperature performed in our study were appropriate to assess the shear strength of HMA mixtures. 
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Table 36. Shear strength properties the HMA mixtures 

Mixture C (kPa) T (kPa) C (kPa)  C/T K 

Dense-graded 1 1080 164 285 34.3 1.74 7.96 

2 1248 194 337 33.3 1.74 7.59 

3 1371 212 368 33.5 1.74 7.86 

Coarse-graded 4 843 108 192 41.0 1.78 7.96 

5 957 142 247 35.3 1.74 7.99 

Fine-graded 6 1038 147 258 37.2 1.75 7.21 

7 949 127 224 39.4 1.77 6.72 

 

Table 36 also shows K values of the seven mixtures. The K values were obtained from duplicate 

samples for each mixture, and the average values were calculated. The experiments showed that the K 

values ranged from 6.73 to 7.99. The results also corroborated findings from the previous study, which 

noted that the K values for 12.5-mm NMPS mixtures were from 6.14 to 8.84 [7]. Furthermore, the K 

values of the coarse-graded mixtures were found to be higher than the K values of the dense- and fine-

graded mixtures. This finding was also consistent with the result that has been reported in the previous 

study [7].  

7.4.2. Effect of aggregate gradation on the internal friction of HMA mixtures  

Table 37 shows the values of aggregate gradation parameters and the AFT for each mixture, and 

Table 38 presents the DS values of the WTT. Table 39 also presents the coefficient of determination (R
2
) 

matrix and the Pearson correlation coefficient (PCC) matrix of all parameters. The positive PCC values of 

Prms and CMDarea with  were obtained, indicating that the  value of the HMA mixtures increased when 

the Prms and the CMDarea of the aggregate gradation increased (Prms: PCC  0.806 and CMDarea: PCC  

0.856). This means that when aggregate gradation of an asphalt mixture is close to the MDL, the  

property of the asphalt mixture has a low value, which was also reported by the previous study [3]. In 

addition, the results shown in Table 39 demonstrated that the CMDarea is more proper than the Prms to 

reflect the effect of aggregate gradation on the  property of asphalt mixtures (Prms: R
2
  0.650 and 

CMDarea: R
2
  0.733). 
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Table 37. Aggregate gradation parameters and AFT of the HMA mixtures 

Mixture Prms CMDarea SC (%) CMDsand AFT (mm) 

Dense-graded 1 4.40 5.91 33.9 1.63 7.20 

2 3.40 4.63 38.4 1.63 6.61 

3 2.63 3.43 42.4 1.82 5.71 

Coarse-graded 4 5.94 8.29 25.5 1.78 10.23 

5 5.26 7.42 28.9 1.44 8.11 

Fine-graded 6 3.96 7.01 59.3 3.83 7.63 

7 5.62 9.79 66.3 4.98 7.99 

 

Table 38. Results of wheel tracking test 

Mixture 
Air voids 

(%) 

d45 

(mm) 

d60 

(mm) 

DS 

(cycles/mm) 

Average of DS 

(cycles/mm) 

Dense -graded 1 Rep_1 5.4 4.75 5.48 863 863 

Rep_2 5.1 4.94 5.67 863 

2 Rep_1 5.4 4.15 4.65 1260 1130 

Rep_2 4.3 3.96 4.59 1000 

3 Rep_1 4.4 3.47 4.07 1050 1168 

Rep_2 4.6 4.05 4.54 1286 

Coarse - graded 4 Rep_1 4.1 7.98 9.91 326 435 

Rep_2 4.3 6.36 7.52 543 

5 Rep_1 5.6 5.62 6.56 670 670 

Rep_2 5.6 6.40 7.34 670 

Fine - graded 6 Rep_1 4.1 10.02 11.8 354 342 

Rep_2 3.9 10.20 12.11 330 

7 Rep_1 4.4 13.83 15.98 293 293 

Rep_2 4.6 12.29 14.44 293 

 

Table 39 also shows relationships of SC and CMDsand with K for the seven HMA mixtures. The 

negative PCC values, as the authors’ expectations, indicated that HMA mixtures with higher values of the 

SC and the CMDsand had lower values of the K. Both correlation coefficients of SC and CMDsand with K 

were high, and the K has a slightly stronger association with the CMDsand than with the SC (SC: R
2
  

0.887 and CMDsand: R
2
  0.916). This result may be explained by the following reason. While the SC 

value is analysed at one sieve (2.36-mm sieve) only, the CMDsand value is calculated at six sieves (from 
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0.075-mm to 2.36-mm sieves) for the fine aggregate. The previous study has recommended that the 1.18-

mm sieve is the smallest sieve size for the fine aggregate particles that potentially disrupt the coarse 

aggregate structure [15]. A recent analysis also suggested 0.6 mm as the smallest sieve size for a 12.5-mm 

NMPS aggregate gradation to evaluate the effects of fine aggregate on the coarse aggregate skeleton [14]. 

It has been reported that an excessively large quantity of fine aggregates at the 0.6-mm and the 1.18-mm 

sieves may interfere with the interlocking of the coarse aggregates [14, 15]. Therefore, this may account 

for the higher correlation coefficient obtained between the K and the CMDsand relative to that obtained 

between the K and the SC. 

7.4.3. Effect of the asphalt composition on the cohesion of HMA mixtures 

Table 39 summaries the linear relationships of all asphalt binder parameters (i.e., Vbe, design AC, 

and AFT) with C values of the seven HMA mixtures. The experiments demonstrated that all asphalt 

binder parameters negatively affect the C of asphalt mixtures. The low correlation coefficient between the 

design AC and the C (R
2
  0.554) was consistent with the experimental results from the previous study 

[1]. The results also highlighted that among the three asphalt binder parameters, the AFT has promising 

applications to address the effect of the asphalt composition on the C property of HMA mixtures (R
2
  

0.876). 

The high relationships between the AFT and the C may be explained by the following reason. 

Because the viscosity of asphalt binder decreases with increasing temperatures, asphalt binder tends to 

flow through aggregate particles under the applied loads at high temperatures [4]. When the AFT that 

coats the aggregate particles is excessively thick, there is a reduction in the points of contact among the 

aggregate particles. Therefore, this may lead to a weaker aggregate interlock and the mixtures become 

softer. As a result, the aggregate particles are more easily moved or displaced under load applications, 

thereby reducing the peak load at failure and the T in the IDT test. The analysis presented in Table 39 

also found a high correlation coefficient between the AFT and the T (R
2
  0.876). As described in section 

7.4.1, the T is strongly correlated with the C property of HMA mixtures. Therefore, HMA mixtures with 

greater AFT values may have lower C values. 
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Table 39. Coefficient of determination matrix (above main diagonal) and Person correlation matrix (below main diagonal) of all parameters 

  Prms      CMDarea   SC CMDsand   VMA VIM  Vbe AC AFT C T C  K 

Prms    1 0.845 0.011 0.062 0.711 0.075 0.440 0.355 0.803 0.925 0.903 0.908 0.650 0.017 

CMDarea 0.919 1 0.082 0.362 0.918 0.016 0.687 0.646 0.604 0.835 0.876 0.874 0.733 0.241 

SC -0.105 0.287 1 0.870 0.120 0.118 0.207 0.319 0.068 0.004 0.000 0.000 0.036 0.887 

CMDsand 0.249 0.602 0.933 1 0.423 0.092 0.517 0.638 0.008 0.078 0.136 0.130 0.262 0.916 

VMA 0.843 0.958 0.347 0.650 1 0.001 0.830 0.796 0.618 0.817 0.885 0.880 0.806 0.252 

VIM 0.273 0.125 -0.344 -0.304 0.025 1 0.151 0.171 0.001 0.066 0.017 0.021 0.080 0.130 

Vbe 0.663 0.829 0.455 0.719 0.911 -0.389 1 0.982 0.514 0.531 0.663 0.648 0.893 0.365 

AC 0.596 0.804 0.565 0.799 0.892 -0.413 0.991 1 0.389 0.437 0.569 0.554 0.817 0.477 

AFT 0.896 0.777 -0.261 0.092 0.786 0.025 0.717 0.624 1 0.865 0.876 0.876 0.750 0.002 

C -0.962 -0.914 0.067 -0.280 -0.904 -0.256 -0.729 -0.661 -0.930 1 0.980 0.984 0.691 0.019 

T -0.950 -0.936 -0.019 -0.369 -0.941 -0.131 -0.814 -0.754 -0.936 0.990 1 1.000 0.812 0.048 

C -0.953 -0.935 -0.011 -0.361 -0.938 -0.146 -0.805 -0.744 -0.936 0.992 1.000 1 0.799 0.045 

 0.806 0.856 0.189 0.512 0.898 -0.282 0.945 0.904 0.866 -0.831 -0.901 -0.894 1 0.134 

K -0.132 -0.491 -0.942 -0.957 -0.502 0.361 -0.604 -0.691 0.039 0.138 0.219 0.211 -0.366 1 
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7.4.4. Effect of aggregate gradation on the cohesion of HMA mixtures  

The relationships of Prms and CMDarea with C are shown in Table 39. The negative PPC values, as 

expected, showed that the C values of HMA mixtures decreased as the Prms and the CMDarea values of 

aggregate gradation increased. The correlation coefficients of C were high for both parameters (Prms: R
2
  

0.908 and CMDarea: R
2
  0.874). The high correlation coefficients of Prms and CMDarea with the C may be 

explained through the two components of the VMA, i.e., the Vbe and the VIM. The results shown in Table 

39 indicated that increases in Prms and CMDarea of aggregate gradations increased VMA of HMA mixtures. 

