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Abstract

Rough set theory has been developed as a means to analyse vague description of

objects. Objects characterized by attributes may be indiscernible based on the

information available about them. Rough sets are approximation representations of a

given set in the form of lower and upper approximations derived from crisp partitions.

Rough set theory approach is important in the areas of machine learning, knowledge

acquisition, decision analysis, and knowledge discovery from databases.

The original rough set approach is restricted to the case where objects attributes

in information systems are described by precise values. Actual applications, however,

often contain imperfect data including but not limited to missing, uncertain and

imprecise values. Though numerous approach dealing with missing values have

been published in the literature, lack of solutions to solve issues of uncertainty and

imprecision still remains.

This research aims at proposing possible solutions for all of imperfect data

mentioned above. The work contains introducing a representation of imperfect data,

proposing two new rough set models and discussing methods for acquiring knowledge

in imperfect information systems.

First of all, a representation of imperfect values is introduced. This representation

must have ability to present any type of imperfect data. The solution chosen in this

research is a combination of transforming missing, uncertain and imprecise values to

probabilistic data.

Using the representation of imperfect data, a rough set model for imperfect data

based on valued tolerance relations is then proposed. For this purpose, the research

first suggests methods to obtain probabilities of matching - the probability that two

objects are tolerant of each other on an attribute - for imperfect data. Combining

iii



these probabilities with another index, we then propose a valued tolerance relation

that can avoid problems stated in the literature of several rough set models.

The second rough set model proposed in this research is based on Dempster-Shafer

theory. Several basic relations that are determined by comparing possible values

sets of two objects on an attribute are first defined. Mass assignments for the

occurrences of those basic relations are also calculated. Considering each attribute

as a source of evidence and employing combination rules, mass assignments on a set

of attributes are then determined. Last, based on belief and plausibility measures

that are calculated from mass assignments for the occurrences of the basic relations,

equivalence, tolerance and similarity relations among objects are defined.

Usually, a discernibility matrix is used to calculated reducts and core of an

information system. To induce decision rules, an algorithm named LEM2 is a famous

solution. However, it is evident that those approaches cannot be used in some cases.

Therefore, finally, methods to obtain reducts and core and to induce decision rules in

imperfect information systems are discussed.

iv



Acknowledgements

First and foremost, I offer my sincerest gratitude to my supervisor, Professor

YAMADA Koichi, who has supported me throughout my dissertation with his

patience and knowledge whilst allowing me the room to work in my own way. His

encouragement, guidance and support from the initial to the final level enabled

me to develop an understanding of the research. I would also like to express my

sincere thanks to the examiners of the dissertation, Prof.Fukumura, Prof.Yukawa,

Prof.Marasinghe and Prof.Takahashi for their feedback to improve my dissertation

I am heartily thankful to Assistant Professor UNEHARA Muneyuki for his great

advice in the research and comments throughout laboratory seminars, which assists

me to find out the goal of the study.

I also would like to show my gratitude to The Ministry of Education, Culture,

Sports, Science and Technology of Japan, who offers me the Monbukagakusho

Scholarship. With the scholarship, I have an opportunity to study at Nagaoka

University of Technology.

This dissertation would have remained a dream if I had not been provided useful

lessons as well as permission to access the huge store of books and journals from the

University. The staff of the University, especially Kokusai-ka, kindly helps me any

time needed.

In my daily work I have been blessed with a friendly and cheerful group of

the laboratory mates and friends in the University. They really provided me good

arguments for my research.

Finally, I thank my parents for supporting me to come to Japan, my wife, my son

and my little daughter for encouraging me to concentrate studying in Nagaoka.

v



DEDICATED

To my family

vi



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction 1

1.1 Rough Sets in Knowledge Discovery . . . . . . . . . . . . . . . . . . . 1

1.2 Problem in Brief . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Motivation of The Research . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Structure of The Dissertation . . . . . . . . . . . . . . . . . . . . . . 5

2 Overview of Rough Sets Theories 7

2.1 Rough Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Information Systems and Equivalence Relation . . . . . . . . . 7

2.1.2 Approximation Space . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Rough Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.4 Reducts and Core . . . . . . . . . . . . . . . . . . . . . . . . . 13

vii



2.1.5 Attribute Dependency . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Bayes Rough Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Variable Precision Model . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Rough Set in Probabilistic Framework . . . . . . . . . . . . . 18

2.3 Fuzzy Rough Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Fuzzy Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Rough Membership Functions . . . . . . . . . . . . . . . . . . 22

2.3.3 Combination of Rough and Fuzzy Sets . . . . . . . . . . . . . 23

2.4 Rough Set on An Arbitrary Relation . . . . . . . . . . . . . . . . . . 24

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Imperfect Information Systems 28

3.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Problems from Imperfect Information and Motivation . . . . . . . . . 35

3.3 Imperfect Information Representation . . . . . . . . . . . . . . . . . . 37

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Valued Tolerance and Similarity Relations Based Rough Set 40

4.1 Valued Tolerance/Similarity Relations Based Rough Set Models . . . 41

4.2 Probability of Matching . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Probability of Object Attributes Values . . . . . . . . . . . . . 43

4.2.2 Method of The Frequency of Attribute Value . . . . . . . . . . 43

4.2.3 Method of The Frequency of Attribute Value Related To Concepts 46

viii



4.2.4 Obtaining Probability of Matching . . . . . . . . . . . . . . . 47

4.2.5 Some Discussion for Continuous Values . . . . . . . . . . . . . 48

4.3 Extended Rough Set Model . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.1 Extended Tolerance Relation . . . . . . . . . . . . . . . . . . . 53

4.3.2 Neighbourhood and Approximations . . . . . . . . . . . . . . 59

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Rough Set Model Based on Dempster-Shafer Theory 64

5.1 Evidence Theory and Combination Rules . . . . . . . . . . . . . . . . 65

5.2 Modelling Relations Based on Demspter-Shafer Theory . . . . . . . . 66

5.3 Rough Set Approach Based on Dempster-Shafer Theory . . . . . . . . 72

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Knowledge Acquisition 80

6.1 Reducts and core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1.1 Discernibility Matrices . . . . . . . . . . . . . . . . . . . . . . 81

6.1.2 Reducts and Cores in Imperfect Information Systems . . . . . 83

6.2 Decision Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2.1 LEM2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2.2 Obtaining Decision Rules in Imperfect Information Systems . 90

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7 Conclusion 96

7.1 Summary of The Research . . . . . . . . . . . . . . . . . . . . . . . . 96

ix



7.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.4 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.5 Last Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Appendix A Publications of the Research 104

Bibliography 106

x



List of Tables

2.1 A complete decision table . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 An example of a dataset with missing values . . . . . . . . . . . . . . 29

3.2 An example of a dataset with uncertainty . . . . . . . . . . . . . . . 36

3.3 Dice game scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Probability of attribute values . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Probability of attribute values given a concepts . . . . . . . . . . . . 46

4.3 Tolerance degree among objects . . . . . . . . . . . . . . . . . . . . . 55

4.4 Properties of approximations for the three definitions . . . . . . . . . 61

5.1 An information system with uncertainty and imprecision . . . . . . . 71

5.2 Mass of hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1 An example of incomplete decision table . . . . . . . . . . . . . . . . 82

6.2 The discernibility matrix . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3 An imperfect table for knowledge acquisition . . . . . . . . . . . . . . 86

6.4 Tolerance degrees among objects on all attributes . . . . . . . . . . . 87

6.5 Tolerance degrees among objects on {Headache,Nausea} . . . . . . . 87

xi



6.6 Tolerance degrees among objects on {Temperature,Nausea} . . . . . . 88

6.7 Tolerance degrees among objects on {Temperature,Headache} . . . . 88

6.8 An example incomplete table . . . . . . . . . . . . . . . . . . . . . . 90

6.9 Candidate rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.1 An information system of social connection . . . . . . . . . . . . . . . 101

7.2 Kansei information table for mobile phone design . . . . . . . . . . . 102

xii



List of Figures

1.1 The Process of Knowledge Discovery in Database . . . . . . . . . . . 2

2.1 Approximating the set of patients . . . . . . . . . . . . . . . . . . . . 9

2.2 Illustrating approximations . . . . . . . . . . . . . . . . . . . . . . . . 10

7.1 A social network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xiii



Chapter 1

Introduction

1.1 Rough Sets in Knowledge Discovery

By the fast development of information technology, the volume of digital data is

rapidly growing these days. It requires techniques that assist human to analyse and

extract useful information from data. Using these techniques, previously unknown

information, valid patterns and relationships in large data sets can be discovered.

The information and knowledge extracted in this process can be used for applications

ranging from market and investment analysis, fraud detection, and customer retention

in production control to science exploration.

Knowledge Discovery in Database (KDD) is a process for extracting useful

information (and it is also called Knowledge Acquisition). This process consists of

some steps (Figure 1.1) including data preparation (selecting, cleaning, integration

and transformation), data mining, and knowledge evaluation and representation.

Basically, the process goes from data selection stage to knowledge representation

stage. However, back track to previous stages may be sometimes required.
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Figure 1.1: The Process of Knowledge Discovery in Database [16, 35]

Data mining is a particular step in KDD. Most data mining methods, as stated

in [16, 17] are based on tried and tested techniques such as machine learning, pattern

recognition, and statistics. The main goals of data mining [35] is to solve issues

in classification, clustering, regression, feature extraction, association rules learning,

summarization, etc. For dealing with problems in data mining various techniques

are employed. Some examples of frequently used techniques are Decision tree [65],

k-Nearest Neighbors algorithm [1], Naive Bayes [12], Support vector machine [9],

Hierarchical, k-means [30], etc. The decision on what technique should be chosen

depends on the requirement of solving issues.

Rough set approach is also a data mining solution for knowledge acquisition.

Rough set theory was first introduced by Pawlak [60] in the early 1980s. It is a

mathematical approach to present ambiguity, vagueness and uncertainty. Rough

set theory is mainly used to analyse synthesize approximation of concepts from the

acquired data. In knowledge discovery, rough set constitutes a sound basis by offering

mathematical tools to discover patterns hidden in data. It can, according to [69], be
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used for feature selection, feature extraction, data reduction, decision rule generation,

and pattern extraction.

The original model of rough set deals with correct and certain definition of objects

in data sets based on equivalence relations. Two objects are considered as equivalent

when their features are precisely equal to each other. Practical situations, however,

are likely different. Bayes rough set [70, 71, 92] was introduced based on variable

precision to allow some degree of uncertainty. A generalized definition of rough set [28,

88] was discussed for any relation rather than equivalence relation introduced in

original rough set model. Fuzzy rough sets were also introduced [14, 15, 34, 40, 63,

84, 86] for approximating fuzzy sets which define members of a set in a range, rather

than yes or no as it in original rough set. Moreover, instead of dealing with single

table, there are also numerous research that are trying to expand the definition of

rough set for relational databases that consist of multiple tables [32, 44, 75, 78].

Besides extending the definition of original rough set, scientists are working on

solutions of defining relations between objects when data in information systems are

not described by precise or discrete values. Finding solutions of dealing with missing

value is most considerable concern of researchers in the field. Famous publications

are found in [18, 21, 23, 26, 37, 38, 72, 73, 76, 83]. Information systems containing

continuous values, apart from missing values, are dealt by approaches proposed

in [5, 11, 56, 79]. Dai [10] and Guan [29] introduced fuzzy relation and maximal

inclusion relation among objects in set-valued information system [58] in which an

object attribute can be assigned with a set of values in attribute value domain.
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1.2 Problem in Brief

Original rough set approach presupposes that all objects in an information system

have precise and complete attribute values. Problems arise when information systems

contain imperfect data including missing values, uncertainty and imprecision, which

occasionally happens in the real world. It is thus necessary to develop a theory which

may enable the classification of objects event if only partial information is available.

Controversial rough set researches, however, mostly consider that imperfect data in

information systems comes from missing values [18, 21, 23, 26, 37, 38, 72, 73, 76, 83].

Therefore, it may need a possible solution that could deal with multiple types of

imperfect data.

1.3 Motivation of The Research

The goal of this research is studying rough set methods to archive knowledge in

imperfect information systems. The research, therefore, targets to some objectives

described as follows:

1. To introduce an representation of imperfect values.

2. To evaluate probability of matching between two object attribute values for an

attribute. This probability can be used to define any valued tolerance/similarity

relation.

3. To propose a new relation called extended tolerance relation in imperfect

information systems.

4. To introduce a new relation based on Dempster-Shafter theory in imperfect

information systems.
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5. To obtain knowledge including reducts, cores and to induce decision rules from

information systems which may have imperfect values.

1.4 Structure of The Dissertation

The rest of the dissertation is organized as follows:

Chapter 2 shows an overview of rough set theory. It starts with the definition and

properties of the original model proposed by Pawlak. Two extended models (Bayes

and Fuzzy) are then introduced. Generalized definitions of rough sets for an arbitrary

binary relation among objects are also discussed.

Chapter 3 outlines some relations related to this study and points out what issues

have not been solved. The main discussion is on incomplete information systems,

which are mostly concerned in the field. The problem that object features are

described partially is then discussed. That is object attributes not only being lost

but also represented by uncertain or imprecision values. In order to solve the issue,

this chapter also suggests a representation of imperfect data, which will be used for

defining rough set models in the next two chapters.

Chapter 4 mainly discusses valued tolerance/similarity relation-based rough set

approaches. A method for determining probability of matching between objects on an

attribute is first proposed. This probability is then utilized for defining an extended

tolerance relation in imperfect information systems.

Chapter 5 is for modelling rough set using Dempster-Shafer theory in imperfect

information systems. The section starts with the notion of the theory of evidence.

The tasks for defining the new rough set model are then step by step explained clearly.

Chapter 6 suggests methods to derive reducts and cores and to obtain decision

rules in imperfect information systems using rough set models in Chapter 4 and 5.
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The reason why methods discussed in the literature cannot be used is pointed out

before introducing new techniques.

To end the dissertation, Chapter 7 makes a summary of this research with

significant contributions and discusses unexpected limitations. Several open

directions are also placed for the future work.

Some chapters of this dissertation have been published on international journal

and presented in conference proceedings as written in the list of author’s publications

(Appendix A). A part of Chapter 3 is published in “International Journal of

Computer Applications, Vol. 89, No. 5, pp.1-8 (Mar. 2014)”. Chapter 4 is

published in “Proceeding of 2013 IEEE International Conference on Systems,

Man, and Cybernetics, Manchester, The UK (2013)”, the probability of matching

evaluation part of “International Journal of Computer Applications, Vol. 89, No.

5, pp.1-8 (Mar. 2014)”, and the definition part of the extended rough set model in

the journal of “Advances in Fuzzy Systems, Volume 2013, Article ID 372091, (Oct

2013)”. Chapter 5 is published in “Journal of Advanced Computational Intelligence

and Intelligent Informatics, Vol. 18, No. 3, pp.280-288, (May 2014)”. Chapter 6 is

a combination of knowledge acquisition parts in “International Journal of Computer

Applications, Vol. 89, No. 5, pp.1-8 (Mar. 2014)” and in the journal of “Advances

in Fuzzy Systems, Volume 2013, Article ID 372091, (Oct 2013)”.
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Chapter 2

Overview of Rough Sets Theories

Originally, rough sets are defined in complete information systems in which object

features are described by discrete and precise values. This chapter will first review

rough set approach in Pawlak research [60]. We then survey some extensions of

rough set definitions in probabilistic framework [92] and in the fuzzy set theory

view point [13, 15]. There is also a discussion of original rough set for an arbitrary

relation [28] instead of equivalence relation supposed in the first study of rough set

theory.