As described in Table 33, the increase in VMA can result in the following four effects: (i) increase Vbe 

only (e.g., Blends 3 and 4); (ii) increase VIM only (e.g., Blends 1 and 2); (iii) increase both Vbe and VIM 

(e.g., Blends 3 and 5); and (iv) increase Vbe but decrease VIM (e.g., Blends 1 and 4). As described in 

section 7.2.3 and as shown in Table 39, the Vbe and the VIM negatively affect the C of HMA mixtures. As 

a result, the three effects from (i) to (iii) apparently lead to the reduction in the C of HMA mixtures. In 

addition, Table 39 indicates that the negative effect of VIM on the C was so small and then the Vbe 

predominated in reflecting the effect of VMA on the C. Therefore, the increase in the Vbe and the decrease 

in the VIM (the iv effect) may also reduce the C of HMA mixtures. The results of Blends 1 and 4 shown 

in Table 33 and Table 36 also confirmed the above finding. In Blends 1 and 4, the increase in VMA 

resulted in increasing the Vbe and decreasing the VIM, but there was a reduction in the C. 

The previous study reported good negative relationships of VIM with the C at four VIM levels 

with high deviations, i.e., 0%, 4%, 8%, and 12% [5]. However, our experiments demonstrated that when 

the Marshall method was applied to design HMA mixtures, the range of 3-6% for the VIM may be too 

small and insufficient to evaluate the negative effect of the VIM on the C. As a result, the Marshall 

method may not significantly influence the relationships of Prms and CMDarea with the C. 

The experiments also indicated that the C of HMA mixtures is more closely associated with the 

Prms than with the CMDarea. This may be explained through the AFT of HMA mixtures. The results 

provided in Table 39 indicated that the AFT increased with increases in both Prms and CMDarea, and the 

AFT had a stronger association with the Prms than with the CMDarea (Prms: R
2
  0.803 and CMDarea: R

2
  

0.604). As described in section 7.4.3, the level of C provided by the asphalt binder is markedly dependent 

on the AFT. This may account for the relatively higher correlation coefficient of the Prms with the C 

relative to that of the CMDarea with the C. 

The low correlation coefficient between the CMDarea and the AFT can be explained by the 

mixture design method. The results shown in Table 39 indicated that the VMA of the HMA mixtures is 

more strongly associated with the CMDarea than with the Prms (Prms: R
2
  0.711 and CMDarea: R

2
  0.918). 

As mentioned above, because the Marshall method does not require a constant value of the VIM, the 
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CMDarea and the Vbe are no longer perfectly correlated. This means that the increase in the CMDarea may 

not necessarily increase the Vbe component of the VMA or the AFT of HMA mixtures. The results as 

shown in Table 37 also confirmed the above finding. The CMDarea value of Blend 7 was higher than the 

CMDarea values of Blends 4 and 5, whereas an opposite trend was observed for the AFT values. 

7.4.5. Relationships of shear strength parameters with rutting resistance of HMA 

mixtures 

Table 40 summarizes regression analyses of the shear strength parameters with the DS. Because 

the data includes seven mixtures only, the present study performed the regression analyses for 

understanding the relationships between the variables instead of precise predictions. Among all shear 

strength parameters, the relationship of C with DS had the highest correlation coefficient. The DS values 

of the HMA mixtures tended to increase as the C values of shear strength increased. However, contrary to 

the authors’ expectations, the  had a negative coefficient with the DS. The data as shown in Table 39 

also highlighted that when the C values increased, the  values decreased. The inverse relationship 

between the  and the C obtained from the combination of UC and IDT tests also corroborated findings 

from the previous studies [1, 6, 11]. Therefore, this may account for the negative relationship of  with 

DS obtained in the present study. 

Table 40. Linear regression analysis of DS with shear strength properties 

Model Term Coefficient Se t value p value  R
2
  R

2
adj 

DS ~ C Intercept -733.96 325.29 -2.256 0.074 0.802 0.763 

  C 5.25 1.17 4.505 0.006     

DS ~  Intercept 4522.95 967.86 4.673 0.005 0.758 0.710 

   -105.35 26.59 -3.961 0.011     

DS ~ K Intercept -2372.10 2166.50 -1.095 0.323 0.288 0.145 

  K 403.60 284.10 1.420 0.215     

DS ~ C+ Intercept 1298.37 2721.80 0.477 0.658 0.827 0.740 

  C 3.42 2.72 1.258 0.277     

   -42.24 56.13 -0.753 0.494     

DS ~ C+K Intercept -2692.59 769.45 -3.499 0.025 0.929 0.893 

  C 4.80 0.80 5.986 0.004     

  K 273.41 102.97 2.655 0.057     

Note: Se is standard error. 
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The positive coefficient of K with DS, as expected, indicated that the DS values increased with 

increasing K value. However, the correlation coefficient of K with DS was low. Our experiments also 

confirmed the results in the previous study, which noted that the K alone is unable to ensure high rutting 

resistance of HMA mixtures [7]. 

The results highlighted that the C is a better indicator of the rutting resistance than the  and the K. 

These results may be explained by the following reasons. First, the present study used an aggregate source 

with a high quality of shape and surface texture. The results shown in Table 36 indicated that most of the 

 values had relatively good levels, which should be at least 35° [3]. As mentioned above, at high 

temperatures, rutting resistance of HMA mixtures is significantly sensitive to both aggregate interlock and 

the AFT [1, 3, 4]. When an aggregate source has a high quality, the AFT may be a dominant factor that 

negatively influences the rutting resistance of HMA mixtures. As described in section 7.4.3, the level of C 

provided by the asphalt binder also has a strong relationship with the AFT. Therefore, the rutting 

resistance of HMA mixtures is more closely associated with the C than with the  and the K. Next, in a 

field rutting rate at construction sites, pressures of truck tires may create high tensile stresses in the 

asphalt surface layers, thereby inducing the combination of high shear stresses and low levels of 

confinement within the pavement structure [3]. This critical condition may lead wearing course mixtures 

to exhibit rutting at high temperatures [3]. The IDT test also induces the above stress condition when the 

test is performed at a reasonably low deformation rate and an adjusted testing temperature [3]. As 

mentioned in section 7.4.1, the IDT strength is strongly associated with the C property of HMA mixtures. 

Therefore, this may account for the strong relationship between the C and the rutting resistance of HMA 

mixtures. 

The regression analyses also indicated that the model using C and K had a better goodness of fit 

than the model using C and   to predict the rutting resistance of HMA mixtures (C and K: R
2
  0.929; 

and C and  : R
2
  0.827). In addition, the standard error for independent variables illustrated that the 

precision in the former model was higher than that in the latter model. As shown in Table 39, while the C 

had a low correlation with the K, the C showed a strong relationship with the . This can lead to an effect 

of multicollinearity, thereby increasing the standard error of independent variables and reducing the 

precision in the model using C and .  

In order to estimate rutting resistance of HMA mixtures, the previous studies performed statistical 

analyses using the IDT strength, the VMA, and the K [8, 23]. In their analytical models, the IDT strength 

presented the cohesion while the K indicated the internal friction of HMA mixtures [8, 23]. As a result, 

these analytical models had promising applications for evaluating the rutting resistance of HMA mixtures 

[8, 23]. Therefore, the good analytical model using the C and the K obtained in our study was consistent 

with the results from the previous analyses. 
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The analytical model also indicated that the K obtained from the SGC data tended to be more 

adequate indicator of aggregate interlock than the  obtained from the combination of UC and IDT tests. 