2.1 Rough Set

2.1.1 Information Systems and Equivalence Relation

An information system is represented as a data table. Each row of this table represents

an instance of an object such as people, things, etc. Information of every object is

described by object attribute values.
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An information system in the rough set study is formally defined as a pair I =

(U,A), where U is a non-empty finite set of objects called the universe and A is a

non-empty finite set of attributes such that fa : U → Va for every a ∈ A [60, 61].

The non-empty discrete value set Va is called the domain of a. The original rough set

theory deals with complete information systems in which ∀x ∈ U , a ∈ A, fa(x) is a

precise value.

Any information system taking the form I = (U,A∪{d}) is called a decision table

where d /∈ A is called a decision and elements of A are called conditions. Let Vd =

{d1, ..., dk} denote the value set of the decision attribute, decision d then determines

a set of partitions {C1, C2, ..., Ck} of universe U , where Ci = {x ∈ U |fd(x) = di},

1 ≤ i ≤ k. Set Ci is called the i -th decision class or concept on U . We assume that

every object in U has a certain decision value in Vd.

An example of complete decision table is shown in Table 2.1. The universe is

U = {x1, x2, · · · , x8}, the condition set is A = {Temperature,Headache,Nausea}

and decision d is Flu. In this table, x1, x4 and x5 have exactly the same values on

conditional attribute set P = {Temperature,Headache}. This case is (pair-wise)

indiscernible using the available attributes. Based on equivalence/indiscernible

relations among objects, the equivalence classes of all of the objects on P are

{x1, x4, x5}, {x2}, {x3}, {x6, x8} and {x7}.

Formally, in complete information systems, relation EQUP (x, y), P ⊆ A, denotes

a binary relation between objects that are equivalent in terms of values of attributes in

P [60]. The equivalence relation is reflexive, symmetric, and transitive. Let EP (x) =

{y ∈ U |EQUP (y, x)} be the set of all objects that are equivalent to x by P , which is

then called an equivalence class. The family of all equivalence classes (or partitions)

on U based on equivalence relation refers to as categories and is denoted by U/EQUP .

1Source of table: [20].
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Table 2.1: A complete decision table1

Cases
Condition Decision

Temperature Headache Nausea Flu
x1 high yes no yes
x2 very-high yes yes yes
x3 high no no no
x4 high yes yes yes
x5 high yes yes no
x6 normal yes no no
x7 normal no yes no
x8 normal yes no yes

flu=yes flu=no 

x1 

x2 

x3 x4 
x5 

x6 x7 
x8 

Figure 2.1: Approximating the set of patients using two conditional attributes
Temperature and Headache

2.1.2 Approximation Space

Assume that we have to describe a group of patients X ⊆ U , who have flu in Table 2.1,

by using conditional attribute subset P consists of Temperature and Headache.

From Figure 2.1, X cannot be exactly described in terms of P because the set may

include or exclude objects that are indistinguishable on the basis of attributes P .

For example, there is no way to represent set X by a set {x ∈ U |fTemperature(x) =

high ∧ fHeadache(x) = yes}. This is because x1 and x5 are equivalent to each other

but x5 in the concept of Flu = no. Target set X, however, can be approximated

9



U 

Set X 

Xappr

XXappr 

Figure 2.2: Illustrating approximations

using only the information contained within P by constructing the lower and upper

approximations of X.

From equivalence classes, Pawlak [60, 61] defined an approximation space that

contains lower and upper approximations denoted by apprX and apprX, respectively,

of set X ⊆ U as follows:

appr
P
X =

⋃
{EP (x)|x ∈ U,EP (x) ⊆ X}

= {x ∈ U |EP (x) ⊆ X} (2.1)

apprPX =
⋃
{EP (x)|x ∈ U,EP (x) ∩X 6= ∅}

= {x ∈ U |EP (x) ∩X 6= ∅} (2.2)

Set boundPX = apprPX−apprPX is named the boundary region of X. The set of

U−apprPX is called the outside region of X. Set X is said to be rough if the boundary

region of X is none-empty. On the other hand, set X is crisp if the boundary of X is

empty. Figure 2.2 illustrates universe U , object set X and approximations of X.

From the information system shown in Table 2.1, let X = {x ∈ U |fFlu(x) = yes}

and P = {Temperature,Headach}. It can be inferred:

10



appr
P
X = {x2},

apprPX = {x1, x2, x4, x5, x6, x8},
boundPX = {x1, x4, x5, x6, x8},

U − apprPX = {x3, x7}.

We get the following properties [61] of approximation space for any X, Y ⊆ U

directly from the definition of lower and upper approximations:

1. (a). appr(X) ⊆ X,
(b). X ⊆ appr(X),

2. (a). appr(∅) = ∅,
(b). appr(∅) = ∅,

3. (a). appr(U) = U ,
(b). appr(U) = U ,

4. (a). X ⊆ Y ⇒ appr(X) ⊆ appr(Y ),
(b). X ⊆ Y ⇒ appr(X) ⊆ appr(Y ),

5. (a). appr(X ∪ Y ) ⊇ appr(X) ∪ appr(Y ),
(b). appr(X ∪ Y ) = appr(X) ∪ appr(Y ),

6. (a). appr(X ∩ Y ) = appr(X) ∩ appr(Y ),
(b). appr(X ∩ Y ) ⊆ appr(X) ∩ appr(Y ),

7. (a). appr(appr(X)) = appr(X) = appr(appr(X)),
(b). appr(appr(X)) = appr(X) = appr(appr(X)),

8. (a). appr(X) =∼ appr(∼ X),
(b). appr(X) =∼ appr(∼ X),

where ∼ X denotes a complementary set of X.

2.1.3 Rough Sets

The pair appr
P
X and apprPX composed of the lower and upper approximation is

called a Rough Set . The accuracy of the rough-set representation [60] of set X can

be given as follows:
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αP (X) =
|appr

P
X|

|apprPX|
(2.3)

where X 6= ∅, |Y | denotes the cardinality of a set Y .

The accuracy of the rough set representation of set X is the ratio of the number

of object completely in X and the number of objects possibly belonging to X. Since

∅ ⊆ appr
P
X ⊆ apprPX, we have 0 ≤ αP (X) ≤ 1. The accuracy is a measurement of

the how closely the rough set is approximating set X.

Set X is crisp with respect to P if the lower and upper approximations of X are

equal. In this case, the boundary region is empty and αP (X) = 1. Set X, on the

other hand, is rough with respect to P if the boundary region is not empty. In this

case αP (X) < 1.

From lower and upper approximations of a set, rough set can be categorized as

the following basic classes of rough sets, i.e., four categories of vagueness [60]:

• Set X is roughly definable if appr
P
X 6= ∅ and apprPX 6= U . This means that

on attribute set P , there are objects which we can be certain belong to target

set X, and there are also objects which we can definitively exclude from set X.

• Set X is internally definable if appr
P
X 6= ∅ and apprPX = U . This means that

on attribute set P , there are objects which we can be certain belong to target

set X, but there are no objects which we can definitively exclude from set X.

• Set X is externally definable if appr
P
X = ∅ and apprPX 6= U . This means

that on attribute set P , there are no objects which we can be certain belong to

target set X, but there are objects which we can definitively exclude from set

X.

• Set X is totally non-definable if appr
P
X = ∅ and apprPX = U . This means

that on attribute set P , there are no objects which we can be certain belong to
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target set X, and there are no objects which we can definitively exclude from

set X. Thus, on attribute set P , we cannot decide whether any object is, or is

not, a member of X.

In Table 2.1, the set X = {x ∈ U |fFlu(x) = yes} is roughly definable because of

appr
P
X 6= ∅ and apprPX 6= U .

2.1.4 Reducts and Core

In information system I = (U,A), a subset of conditional attributes set P ⊆ A is

called a reduct if the equivalence classes induced by P are the same as the equivalence

classes induced by A and no attribute can be removed from set P without changing

the family of equivalence classes U/EQUA.

Set of attributes P formally is a reduct if and only if U/EQUP = U/EQUA and

U/EQUP−{a} 6= U/EQUA for any attribute a ∈ P . Reducts of an information system

are not unique. There can be several reducts if those attributes can preserve the

family of equivalence classes of the information system.

A core is a set of attributes that consist of all necessary attributes for reducts. If a

conditional attribute is removed from the core, this leads to a collapse in equivalence

classes induced by any reduct. The core possibly is empty. In such case, there is no

indispensable attribute.

2.1.5 Attribute Dependency

The next important aspect of rough set analysis is determining dependencies of

attribute sets on other sets. A set of attributes P totally depends on a set of

attributes Q, denoted as Q ⇒ P , if all values of attributes from P are uniquely

determined by values of attributes from Q. In information system I = (U,A), let
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U/EQUP = {Ei
P}, Ei

P is an equivalence class on U with respect to P , the dependency

between P,Q ⊆ A [61] can be stated as follows:

1. P depends on Q if and only if for any Ei
P exist Ej

Q such that Ei
P ⊇ Ej

Q.

2. P and Q are equivalent if and only if P ⇒ Q and Q⇒ P .

3. P and Q are independent if and only if neither P ⇒ Q nor Q⇒ P hold.

To measure degrees of dependencies, a co-efficiency is introduced. The

co-efficiency κ is defined as the degree that P depends on Q.

κ = γ(Q,P ) =
∑
i

|appr
Q
Ei
P |

|U |
. (2.4)

It can be said that P depends on Q in a degree κ, (0 ≤ κ ≤ 1). If κ = 1, P depends

totally on Q, and if κ < 1, P depends partially in a degree κ on Q. Obviously,

P depends totally on Q when ∪{(x, y)|x, y ∈ U,EQUQ(x, y)} ⊆ ∪{(x, y)|x, y ∈

U,EQUP (x, y)}.

2.2 Bayes Rough Set

In the previous part, rough set theory [60, 61] is used as a tool to correctly and

certainly derive classifications in information systems. However, most of practical

data mining problems require identification of probabilistic pattern in data, typically

in the form of probabilistic rules. In this part, an approach in which original rough

set model is softened to allow some degree of uncertainty will be introduced. First,

variable precision rough set model [92] is generated as an extension of original rough

set model with parametric definitions of lower and upper approximations. Then it

is modified to Bayesian rough set model [70, 71], which uses probability of observed
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set so-called prior probability as a parameter to estimate the chances of interesting

events occur. The approaches are step by step introduced according to [70, 71, 92].

2.2.1 Variable Precision Model

Majority inclusion relation : Set X ⊆ U is said to be included in set Y ⊆ U if for

all x ∈ X implies x ∈ Y . Any object of X is, in other words, absolutely classified into

Y if X ⊆ Y . There is thus no misclassification according to this definition. In real

applications, however, it may be acceptable to allow some degree of misclassification.

In order to do so, a measure ζ(X, Y ) of the relative degree of misclassification of the

set X with respect to set Y [92] is introduced as follows:

ζ(X, Y ) =

1− |X ∩ Y |
|X|

if |X| > 0,

0 otherwise.

(2.5)

Clearly, X is included in Y if there is no misclassification. Formally,

Y ⊇ X if only if ζ(X, Y ) = 0.

Majority inclusion relation, however, allows some degree of misclassification. It

is stated in [92] that the majority requirement implies that more than 50% of X

elements should be in common with Y . The specified majority requirement imposes

an additional restriction. The number of elements of X in common with Y should

be not below a certain limit, for example 80%. These requirements may be added

to the extended definition of inclusion relation by specifying an explicit limitation on

a admissible level of classification error β must be within the range 0 ≤ β < 0.5.

Formally, the β-majority inclusion relation is defined as follows:
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Y
β

⊇ X if only if ζ(X, Y ) ≤ β. (2.6)

Two useful properties of β-majority inclusion, according to the above definition,

are listed as follows:

Proposition 2.2.1. If Y ∩ Z = ∅ and Z
β

⊇ X then it is not true that Y
β

⊇ X.

Proposition 2.2.2. If β1 < β2 and Y
β1
⊇ X implies Y

β2
⊇ X.

See reference [92] for the proofs of the these propositions.

Set approximation in the VP-model : In information system I = (U,A),

based on equivalence EQUP , P ⊆ A, universal U is partitioned into a collection of

equivalence classes U/EQUP = {E1, E2, · · · , En}. In original rough set definition,

lower approximation of set X ⊆ U is a union of Ei such that Ei is included in set

X. If β-majority inclusion relation is used instead of the tradition inclusion relation,

the following generalized notion of β-lower approximation or β-positive region of the

set X ⊆ U can be obtained:

apprβ
P
X =

⋃
i=1..n

{Ei ∈ U/EQUP |X
β

⊇ Ei} =
⋃
i=1..n

{Ei ∈ U/EQUP |ζ(Ei, X) ≤ β}.

(2.7)

The β-upper approximation of set X ⊆ U is defined as:

apprβPX =
⋃
i=1..n

{Ei ∈ U/EQUP |ζ(Ei, X) < 1− β}. (2.8)

The β-boundary of set X ⊆ U is defined as:

BNβ
PX =

⋃
i=1..n

{Ei ∈ U/EQUP |β < ζ(Ei, X) ≤ β}. (2.9)
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The β-negative region of set X ⊆ U is defined as a complement of the β-upper

approximation

NEGβ
PX =

⋃
i=1..n

{Ei ∈ U/EQUP |ζ(Ei, X) ≥ 1− β}. (2.10)

Directly from the above definitions, lower approximation of set X is the union of

equivalence classes that can be included in X with misclassification degree less than

β, while upper approximation is the collection of equivalence classes can be included

in complement set ∼ X of X. If β = 0 then the original rough set model becomes a

special case of VP-model because the majority inclusion relation becomes the original

inclusion relation in this case.

Example 2.2.1. This example from [92] illustrates the variable precision rough

set model. The universe U = {x1, x2, · · · , x20} and the equivalence classes of the

equivalence relation on attribute set A are shown as follows:

E1 = {x1, x2, x3, x4, x5},
E2 = {x6, x7, x8},
E3 = {x9, x10, x11, x12},
E4 = {x13, x14},
E5 = {x15, x16, x17, x18},
E6 = {x19, x20}.

Approximations of set X = {x4, x5, x8, x14, x16, x17, x18, x19, x20} for two accuracy

levels β1 = 0 and β2 = 0.25 are derived as follows:
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appr0

P
X = E6,

appr0
PX = E1 ∪ E2 ∪ E4 ∪ E5 ∪ E6,

BN0
PX = E1 ∪ E2 ∪ E4 ∪ E5,

NEG0
PX = E3,

appr0.25

P
X = E5 ∪ E6,

appr0.25
P X = E1 ∪ E2 ∪ E4 ∪ E5 ∪ E6,

BN0.25
P X = E1 ∪ E2 ∪ E4,

NEG0.25
P X = E3.

2.2.2 Rough Set in Probabilistic Framework

Probabilistic frame work : Suppose that a prior probability function P(X) =

|X|/|U | exists for every subset X of universal U , any subset of U that will be

considered in this subsection then possibly occur with a uncertain degree 0 < P(X) <

1. It is assumed that an equivalence relation on U also exists with a finite set of

equivalence classes Ei ⊆ U/EQUP , such that P(Ei) > 0. For each equivalence class

Ei, we assign a conditional probability P(X|Ei) = |X ∩ Ei|/|Ei|. An extension of

rough set model called Variable Precision Rough Set (VPRS) will be defined based

on the notion of this frame work.