This may be explained by the following reasons. First, it has been reported that the internal friction of 

HMA mixtures increases with an increase in the content of coarse aggregate [3]. This means that the 

internal friction values of fine-graded mixtures (Blends 6 and 7) should be lower than the internal friction 

values of the coarse- and dense-graded mixtures (Blends 1 to 5). As shown in Table 36, the K is more 

appropriate than the  to reflect this trend. Next, as described in section 7.4.2, the  calculated from the 

combination of UC and IDT tests is substantially dependent on the distance between the aggregate 

gradation and the MDL [3]. In general, the coarse-graded mixtures have aggregate gradations that fall 

below the MDL, whereas the fine-graded mixtures have aggregate gradations that fall above the MDL 

[13]. As a result, when aggregate gradations of the coarse-, and fine-graded mixtures have higher 

distances with the MDL, these mixtures may simultaneously have greater values of . Therefore, the  

value obtained from the combination of UC and IDT tests may not be sensitive to the coarse aggregate 

content. As shown in Table 36, the experiments demonstrated that both the coarse-, and fine-graded 

mixtures had high values of . However, there were significant differences in the coarse aggregate 

contents for these mixtures, and the rutting resistance of these mixtures was not as great as expected for 

the high  values. 

7.5. Summary 

The findings of the present study can be summarized as follows: 

 The combination of UC and IDT tests conducted in the present study has a potential application 

for assessing the shear strength properties (C and ) of wearing course mixtures. 

 The experimental results showed that the distance between the aggregate gradation and the MDL 

markedly affects the  value of HMA mixtures. The  value tended to increase with increases in 

CMDarea and Prms. In addition, the CMDarea indicates a more adequate parameter than the Prms to 

evaluate the effect of aggregate gradation on the  of HMA mixtures. 

 The fine aggregate has a substantial effect on the K of HMA mixtures. The K was found to 

decrease with increases in SC and CMDsand. The experiments also demonstrated that the K is more 

strongly associated with the CMDsand than with the SC. 

 The AFT indicates a more appropriate parameter than the design AC and the Vbe to provide 

information on the effect of the asphalt composition on the C of HMA mixtures. An asphalt mixture 

with a higher AFT value may have a lower C value. 

 The analysis found that the Prms and the CMDarea of aggregate gradations produce significant 
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influences on the C of HMA mixtures. The higher Prms and CMDarea values strongly accelerate the 

reduction in the C values. 

 The analytical model using C and K has a potential application to evaluate the rutting resistance 

of wearing course mixtures. In addition, the K indicates a more proper parameter than the  to address 

the effect of aggregate interlock on the rutting performance of HMA mixtures. 
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Chapter 8. Use of compression test, circle shear test, and indirect tensile test 

for rutting potential assessment of wearing course mixtures 

 

 

8.1. Introduction 

Wearing course mixtures, which are surface layer materials used in asphalt pavements, are 

directly susceptible to the effects of traffic volume and weather conditions. Accordingly, insufficient 

shear strength in these mixtures increases the risk of rutting when exposed to repeated heavy loads at high 

temperatures [1]. The rutting susceptibility of hot mix asphalt (HMA) mixtures is generally evaluated 

using specialized devices, such as the asphalt pavement analyzer (APA), the Hamburg wheel tracking 

device, and the Japanese wheel tracking test (WTT) device [1, 2]. Dynamic stability (DS) values of the 

WTT are used as a standardized parameter for assessing the rutting potential of HMA mixtures in Japan 

[1, 3]. However, these devices are expensive and not commonly available in developing countries such as 

Vietnam and Indonesia. These developing countries have continued to use the Marshall method to design 

HMA mixtures. Their design standards specify requirements for volumetric and Marshall properties, but 

do not stipulate the need for any empirical testing to ensure sufficient resistance of HMA mixtures to 

permanent deformation. However, the specified volumetric properties alone are unable to ensure high 

rutting resistance [1, 3]. 

Historically, pavement engineers have characterized rutting resistance of HMA mixtures using 

the Mohr-Coulomb theory [4-9]. Based on the Mohr-Coulomb theory, two parameters, i.e., the cohesion 

(C) and the internal friction angle (), are introduced to analyse the rutting performance of asphalt 

mixtures. It is regarded that the C indicates the function of asphalt binder, while the  illustrates the 

degree of aggregate interlock within HMA structures [4]. 

In general, the triaxial strength test has been performed to characterize the Mohr-Coulomb 

parameters. However, the triaxial devices are expensive and complicated to handle. Therefore, pavement 

researchers have been investigated other alternative tests to determine the shear strength properties. In 

order to estimate the C and the  of asphalt mixtures, previous studies developed the following two 

methods: the combination of the unconfined compression (UC) and the indirect tensile (IDT) tests [4-6], 

and the combination of the UC and the circle shear (CS) tests [7-9]. However, to the best of our 

knowledge, even though the two methods have differences between both temperatures and deformation 

rates, the comparison of the shear strength properties of the two methods has not been discussed in detail. 
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Previous studies investigated the Mohr-Coulomb parameters using HMA specimens fabricated by 

the Superpave gyratory compactor (SGC) and the roller compactor [4-9]. In developing countries such as 

Indonesia and Vietnam, the mixture design procedure has followed the Marshall method [1, 3]. The 

Marshall compactor is still common equipment to fabricate HMA specimens. Therefore, it is difficult to 

prepare the SGC specimens in developing countries. A previous study conducted the UC test combined 

with the IDT test using the Marshall cylindrical specimens to evaluate the shear strength of HMA 

mixtures [3]. However, as far as the authors know, none of previous studies has investigated the 

combination of the UC and the CS tests using the Marshall specimens to determine the shear strength 

properties. 

It has been reported that the sole IDT test has a potential application to measure the C of HMA 

mixtures [1, 4, 6]. Within the same quality of aggregates, the rutting resistance of HMA mixtures is 

heavily dependent on the level of cohesion provided by the asphalt binder [4]. Therefore, the cohesion of 

HMA mixtures is considered to be an important indicator of rutting resistance [4, 6]. This suggests that 

the IDT strength test can be applied not only to the investigation of HMA mixture cohesion, but also to 

the evaluation of rutting resistance [1, 4-6, 10-12]. Previous studies also examined the relationship 

between IDT strength and rutting resistance using specimens fabricated by the SGC [4-6, 10-12]. 

However, it is difficult to carry out IDT strength tests using SGC-compacted specimens in developing 

countries because the Marshall compactor is still the prevalent device used to fabricate HMA specimens. 

The main objective of the present study was to compare the shear strength properties of seven 

asphalt mixtures with a 12.5-mm nominal maximum particle size (NMPS) using two different methods, 

i.e., the combination of the UC and the IDT tests, and the combination of the UC and the CS tests. The 

UC test combined with the CS test was performed with the Marshall cylindrical specimens to validate the 

shear strength parameters obtained from this protocol. The present study also aimed to evaluate the 

relationship between the IDT strength of the conventional Marshall specimen and the rutting resistance of 

thirteen wearing course mixtures using different fine aggregate sources. 

8.2. Literature review 

8.2.1. Protocols to determine shear strength of HMA mixtures 

The triaxial strength test has been actively pursued by pavement researchers in order to evaluate 

shear strength of HMA mixtures [4, 5]. Shear strength of asphalt mixtures comprises the C and the  to 

indicate the relationship between a normal (confining) stress and failure stress. When the normal stress is 

zero, the shear strength of HMA mixtures is equal to the C [4]. Characteristics of asphalt binder 

significantly influence the C value. It has been reported that the C decreases with the increase in asphalt 
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content at high temperatures [10]. An asphalt mixture having a higher asphalt dust ratio generally shows a 

higher C value [1]. On the other hand, the  parameter is strongly dependent on aggregate characteristics. 

When HMA mixtures have high values of , an adequate interaction is developed among aggregate 

particles within the mixtures [1, 4]. As a result, aggregate interlock occurs more strongly and improves 

the resistance of mixtures to shear deformation more effectively [1]. 

Because the triaxial devices are expensive and complicated, Christensen et al. (2000) developed a 

procedure of the UC test combined with the IDT test as an abbreviated protocol to determine shear 

strength properties [4]. Previous studies showed that the C values of shear strength properties found using 

this abbreviated protocol had a good relationship with rutting performance of HMA mixtures [1, 4]. 

Therefore, the combination of the UC and the IDT tests has potential applications for addressing shear 

strength properties of HMA mixtures. The determinations of the C and the  obtained from the 

combination of the UC and the IDT were previously described in section 7.2.1. 

 

 

Figure 60. Meaning of Pf and Pu 

Recently, the combination of the UC and the CS tests has been investigated to calculate the shear 

strength parameters [7-9]. Based on the relationship between load and displacement, this protocol has 

been specified for analysing shear strength properties of asphalt mixtures at two distinct stages [7]. The 

first stage is damage shear strength, which occurs when the relationship of the load with the displacement 

initially becomes nonlinear [7, 8]. The second stage for assessing shear strength is the ultimate damage 

shear strength, which occurs when the applied load increases to the failure limit [8]. In the load-

displacement curve, the damage shear strength and the ultimate damage shear strength are, respectively, 

defined as the Pf and the Pu as shown in Figure 60. The shear strength parameters can be calculated by the 

following equations [4, 7, 8]: 

Pu

Displacement, u

Load, P

Pf

Failure point

Ultimate point
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Where, 1 and 3 are the first and third principal stresses in the CS test, respectively. 

Previous studies reported that to estimate the shear strength parameters, the combination of UC 

and IDT tests used the Pu [1, 4], whereas the combination of UC and CS tests applied the Pf [7-9]. In 

order to identify a clearer comparison between two different calculations, the present study calculated the 

shear strength of mixtures at both Pf and Pu for both methods. 

8.2.2. Potential application of the IDT strength test to asphalt mixtures 

Asphalt researchers have developed several empirical tests to accurately predict the performance 

of HMA mixtures. These empirical tests should not only elucidate the overall response of HMA mixtures 

to stress, but also shed light on the behavior of the individual components (i.e., the aggregate particles and 

asphalt binder) [12]. The IDT strength test was developed to investigate the relationship between the 

stress induced by these empirical tests and the stress experienced by field HMA mixtures [1, 4-6, 11-13]. 

In the IDT strength test, a cylindrical specimen is first subjected to vertical compression across its 

diameter [1]. Longitudinal and transverse tensions are then induced in the center of the specimen’s face, 

which can cause structural failure when combined with vertical compression [4]. Previous studies have 

pointed out that the IDT strength test is able to assess fracture energy, as well as evaluate the stress and 

strain at failure in HMA mixtures [1, 4]. 

The IDT strength test is being increasingly applied to the evaluation of rutting resistance instead 

of cracking performance for HMA mixtures [1, 4, 6, 11-13]. However, the fundamental differences in 

failure mechanisms must be addressed before investigating the correlation between the IDT strength test 

and rutting resistance. Failure in the IDT test is typically caused by longitudinal and transverse tensions. 

In contrast, rutting in wearing course mixtures is caused by vertical compression or shear flow. The good 

relationship between the IDT strength test and the rutting resistance may be due to the following: First, 

the previous study indicated that the surface tensile stresses induced by truck tire pressures may create 

high shear stresses in combination with low levels of confinement in the pavement [4]. As a result, this 

condition has promoted rutting of the asphalt surface layers. The critical combination of high shear 

stresses and low levels of confinement also exists in the IDT strength test when the test is conducted at 

the relatively low deformation rate and moderate temperature [4]. Next, the relationship of the IDT 

strength test with the rutting resistance may be explained through the mixture cohesion. Both the cohesion 
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and the internal friction angle are important determinants of shear strength, which provides stability to 

oppose the plastic deformation generated by high traffic volume of heavy vehicles [1, 4]. However, the 

correlation between cohesion and rutting resistance was found to be generally stronger than the 

correlation between the internal friction angle and rutting resistance [1, 4]. This suggests that cohesion 

may be a better indicator of rutting resistance than the internal friction angle. Previous studies have also 

indicated that mixture cohesion can be accurately calculated using IDT strength (represented by the T) [4, 

6]. Figure 61 shows a combination of the unconfined compression test and the IDT strength test to 

determine Mohr-Coulomb parameters. x-IDT and y-IDT from the IDT strength test indicate the horizontal 

tensile stress and the vertical compression stress at failure, respectively. Stress analyses have indicated 

that the average normal stress, i.e., p = (x-IDT + y-IDT)/2, is almost equal to zero in the IDT strength test 

[4]. As a result, the maximum shear stress, i.e., q = (x-IDT - y-IDT)/2, is essentially dependent on the 

cohesion of mixtures [7]. When the Poisson’s ratio of asphalt mixtures is 0.5, the magnitude of y-IDT will 

be three times that of x-IDT [4]. As a result, the value of q is simply equal to twice the absolute value of 

x-IDT, and mixture cohesion is approximately twice that of x-IDT. Experiments have also been previously 

conducted to validate the relationships of T with the mixture cohesion and rutting resistance of HMA 

mixtures [7, 8]. Christensen et al. (2000) and Xiao (2006) reported a strong relationship between T and 

mixture cohesion, and that the ratio of mixture cohesion to T was 1.73-1.75 [4, 6]. In addition, the IDT 

strength test was reported to have potential as a practical and simple method to evaluate the resistance of 

HMA mixtures to permanent deformation [1, 4, 6, 11-13]. 

 

 

Figure 61. Mohr-Coulomb theory with the combination of the UC and IDT test [4] 

x IDT 

Normal stress ()

Shear stress ()

Cohesion (C)

Internal friction angle ()

y IDT 
c

2

y IDT x IDT
p

  


2

y IDT x IDT
q

  


0



 

122 

 

The key factors of the IDT strength test for evaluating the rutting resistance of HMA mixtures are 

the test temperature and the deformation rate [4-6, 11-13]. The viscosity of the asphalt binder decreases in 

higher temperatures, which can lead to reduced binder stiffness and mixture cohesion. In this way, higher 

temperatures can lower the shear strength and rutting resistance of mixtures [10]. Christensen et al. 

(2000) proposed that the IDT strength test should be conducted at a temperature of 30 C (i.e., 20 °C 

lower than the critical pavement temperature) and a deformation rate of 3.75 mm/min in order to assess 

T [4]. This combination of test parameters has promising applications for describing the traffic load and 

temperature conditions for rutting [4]. A downstream analysis compared the results of the IDT strength 

test conducted at 30 C and 3.75 mm/min with a test conducted at 40 C and 50 mm/min [12]; that study 

demonstrated a correlation between the findings of both protocols, which indicated that they can be 

employed for the same objective of assessing rutting resistance [12]. Similarly, Zaniewski et al. (2004) 

conducted the IDT strength test at 60 C and 50 mm/min, and the results also showed a high correlation 

between T values and rutting resistance [6]. The specimens in all these tests were fabricated using an 

SGC [4, 6, 10-13]. 

8.3. Experimental work 

8.3.1. Material sources and mixture design 

Seven asphalt mixtures that were designed as Vietnamese wearing course mixtures (designated 

Blends V1–V7) were prepared for the combination of the UC and the IDT tests, and the combination of 

the UC and the CS tests. In addition, the IDT strength test using Marshall cylindrical specimens of 

thirteen mixtures was conducted to verify the validity of the IDT strength test as a potential indicator of 

rutting resistance in HMA mixtures. The Marshall cylindrical samples comprised seven Vietnamese and 

six Indonesian (designated Blends I1–I6) HMA mixtures with a 12.5-mm nominal maximum particle size. 

The properties of materials and the results of mixture design for the thirteen mixtures were previously 

described in chapter 3. 

8.3.2. The UC and the IDT tests 

The UC and IDT specimen preparations and tests were previously presented in section 7.3. 

8.3.3. The UC and the CS tests for the Marshall specimen 

The present study conducted the UC and the CS tests using the Marshall specimens with the 

standard dimension of 101.7  63.5 mm. Both tests were performed at a deformation rate of 1 mm/min, 

which was suggested from the previous studies [7-9]. The testing temperature was maintained at 60 C, 
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which was specified for the WTT for evaluating rutting resistance of asphalt mixtures [7, 14]. Before the 

test, the specimens were also placed in an environmental chamber at the test temperature for over 6 h [7]. 

The testing conditions of the two protocols that were performed for assessing shear strength of mixtures 

are also summarized in Table 41.  

Table 41. Testing conditions of two methods for determining shear strength of HMA mixtures 

Testing condition UC test IDT test UC test CS test 

Specimen Slab SGC Marshall Marshall 

Temperature (
o
C) 30 30 60 60 

Deformation rate (mm/min) 5 3 1 1 

 

 

 

Figure 62. The CS specimen and test 

Figure 62 shows the configuration of the CS specimens and devices. The loading head having a 

45-mm diameter penetrates the specimens, and the circle ring size has the inner diameter of 75 mm. The 

first and the third principal stresses (1 and 3) in the CS test can be calculated using the following 

equations [7]: 

     
1 0.092

P

A
                   (39) 

Circle ringLoading head

Specimens after the CS test
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3 1.124

P

A
                   (40) 

Where, P is also the applied load at the Pu and the Pf; and A is the cross-session area of the 

loading head. 

 

 

Figure 63. The UC test using the Marshall specimen 

The UC test using the Marshall specimen is depicted in Figure 63. As mentioned in section 7.3.3, 

a height-diameter ratio of 2.0 has been recommended in order to obtain proper strength values [15]. The 

ratio of height to diameter of the Marshall specimen is 0.62, so the specimen does not meet the suggestion. 