Rough set in probabilistic frame work : Directly from the conditional

probability definition, Ei is a subset of set X if P(X|Ei) = 1. The original

rough set model is thus defined in the notion of probabilistic frame work [70] as

follows:

POS(X) =
⋃
i

{Ei|P(X|Ei) = 1}, (2.11)

NEG(X) =
⋃
i

{Ei|P(X|Ei) = 0}, (2.12)

BN(X) =
⋃
i

{Ei|P(X|Ei) ∈ (0, 1)}. (2.13)
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Variable precision rough set (VPRS): It is stated in [71] that approximation

space in the VP-model [92] is an extension of the rough set model aimed at

increasing the discriminatory capabilities of the rough set approach by using

parameter-controlled grades of conditional probabilities. This notion of VPRS [70, 71]

is based on the lower and upper limit certainty thresholds l and u when defining

approximation regions, satisfying 0 ≤ l < P(X) < u ≤ 1. Following is the definitions

of approximation sets defined in [71, 93].

The u-positive region POSu(X) is controlled by the upper limit parameter u,

which reflects the least acceptable degree of the conditional probability P(X|Ei) to

include elementary set Ei in POSu(X):

POSu(X) =
⋃
i

{Ei|P(X|Ei) ≥ u}. (2.14)

The l-negative region NEGl(X) is controlled by the lower limit l, such that 0 ≤

l < P(X). NEGl(X) is an area where the occurrence of X is significantly - with

respect to l - less likely than random guess P(X).

NEGl(X) =
⋃
i

{Ei|P(X|Ei) ≤ l}. (2.15)

The l-negative region NEGl(X) can be expressed as the (1 − l)-positive region

POS(1−l)(∼ X), where ∼ X is the complement of set X. The last considered region

is (l, u)-boundary region, which is a grey area where there is no sufficient probabilistic

bias towards neither X nor X.

BN l,u(X) =
⋃
{E|P(X|E) ∈ (l, u)}. (2.16)

VPRS model, therefore, has ability to make approximation regions more flexible

by using threshold l, u to control the acceptable degree of conditional probability of
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each equivalence class Ei on X. Original rough set model is clearly a special case of

VPRS model, for l = 0 and u = 1.

Bayesian rough set model : In VPRS model, users have to determine what

threshold is used to control degree of the acceptable degree of conditional probability.

In [71, 93], the VPRS was modified to a so-called Bayesian rough set model (BRS). In

this approach, prior probability is used as the parameter to control model derivation.

According to [93], the BRS positive region POS∗(X) defines an area combined by

equivalence classes where the conditional probability of each class is higher than the

prior probability. The BRS negative region NEG∗(X) defines an area of the universe

formed by equivalence classes where the conditional probability of each classes is

lower than the prior probability. The positive, negative and boundary regions are

respectively defined as follows:

POS∗(X) =
⋃
i

{Ei|P(X|Ei) ≥ P(X)}, (2.17)

NEG∗(X) =
⋃
i

{Ei|P(X|Ei) ≤ P(X)}, (2.18)

BN∗(X) =
⋃
i

{Ei|P(X|Ei) = P(X)}. (2.19)

Returning to Example 2.2.1, we have, the prior probability P(X) = 9/20 = 0.45

and take it as the parameter of the set approximations. For each equivalence class

E1, · · · , E6, we have conditional probabilities respectively: 0.4, 0.33, 0.0, 0.5, 0.75,

1.0.

Set approximations are thus derived as follows:

POS∗(X) = E4 ∪ E5 ∪ E6,

NEG∗(X) = E1 ∪ E2 ∪ E3,

BN∗(X) = ∅.
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By softening, Bayesian rough set can be applied effectively for data mining

applications where acquisition of probabilistic rather than deterministic. A possible

application was mentioned in [57]. In this research, authors applied the rough set

method to Kansei engineering [46, 47] to develop customer oriented products. In

this system, relational rules of embodying design attribute of products and human

evaluation data such as sensory perception and feeling is used to extract human

decision rules. As a solution, Bayesian rough set model was used because this

model is much suitable for dealing with practical human evaluation data involving

ambiguity of inconsistency.

2.3 Fuzzy Rough Set

Fuzzy rough sets were introduced by Dubois and Prade in 1990 [14, 15] as a fuzzy

generalization of rough set. Recently, conventional issues of combining rough and

fuzzy sets are discussed in many papers [34, 40, 63, 84, 86]. Fuzzy sets allow

membership of elements in approximation sets in range rather than only yes or no in

the original rough set model.

2.3.1 Fuzzy Set

A classical (crisp) set is normally defined as a collection of elements x ∈ X that can

be finite, countable or over countable. Each single element can be either belong to or

not belong to a set X ′ ⊆ X. For a fuzzy set, a characteristic function allows various

degrees of membership for elements of a given set. Then a fuzzy set X in X is a set

of ordered pairs [94]:

X = {(x, µX (x))|x ∈ X}. (2.20)
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µX (x) is called the membership function or grade of membership (also the degree of

compatibility or degree of truth) of x in X .

A fuzzy set [63] X on X is defined by a membership function µX : X → [0, 1].

A crisp set can be regarded as a special case of fuzzy sets in which the membership

function is restricted to the extreme points {0, 1} of [0, 1]. From the view point of

fuzzy system, the next subsection will define fuzzy approximations of a fuzzy set

based on a fuzzy relation between objects.

2.3.2 Rough Membership Functions

Let U denote a finite and non-empty set called the universe, and let R denote an

equivalence relation EQUP on U . R obviously is a reflexive, symmetric and transitive

relation. If two objects x, y in U belong to the same equivalence class, i.e., we say

that they are indistinguishable. The equivalence relation R partitions the set U into

disjoint subsets. It defines the quotient set U/R consisting of equivalence classes of

U on R.

Let apprRX and apprRX denote lower and upper approximation of X ⊆ U on R.

Those are called strong and weak membership functions of a rough set. Let µX and

µR denote the membership functions of set X and of the set {(x, y) ∈ U×U |R(x, y)},

respectively. The lower and upper approximations can be defined in the form of

membership functions of object sets [84] as follows:

µapprRX(x) = inf{µX(y)|y ∈ U,R(x, y)}, (2.21)

µapprRX(x) = sup{µX(y)|y ∈ U,R(x, y)}. (2.22)

Approximations can also be defined in the form of membership functions of relations

among objects.
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µapprRX(x) = inf{1− µR(x, y)|y 6∈ X}, (2.23)

µapprRX(x) = sup{µR(x, y)|y ∈ X}. (2.24)

For two special set ∅ and U the approximations are simply defined as µRU(x) = 1

and µR∅(x) = 0. Based on the two equivalent definitions, lower and upper

approximations may be interpreted as follows: An element x belongs to the lower

approximation apprRX if all elements equivalent to x belong to X. In other words,

x belongs to the lower approximation of X if any element not in X is not equivalent

to x, namely, µR(x, y) = 0. Likewise, x belongs to the upper approximation of X if

µR(x, y) = 1.

The weak and strong membership functions, thus, can be computed from the

membership function of the reference set X and the set of pair (x, y) with relation R.

For convenience, the strong and weak membership functions of a rough set can also

be expressed [84] as follows:

µapprRX(x) = inf{max(µX(y), 1− µR(x, y))|y ∈ U}, (2.25)

µapprRX(x) = sup{min(µX(y), µR(x, y))|y ∈ U}. (2.26)

2.3.3 Combination of Rough and Fuzzy Sets

The notion of rough fuzzy sets [14, 15] deals with the approximation of fuzzy sets in

approximation space. A fuzzy relation R is a fuzzy subset on U × U , let µR denote

the membership functions of the set of pair (x, y) ∈ U × U such that x in relation to

y with respect to relation R. A fuzzy relation may have three properties:

reflexivity: for all x ∈ U , µR(x, x) = 1,

symmetry: for all x, y ∈ U , µR(x, y) = µR(y, x),
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transitivity:for all x, y, z ∈ U , µR(x, z) ≥ min[µR(x, y), µR(y, z)].

The relation R will define the fuzzy equivalence class [x]R of elements closing to

x and the fuzzy equivalence class can be defined as follows:

µ[x]R(y) = µR(x, y). (2.27)

For a fuzzy set X , its approximations are called fuzzy rough set [14] and can be

defined as follows:

µapprRX ([x]R) = inf{max[µX (y), 1− µ[x]R(y)]|y ∈ U}, (2.28)

µapprRX ([x]R) = sup{min[µX (y), µ[x]R(y)]|y ∈ U}. (2.29)

They can be extended to a pair of fuzzy sets on the universe:

µapprRX (x) = inf{max[µX (y), 1− µR(x, y)]|y ∈ U}, (2.30)

µapprRX (x) = sup{min[µX (y), µR(x, y)]|y ∈ U}. (2.31)

2.4 Rough Set on An Arbitrary Relation

In the previous two sections, we have discussed some methods of defining

approximations of a set X ⊆ U based on the majority inclusion notion of partitions

to the set X and based on a model called Fuzzy Rough sets. Fuzzy sets allow the

membership of elements in approximation sets in range rather than only yes or no in

the original rough set model.

Those approximation methods are defined based on equivalence relation which is

reflexive, symmetric and transitive. For the original rough set model, lower and upper

approximations based on equivalence relation should be the same among the different
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three definitions: singleton, subset and concept definitions [60, 61]. In the case

of non-equivalence relations, which may not be reflexive, symmetric nor transitive,

approximation spaces defined by these methods may lead to variant results [28]. In

this section, we will discuss approximations based on singleton, subset and concept

approaches [28] with an arbitrary binary relation.

In information system I = (U,A), let R be an arbitrary binary relation, the

relation of object x with y, x, y ∈ U , with respect to attribute set P ⊆ A is denoted

by RP (x, y). For each object x, we define a neighbourhood that consists of successor

and predecessor sets [28, 85]. Interpreting relation R as similarity, the successor set

of x is the set of objects to which x is similar:

sucRP (x) = {y ∈ U |RP (x, y)} (2.32)

The predecessor set of x is the set of objects which is similar to x:

preRP (x) = {y ∈ U |RP (y, x)} (2.33)

Now, approximations based on singleton, subset and concept approaches with an

arbitrary relation can be defined as follows:

Singleton lower approximation:

SingleAppr
P

(X) = {x ∈ U |setRP (x) ⊆ X} (2.34)

Singleton upper approximation:

SingleApprP (X) = {x ∈ U |setRP (x) ∩X 6= ∅} (2.35)

Subset lower approximation:
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SubsetAppr
P

(X) =
⋃
{setRP (x)|x ∈ U ∧ setRP (x) ⊆ X} (2.36)

Subset upper approximation:

SubsetApprP (X) =
⋃
{setRP (x)|x ∈ U ∧ setRP (x) ∩X 6= ∅} (2.37)

Concept lower approximation:

ConceptAppr
P

(X) =
⋃
{setRP (x)|x ∈ X ∧ setRP (x) ⊆ X} (2.38)

Concept predecessor upper approximation:

ConceptApprP (X) =
⋃
{setRP (x)|x ∈ X ∧ setRP (x) ∩X 6= ∅} (2.39)

where setRP (x) denotes either successor and predecessor neighbourhood sets of x.

The difference between subset and concept definitions may be missed easily. In

subset definition, extended tolerance classes of all elements in the universal set are

examined, while only elements in X are examined in the case of concept definition.

Obviously, singleton lower and upper approximations ofX are subsets of the subset

lower and upper approximations ofX, respectively. The subset lower approximation is

the same set as the concept lower approximation. The concept upper approximation,

however, is a subset of the subset upper approximation.

Rough set could also be generalized with some other approaches [85, 88, 89].

Actually, the above three definitions are classified as constructive rough set

formulations by Yao [85], where rough set formulations are divided into two

different groups: constructive and algebraic methods. The notion of singleton

definition is indeed the same as the element based definition suggested by Yao.

While, subset definition is an expansion of concept definition and also undoubtedly
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is the same as the granule based definition in the Yao study. These definitions are

special cases of the subsystem based definition by Yao when the covering is the set

of neighbourhoods.

2.5 Summary

Based on available of information, two objects may be indiscernible/equivalent to

each other. In some cases, it may not be able to describe an object set X precisely

using attribute values because some members of X may be equivalent to objects that

do not belong to X. Set X, in this case, is represented by approximations. Lower

approximation is the set of objects that absolutely exists in X. Upper approximation,

on the other hand, is the set of objects that possibly belongs to X.

The related concepts such as reduct, core, and attribute dependency are also

introduced in this chapter. Reducts are the subset of attribute set such that the

cardinality of attributes is minimal and on reducts the equivalence classes do not

collapse. Core is the set of attributes that exist in all reducts. On the other words,

core is the intersection of all reducts of an information system.

To be able to apply in actual systems, original rough set model is also extended

to Bayes rough set and Fuzzy rough set models, which allows some uncertainty of the

definition. In addition, a generalized rough set deal with an arbitrary binary relation

is also discussed.
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Chapter 3

Imperfect Information Systems

In the previous chapter, an overview of rough set theory has been introduced. The

original rough set is defined based on equivalence relations. Some extensions of

original rough set model as well as rough set definitions for other types of relation

were also discussed. Those approaches were studied in complete information systems,

in which objects attribute values are precise and discrete values. However, data in real

applications sometimes are not described precisely. For example, in a case, data may

be missing. In another case, values of objects are presented with partial confidence.

Such kind of information could be interpreted as imperfect information system.

This chapter will discuss the problems, show the motivation and suggest a

representation of imperfectness in information system. First, some related approaches

in incomplete information systems, which is most concerned among imperfect data,

are highlighted. We then discuss other possible types of imperfect data as well as

motivations to deal with the problems. To prepare for two approaches that will be

introduced in Chapter 4 and 5, we propose a representation of imperfect data in such

systems.
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Table 3.1: An example of a dataset with missing values1

Cases Temperature Headache Nausea Flu
x1 high * no yes
x2 very-high yes yes yes
x3 * no no no
x4 high yes yes yes
x5 high * yes no
x6 normal yes no no
x7 normal no yes no
x8 * yes * yes

3.1 Related Works

This section introduces some possible important rough set models for incomplete

information systems.

Controversial rough set research mostly considers that imperfect data in

information systems comes from missing values [18, 21, 23, 26, 37, 38, 72, 73, 76, 83].

There are many reasons why data is missing. Some attribute values are not recoded

because they might not be necessary. For example the field “income” may be ignored

in a questionnaire if the answer of “occupation” field is “undergraduate student”.

Data, on the other hands, may not exist even if it is important. For example data

may not have been collected or it may have been deleted accidentally.

An information system with missing values is called incomplete information system

[37, 38]. In incomplete information systems, Table 3.1 for example, objects may

contain several unknown attribute values. Unknown values are denoted by an asterisk

(*).

The notions with which incomplete data is dealt are stated in [26, 27]. In this

report, the authors studied methods to handle missing attribute values in data mining

1Source of table:[26].
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and conducted a classification of the investigated approaches as the several following

description:

1. Most common attribute value: It is one of the simplest methods to deal with

missing values. The value of attribute that occurs most often is selected as the

value for all unknown values of the attribute [8].

2. Concept Most Common Attribute Value: The most common attribute value

method does not pay any attention to the relationship between attributes and

a decision. In this approach, the value of the attribute, which occur the most

common within the concept, is selected to be the value for all the unknown

values of the attribute. This method is also called maximum relative frequency

method, or maximum conditional probability method (given concept).

3. Method of Assigning All Possible Values of the Attribute: In this method, an

example with a missing attribute value is replaced by a set of new examples,

in which the missing attribute value is replaced by all possible values of the

attribute [48, 49]. If we have some examples with more than one unknown

attribute value, we will do our substitution for one attribute first, and then do

the substitution for the next attribute, etc., until all unknown attribute values

are replaced by new known attribute values.

4. Method of Assigning All Possible Values of the Attribute Restricted to the

Given Concept: The method of assigning all possible values of the attribute

is not related with a concept. This method is a restriction of the method of

assigning all possible values of the attribute to the concept, indicated by an

example with a missing attribute value.