It has been reported that plastic sheets, which were lubricated with soap, may decrease the discrepancy of 

the compression strength values when the UC test was conducted using the non-suggestion specimens [1, 

15]. Therefore, as shown in Figure 63, we determined to insert two plastic sheets between the specimen 

sides and loading plates to verify the reliability of this method. The following equation was applied to 

analyse the compression strength [1]: 

     
2

4
c

P

D



                 (41) 

Where, D is the diameter of the specimen. 

8.3.4. IDT strength test method using the Marshall specimen  

The IDT strength test was conducted using cylindrical specimens fabricated in a Marshall mold. 

Seventy-five blows were applied to each side of the briquettes, which had a standard dimension of 101.7 

× 63.5 mm. After the briquettes reached room temperature, the Indonesian specimens were trimmed to a 

thickness of 25 mm [1]. In order to simplify the testing procedure, two thin disk-shaped Vietnamese 

specimens were also cut from the middle of the original cylindrical briquette; the average thickness of 

Plastic sheets were lubricated the soap 
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these specimens was 30.8 mm. The average diameter-to-thickness ratios were 3.30 and 4.06 for the 

Vietnamese and Indonesian specimens, respectively. For the purpose of characterizing the shear strength 

of HMA mixtures using the IDT strength test, the AASHTO T 322-07 standard recommends an 

acceptable range of 2.82 to 4.18 for the diameter-to-thickness ratio in SGC specimens [16]. Our Marshall 

specimens complied with this range, which indicates that the IDT strength test has potential applications 

in the assessment of tensile failure in HMA mixtures. 

 

 

Figure 64. The IDT test using a Marshall specimen 

Figure 64 shows the configuration of a mixture specimen and the jig of the IDT strength test. The 

IDT strength test for the Indonesian specimens was conducted at a temperature of 30 C and a 

deformation rate of 2.5 mm/min [1]. The highest average pavement temperature in the southern regions of 

Vietnam and Indonesia is approximately 50 C [1, 17]. Ideally, a high temperature in combination with a 

very high rate of loading is the best condition for the IDT test to evaluate rutting resistance of HMA 

mixtures [4]. However, previous studies indicated that in the laboratory, the rapid loading rate may be 

difficult to control, and this can easily lead to transient loads and other dynamic effects [4, 11]. The errors 

inherent in the dynamic loading are difficult to measure [4, 11]. As a result, the data may be unreliable 

[11]. Therefore, the IDT test should be conducted at a slower deformation rate and lower temperature to 

approximately equivalent to the traffic load and temperature conditions that can induce rutting [4]. 

Therefore, we determined that the appropriate temperature for the IDT strength test for specimens in this 

study would be 30 C, as this is 20 C lower than the highest average pavement temperature. The testing 

temperature was based on the test protocol proposed by the previous studies [4]. The Vietnamese 

specimens were tested at a deformation rate of 3.0 mm/min. The higher deformation rate for the 

Vietnamese specimens was due to their greater thickness. The deformation rates used in this study were 

lower than those of previous studies because the Marshall specimens were smaller than the SGC 
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specimens [1]. Before starting the test, the specimens were kept in an environmental chamber at the 

testing temperature for 15 hours. This curing time should not be less than 12 hours [15]. 

8.3.5. Wheel tracking test 

The WTT was performed to evaluate the resistance of the HMA mixtures to permanent 

deformation. The sample preparation and testing procedure were previously described in detail in section 

4.5.5 and 7.3.4. The results of WTT for seven Vietnamese mixtures were also presented in Table 38. 

8.4. Results and discussion 

8.4.1. Comparison of shear strength parameters of HMA mixtures under two protocols 

Table 42 and Table 43 present the strength values of different tests. The accuracy and 

repeatability in each test were also evaluated using the coefficient of variation (COV). C and T found 

from the combination of UC and IDT tests were estimated from four specimens, and 1, 2, and T found 

from the combination of UC and CS tests was calculated from three samples. The results indicated that 

compression and tensile strength obtained the combination of UC and IDT tests tended to exhibit lower 

COV values than those obtained from the combination of UC and CS tests. Previous research has noted 

that the COV value of the test for asphalt mixtures should be lower than 15% [18]. Table 42 shows that at 

both the Pf and Pu, C and T estimated from the combination of UC and IDT tests exhibited low COV 

values, indicating high accuracy and repeatability of C and T in these tests at both calculations. On the 

other hands, 1, 2, and T obtained from the combination of UC and CS tests at the Pf tended to have 

higher COV values than those at the Pu. Overall, the combination of UC and CS tests presented high 

accuracy and repeatability of 1, 2, and T at the Pu only.     

  Table 44 shows the results of shear strength parameters obtained from the two methods. Figure 

65 shows linear relationships of shear strength parameters between the two methods at two stages, i.e., the 

failure and the ultimate. The correlation coefficients of the C between the two methods were high (failure: 

R
2
  0.89 and ultimate: R

2
  0.90). This means that the C obtained from the two protocols may be 

employed for the same objective, which is used for ranking the cohesion property of HMA mixtures. 

However, contrary to the authors’ expectation, correlation coefficients of between the two protocols 

were not high.   
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Table 42. Strength values of UC and IDT tests at failure load (Pf) and ultimate load (Pu) 

Parameter Mixture Rep_1 Rep_2 Rep_3 Rep_4 Average (kPa) COV (%) 

C of CU 

test at Pf 
1 830 755 748 722 764 6.1 

2 897 877 857 865 874 2.0 

3 919 1016 944 880 940 6.1 

4 577 610 617 634 610 3.9 

5 749 746 696 686 719 4.6 

6 784 796 770 788 785 1.4 

7 697 696 758 732 721 4.2 

C of CU 

test at Pu 
1 1137 1095 1049 1037 1080 4.2 

2 1262 1226 1256 1249 1248 1.3 

3 1330 1477 1363 1312 1371 5.4 

4 804 913 820 836 843 5.7 

5 1014 952 943 920 957 4.2 

6 1047 1040 1035 1031 1038 0.7 

7 955 934 961 946 949 1.2 

T of IDT 

test at Pf 
1 110 128 120 120 119 6.0 

2 145 145 138 130 139 5.1 

3 133 187 131 155 151 17.3 

4 87 74 85 86 83 7.6 

5 108 108 113 116 111 3.6 

6 112 121 115 109 114 4.5 

7 94 103 94 94 96 4.8 

T of IDT 

test at Pu 
1 161 164 164 166 164 1.3 

2 190 199 189 197 194 2.6 

3 206 221 197 223 212 5.9 

4 115 105 104 110 109 4.6 

5 138 141 135 155 142 6.2 

6 140 149 154 143 147 4.2 

7 123 133 125 127 127 3.4 
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Table 43. Strength values of UC and IDT tests at failure load (Pf) and ultimate load (Pu) 

Test Mixture Rep_1 Rep_2 Rep_3 Average (kPa) COV (%) 

c of 

CU test 

at Pf 

(Pu) 

1 1710 (2144) 1448 (1876) 1301 (1714) 1486 (1911) 13.9 (11.4) 

2 1484 (1878) 1350 (1774) 1298 (1859) 1378 (1837) 7.0 (3.0) 

3 1630 (2132) 1568 (1995) 1330 (1781) 1509 (1969) 10.5 (9) 

4 962 (1462) 856 (1133) 897 (1263) 905 (1286) 5.9 (12.9) 

5 939 (1294) 911 (1316) 983 (1355) 944 (1322) 3.8 (2.3) 

6 1225 (1472) 1190 (1481) 1417 (1694) 1277 (1549) 9.6 (8.1) 

7 1040 (1270) 1100 (1314) 1029 (1265) 1056 (1283) 3.6 (2.1) 

1 of 

CS test 

at Pf 

(Pu) 

1 44 (49) 47 (50) 37 (44) 42 (48) 12.3 (6.7) 

2 48 (58) 53 (61) 57 (76) 53 (65) 8.2 (14.8) 

3 56 (70) 62 (82) 85 (99) 67 (84) 22.6 (17.6) 

4 25 (31) 24 (30) 32 (38) 27 (33) 16.9 (13.5) 

5 53 (61) 31 (49) 29 (47) 38 (52) 35.1 (14.7) 

6 33 (38) 25 (31) 33 (36) 30 (35) 14.1 (10.1) 

7 19 (26) 16 (19) 23 (27) 20 (24) 17.3 (19.3) 

3 of 

CS test 

at Pf 

(Pu) 

1 534 (603) 573 (613) 449 (540) 519 (585) 12.2 (6.7) 

2 590 (706) 649 (743) 696 (926) 645 (792) 8.3 (14.9) 

3 682 (854) 756 (999) 1033 (1214) 824 (1022) 22.5 (17.7) 