5. Method of Ignoring Examples with Unknown Attribute Values: This method

is the simplest: just ignore the examples which have at least one unknown
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attribute value, and then use the rest of the table as input to the successive

learning process.

6. Method of Treating Missing Attribute Values as Special Values: In this method,

we deal with the unknown attribute values using a totally different approach:

rather than trying to find some known attribute value as its value, we treat

“unknown” itself as a new value for the attributes that contain missing values

and treat it in the same way as other values.

In fact, those classifications do not cover all methods of treating missing values.

Depending on each system, a handling missing value method can be chosen based on

characteristics and requirements of the system. If missing values do not cause any

problem in relationship between objects, they can be ignored. On the other hand,

database miners have to find which algorithm should be used.

In general, approaches deal with unavailable values based on one of the following

two interpretations [19]. The first is “lost value” in which unknown values of attributes

are already lost. Similarity relation [73] is one example of this semantics. The second

is “do not care”, which may be potentially replaced by any value in the domain.

Such incomplete decision tables were broadly studied in numerous researches [37, 38].

Grzymala-Busse [21, 22, 23, 25] built a characteristic relation based on both “lost

value” case and “do not care” case. The rest of the section will review some approaches

which deal with incomplete information systems.

Tolerance relation

Given incomplete information system I = (U,A), let relation TORP (x, y), P ⊆ A

denote a binary relation between objects that are possibly equivalent in terms of

values of attributes. The tolerance relation [37, 38] is defined by

TORP (x, y)⇔∀a ∈ P, (fa(x) = fa(y)) ∨ (fa(x) = ∗) ∨ (fa(y) = ∗), (3.1)
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where ∨ denotes disjunction.

The relation is reflexive and symmetric, but does not need to be transitive. Let

TP (x) = {y ∈ U |TORP (y, x)} be the set of objects that are in a relation with x

in terms of P in the sense of the above tolerance relation. Due to the symmetric

property, x is also tolerant toward elements in TP (x).

Rough sets based on the tolerance relation in incomplete information systems are

defined in a way similar to those in complete information systems [60, 61]. Let X ⊆ U ,

P ⊆ A, apprT
P
X is then the lower approximation [37, 38] of X in terms of P if and

only if

apprT
P
X = {x ∈ U |TP (x) ⊆ X}. (3.2)

apprT PX is the upper approximation of X in terms of P if and only if

apprT PX = {x ∈ U |TP (x) ∩X 6= ∅}. (3.3)

Now, we illustrate the above concepts with an incomplete decision table shown

in Table 3.1. From this table, we can induce approximation space for X - group of

people such that the value of Flu is no based on all condition attributes:

apprT
A
X = {x7},

apprTAX = {x1, x3, x4, x5, x6, x7, x8}.

The approximations clearly are quite poor. There are some objects which

intuitively could be classified in X, while they are not in the lower approximation.

Take, for instance, object x6, we have its complete description, and intuitively there

is no other object perceived as very tolerant to it. However, it is not included into
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the lower approximation of X. This is due to missing attribute values of objects x8,

which is actually tolerant to x6 according to Equation (3.1).

Similarity relation

Stefanowski and Tsoukias stated that approximations obtained by the tolerance

relation are quite poor from the viewpoint of the meaning of “approximation” [72, 73].

They assume that object x can be considered similar to another object y only if

all known attribute values of x are the same as those of y. Such a relation is not

symmetric. If one of a pair of objects has a more complete description than the

other, the inverse relation will not hold. Formally, given incomplete information

system I = (U,A) and attribute set P ⊆ A, the similarity relation is defined as

follows:

SIMP (x, y)⇔ ∀a ∈ P, (fa(x) = ∗) ∨ (fa(x) = fa(y)). (3.4)

It is easy to observe that this relation is reflexive and transitive, although not

necessarily symmetric. Now for each object we can induce two similarity sets: SP (x) =

{y ∈ U |SIMP (y, x)} is the set of objects similar to x - note that the arguments of

SIMP is not (x, y) - and S−1
P (x) = {y ∈ U |SIMP (x, y)} is the set of objects to which

x is similar. SP (x) and S−1
P (x) are clearly two different sets. From similarity sets, the

authors introduce definitions of an approximation space of a set X ⊆ U as follows:

apprS
P
X = {x ∈ U |S−1

P (x) ⊆ X}, (3.5)

apprSPX =
⋃
{SP (x)|x ∈ X}. (3.6)

By the definition of the similarity relation and the tolerance relation introduced

in this section, we can see that the conditions for which similarity relation holds

are a subset of the conditions for which tolerance relation holds (we can see that if
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SIMP (x, y) then TORP (x, y)). Hence, tolerance classes of elements in U shall be

“wider” than the respective similarity classes [72, 73].

Limited tolerance relation

Wang [76] proved that the similarity relation may result in some lost information.

Objects x = (∗, 1, 2, 3, 4, 5, 6, 7, 8, 9) and y = (0, ∗, 2, 3, 4, 5, 6, 7, 8, 9), for example,

where elements in parentheses represent values of attributes defined by their positions,

are tolerant according to (3.1) and intuitively similar to each other. They do not,

however, satisfy the non-symmetric similarity relation. To avoid this problem,

Wang [76] developed a novel limited tolerance (LT) relation.

Given incomplete information system I = (U,A), attribute set P ⊆ A, and

OP (x) = {a|a ∈ P, fa(x) 6= ∗}, the limited tolerance relation is defined on U as

follows:

LTORP (x, y)⇔ (∀a ∈ P, fa(x) = fa(y) = ∗)∨
((OP (x) ∩OP (y) 6= ∅)
∧ (∀a ∈ P, fa(x) 6= ∗ ∧ fa(y) 6= ∗ → fa(x) = fa(y))), (3.7)

where ∧ denotes conjunction.

In the formula, the condition that fa(x) 6= ∗ ∧ fa(y) 6= ∗ → fa(x) = fa(y) is

equivalent to fa(x) = ∗∨fa(y) = ∗∨fa(x) = fa(y). Thus, the two objects that satisfy

TORP (x, y) but not LTORP (x, y) are only those satisfying OP (x) ∩OP (y) = ∅.

Generally speaking, two objects are in a limited tolerance relation if they are in one

of two cases: The first case is that all attribute values of the two objects are missing

and the second is a case where there is at least one attribute having an ordinary

value for both objects and the two objects have the same value for these attributes.

The limited tolerance relation is clearly reflexive and symmetric but not necessarily

transitive.
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Thus, limited tolerance class is defined by

LTP (x) = {y ∈ U |LTORP (y, x)}. (3.8)

Based on that, the approximation space is defined as follows:

apprLT
P
X = {x ∈ U |LTP (x) ⊆ X}, (3.9)

apprLT PX = {x ∈ U |LTP (x) ∩X 6= ∅}. (3.10)

Wang [76] also proved that the tolerance relation and the similarity relation are the

two extremities for extending indiscernibility relation, and limited tolerance relation

happens to be between the tolerance relation and the similar relation,

apprT
P
X ⊆ apprLT

P
X ⊆ apprS

P
X,

apprSPX ⊆ apprLT PX ⊆ apprT PX.

3.2 Problems from Imperfect Information and

Motivation

In the beginning of the chapter, the problem of the original rough set that presupposes

that all objects in an information system have precise and complete attribute values

is addressed. Several methods of handling missing values are also reviewed. However,

besides the missing values, there are many reasons why imperfect data are produced

in datasets [45].

To be the first, imprecision is another type of possible imperfect data. Stored

information is imprecise when it denotes a set of possible values and the real value

is one of the elements of this set. Specific kinds of imprecise information include
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Table 3.2: An example of a dataset with uncertainty2

Employees
Deterministic Stochastic Stochastic
Department Quality Bonus Sales

Jon Smith Toy
0.4[Great Yes] 0.3[$30-34K]
0.5[Good Yes] 0.7[$35-39K]
0.1[Fair Yes]

Fre Jones Housewares 1.0[Good Yes]
0.5[$20-24K]
0.5[$25-29K]

disjunctive information, e.g., John is is either 31 or 32 years old; negative information,

e.g., John is not 30 years old; range information, e.g., John is between 30 and 35 years

old or John is over 30 years old. Such information may also have error margins, e.g.,

John is 30 give or take 1 year.

Another possible type of imperfect data is uncertainty [45]. Whereas the statement

“John is either 31 or 32 years old” takes the form of imprecision, the statement “John

is probably 32” or “John is 32 years old with a confidence of 0.6” denotes uncertainty.

Both imprecise and uncertain values can be represented by probabilistic data [6].

Toyota may, for example, have demographic information indicating that customers

living in a certain region are likely to purchase a Corolla with a probability of 0.7 or

a Celica with a probability of 0.3. Table 3.2 illustrates an information system with

probabilistic data.

The last type of imperfect data listed in [45] is error. Stored information is

erroneous when it is different from the true information. Errors in given information

that are identified can be removed and the rest is treated as information with

missing values. In cases where errors are unidentified, however, the reliability of

all of the information is lost. Approximations in rough set theory are derived

from the information available, so, we do not deal with errors in this study. The

2Source of table: [2].
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term “imperfect data” will, hereafter, represent the case of missing, uncertain and

imprecise information.

To information systems containing missing, imprecise and uncertain values, it

is inappropriate to apply a method that can deal only with missing values. One

possible solution would be to combine the transformation of any type of imperfect

data with probabilistic values [53, 55] and then to apply a probabilistic method [50,

51, 53, 72, 73]. Our motivation is thus to propose rough set model not only deal with

missing value but also can solve the problem of uncertainty and imprecision which

is a gap of rough set study on actual information. A representation of imperfectness

including missing values, uncertainty as well as imprecision is first introduced. This

representation should be useful to a single approach dealing with multiple type of

imperfect information.

3.3 Imperfect Information Representation

An information system in the original rough set study is defined as a pair I = (U,A),

where U is a non-empty finite set of objects called the universe and A is a non-empty

finite set of attributes such that fa : U → Va for every a ∈ A [60, 61]. The non-empty

discrete value set Va is called the domain of a. The original rough set theory deals

with complete information systems in which ∀x ∈ U , a ∈ A, fa(x) is a precise value.

Now, for an information system in which some attribute values of objects are

missing and/or associated with probabilistic data, the attribute values of an object

may be represented as follows:

Definition 3.3.1. In an imperfect information system I = (U,A), let txa,i ⊆ Va be the

i -th set of overall “s” possible value sets of “x” on “a” and pxa,i > 0 be its probability.
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Table 3.3: Dice game scores

Players Score
Terry 3
David 6
Tom *
Anna 8

Then the pair (T xa , P
x
a ), where T xa = {txa,i|1 ≤ i ≤ s}, P x

a = {pxa,i|
∑

i p
x
a,i = 1},

represents the imperfect value of object x on attribute a.

In the above, txa,i are not necessarily be mutually disjoint. Obviously, for this

representation of imperfect values, it is able to present any type of imperfectness

discussed in Section 3.2. A value is uncertain when any set of possible of values is

singleton. In this case |txa,i| = 1. Some types of missing values may have a pre-defined

probability distribution and the imperfectness could be regarded as uncertainty. One

example is a game of four people playing with dice. Their scores can be calculated

based on the sum of two dice thrown for each of them. Table 3.3 shows their scores.

In this table, as we can see that the score of Tom is unknown due to some reasons.

The probability of each value that may be Tom’s score, however, can be identified by

a probability distribution for the sum of two dice. The probability that Tom’s score

is 7, for example, is 1/6. On the other hand, the probability that his score equals

to 11 is 1/18. In this case ∀vi ∈ Va, txa,i = {vi}, pxa,i = λa(vi) when fa(x) = ∗, where

λa(v) is the probability mass function on a.

A value is imprecise when there is only a set of multiple possible values and the

probability of this set is also 1, formally |T xa | = 1, pxa,1 = 1.0. A precise value and

a missing value with no pre-defined probability distribution can be considered as

two extreme kinds of imprecision. A value is precise if the set of possible values

is singleton. In this case |txa,1| = 1. Missing values without pre-defined probability
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distribution could be regarded as imprecise information where the set of possible

values encompasses the entire attribute domain, such that txa,1 = Va.

More importantly, if an object attribute value contains both uncertainty and

imprecision, we can also use the imperfect representation in Definition 3.3.1 to show

this type of value. To illusstrate, we represent the “Stochastic sales” value of Jon

Smith in Table 3.2 as follows: tSmithSales,1 = {30, 31, 32, 33, 34}, pSmithSales,1 = 0.3 and tSmithSales,2 =

{35, 36, 37, 38, 39}, pSmithSales,2 = 0.7.

3.4 Summary

In this chapter, related rough sets studies to deal with missing value are reviewed.

There is also a discussion on a question “What is an imperfect information system?”.

Based on that, we introduce a representation of imperfect values. Consequently, the

next three chapters will introduce two type of relations from imperfect description

of objects using this representation as well as methods of acquire knowledge in such

information systems.
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Chapter 4

Valued Tolerance and Similarity

Relations Based Rough Set

In studies of rough sets in incomplete information systems, probabilistic solutions have

been introduced based on the possibility of “missing value” [18, 50, 51, 52, 72, 73].

Among them, some approaches [18, 72] suppose a priori assumption that there exists

a uniform probability distribution on every attribute domain and compute valued

tolerance (or similarity) classes based on joint probability distribution. This chapter

firstly define a general method of determining a probability (probability of matching)

that two objects may be tolerant of (similar to) each other on an attribute. The

probability of matching will be defined based on the probability that two objects may

take the same values on an attribute in the dataset. Based on probabilities on some

attributes, a relation called extended tolerance relation will then be introduced.
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4.1 Valued Tolerance/Similarity Relations Based

Rough Set Models

A solution of defining valued tolerance/similarity relations can be stated as follows:

first, the pair (T xa , P
x
a ) that represents an imperfect value of object x is defined for each

attribute a, and the probability that two objects are tolerant of (similar to) each other

on the attribute is determined. The degree that two objects are tolerant of (similar

to) each other on a set of attributes is then calculated, for example, using the joint

probabilities assuming that all the attributes are independent of one another. This

section will summarize concepts in valued tolerance/similarity relation definitions as

well as a rough set approach based on this kind of relations. Problems of valued

tolerance/similarity relation based rough set models in the related work are also

addressed in this section.

For an information system, in which some attribute values of objects are missing

and/or associated with uncertainty or imprecision, we define probabilities of attribute

values. For a discrete attribute, probability of object attribute value denoted

by Pra(fa(x) = v) represents the probability that object x ∈ U takes value v ∈ Va

on attribute a ∈ A. Two methods to estimate the probabilities of object attribute

values will be discussed in the next section.

Based on the probabilities estimated, probability of matching between two

objects x, y ∈ U on attribute a ∈ A denoted by θa(x, y) defines the probability that

object x takes the same value as object y on attribute a. In [18, 72, 73], it is supposed

that there is an uniform probability distribution on an attribute, and the probability

of matching is defined as θa(x, y) = Pra(fa(x) = v))•Pra(fa(y) = v) = 1/|Va|2 where

v is a value in the domain of attribute a. The definition is clearly inadequate when we
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suppose the attribute values of both “x” and “y” are missing on “a”. The definition

of probability of matching is discussed and calculated in general in the next section.

From the probability of matching between two objects, we can induce the degree

that x, y ∈ U are tolerant of (similar to) each other on a set of attributes P ⊆ A. This

degree is denoted by φP (x, y). The degree of tolerance/similarity can be defined as

the probability that two objects have the same values on all attributes in set P and

is calculated by joint probability φP (x, y) =
∏

a∈P θa(x, y) assuming independence

among attributes. Other methods of tolerance (similarity) degree definitions can be

found in [52], which is also discussed in the section of extended tolerance relations.