4 305 (384) 296 (365) 397 (467) 333 (405) 16.7 (13.4) 

5 648 (743) 375 (594) 358 (571) 460 (636) 35.4 (14.7) 

6 398 (469) 309 (383) 399 (438) 368 (430) 14.1 (10.1) 

7 236 (315) 200 (227) 284 (333) 240 (292) 17.6 (19.3) 

Note: Values in parentheses are calculated at the ultimate load (Pu) 

Table 44. Shear strength parameters of different protocols 

Mixture 
UC and IDT tests UC and CS tests 

Cf (kPa) f (°) Cu (kPa) u (°) Cf (kPa) f (°) Cu (kPa) u (°)

1 207 33.2 285 34.3 433 29.6 522 32.7 

2 241 32.2 337 33.3 463 22.2 593 24.3 

3 262 31.8 368 33.5 545 18.3 695 19.6 

4 146 38.7 192 41.0 270 28.3 356 32.0 

5 193 33.6 247 35.3 323 21.2 450 21.5 

6 199 36.2 258 37.2 339 34.1 404 34.9 

7 170 39.6 224 39.4 250 39.4 303 39.4 
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Figure 65. Relationships between C and  values of two protocols 

Table 41 and Table 44 indicate that even though the combination of the UC and CS tests was 

conducted at the higher temperature and lower deformation rate, the C values obtained from this protocol 

were higher than those obtained from the combination of the UC and IDT tests. The finding is in 

contradiction with the results reported in a previous study, which showed that there is a decrease in the C 

with increasing temperatures [10]. The disparity between our findings and those of the previous study 

may be explained through the compression strength. Generally, the C value decreases with decreasing the 

deformation rate and increasing the test temperature. However, as shown in Table 42 and Table 43, the C 

values of the Marshall specimens tended to be higher than those of the prismatic specimens. As a result, 

the C values obtained from the Marshall specimens were higher than those obtained from the prismatic 

specimens. 

Table 43 shows that the maximum compression strength (Cu) values calculated at the ultimate 

load (Pu) ranged from 1283 to 1969 kPa for the Marshall specimens. A previous study performed the UC 

test of the Marshall specimens at a deformation rate of 3.75 mm/min and a temperature of 30 C, and this 

study reported that the Cu values ranged from 2758 to 5370 kPa [1]. The lower deformation rate and the 

higher temperature may account for the lower Cu values of the Marshall specimens obtained in our study 

relative to those reported in the previous study. However, the C values of the Marshall specimens 

obtained in the previous study were still higher than those of the prismatic specimens in our study 

although these tests had the same testing conditions. 

In general, the compression stress values of the specimens having a low height-diameter ratio 

(smaller than 2.0) show higher than those of specimens having the size ratio of 2.0 [15]. As a result, the C 

values tend to increase when the UC test is performed using the specimens with the low height-diameter 

ratio. Based on the data in the present study, even though the soap-plastic sheets were used, the UC test 
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using the Marshall specimens did not produce proper C values. The C of the Marshall specimens in this 

study was only regarded as an index of C and was not a true value of C. 

8.4.2. Evaluation of rutting resistance using the shear strength parameters 

Figure 66 and Figure 67 show relationships of shear strength parameters with DS for each shear 

strength method. The results indicated that the C had high correlation coefficients with the DS for each 

method and each calculation (ultimate damage and failure damage). The trend lines illustrated that the DS 

values increased with increasing the C values.  

 

 

Figure 66. Relationships of C and  (UC and IDT tests) with DS 

 

Figure 67. Relationships of C and  (UC and CS tests) with DS 

Contrary to the authors’ expectations, the  values had negative coefficients with the DS values. 

The data as shown in Table 44 also indicated that when the  values of mixtures increased, the C values 

decreased. The inverse relationships between the C and the  obtained from the UC and the IDT tests also 
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corroborate those from previous studies [1, 4]. This may account for the negative coefficients between the 

 and the DS obtained in our study. In general, the internal friction of HMA mixtures increases with 

increasing the content of coarse aggregate [4]. However, the  value obtained from the combination of the 

UC and the IDT tests was not dependent on the coarse aggregate content as mentioned in section 7.4.5. 

The previous study indicated that the  values obtained from the UC test and the CS test 

increased with the increase in the C values [7]. However, the data of the previous study may be 

insufficient (only three mixtures were investigated) and all the specimens were fabricated by the SGC [7]. 

In the present study, when the Marshall specimens for the seven mixtures were investigated, the 

relationships between the  and the C were inverse, and the  was not a suitable indicator of rutting 

resistance. 

The results highlighted that the C value derived from the combination of UC and CS tests using 

the Marshall specimens is a potential parameter to evaluate the rutting resistance of HMA mixtures. 

Therefore, this parameter will help asphalt designers in developing countries during the HMA mixture 

design process.  

8.4.3. Evaluation of rutting resistance using the IDT strength test obtained from the 

Marshall specimens 

Table 45 summaries the IDT strength test (T) results, the DS, and FAA values for the Vietnamese 

and Indonesian wearing course mixtures. T values of IDT tests estimated from the Vietnamese Marshall 

specimens exhibited lower COV values, indicating a high accuracy and repeatability of T in the test. 

Figure 68 presents the comparison of T and DS values between the Vietnamese and Indonesian mixtures. 

It should be noted that the aggregate gradation in each pair of mixtures presented in these figures has the 

same aggregate gradation. The results indicated that the tensile strength and rutting resistance of 

Indonesian wearing course mixtures were generally higher than those of Vietnamese wearing course 

mixtures. This may be explained by the following reasons. Firstly, as shown in Table 45, the FAA values 

of fine aggregate in the Indonesian blends were greater than those in the Vietnamese blends, providing 

more intimate contact between the backbone aggregate particles for the Indonesian blends. As a result, the 

Indonesian blends had higher rutting resistance than the Vietnamese blends. Next, as described in section 

5.4.5, HMA mixtures that content the granite sand (Blends V4, V6, and V7) had higher the design ACs 

than HMA mixtures that content the limestone screening (Blends I1, I4, and I6). This may reduce the 

points of contact among the aggregate particles, and in turn facilitate the movement of the aggregate 

particles. Consequently, higher AC may result in the lower peak load,T, and rutting resistance of HMA 

mixtures. 
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Table 45.T and DS values of the thirteen mixtures 

Mixture Rep_1 Rep_2 Rep_3 Rep_4 
Average of 

T (kPa) 

COV of  

T (%) 

DS  

(cycles/mm) 

FAA  

(%) 

V
ie

tn
a
m

es
e 

V1 232 227 234 215 227 3.8 863 43.2 

V2 303 291 288 315 299 4.0 1130 43.1 

V3 415 408 373 360 389 6.9 1168 42.9 

V4 214 203 210 211 209 2.2 435 42.9 

V5 240 240 242 238 240 0.7 670 42.7 

V6 141 159 163 170 158 7.8 342 42.3 

V7 183 203 180 194 190 5.6 293 43.0 

In
d

o
n

es
ia

n
 

I1 - - - - 251 - 759 45.4 

I2 - - - - 195 - 505 43.3 

I3 - - - - 317 - 676 45.3 

I4 - - - - 404 - 993 46.0 

I5 - - - - 357 - 790 39.2 

I6 - - - - 447 - 1160 45.9 

Note: The present study had data of Indonesian mixtures including the average of T and the DS 

only. Identical colors indicate the same aggregate gradations. 

 

 

Figure 68.  Comparison of T and DS values between the Vietnamese and Indonesian mixtures 

Figure 69 shows the relationship of the measured FAA with DS values for the thirteen mixtures. 

The correlation coefficient between the FAA and the DS values was low when mixtures with different 
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aggregate gradations were compared. This indicates that the FAA parameter of fine aggregate alone is 

unable to evaluate the rutting resistance of HMA mixtures with various aggregate gradations. 

 

Figure 69. Relationship between FAA and DS  

 

Figure 70. Relationships between T and DS for the Vietnamese and Indonesian wearing course mixtures 

Figure 70 shows the relationships between the T and DS values for the seven Vietnamese and six 

Indonesian wearing course mixtures. The trend lines showed that the mixtures had good rutting resistance 

when the T values were high, which corroborates the findings of previous studies [4, 6, 12]. It is worth 

noting that, as shown in Figure 70, the models demonstrated good R
2
 (0.80 and 0.85) and good to fair 

Se/Sy (0.52 and 0.57) for both the Vietnamese and Indonesian mixtures, regardless of aggregate source (A 

model with an R
2
 above 0.70 and an Se/Sy below 0.57 is regarded as having good goodness of fit [19]). In 

addition, the relationships between the T and DS values of both the Vietnamese and Indonesian mixtures 

(Figure 71) had a reasonably linear correlation coefficient (good R
2
: 0.70 and fair Se/Sy: 0.57). This 
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finding further supports our postulation that the deformation rate and testing temperature used in this 

study were suitable for assessing T values from the IDT strength test. 