Now, it is able to define a relation RP (x, y) between objects x and y by controlling

the degree of tolerance(similarity) using threshold α, such that RP (x, y)⇔ φP (x, y) ≥

α. Based on that, a neighbourhood, which consists of successor and predecessor sets,

of an object [28, 85] is determined. Then rough sets can be defined as discussed in

Chapter 2.

4.2 Probability of Matching

This section shows how to define the probability of matching between two objects

for an attribute in imperfect information systems discussed in Chapter 3. This

probability is used in order to define “Valued tolerance/similarity Relation based

Rough Set” (VRRS) methods to this kind of information system. According

to Section 4.1, probabilities of object attribute values need to be defined before

calculating probability of matching.
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4.2.1 Probability of Object Attributes Values

In general, if there is no information about probability distribution of attribute values,

it is possible to make the hypothesis that the probability is determined by a uniform

distribution.

Definition 4.2.1. In imperfect information system I = (U,A), let the pair (T xa , P
x
a )

present an imperfect attribute value of object x on a. Then the probability that

object x takes value v ∈ Va on a can be calculated as follows:

Pra(fa(x) = v) =
∑
i

pxa,i •
|{v} ∩ txa,i|
|txa,i|

, (4.1)

where txa,i is the i -th set possible value sets in T xa and pxa,i is the probability of txa,i.

In this equation, the probability mass distributed equally in possible value set txa,i

will be added to the probability of attribute value if v ∈ txa,i, such that |{v} ∩ txa,i| =

1. Obviously, in case of uncertainty where a probability distribution is given, it is

not necessary to calculate the probability of object attribute values. In this case

Pra(fa(x) = v) = pxa,i because txa,i = {v}. In case of the missing value without any

pre-defined probability distribution, Pra(fa(x) = v) = 1/|Va| for any v ∈ Va.

However, even no pre-defined probability distribution exist, we still can estimate

the probability of attribute values in some cases. The next step will summarize two

possible solutions discussed firstly in [53] with the adaptation of the representation

of imperfect values in Definition 3.3.1.

4.2.2 Method of The Frequency of Attribute Value

The approach is based on the notion of “The most common method” - a method of

handling missing values summarized by Grzymala-Busse [27, 28] - in which, missing
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values are replaced by the most common value of the attribute. This method of

handling missing attribute values is implemented, e.g., in well-known machine learning

algorithm CN2 [8].

Suppose the value domains are known. First, we define the probability that each

value of an attribute appears based on frequencies of the available values for this

attribute in dataset. The probability that a value v ∈ Va appears as a value of a

certain object is define by

ρa(v) =


|Va(v)|
|U − Va(?)|

if Va(?) ⊂ U ,

1

|Va|
otherwise,

(4.2)

where Va(v) and Va(?) are the sets of objects whose attribute value is “v” and the set

of objects whose value on “a” is imperfect, respectively. The symbol “⊂” denotes a

proper subset. As seen in the equation, the probability ρa(v), v ∈ Va is defined by the

ratio of the value v among objects whose values are not imperfect. If Va(?) = U , that

is, values of attribute a are imperfect in all objects, the equal probability distribution

is given. The value of ρa(v) is greater than zero if there is at least an object such

that fa(x) = v. Since it could be zero for many values if the size of U is small, the

size of U should be large enough when using the approach.

Returning to the example in Table 3.1, the probabilities of attribute values

are illustrated in Table 4.1. From this table, we can see that the value “high” of

“Temperature” occurs more frequently than the other values. The most frequent

values of “Headache” and “Nausea” happen to be “yes”.

Now, we define the probability of object attribute values by the frequency of values

in a dataset.
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Table 4.1: Probability of attribute values

Attributes Values Probability
Temperature very-hig 0.17
Temperature high 0.50
Temperature normal 0.33
Headache yes 0.67
Headache no 0.33
Nausea yes 0.57
Nausea no 0.43

Definition 4.2.2. In imperfect information system I = (U,A), an attribute a ∈ A

and its domain Va, ρa(v) denotes the frequency of each value v ∈ Va in the dataset.

Given object x ∈ U with an imperfect value on a, the probability of object attribute

value Pra(fa(x) = v) can be calculated as follows:

Pra(fa(x) = v) =
∑
i

pxa,i • |{v} ∩ txa,i| •Ψ(txa,i),

where

Ψ(txa,i) =


ρa(v)∑

v′∈txa,i
ρa(v′)

if
∑

v′∈txa,i
ρa(v

′) 6= 0,

1

|txa,i|
otherwhise.

(4.3)

On each possible range, if value v ∈ txa,i, then the probability based on txa,i is

determined by the proportion of probability on v to the whole range txa,i. This

proportion should take the equal probability when the probability on the whole range

txa,i equals to zero.

The idea could be applied to the missing values with no predefined probability

distribution. However, it should not be applied to attributes where uncertainty or a
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Table 4.2: Probability of attribute values given a concepts

Attributes Values
Probability in concepts
Flu=Yes Flu=No

Temperature very-high 0.33 0.00
Temperature high 0.67 0.33
Temperature normal 0.00 0.67
Headache yes 1.00 0.33
Headache no 0.00 0.67
Nausea yes 0.67 0.50
Nausea no 0.33 0.50

probability distribution is derived from a theoretical point of view, e.g. in the case of

dice game mentioned before.

4.2.3 Method of The Frequency of Attribute Value Related

To Concepts

This is an extension of the method in the previous subsection. Observing some

systems, we sometimes recognize that attribute values might depend on some

concepts. Supposed the value domains are known, the probability that a value v ∈ Va

appears as a value of objects contained in a concept X ⊆ U is defined as follows:

ρa(v)X =


|Va(v)X |

|X − Va(?)X |
if Va(?)X ⊂ X,

1

|Va|
otherwise.

(4.4)

where Va(v)X and Va(?)X are the set of objects in concept X whose attribute value

is “v” and the set of objects whose value on “a” is imperfect, respectively.

Table 4.2 shows that flu relates to high and very-high temperature, headache and

nausea. On the other hand non-flu supports the cases of low temperature and no

headache.
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In the same way as the previous method, it is possible to define probabilities of

object attributes values by frequencies of values in the dataset. The part Ψ(txa,i) in

Equation 4.3 is replaced by

Ψ(txa,i) =


ρa(v)X∑

v′∈txa,i
ρa(v′)X

if
∑

v′∈txa,i
ρa(v

′)X 6= 0,

1

|txa,i|
otherwhise.

4.2.4 Obtaining Probability of Matching

This section will redefine the degree that two objects have the same value on an

attribute if at least one of the two objects has missing, imprecise or uncertain values

on their attributes. In general the probability of matching can be defined as the

following definition:

Definition 4.2.3. Given information system I = (U,A), on attribute a ∈ A with

its domain Va, the probability that the value of object x is the same as the value of

object y on a is given by:

θa(x, y) =
∑
v∈Va

Pra(fa(x) = v|fa(y) = v)Pra(fa(y) = v), (4.5)

when x 6= y. Otherwise θa(x, y) = θa(x, x) = 1. Note that θa(x, y) = 1, if the

two objects x and y have the same precise value on a, while it is zero if they have

different precise values. Pra(fa(x) = v|fa(y) = v) denotes the conditional probability

of fa(x) = v given fa(y) = v. Hereafter, we assume that two events fa(x) = v and

fa(y) = u, x, y ∈ U , a ∈ A are independent of each other for any u, v ∈ Va.

The probability of matching for each type of missing, uncertain and imprecise

values has been discussed in [53]. However, the concept of imperfectness introduced

47



in this dissertation generalizes the way to calculate the probability of matching as

follows:

θa(x, y) =


∑

v∈Λ(x,y)

Pra(fa(x) = v)Pra(fa(y) = v)

if Λ(x, y) 6= ∅,
0 if Λ(x, y) = ∅,

(4.6)

when x 6= y, Λ(x, y) = [∪ita,i(x)]
⋂

[∪ita,i(y)]. Otherwise θa(x, y) = θa(x, x) = 1.

Obviously, the probability of matching between two objects equals to zero unless

there are common possible values for both two objects. Otherwise, the sum of product

of probabilities should be taken that the two objects coincide to have a common value.

In short, we have shown the method of calculating probability that two objects

have the same attribute values in case of imperfect information. This probability

can be used to define a valued tolerance/similarity relation, and then to obtain

approximation space for any published VRRS approach.

4.2.5 Some Discussion for Continuous Values

In the previous subsection, we have discussed methods to obtain probabilities of

matching in cases of discrete values. These methods will be used to define a tolerance

relation in the next section. However, in some cases, continuous values also can be

missing or described with uncertainty. Thus, we spend a small part to make an

examination on continuous values. Hope that it could be useful to some extent.

In information system coming with continuous value, keeping the consistency of

information systems, continuous attributes must be transformed into discrete ones.

Some approaches discretize these attributes domains into ranges where each interval

is mapped to a discrete value [5, 11, 56, 79]. In general, the targets of such studies

are to find the minimum interval without weakening the discernibility in the dataset.
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On continuous attributes containing imperfect data, indiscernibility relations are

not available at all. There exists a way to deal with them using rough set technique.

First discretizing the continuous data to discrete data [7], and then finding the

attribute reduction using methods proposed in [20, 21, 23, 37, 38, 72, 73, 76, 83].

Let I = (U,A) be a complete information system containing continuous values.

Any pair (a, c), where continuous attribute a ∈ A, c ∈ R, where R represents

the set of all real numbers, will be called a cut on Va. For a ∈ A, any set of

cuts {(a, ca1), (a, ca2), ..., (a, cak)} on Va = [vamin, v
a
max) ⊂ R defines a partition V ′a =

{[ca0, ca1), [ca1, c
a
2), ...[cak, c

a
k+1)} where vamin = ca0 < ca1 < ... < cak < cak+1 = vamax), and

Va = [ca0, c
a
1)∪ [ca1, c

a
2)∪ ...∪ [cak, c

a
k+1). Therefore, any set of cuts defines a new attribute

domain V ′a on a and the equivalence between two objects on a [56] is defined as follows:

EQU{a}(x, y)⇔
(
iff fa(x), fa(y) ∈ [cai , c

a
i+1)
)
. (4.7)

On attributes associated with continuous values, two objects are equivalent if their

attribute values fall in the same interval. If there is a missing, uncertain or imprecise

value, the equivalence relation cannot be determined. We have to define the degree of

tolerance (similar) instead. For continuous values, the probability that an attribute

value of x ∈ U on attribute a ∈ A falls into an interval, say [c1, c2) ⊆ Va, is given by

Pra(c1 ≤ fa(x) < c2). From probabilities of object attribute values, we are able to

define a valued tolerance/similarity relation.

For continuous imperfect value, txa,i in Definition 3.3.1 should present for a interval

into which the object attribute value falls. Thus the representation of imperfection

in case of continuous value is defined as follows:

Definition 4.2.4. In imperfect information system I = (U,A), on continuous

attribute a ∈ A, let txa,i = [vi,1, vi,2], where vi,1, vi,2 ∈ R, vi,2 > vi,1, be the i -th range

of overall “s” possible range of object x on a and pxa,i > 0 be its probability. Then
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the pair (T xa , P
x
a ), where T xa = {txa,i|1 ≤ i ≤ s}, P x

a = {pxa,i|
∑

i p
x
a,i = 1}, represents

imperfect values of object x on continuous attribute a.

If there is no information about probability distribution of attribute values, it

is possible to make a hypothesis that the probability is determined by a uniform

distribution. The probability that continuous values of a range falls in an interval,

hence, could be defined as how large the interval cover the range. Now, the probability

that an attribute value of x ∈ U on attribute a ∈ A falls into an interval can be defined

as the following definition.

Definition 4.2.5. In imperfect information system I = (U,A), let the pair (T xa , P
x
a )

present an imperfect attribute value of object x on continuous attribute a ∈ A. Then

the probability that an attribute value of x falls in the interval [c1, c2) ⊆ Va can be

calculated as follows:

Pra(c1 ≤ fa(x) < c2) = lim
ε→0

∑
[c1,c2)∩[vi,1,vi,2]6=∅

pxa,i •
min(c2 − ε, vi,2)−max(c1, vi,1)

vi,2 − vi,1

=
∑

[c1,c2)∩[vi,1,vi,2]6=∅

pxa,i •
min(c2, vi,2)−max(c1, vi,1)

vi,2 − vi,1
. (4.8)

When a random variable takes values from a continuous range, in some cases, we

have to do experiments to estimate probability distribution of the data. In other cases,

the data is already described by a known probability distribution such as Gaussian,

Laplace, Gamma distribution [43, 59]. In information system I = (U,A), suppose

a probability function λa(v), v ∈ Va (that is called probability density function for

continuous values), the probability that a continuous value falls in interval [c1, c2] is

determined by an integral:
c2∫
c1

λa(v)d(v).
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For interval [c1, c2) ⊆ Va, the probability is

lim
ε→0

c2−ε∫
c1

λa(v)d(v).

The probability that an attribute value of x ∈ U on attribute a ∈ A falls into an

interval is thus defined as the following definition.

Definition 4.2.6. In imperfect information system I = (U,A), let the pair (T xa , P
x
a )

present an imperfect attribute value of object x on continuous attribute a ∈ A and

λa(v), v ∈ Va denotes the probability density function on a, the probability that

an object attribute value of x falls in the interval [c1, c2) ⊆ Va is then calculated as

follows:

Pra(c1 ≤ fa(x) < c2) =
∑

[c1,c2)∩[vi,1,vi,2] 6=∅

pxa,i •Ψ(txa,i),

where

Ψ(txa,i) =



lim
ε→0

min(c2−ε,vi,2)∫
max(c1,vi,1)

λa(v)d(v)

vi,2∫
vi,1

λa(v)d(v)

if

vi,2∫
vi,1

λa(v)d(v) 6= 0,

min(c2, vi,2)−max(c1, vi,1)

vi,2 − vi,1
otherwhise.

(4.9)

On each possible range, if [c1, c2) ∩ txa,i 6= ∅, the probability based on the interval

[c1, c2) is then determined by the proportion of the integral on the intersection of

[c1, c2) and txa,i to the integral on the whole range txa,i. This proportion should take

the equal probability when the integral on the whole range txa,i equals to zero.

Directly from the sum of probability on all possible range, it is able to obtain the

probability of matching as the following equation:
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θa(x, y) =


∑

[cj ,cj+1)∩Λ(x,y)6=∅

Pra(cj ≤ fa(x) < cj+1)Pra(cj ≤ fa(y) < cj+1)

if Λ(x, y) 6= ∅,
0 if Λ(x, y) = ∅,

(4.10)

when x 6= y, Λ(x, y) = [∪ita,i(x)]
⋂

[∪ita,i(y)]. Otherwise θa(x, y) = θa(x, x) = 1.

Obviously, a probability of matching between two objects equals to zero unless

there are common possible ranges for both two objects. Otherwise, a sum of product

of probabilities should be taken that the two objects coincide to have a common

range.

Equation (4.10) shows that in information systems containing continuous

attributes with missing, uncertain or imprecise values, it is possible to use probability

of matching for defining probabilistic based tolerance/similarity relations. On the

other hand, in such kind of information systems, we may be able to define a distance

function such as distancea(fa(x), fa(y)) = 1− θa(x, y) for defining similarity relation

based on distance [74].