 

Figure 71. Relationship between T values and DS values for the thirteen mixtures 

As depicted in Figure 71, the IDT strength test conducted at a relatively slow deformation rate 

and a moderate temperature has potential applications for assessing the rutting resistance of HMA 

mixtures. The coefficient of determination (R
2
) of the regression was 0.70, which indicates that 

approximately 70% of the variability in the rutting resistance observed from those thirteen mixtures can 

be explained by the sole independent variable, the T. It should be noted that other factors (such as 

characteristics of asphalt binder and aggregate) that influence the rutting resistance were not taken into 

account. The DS values for 12.5-mm NMPS wearing course mixtures that are subject to heavy traffic 

volume should be a minimum of 800 cycles/mm [1]. This figure also suggests that the T value from 

conventional Marshall specimens should be higher than 300 kPa in order to provide HMA mixtures with 

sufficient resistance to permanent deformation. Two previous studies have indicated that the 

corresponding T values for SGC specimens are 270 kPa and 320 kPa [4, 12]; our recommended T value 

is therefore approximately equal to the median value of these previously reported values. 

8.5. Summary 

Based on the experiments presented in the present study, the following conclusions can be drawn: 

 The present study compared the shear strength parameters of two distinct methods, i.e., the UC 

test combined with the IDT test, and the UC test combined with the CS test. The results showed that 

relationships of the C for both protocols were good, whereas the  values of both protocols were not 

correlated well. 

y = 2.74x - 23.63

0

200

400

600

800

1000

1200

1400

100 150 200 250 300 350 400 450 500

D
S

(c
y

cl
es

/m
m

) 

T (kPa)

Good Rutting ResistancePoor Rutting Resistance

R2 = 0.70

R2
adj = 0.67

Se/Sy = 0.57

n = 13



 

135 

 

 Even though soap-plastic sheets were applied for the UC test, the C values of the Marshall 

specimens were higher than those of recommended specimens (the size ratio of 2.0). Therefore, the 

C values of the Marshall specimens introduced in this study only indicated the index of true C 

values. 

 The high linear relationships between the C of the two shear strength methods and rutting 

resistance of HMA mixtures were obtained. Therefore, not only the combination of UC and IDT tests, 

but also the combination of UC and CS tests using the Marshall specimens had potential applications 

for evaluating rutting resistance of HMA mixtures. 

 Strong relationships were observed between the tensile strength using the Marshall specimens and 

rutting resistance of HMA mixtures. IDT strength using the Marshall specimens should exceed 300 

kPa to obtain high rutting resistance for 12.5-mm NMPS wearing course mixtures. 

 

References 

[1] Haryanto, I., and Takahashi, O. A rutting potential assessment using shear strength properties for 

Indonesian wearing course asphalt mixtures, International Journal of Pavements 6 (1-2-3), pp. 27-38, 

2007. 

[2] Kandhal, P., and Allen Cooley, J.R.L. Accelerated laboratory rutting tests: Evaluation of the 

Asphalt Pavement Analyzer, NCHRP 508, National Research Council, Washington, D.C., 2003. 

[3] Tran, N.T., and Takahashi, O. Improvement on aggregate gradation design and evaluation of 

rutting performance of Vietnamese wearing course mixtures, the 8th international conference on 

maintenance and rehabilitation of pavements, Singapore, pp. 212-221, 2016. 

[4] Christensen, D.W, Bonaquist, R., and Jack, D. P. Evaluation of triaxial strength as a simple test 

for asphalt concrete rut resistance. FHWAPA-2000-010+97-04(19), Final Report, PTI 2K26, 2000. 

[5] Pellinen, T.K., Song, J., and Xiao, S. Characterization of hot mix asphalt with varying air voids 

content using triaxial shear strength test, Proceeding 8
th
 Conference Asphalt Pavement for Southern 

Africa, Sun City, South Africa, 2004. 

[6] Xiao, S. Investigation of performance parameters for hot-mix asphalt, PhD Thesis, Purdue 

University, West Lafayette Indiana, 2006. 

[7] Zheng, J, Huang. T., and Qian, G.. Investigation into circle shear test method of asphalt mixture. 

Proceedings of the GeoHunan International Conference II: Emerging Technologies for Design, 

Construction, Rehabilitation, and Inspection of Transportation Infrastructure, China, pp. 259-266, 2011. 

[8] Cai, X., and Wang, D. Evaluation of rutting performance of asphalt mixture based on the granular 

media theory and aggregate contact characteristics, Road Materials and Pavement Design 14 (2), pp. 325-

http://docs.lib.purdue.edu/do/search/?q=author_lname%3A%22Xiao%22%20author_fname%3A%22Shangzhi%22&start=0&context=119483
http://docs.lib.purdue.edu/do/search/?q=author_lname%3A%22Xiao%22%20author_fname%3A%22Shangzhi%22&start=0&context=119483


 

136 

 

340, 2013. 

[9] Huang, T., Qian, G., and Zheng, J. Investigation into shear coefficient for circle shear test method 

of asphalt mixture. Advanced Materials Research 446-449, pp. 2590-2594, 2013. 

[10] Wang, H., Liu, X., and Hao, P. Evaluating the shear resistance of hot mix asphalt by the direct 

shear test, Journal of Testing and Evaluation 36 (6), 485-491, 2008. 

[11] Christensen, D.W., et al. Indirect tension strength as a simple performance test, New simple 

performance tests for asphalt mixes, Report E–C068, Washington DC, pp. 44-57, 2004. 

[12] Christensen, D.W., and Bonaquist, R. Using the indirect tension test to evaluate rut resistance in 

developing hot-mix asphalt mix designs, Practical approaches to hot-mix asphalt mix design and 

production quality control testing, E-C124, National Research Council, Washington, D.C., pp. 62-77, 

2007. 

[13] Zaniewski, J.P., and Srinivasan, G. Evaluation of indirect tensile strength to identify asphalt 

concrete rutting potential, Asphalt Technology Program, Department of Civil and Environmental 

Engineering, West Virginia University, Washington, 2004. 

[14] Japan Road Association, JRA-B003. Method of wheel tracking test, Standard Practice for Asphalt 

Concrete Mix Design (3), pp. 39-55, 2005. 

[15] Erkens, S.M.J.G. Asphalt concrete response (ACRe): Determination, modelling and prediction. 

PhD thesis, Technical University Delft, Netherlands, 2002. 

[16] AASHTO Designation, T 322. Standard method of test for determining the creep compliance and 

strength of hot-mix asphalt (HMA) using the indirect tensile test device, 2007. 

[17] Nguyen, T. N., and Tran, V. T. Temperature distribution in asphalt pavement at the south area of 

vietnam, Journal of Vietnamese Transportation, 12, 30-31, 2015. 

[18] Stewart, C. M., Reyes, J. G., and Garcia, V. M. Comparison of fracture test standards for a 

Superpave dense-graded hot mix asphalt, Engineering Fracture Mechanics 169, 262-275, 2017. 

[19] Witczak, M.W. et al. Simple performance test for Superpave mix design, Report NCHRP 465, 

Washington, D.C., 2002. 

 

http://www.sciencedirect.com/science/journal/00137944/169/supp/C


 

137 

 

Chapter 9. Conclusion, recommendation, and future research 

 

 

9.1. Conclusions 

The current practices of the Superpave and Marshall standards do not stipulate any evaluation 

procedures for designing aggregate gradations to ensure proper volumetric parameters and adequate 

performances. In addition, only the requirements of volumetric parameters in the Superpave and Marshall 

mix designs are insufficient to achieve a high resistance on rutting and cracking. Furthermore, rutting and 

cracking testing devices are expensive and have not been widely available in developing countries such as 

Vietnam and Indonesia. As a result, it is difficult to implement those devices to evaluate a mixture in 

developing countries. Therefore, this study provided a comprehensive evaluation of the effects of 

aggregate gradations on the volumetric properties and performances of HMA mixtures. Based on 

characteristics of aggregate gradations, the present study proposed simple indexes for asphalt designers to 

obtain a mixture which has high resistance on rutting and cracking. 

This study applied the CMDarea parameter obtained from the concept of the CMD to evaluate the 

effects of aggregate gradations on the VMA and rutting resistance of asphalt mixtures. The experiments 

indicated that the CMDarea of aggregate gradation has a strong associated with the VMA of HMA 

mixtures. Increasing CMDarea increases VMA. The results also confirmed that the CMDarea is a practical 

and effective index for evaluating the effect of aggregate gradation on the VMA of asphalt mixtures 

regardless of aggregate source, mix design, and nominal aggregate particle size. However, the 

relationship between the CMDarea of aggregate gradation and the rutting resistance of HMA mixtures is 

low, indicating that the use of sole CMDarea cannot guarantee a good rutting resistance for HMA mixtures.   