4.3 Extended Rough Set Model

Based on probabilities of matching between two objects on every attribute, it is

possible to define a valued tolerance/similarity relation as discussed in the first section

of this chapter. The simplest method is taking the product of probabilities on all

attribute. In this section, a new valued tolerance relation will be introduced based on

not only the probability of matching but also based on the existence of equivalence

on some attributes.
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4.3.1 Extended Tolerance Relation

To define whether two objects x and y are tolerant to each other or not, we introduce

the concept tolerance degree between two objects by combining two relation indexes.

One takes a binary value representing a binary equivalence relation defined by

attributes with a known value in both the objects. The other is an index defined

by attributes with the missing value in either of the objects. It is obtained from

probability of matching assuming that θa(x, y) is independent of each other among

attributes.

As discussed in Chapter 3, the limited tolerance relation was defined basically

using attributes whose values are available in both x and y. We define a binary

function that represents that LT relation can hold between the objects in the case of

two objects have the same precise values on some attributes and utilize it.

Definition 4.3.1. In imperfection information system I = (U,A), let OP (x) = {a|a ∈

P, fa(x) 6=?}, P ⊆ A and x, y ∈ U , where “?” denotes an imperfect value, the

equivalence existence is defined by the following function:

ΘP (x, y) =


1, if (|OP (x) ∩OP (y)| > 0)

∧(∀a ∈ OP (x) ∩OP (y), fa(x) = fa(y)),

0, otherwise,

(4.11)

ΘP (x, x) = 1 is assumed in any case.

In incomplete information systems, it is clear that objects x, y have LT relation if

ΘP (x, y) = 1, but ΘP (x, y) = 1 does not hold necessarily even if x, y have LT relation;

for example, in case where for all a ∈ P , fa(x) = ∗, fa(y) = ∗ for different x and y.

Now, we define a tolerance degree between x and y by combining the equivalence

existence with probability of matching defined in the previous section.
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Definition 4.3.2. Let I = (U,A) be an imperfect information system and attribute

set P ⊆ A and x, y ∈ U , a parameterized tolerance degree of x and y in terms of P

is defined as follows:

φηP (x, y) =


0, if ∃a ∈ P − (OP (x) ∩OP (y)), θa(x, y) = 0,

η
∏

a∈P−(OP (x)∩OP (y))

θa(x, y) + (1− η)ΘP (x, y), otherwise, (4.12)

where η is a parameter taking a value in (0, 0.5]. If OP (x) ∩ OP (y) = P ,∏
a∈P−(OP (x)∩OP (y)) θa(x, y) = 1 is assumed. Thus, φηP (x, y) = 1 in this case.

Obviously, φηP (x, x) = 1 and φηP (x, y) = φηP (y, x). Then the reason why η ∈ (0, 0.5]

shall be explained below.

In (4.12), when ΘP (x, y) = 1, that is, when fa(x) = fa(y) for all a ∈ OP (x)∩OP (y),

it is satisfied that 1− η < φηP (x, y) ≤ 1.0 if ∀a ∈ P − (OP (x) ∩ OP (y)), θa(x, y) > 0,

otherwise φηP (x, y) = 0. Therefore, φηP (x, y) = 1 holds only in two cases; one is

the case where x = y, and the other is the case where OP (x) ∩ OP (y) = P and

∀a ∈ OP (x) ∩OP (y), fa(x) = fa(y).

When ΘP (x, y) = 0, there are two cases; one is a case where there is a ∈ OP (x)∩

OP (y) 6= ∅ such that fa(x) 6= fa(y). In this case, φηP (x, y) = 0. The other is the

case where OP (x) ∩ OP (y) = ∅. In this case, 0 ≤ φηP (x, y) < η, considering that

0 ≤ θa(x, y) < 1 for x 6= y. Note that θa(x, y) = 1 for only a ∈ OP (x) ∩ OP (y).

Therefore, η could be understood as a value that separates the following cases:

(a) φηP (x, y) > 1− η: OP (x) ∩OP (y) 6= ∅ and for all a ∈ P , θa(x, y) > 0

(b) η > φηP (x, y) > 0: OP (x) ∩OP (y) = ∅, for all a ∈ P , θa(x, y) > 0

(c) φηP (x, y) = 0: ∃a ∈ P , θa(x, y) = 0.

In order to separate the cases between (a) and (b), η should satisfy 1 − η ≥ η.

From those above, we have the constraint of η ∈ (0, 0.5]. If η < 0.5, φηP (x, y) never
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Table 4.3: Tolerance degree among objects1

x2 x3 x4 x5 x6 x7 x8

x1 0 0 0 0 0 0 0.221
x2 0 0 0 0 0 0.721
x3 0 0 0 0 0
x4 0.533 0 0 0.949
x5 0 0 0.148
x6 0 0
x7 0

takes a value between η and 1 − η. Hence, we define tolerance degrees by fixing

η = 0.5, though φηP (x, y) never takes the value of 0.5 as known from the conditions of

(a) and (b):

φP (x, y) =


0, if ∃a ∈ OP (x) ∩OP (y) 6= ∅, fa(x) 6= fa(y),
1

2

∏
∀a∈P−(OP (x)∩OP (y))

θa(x, y) +
1

2
ΘP (x, y), otherwise, (4.13)

Tolerance degrees with η = 0.5 let us differentiate the three cases discussed

before by seeing whether the degree is greater/less than 0.5 or whether it is greater

than/equal to zero. This feature might be useful, because users can control conditions

of tolerance based on equivalence existence and probability of matching with just a

threshold value. It thus can be used in some valued tolerance/similarity relation

based rough set models. This process shall be discussed in the next step.

Back to the example in Table 3.1, using imperfect representation in Definition 3.3.1,

for the Headache attribute value of x1 we have: tx5Headache,1 = {yes, no}, px5Headache,1 =

1.0, |T x5Headache| = 1. Consequently, PrHeadache(fHeadache(x5) = yes) = 0.33 and

PrHeadache(fHeadache(x5) = no) = 0.67 if “Method of the frequency of attribute

value related to concepts” is employed. Using the same way, we can also calculate

1Note that tolerance relations are symmetric so we need only half of the elements in the table.
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probabilities of attribute values for all objects. Based on that, the tolerance degrees

among objects in terms of all attributes according to (4.13) can be shown in Table 4.3.

In fact, we can choose another probability of matching on an attribute for (4.12)

and (4.13). For example, we can choose θa(x, y) = 1/|Va| as shown in [72]. The choice

might depend on probability distribution of attribute values in each system.

The probabilistic terms in our tolerance degree look similar to those used by

Stefanowski [73]. However, our approach uses probabilistic terms as pieces of

evidence to derive a tolerance relation. Furthermore, this term is combined with

equivalence existence to define the relation. On the other hand, in probabilistic

approach proposed in [73], the authors suppose a priori assumption that there

exists a uniform probability distribution on every attribute domain and compute

tolerance classes based on the joint probability distribution. Their aim seems to

define approximation spaces applicable in many cases. Such tolerance classes could

be used in some applications, but we believe not in most.

Now, we define extended tolerance relation by controlling tolerance degree with a

threshold.

Definition 4.3.3. Given imperfect information system I = (U,A) and attribute set

P ⊆ A and given a threshold α, the extended tolerance relation is defined as follows:

ETRα
P (x, y)⇔ φP (x, y) ≥ α. (4.14)

It is easy to observe that this relation is reflexive and symmetric but not necessarily

transitive. From Table 4.3, if threshold α = 0.5 is given, x4 is tolerant of x5 based on

this relation.

By changing the threshold, for incomplete data, if Pra(fa(x) = v) > 0 for all

v ∈ Va, a ∈ P when fa(x) = ∗, we are able to get the same results as those by
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the relations discussed in Section 3.1. These connections can be formalized by the

following propositions:

Proposition 4.3.1. Let I = (U,A) be an incomplete information system. Given

attribute set P ⊆ A and x ∈ U , Pra(fa(x) = v) > 0 for all v ∈ Va, a ∈ P when

fa(x) = ∗, if α→ 0, then ETRα
P (x, y)⇔ TORP (x, y).

Proof. When α→ 0, ETRα
P (x, y) is obtained as

ETRα
P (x, y)⇔φP (x, y) > 0

⇔∀a ∈ P, θa(x, y) > 0)

⇔(∀a ∈ P, (fa(x) = ∗) ∨ (fa(y) = ∗))
∨ (∀a ∈ OP (x) ∩OP (y) 6= ∅, fa(x) = fa(y))

⇔TORP (x, y).

This proposition shows that with α → 0, the extended tolerance relation may

get the same results as the tolerance relation in incomplete information systems if

the probability of object attribute values are greater than zero for any values in the

domain.

Proposition 4.3.2. Let I = (U,A) be an incomplete information system. Given

attribute set P ⊆ A and x ∈ U , Pra(fa(x) = v) > 0 for all v ∈ Va, a ∈ P when fa(x) =

∗, if α = 0.5, then ETRα
P (x, y) ⇒ LTORP (x, y) for any x, y and ETRα

P (x, y) ⇐

LTORP (x, y) except the case such that OP (x) = OP (y) = ∅.

Proof. When α = 0.5, ETRα
P (x, y) is obtained as

ETRα
P (x, y)⇔φP (x, y) ≥ 0.5⇔ (ΘP (x, y) = 1) ∧ (∀a ∈ P, θa(x, y) > 0)

⇔(OP (x) ∩OP (y) 6= ∅) ∧ (∀a ∈ OP (x) ∩OP (y), fa(x) = fa(y))

⇒LTORP (x, y).
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Then it is evident that LTORP (x, y)⇒ ETRα
P (x, y) except the case where OP (x) =

OP (y) = ∅.

This proposition notices that with α = 0.5, the extended tolerance relation is

an expansion of the limited tolerance relation in incomplete information systems if

the probability of object attribute values are greater than zero for any values in the

domain.

Proposition 4.3.3. Let I = (U,A) be an incomplete information system. Given

attribute set P ⊆ A and x ∈ U , if α = 1.0, then ETRα
P (x, y)⇔ EQUP (x, y) if x 6= y.

Proof. Consider that ETRα
P (x, y)⇔ φP (x, y) = 1. As discussed before, φP (x, y) = 1

holds only in the two cases where x = y and where OP (x) ∩ OP (y) = P and for all

a ∈ P ,fa(x) = fa(y), which is equivalent to EQUP (x, y).

This proposition shows that with α = 1.0, the extended tolerance relation is able

to get the same results as equivalence relation in incomplete information systems.

It should be noted that similarity/tolerance relations discussed in this dissertation

are introduced to cope with imperfect information. However, we could also define

those relations even in complete information tables. For example, the relation

“subclass-of ” is a similarity relation. It is clearly transitive, but not necessarily

symmetric. We can also take the relation “friend-of ” as an example of tolerance

relation and examine its properties in the same way.

Definition 4.3.4. Let I = (U,A) be an imperfect information system. Given

attribute set P ⊆ A and x, y, z ∈ U , if φP (y, x) > φP (z, x), then y is more tolerant of

x than z based on extended tolerance relation.

Proposition 4.3.4. Let I = (U,A) be an imperfect information system. Given

attribute set P ⊆ A and x, y, z ∈ U , if OP (x)∩OP (y) 6= ∅, for all a ∈ OP (x)∩OP (y),
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fa(x) = fa(y) and OP (x) ∩ OP (z) = ∅ then y is more tolerant of x than z based on

the extended tolerance relation.

Proof. Since OP (x) ∩ OP (y) 6= ∅ and for all a ∈ OP (x) ∩ OP (y), fa(x) = fa(y),

from (4.13) we have φP (y, x) > 0.5. We also have φP (z, x) < 0.5 sinceOP (x)∩OP (z) =

∅. Therefore, φP (y, x) > φP (z, x). This is defined as y is more tolerant of x than z

based on the extended tolerance relation.

4.3.2 Neighbourhood and Approximations

Now, with a relation, we can derive a neighbourhood, which consists of successor and

predecessor sets, of an object as discussed in Chapter 2. Due to symmetric property of

extended tolerance relation, successor is the same set as predecessor. For this relation,

therefore, we can introduce for any object x ∈ U a tolerant set:

ETαP (x) = {y ∈ U |ETRα
P (y, x)}. (4.15)

From Table 4.3, given the threshold α = 0.1, P = A, we have ET 0.1
A (x8) =

{x2, x4, x5, x8}.

Proposition 4.3.5. Let I = (U,A) be an imperfect information system, P ⊆ A, for

all x ∈ U , if α ≤ β, then ETαP (x) ⊇ ET βP (x).

Proof. Consider the following:

ETαP (x) = {y ∈ U |ETRα
P (y, x)}

= {y ∈ U |φP (y, x) ≥ α}
= {y ∈ U |φP (y, x) ≥ β} ∪ {y ∈ U |α ≤ φP (y, x) < β}
= ET βP (x) ∪ {y ∈ U |α ≤ φP (y, x) < β} ⊇ ET βP (x)
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This proposition shows that the cardinality of the tolerance class of x shall decrease

if we increase the threshold to control the tolerance degree.

From tolerance classes, we can define approximations using singleton, subset and

concept methods discussed in Chapter 2. Singleton lower approximation an upper

approximation of an object set X ⊆ U are defined as follows:

SingleApprα
P

(X) = {x ∈ U |ETαP (x) ⊆ X}, (4.16)

SingleAppr
α

P (X) = {x ∈ U |ETαP (x) ∩X 6= ∅}. (4.17)

From Table 4.3, given threshold α = 0.6 and P = A, we have approximation space

for the concept X = {x ∈ U |fFlu(x) = yes}:

SingleAppr0.6

P
(X) = {x1, x2, x8}, (4.18)

SingleAppr
0.6

P (X) = {x1, x2, x4, x5, x8}. (4.19)

The Subset and Concept approximation spaces are also defined as follows:

SubsetApprα
P

(X) = ∪{ETαP (x)|x ∈ U ∧ ETαP (x) ⊆ X}, (4.20)

SubsetAppr
α

P (X) = ∪{ETαP (x)|x ∈ U ∧ ETαP (x) ∩X 6= ∅}, (4.21)

ConceptApprα
P

(X) = ∪{ETαP (x)|x ∈ X ∧ ETαP (x) ⊆ X}, (4.22)

ConceptAppr
α

P (X) = ∪{ETαP (x)|x ∈ X ∧ ETαP (x) ∩X 6= ∅} (4.23)

Approximation spaces defined based on extended tolerance relation have some

properties suggested by Pawlak [60, 61] as well as other properties. Table 4.4 shows

which properties of the original rough set model are satisfied with singleton, subset,

and concept definitions.

These properties within our approach can be proved as the same as those in

the Grzymala-Busse and Wojciech Rzasa study [28] and the Pawlak research [61].
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Table 4.4: Properties of approximations for the three definitions

Properties Singleton Subset Concept
1a apprα

P
(X) ⊆ X,

√ √ √

1b X ⊆ apprαP (X),
√ √ √

2a apprα
P

(∅) = ∅,
√ √ √

2b apprαP (∅) = ∅,
√ √ √

3a apprα
P

(U) = U ,
√ √ √

3b apprαP (U) = U ,
√ √ √

4a X ⊆ Y ⇒ apprα
P

(X) ⊆ apprα
P

(Y ),
√ √ √

4b X ⊆ Y ⇒ apprαP (X) ⊆ apprαP (Y ),
√ √ √

5a apprα
P

(X ∪ Y ) ⊇ apprα
P

(X) ∪ apprα
P

(Y ),
√ √ √

5b apprαP (X ∪ Y ) = apprαP (X) ∪ apprαP (Y ),
√ √

6a apprα
P

(X ∩ Y ) = apprα
P

(X) ∩ apprα
P

(Y ),
√

6b apprαP (X ∩ Y ) ⊆ apprαP (X) ∩ apprαP (Y ),
√ √ √

7a apprα
P

(X) = apprα
P

(apprα
P

(X)),
√ √

7b apprα
P

(X) = apprαP (apprα
P

(X)),

7c apprαP (X) = apprαP (apprαP (X)),
7d apprαP (X) = apprα

P
(apprαP (X)),

8a apprα
P

(X) =∼ apprαP (∼ X),
√ √ √

8b apprαP (X) =∼ apprα
P

(∼ X),
√ √ √

√
indicates that the property is satisfied. apprα

P
(X) and apprαP (X) are lower and upper

approximations that can be defined by singleton, subset, and concept methods.