Based on the theory of CMD and the DASR model, this study proposed the workability index 

(WI) derived from aggregate gradation and the rutting resistance index (RRI) derived from aggregate 

gradation and asphalt content in order to rank asphalt mixtures with different components and properties. 

The results indicated that the WI and the RRI are valuable parameters in ranking and distinguishing the 

workability and rutting resistance of asphalt mixtures, regardless of compaction energies and compactors. 

In addition, the CMDarea-stone of aggregate gradations and the workability of HMA mixtures are reasonably 

correlated. An asphalt mixture having aggregate gradation that has a lower CMDarea-stone value tends to 

have higher workability. 
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The present study also introduced two cracking parameters, called the CMDareaDASR of aggregate 

gradation and the gradation-based cracking resistance index (GCI), to evaluate the cracking potential of 

asphalt mixtures at a high normal temperature (30 C) in the notched semi-circular bending (SCB) test. 

These parameters are derived from the characteristics of aggregate gradation. The experiments indicated 

that both CMDareaDASR and the GCI have potential applications for ranking the cracking resistance of 

HMA mixtures. It was found that the CMDareaDASR had a stronger association with the fracture toughness 

(f and KIc) than the Jc. On the other hand, the GCI is more strongly associated with the Jc than the 

fracture toughness (f and KIc).  

Downstream research included cracking tests at a low service temperature (15 C)  to exam the 

relationships of aggregate gradations and asphalt contents on cracking performance of HMA mixtures. In 

addition, the present study investigated whether the SCB test can be a good alternative to the three-point 

bending beam (TPBB) test to assess fracture characteristics of asphalt mixtures. The results indicated that 

the CMDareaDASR is an effective parameter for evaluating the fracture toughness (f and KIc) values 

calculated from the notched SCB and TPBB tests. An asphalt mixture with a higher CMDareaDASR value 

may have lower fracture toughness (f and KIc). In addition, it was found that the apparent film thickness 

(AFT) is a potential parameter that provides the effects of the asphalt content on the cracking performance 

of HMA mixtures. Our work also confirmed that the notched SCB test using the EN 12697-44 standard 

may provide a good alternative to the TPBB test to evaluate the fracture properties of asphalt mixtures at 

a low service temperature. 

The present study also applied the CMDarea and proposed the Prms and CMDsand to examine the 

effects of aggregate gradation on the shear strength properties (C, , and K) of HMA mixtures. 

Furthermore, the relationships of the shear strength parameters with rutting resistance of HMA mixtures 

were investigated. The results showed that the CMDarea and Prms have potential applications for evaluating 

both the C and  properties of HMA mixtures. In addition, the CMDsand is a practical parameter that can 

be implemented for evaluating the K properties of HMA mixtures. The experiments also indicated that the 

AFT has a strong negative association with the C of HMA mixtures. Furthermore, the C obtained from the 

combination of UC and IDT tests has a potential application for ranking the rutting resistance of wearing 

course mixtures. 

The present study also investigated the tests using the Marshall specimens that have potential 

applications for evaluating rutting resistance of HMA mixtures. It was found that the C parameter found 

from the combination of UC and CS tests using the Marshall specimens can rank the rutting resistance of 

different asphalt mixtures. In addition, the results demonstrated a high relationship between the IDT 

strength using the Marshall specimens and the rutting resistance of HMA mixtures. The minimum value 
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of the IDT strength using the Marshall specimens should be 300 kPa to guarantee a good rutting 

resistance for 12.5-mm NMPS wearing course mixtures. 

This study also investigated the effects of fine aggregate on rutting and cracking performance of 

HMA mixtures. Generally, the use of limestone screening instead of natural sands may improve the 

rutting and cracking resistance of asphalt mixtures when the aggregate gradations were controlled to 

achieve the same gradations. On the other hand, the fine aggregate angular with different gradations was 

not strongly associated with the rutting and cracking performance of HMA mixtures. 

9.2. Recommendations 

The present study discussed various means of evaluating the potential performance of asphalt 

mixtures. The relationships of mixture compositions with the performance of HMA mixtures are also 

summarized in Table 46. Aggregate gradation parameters can be estimated at the early stage, resulting in 

saving the time and effort for mixture designers to select a stable aggregate gradation. In addition, as 

shown in Table 46, several parameters that do not require any rutting and cracking testing devices have 

potential applications for ranking cracking and rutting resistance of HMA mixtures. Therefore, these 

parameters may be practical and cost-effective for mixture designers.  

This study showed the high relationship of GCI with the Jc when only natural sands were used for 

all the blends. However, the data obtained from Iman et al.’s research indicated that when asphalt 

mixtures were fabricated with both different fine aggregate (limestone screenings and natural sands), the 

low relationship between the GCI and the Jc was observed. Moreover, this data showed a negative 

relationship between Jc and max, which was not consistent with the previous studies. With the same 

aggregate gradation or the same GCI, the mixtures using limestone screenings generally had higher Jc 

values than the mixtures using natural sands. Therefore, downstream research should include extensive 

tests using a wider range of asphalt binder and aggregate sources to confirm the reliability of the 

CMDareaDASR and GCI parameters in HMA mixture designs.  

The future research will include further fatigue testing to confirm the reliability of the Jc 

properties in HMA mixture designs. The Jc parameter indicates the cracking resistance of HMA mixtures 

at the cracking initiation stage, which is generally assessed using fatigue testing. Fatigue tests should 

therefore be conducted to verify whether the Jc index is an eligible parameter of fatigue in HMA mixtures 

at normal temperatures. 

The present study employed the Jc and KIc of the notched SCB test to evaluate cracking resistance 

of HMA mixtures at the cracking initiation and propagation stages, respectively. While Jc is used in the 

ductile fracture or elastic-plastic fracture mechanics analyses, KIc is used in the brittle fracture or linear-

elastic fracture mechanics analyses. There is therefore a need to conduct in-depth investigations that 
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clarify the application of cracking parameters that should be estimated from the same approach. For 

example, at normal temperatures, the Jc and CTOA of the notched SCB test have potential applications for 

evaluating the cracking initiation and propagation stages in the ductile fracture. 

This study only applied the load-deformation curve instead of the linear variable differential 

transducers to determine the CTOA parameter. Therefore, further research is required to confirm the 

reliability of CTOA when assessing the cracking propagation stage of HMA mixtures. Future work should 

focus on studying a wider range of asphalt binders, such as virgin asphalt and modified asphalt. In 

addition, the future work should employ a mixed-level factorial design to understand the effect of 

variables (mixture components and specimens geometry) on the CTOA parameter. 

The present study only investigated the relationship of each independent variable with the 

dependent variable. However, the independent variables may interact with each other, indicating that the 

interpretation for one independent variable depends on the value of other independent variables. 

Therefore, there is certainly a need to design an experiment to evaluate both the main and interaction 

effects of various factors on the performance of asphalt mixtures. 
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Table 46. Effects of mixture components on performance of asphalt mixtures 

Component Parameter 
Volumetric 

properties 
Workability 

Rutting 

resistance 
Cracking resistance using the TPBB and the notched SCB tests Mixture shear 

strength Low service temperature High service temperature 
VMA WEI DS 

f 
and K

Ic 
f 
and CTOA G

f 
f 
and K

Ic J
c C  K 

Fine aggregate FAA 
  

 
   

  
   

Aggregate 

gradation 

CMD
area  

 
     

 
   

CMD
area-stone 

 
 

         CMD
sand 

          
 

CMD
area-DASR 

   
     

   P
rms
 

        
   

DF 
 

 
         GCI 

      
  

   
Asphalt content 

Design AC 
  

     
 

 
  V

be 
  

     
 

 
  AFT 

  
     

 
 

  Gradation and 

asphalt content 
WI 

 
 

         RRI 
  

 
        IDT test 

T 
  

 
        UC and IDT 

tests 
C 

  
 

         
  

 
        CS and IDT 

tests 
C 

  
 

         
  

 
        

 “” indicates increasing parameters;“” indicates improved performance;  “” indicates reduced performance. “” and “”: R
2
  0.7; 

“” and “”: 0.7 > R
2
 > 0.4; “” and “”R

2
  0.4. 

 IDT, UC, and CS tests were conducted at relatively low deformation rates and moderate testing temperatures. 

 The cracking tests were performed at a low service temperature of 15 C and a high normal temperature of 30 C, which are based on the 

Vietnamese climate. 