Approximation spaces of those definition methods, in general, do not have properties

7a-7d. However, they are likely to satisfy the weaker versions of 7a-7d, which are

defined by Yao [85].

Besides, our tolerance relation is controlled by thresholds of tolerance degrees.

Therefore, new properties for thresholds can be introduced as shown below:

Proposition 4.3.6. Let I = (U,A) be an imperfect information system, X ⊆ U ,

and P ⊆ A. The following properties shall hold for arbitrary lower approximation

apprα
P

(X) and upper approximation apprαP (X) defined by singleton, subset, and

concept methods:
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(9a). if α ≤ β ⇒ apprα
P

(X) ⊆ apprβ
P

(X),

(9b). if α ≤ β ⇒ apprαP (X) ⊇ apprβP (X).

Proof of (9a). Take an element x ∈ apprα
P

(X). From any of the lower approximation

definitions, ETαP (x) ⊆ X is derived. Since ETαP (x) ⊇ ET βP (x) according to

Proposition 4.3.5, we get that ET βP (x) ⊆ X, and then x ∈ apprβ
P

(X). Thus, if

x ∈ apprα
P

(X), then x ∈ apprβ
P

(X) (note that x ∈ ETαP (x)).

Proof of (9b). Take an element x ∈ apprβP (X). From any of the upper approximation

definitions, ET βP (x) ∩ X 6= ∅ is derived. Since ETαP (x) ⊇ ET βP (x) according to

Proposition 4.3.5, we get that ETαP (x) ∩ X 6= ∅, and then x ∈ apprαP (X). Thus, if

x ∈ apprβP (X), then x ∈ apprαP (X) (note that x ∈ ETαP (x)).

Obviously, the greater threshold is the smaller upper approximation is obtained.

While the increasing of the cardinality of lower approximation follows the rise of the

threshold. Therefore, it is possible to widen or thin the boundary between lower and

upper approximations of an objects set by changing the threshold.

4.4 Summary

This chapter studies a rough set theory for imperfect information systems based on

valued tolerance/similarity relations and establishes a new model called extended

tolerance relation based rough set model. Frequency of attribute values appearing in

the decision table could be utilized to estimate the probability of matching among data

items on an attribute. Tolerance degrees are then calculated based on a combination

of existence of equivalence and probabilities of matching on some attributes. Given

a threshold to control tolerance degrees, a tolerance relation is defined.
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The approach is an extension of some rough set models and could solve the problem

existing in tolerance relation of Kryszkiewicz in incomplete information systems. By

adjusting the threshold, we are able to get the same results as tolerance, limited

tolerance, and equivalence relations. The variable threshold also gives us a means

to widen or thin the boundary region between lower and upper approximations.

Actually, various lower and upper approximations are obtained using the approach,

and users can choose a threshold that suits their requirements.

The approach is discussed on discrete values. However, it is possible to apply

in imperfect information containing continuous values by altering the definition

of equivalence existence. For this purpose, the equivalence relation shown in

Equation (4.7) should be used.
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Chapter 5

Rough Set Model Based on

Dempster-Shafer Theory

As discussed, it is inappropriate to apply a method that deals only with missing

values to information systems containing missing, imprecise and uncertain values. In

the previous chapter, one possible solution would be to combine the transformation of

any type of imperfect data with probabilistic values and then to apply a probabilistic

method. Such a case, we must estimate probability of attribute values for each object.

However, it is not always possible even to assume subjective probabilities when we

know little knowledge about the domain. This chapter will propose a new method

of rough set definition based on Dempster-Shafer theory that can deal with any type

of imperfect data discussed in Chapter 3 without evaluating probability of attribute

values.

The chapter firstly gives the basic notions of Dempster-Shafer Theory. It

then introduces a set of basic relations among objects and mass belief functions

of hypotheses of basic relations. Finally, a new rough set model based on

Dempster-Shafer theory will be proposed.
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5.1 Evidence Theory and Combination Rules

Dempster-Shafer theory

Dempster-Shafer theory (DST) is a mathematical theory of evidence [66]. It allows

us to represent all kinds of imperfect data we discussed in Chapter 3, i.e., missing,

imprecise, and uncertain data. In addition, it provides us with a tool for combining

multiple evidence of relations obtained from independent sources of information.

Let Θ be a discrete and finite universal set. Function m, which is called a basic

belief assignment (bba) or mass function, is defined as m : 2Θ → [0, 1], where m(∅) = 0

and
∑
∀A⊆Θ m(A) = 1 must be satisfied. 2Θ is the power set of Θ [82].

The bba m(A) represents the degree of belief that supports hypothesis A. The

mass of belief does not include a mass attributed to any subsets of A but, instead,

measures the amount of belief of A itself. Subset A satisfying m(A) > 0 is a focal

element. A pair (m,F ), where F is the set of all focal elements, is called the body of

evidence.

In contrast to bba, belief function denoted by Bel of set A does include the mass

of all subsets of A. Another measure, plausibility function named Pl, is the sum of all

of the masses of sets that intersect set of interest A. Belief and plausibility measures

are defined as follows:

Bel(A) =
∑
X⊆A

m(X), (5.1)

Pl(A) =
∑

X|X∩A6=∅

m(X). (5.2)

Belief and plausibility functions are connected by a dual property such that

Bel(A) = 1 − Pl(∼ A). Furthermore, Bel(A) ≤ Pl(A) for all A ∈ Θ. It is also
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possible to obtain basic belief assignments from belief measures with the following

inverse function

m(A) =
∑
X⊆A

(−1)|A|−|X|Bel(X). (5.3)

where |A| denotes the cardinality of A.

Rule of combination

Suppose that there are two independent sources of information and that we

must combine these pieces of evidence from two sets of mass assignment along with

the sources. Dempster’s rule derives common shared belief among multiple sources

and ignores all conflicting (non-shared) belief through a normalization factor. The

combination is calculated by the following equation

m(A) =

∑
X,Y|X∩Y=Am1(X) •m2(Y)

1−K
, (5.4)

where A 6= ∅ and K =
∑

X,Y|X∩Y=∅m1(X) •m2(Y).

When three or more bodies of evidence are combined, m1(X) •m2(Y) and X ∩ Y

are replaced by m1(X1)•m2(X2)•· · ·•mn(Xn) and X1∩X2∩· · ·∩Xn, respectively [82].

There are also numerous alternative rules [13, 31, 80, 81, 82, 91] to be applied

depending on different requirements.

5.2 Modelling Relations Based on Demspter-Shafer

Theory

As shown in Chapter 3, imprecise data was represented by a set of possible values,

and uncertain data was defined by a probability distribution on the attribute domain
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in the related work. The representation for multiple type of imperfectness was also

introduced. In this section, the representation is also used as the body of evidence in

the framework of Dempster-Shafer theory to develop a new model of relations.

An attribute value of this model is represented by body of evidence (ma, Fa)

that is a pair consisting a mass function and a set of focal elements on attribute

a ∈ A. It may be represented later by (mx
a, F

x
a ), when an object x must be identified.

To illustrate, when the value set of attribute a is Va = {1, 2, 3, 4}, the missing

value is represented as total ignorance, that is, ma({1, 2, 3, 4}) = 1.0. Examples

of imprecise data are ma({1, 2, 3}) = 1.0, ma({1, 3}) = 1.0, ma({3, 4}) = 1.0,

etc. Uncertain data are represented, for example, as ma({1}) = 0.1, ma({2}) =

0.2, ma({3}) = 0.3, and ma({4}) = 0.4. As shown by the explanation in the

previous section, Dempster-Shafer theory could represent more complex imperfect

data that mixes imprecise and uncertain data such as ma({1}) = 0.5, ma({2, 3}) =

0.3, ma({1, 2, 3, 4}) = 0.2.

What should be noted here is that Dempster-Shafer theory is an extension of

possibility theory and probability theory [36]. This means that a fuzzy set, which

is usually regarded as a possibility distribution, could be represented in the form

of a body of evidence and that the imperfect data used in this model represents

both imprecision and uncertainty and fuzziness. Fuzzy set 0.3/1 + 1.0/2 + 0.8/3, for

example, is given by mass functions m({2}) = 0.2, m({2, 3}) = 0.5 and m({1, 2, 3}) =

0.3, where 0.3/1 represents the membership value of “1” is 0.3, and “+” does the union

operation.

Let txa,i ⊆ Va be the i -th set of overall s possible value sets of x on a and mx
a,i =

pxa,i > 0 be its basic belief assignment. Pair (mx
a, F

x
a ), where F x

a = {txa,i|1 ≤ i ≤ s},

represents the body of evidence on a. F x
a is a complete set when

∑
1≤i≤sm

x
a,i = 1.
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As discussed in Chapter 3, a precise value and a missing value are also considered

as two extreme kinds of imprecision. A value is precise when the set of possible values

is a singleton and the bba is 1. In this case, |F x
a | = 1, |txa,1| = 1 and mx

a,1 = 1. Missing

values without pre-defined probability distribution could be regarded as imprecise

information where the set of possible values encompasses the entire attribute domain

such that |F x
a | = 1, txa,1 = Va and mx

a,1 = 1. In Chapter 4, a valued tolerance

definition was also proposed. This relation is based on the probability of matching

using probability of object attribute evaluation on txa,i.

However, in this chapter, we will construct a set of basic relations on which we

can define various equivalence, tolerance and similarity relations by combining some

of basic relations.

Consider a case in which two objects x and y have an imperfect value of attribute

a, that is, the values are represented by sets txa and tya of possible values, respectively.

We then define several basic relations based on some situations listed as follows:

(1) If txa = tya and are singletons, x and y are equivalent with respect to a and

denoted by relation Ea(x, y).

(2) If txa = tya and are not singletons, the true values of x, y are contained in both

txa and tya. We thus say values of x and y are mutually inclusive for a, and

denote the relation byMa(x, y), whereMa(x, y) means that the true values of

x, y are contained in txa, t
y
a, respectively, except that txa and tya are singletons

simultaneously.

(3) If tya is a proper subset of txa, the true value of y is contained in both txa and

tya, but the true value of x is possibly, but not necessarily, contained in tya.

Therefore, we denote the relation between x and y with Ia(x, y) or Ma(x, y),
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where Ia(x, y) means that the true value of y is contained in txa but that the

true value of x is not contained in tya.

(4) If txa is a proper subset of tya, the true value of x is contained in tya and the true

value of y is possibly, but not necessarily, contained in txa. We therefore denote

the relation between x and y with Ra(x, y) or Ma(x, y). Ra(x, y) means that

the true value of x is contained in tya but that the true value of y is not contained

in txa.

(5) If txa and tya have a non-empty intersection but neither includes the other, then

the true value of x may or may not be contained in tya and vice versa. We

therefore denote the relation between x and y with Ia(x, y) or Ra(x, y) or

Ma(x, y) or Da(x, y), where Da(x, y) means that the true value of x is not

contained in tya nor is that of y contained in txa.

(6) If txa and tya have an empty intersection, then the true value of x is not contained

in tya nor is that of y contained in txa. The relation between x and y is therefore

denoted by Da(x, y).

Relations Ea(x, y), Ma(x, y), Ia(x, y), Ra(x, y) and Da(x, y) are defined formally

as follows:

Ea(x, y)⇔(fa(x) ∈ tya) ∧ (fa(y) ∈ txa)
∧ (|txa| = |tya| = 1) (5.5)

Ma(x, y)⇔(fa(x) ∈ tya) ∧ (fa(y) ∈ txa)
∧ ¬(|txa| = |tya| = 1) (5.6)

Ia(x, y)⇔(fa(x) 6∈ tya) ∧ (fa(y) ∈ txa) (5.7)

Ra(x, y)⇔(fa(x) ∈ tya) ∧ (fa(y) 6∈ txa) (5.8)

Da(x, y)⇔(fa(x) 6∈ tya) ∧ (fa(y) 6∈ txa) (5.9)

Let Θ = {E , I,R,M,D} be the set of all of the relation types where E , I, R,

M and D are used instead of Ea(x, y), Ia(x, y), Ra(x, y), Ma(x, y) and Da(x, y),
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respectively, just for simplicity. Obviously, Θ is “exhaustive” and “exclusive,” which

means only that an element must always be true. In this case, any pair (x, y) satisfies

one of these relations and only one holds for pair (x, y). It is therefore possible to

define Θ as the frame of discernment of relations. Now, from the body of evidence,

we calculate bba for possible hypotheses in 2Θ as follows:

ma({E}) =
∑

txa,i=t
y
a,j

|tx
a,i
|=|ty

a,j
|=1

mx
a,i •m

y
a,j (5.10)

ma({M}) =
∑

txa,i=t
y
a,j

|tx
a,i
|6=1

mx
a,i •m

y
a,j (5.11)

ma({M, I}) =
∑

tya,j⊂t
x
a,i

mx
a,i •m

y
a,j (5.12)

ma({M,R}) =
∑

txa,i⊂t
y
a,j

mx
a,i •m

y
a,j (5.13)

ma({M, I,R,D}) =
∑

txa,i∩t
y
a,j
6=∅

tx
a,i

*t
y
a,j

;t
y
a,j

*tx
a,i

mx
a,i •m

y
a,j (5.14)

ma({D}) =
∑

txa,i∩t
y
a,j=∅

mx
a,i •m

y
a,j (5.15)

Masses will be assigned to 0 for the rest of the hypotheses in the power set.

Formally, ma(A) = 0, ∀A ∈ 2Θ − {{E}, {M}, {M, I}, {M,R}, {M, I,R,D}, {D}}.

In the relation of x with x itself, the mass function of the equivalence relation is

assigned to 1 so that ma({Ea(x, x)}) = 1.

Table 5.1 shows an example of imperfect decision table I = (U,A ∪ {d}), where

U = {x1, · · · , x7} and A = {a1, a2, a3}. We assume Va1 = {1, 2, 3}, Va2 = {1, 2, 3, 4},
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Table 5.1: An information system with uncertainty and imprecision

U a1 a2 a3 d
x1 1.0 {1} 1.0 {1} 1.0 {1} d1

x2 1.0 {1,2} 1.0 {2} 1.0 {1} d1

x3 1.0 {1} 1.0 {2} 1.0 {2} d1

x4
0.6 {1} 0.7 {1,2} 0.3 {1}

d10.4 {2,3} 0.3 {2,3} 0.7 {2,3}

x5
0.9 {2,3} 0.5 {1,2} 0.2 {1,2}

d20.1 {3} 0.5 {3} 0.8 {2,3}
x6 1.0 {3} 1.0 {4} 1.0 {3} d2

x7 1.0 {2} 1.0 {3,4} 1.0 {3} d2

{•} shows a set of possible values and the figure before the set represents the bba of the set.

Va3 = {1, 2, 3} and Vd = {d1, d2}. In this table, let us calculate the basic belief

assignment for each hypothesis on the relation of x4 with x5 on attribute a1. We

first have tx4a1,1 = {1}, mx4
a1,1

= 0.6, tx4a1,2 = {2, 3}, mx4
a1,2

= 0.4, and tx5a1,1 = {2, 3},

mx5
a1,1

= 0.9, tx5a1,2 = {3}, mx5
a1,2

= 0.1. From equations (5.10) to (5.15) we then

have ma1({E}) = 0.0, ma1({M}) = 0.36, ma1({M, I}) = 0.04, ma1({M,R}) = 0.0,

ma1({M, I,R,D}) = 0.0 and ma1({D}) = 0.6.

Proposition 5.2.1. Let I = (U,A) be an imperfect information system, and Θ =

{E , I,R,M,D} be the set of the basic relations defined by equations from (5.5)

to (5.9). The sum of the masses of all hypotheses from Θ obtained by equations

from (5.10) to (5.15) is then one.

Proof.
∑
∀A⊆Θ ma(A) = ma({E}) + ma({M}) + ma({M, I}) + ma({M,R}) +

ma({M, I,R,D}) +ma({D}) =
∑

ijm
x
a,i •m

y
a,j =

∑
im

x
a,i •

∑
jm

y
a,j = 1.

We can see that the example shown above with x4 and x5 satisfies the proposition.

Proposition 5.2.1 notices that the set of relations Θ and its basic belief assignments

satisfy two conditions of Dempster-Shafer theory. We are therefore able to derive the

belief and plausibility functions of hypotheses from Θ.
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Proposition 5.2.2. Given incomplete information system I = (U,A) and set of

attribute P ⊆ A, we have

EQUP (x, y)⇔∀a ∈ P,Bela({E}) = 1 (5.16)

TORP (x, y)⇔∀a ∈ P,Bela({E ,M, I,R}) = 1 (5.17)

SIMP (x, y)⇔∀a ∈ P,Bela({E ,M, I})) = 1 (5.18)

LTORP (x, y)⇔∀a ∈ P,Bela({M})) = 1

∨ ((∀a ∈ P,Bela({D}) = 0)

∧ (∃a ∈ P,Bela({E}) = 1)) (5.19)

Proof. As discussed, in incomplete information systems, if the value of x on a is

missing, then |F x
a | = 1, txa,1 = Va and mx

a,1 = 1. The hypothesis {E} therefore

represents the fact that fa(x) = fa(y) 6= ∗; {M, I} notices that fa(x) = ∗, fa(y) 6= ∗;

{M,R} shows fa(x) 6= ∗, fa(y) = ∗ while {M} is fa(x) = ∗, fa(y) = ∗ and {D}

is fa(x) 6= fa(y) 6= ∗. From definitions of these relations defined in Chapter 3,

Section 3.1, the proposition is then easily proved.

Proposition 5.2.2 indicates that the models of relations proposed here are

replacements of those for incomplete information systems discussed in Chapter 3.

In the next section, we define a new rough set approach in information associated

with uncertainty and imprecise values. Note that missing value can be interpreted

by imprecision.

5.3 Rough Set Approach Based on Dempster-Shafer

Theory

Assuming that any attribute of an information system is independent of all of the

other attributes, we consider information on each attribute as a source of evidence.
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Table 5.2: Mass of hypotheses

Hypotheses
Sources from attributes
a1 a2 a3

{E} 0.00 0.00 0.00
{M} 0.36 0.35 0.56
{M, I} 0.04 0.15 0.00
{M,R} 0.00 0.00 0.06
{M, I,R,D} 0.00 0.15 0.14
{D} 0.60 0.35 0.24

Using a rule of combination in evidence theory, it is thus possible to calculate a mass

function on Θ taking all attributes into account. We are then able to define a new

rough set approach based on Dempster-Shafer theory.

Masses of all hypotheses for the relation between x4 and x5 are first calculated

from sources of evidence on each attribute and shown in Table 5.2. It may now be

possible to calculate a mass function on a given set of attributes using a combination

rule [66]. However, we must notice that two objects are certainly distinguishable

from each other on attribute set P ⊆ A if they have a different value on an attribute

in P . Two objects x, y are, for example, distinguishable if ma({D}) = 1, even if

mb({E}) = 1 for any b ∈ P −{a}. We therefore use a combination rule incorporating

the above unique property to calculate bba with a given set of attributes.

Definition 5.3.1. Given imperfect information system I = (U,A) and attribute set

P ⊆ A, the mass function of each hypothesis A ⊆ Θ is defined as follows:

mP (A) =


0, if A 6= {D},∃a ∈ P |ma({D}) = 1,

1, if A = {D},∃a ∈ P |ma({D}) = 1,

mR
P (A), otherwise.

(5.20)

where mR
P (A) represents the bba of A on P by combination rule R. If Dempster’s

rule is used, for example, to combine evidence on P = {a, b}, mDempsterRule
P (A) =∑

X,Y|X∩Y=Ama(X)•mb(Y)∑
X,Y|X∩Y 6=∅ma(X)•mb(Y)

. Problems of Dempster’s rule such as loss of majority opinion
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and total mass to minority are discussed in the literature [13, 31, 80, 81, 82, 91].

Depending on characteristics of each system, combination rule R should be chosen

from among the combination rules cited above.

Continuing with the example in Table 5.1, we choose Dempster’s rule to induce

the relation of x4 with x5 on attribute set P = {a1, a2, a3}. The combination result

obtained is mP ({M}) = 0.629, mP ({M, I}) = 0.005 and mP ({D}) = 0.366. Masses

of the rest of the hypotheses in Θ are equal to 0.

With mass assignment of any hypothesis A ⊆ Θ, we archive Belief and Plausibility

measures of A. Based on this, it is possible to decide which relation should be used

between two objects. Undoubtedly, Belief measure is the amount of mass that directly

supports a given hypothesis. If Bel(A) ≥ Bel(B), then A is more certain than B as

a hypothesis. If Pl(A) ≥ Pl(B), however, then A has more potential than B [41]. In

the next part, we therefore introduce equivalence, tolerance and similarity relations

based on the scale of belief and plausibility for imperfect information systems.

Definition 5.3.2. Given imperfect information system I = (U,A) and attribute set

P ⊆ A, equivalence, tolerance and similarity relations between objects x and y based

on Dempster-Shafer theory are defined as follows:

DS-Equivalence relation

DSEP (x, y)⇔(BelP ({E}) = 1) (5.21)

Believable DS-Tolerance relation

BelDSTP (x, y)⇔(BelP ({E ,M, I,R}) ≥ BelP ({D})) (5.22)

Plausible DS-Tolerance relation

PlDSTP (x, y)⇔(PlP ({E ,M, I,R}) ≥ PlP ({D})) (5.23)
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Believable DS-Similarity relation

BelDSSP (x, y)⇔(BelP ({E ,M, I}) ≥ BelP ({D}))
∧ (BelP ({M, I}) ≥ BelP ({M,R})) (5.24)

Plausible DS-Similarity relation

PlDSSP (x, y)⇔(PlP ({E ,M, I}) ≥ PlP ({D}))
∧ (PlP ({M, I}) ≥ PlP ({M,R})) (5.25)

In the definition, x is tolerant of y on attribute set P if the relation between x

and y on P supports {E ,M, I,R} rather than {D}. Similarly, x is similar to y if

the relation between them supports {I} rather than {R} and support for {D} is less

than {E ,M, I}. There is no plausibility based definition for an equivalence relation

because in this type of relation, attribute values of the two objects must be equal to

each other precisely and completely on the whole set of attributes. The equivalence

relation is clearly reflexive, symmetric and transitive. The tolerance relations are

reflexive, symmetric but not need to be transitive. The similarity relations are not

necessarily symmetric but they are reflexive and transitive.

Calculating a believe function from masses obtained in the last step for objects

x4 and x5, we have BelP ({E ,M, I,R}) = 0.634, BelP ({E ,M, I}) = 0.6341,

BelP ({EM,R}) = 0.629 and BelP ({D}) = 0.366. Applying definition 5.3.2, x4 and

x5 are in a Believable DS-Tolerance relation. In the case of a Believable DS-Similarity

relation, x4 is similar to x5 but the reverse does not hold.

Proposition 5.3.1. Given incomplete information system I = (U,A), two objects

are in a DS-Equivalence relation if and only if they are equivalent to each other. Two

objects are in Believable DS-Tolerance or Believable DS-Similarity relations if they

are in the tolerance or the similarity relations, respectively.

75



Proof. Using the model in proposition 5.2.2, we have

EQP (x, y)⇔ ∀a ∈ P,Bela({E}) = 1. This is equivalent to BelP ({E}) = 1, hence,

EQP (x, y)⇔ DSEP (x, y).

TORP (x, y) ⇔ ∀a ∈ P,Bela({E ,M, I,R}) = 1, hence, BelP ({E ,M, I,R}) = 1

and BelP ({D}) = 0. Consequently, BelP ({E ,M, I,R}) ≥ BelP ({D}), therefore,

TORP (x, y)⇒ BelDSTP (x, y).

SIMP (x, y) ⇔ ∀a ∈ P,Bela({E ,M, I}) = 1, hence, BelP ({E ,M, I}) = 1,

BelP ({R}) = 0 and BelP ({D}) = 0. Thus, BelP ({E ,M, I}) ≥ BelP ({D}) and

BelP ({E ,M, I}) ≥ BelP ({E ,M,R}). Consequently, BelP ({E ,M, I}) ≥ BelP ({D})

and BelP ({M, I}) ≥ BelP ({M,R}), therefore, SIMP (x, y)⇒ BelDSSP (x, y).

With a relation, we can derive a neighbourhood that consists of successor and

predecessor sets of an object [28, 85]. For a Demster-Shafer-based relation, we

introduce two sets for any object x ∈ U as follows:

The successor set of x is the set of objects to which x is similar

sucRDSR
P (x) = {y ∈ U |DSRP (x, y)}. (5.26)

The predecessor set of x is the set of objects which is similar to x

preRDSR
P (x) = {y ∈ U |DSRP (y, x)}. (5.27)

where DSR is either of the Dempster-Shafer-based relations introduced in

definition 5.3.2. Obviously, sucRDSE
P (x, y) = preRDSE

P (y, x), sucRBelDST
P (x, y) =

preRBelDST
P (y, x) and sucRPlDST

P (x, y) = preRPlDST
P (y, x) due to the symmetric

property of equivalence and tolerance relations.
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From the neighbourhoods, it is possible to define approximations using singleton,

subset and concept methods discussed in Chapter 2. Singleton lower approximation

an upper approximation of a object set X ⊆ U are defined as follows:

SingleApprDSR
P

(X) ={x ∈ U |RDSR
P (x) ⊆ X}, (5.28)

SingleAppr
DSR

P (X) ={x ∈ U |RDSR
P (x) ∩X 6= ∅}, (5.29)

SubsetApprDSR
P

(X) = ∪ {RDSR
P (x)|x ∈ U ∧RDSR

P (x) ⊆ X}, (5.30)

SubsetAppr
DSR

P (X) = ∪ {RDSR
P (x)|x ∈ U

∧RDSR
P (x) ∩X 6= ∅}, (5.31)

ConceptApprDSR
P

(X) = ∪ {RDSR
P (x)|x ∈ X ∧RDSR

P (x) ⊆ X}, (5.32)

ConceptAppr
DSR

P (X) = ∪ {RDSR
P (x)|x ∈ X

∧RDSR
P (x) ∩X 6= ∅}, (5.33)

where RDSR
P (x) denotes either successor sets sucRDSR

P (x) and predecessor sets

preRDSR
P (x).

Returning to the example in Table 5.1, we induce approximations for set of objects

X = {x|x ∈ U, fd(x) = d1} = {x1, x2, x3, x4} using successor sets defined in the

Believable DS-Similarity relation. Successor sets of the objects in X are listed as

follows:

sucRBlDSS
P (x1) = {x1},

sucRBlDSS
P (x2) = {x2, x4},

sucRBlDSS
P (x3) = {x3, x4},

sucRBlDSS
P (x4) = {x2, x3, x4, x5}.

Approximations of an object set, consequently, are obtained by either singleton,

subset or concept definitions. Singleton approximations of set X are
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SingleApprBlDSS
P

(X) = {x1, x2, x3},

SingleAppr
BlDSS

P (X) = {x1, x2, x3, x4, x5}.

Rough set approximations defined by equations from (5.28) to (5.33) have

properties from 1(a) to 5(a) in the list of properties for the original rough set. This

properties within our approach are proved as the same as those in the Grzymala-Busse

and Wojciech Rzasa study [28] and the Pawlak research [61]. For the rest of the

properties, in general, these definitions do not hold. To satisfy such properties,

approximations should have some modification as discussed in [28, 88].

5.4 Summary

In this chapter, we have proposed a new rough set model based on Dempster-Shafer

theory for information systems that may have uncertain, imprecise and/or fuzzy

values.

By introducing several basic relations between objects and assigning masses

for any possible hypothesis of these relations, we may be come able to model

relations studied in incomplete information systems in terms of Dempster-Shafer

theory. Considering each attribute as a source of evidence, we then calculate mass

assignments on an attribute set and introduce new relations including equivalence,

tolerance and similarity relations based on Dempster-Shafer theory. These relations

are used to determine the approximations of an object set in various ways including

singleton, subset and concept methods.

One potential drawback of the proposed method is the computational complexity

inherent in the Dempster-Shafer approach. The relation defined based on Dempster’s

rule of combination increases the computational cost exponentially with the number
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of evidence sources, which is the number of attributes in this approach. Studies such

as [3, 67] or a new approximate combination rule could, however, make it easier to

solve the problem in the near future.

Further work thus will target to discovering the best combination rule of evidence

both for a sound decision on an appropriate choice of relations and for practical

implementation.
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Chapter 6

Knowledge Acquisition

In the two previous chapters, rough set models characterized by a valued tolerance

relation and some Dempster-Shafer theory-based relations have been introduced to

deal with imperfect information systems. This chapter will discuss how to apply such

kind of rough set models in machine learning and data mining. Possible concerned

applications are feature selection (reducts and core) and decision rule induction. In

the discussion of each task, before proposing new approach, we review methods

published in the literature and point out reasons why they may not be applied in

the case.

In this chapter, for convenience, the relation between x, y ∈ U is RP (x, y) with

respect to attribute set P ⊆ A in imperfect information system I = (U,A) such

that RP is either the extended tolerance relation or Dempster-Shafer based relations.

Methods to obtain reduct and core and to derive decision rules for imperfect

information systems then will be introduced.
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6.1 Reducts and core

6.1.1 Discernibility Matrices

The concept of reducts and cores was introduced by Pawlak [60] for complete

information system. A useful method of deriving reducts and cores was introduced

by Skowron in the form of discernibility matrices [68]. This representation has

been applied in many rough set approaches. In the case of incomplete information

systems [37], we consider a matrix of |U | × |U | having the next set as its elements at

row x and column y:

σA(x, y) = {a ∈ A|TOR{a}(x, y) = false}. (6.1)

The entry σA(x, y) is clearly the set of all of attribute attributes that discern

objects x and y. The entry could be empty if x is tolerant of y with respect to the

whole attribute set A.

Let ∨σA(x, y) be a logical function representing ∨a∈σA(x,y)σA(x, y), where a is

interpreted as a proposition that “attribute a can discern objects x and y”. The

logical function ∨σA(x, y) gives knowledge about which attribute are necessary to

discern x and y. For example, ∨σA(x, y) = a1 ∨ a2, where a1, a2 ∈ A, means we need

a1 or a2 to discern x and y. If σA(x, y) = ∅, then ∨σA(x, y) = false and x and y

are thus tolerant of each other. The next function is called discernibility function for

object x.

∆(x) =
∧
y∈U

∨
σA(x, y). (6.2)

For instance, if ∆(x) = (a1 ∨ a2) ∧ a3, we need a1 and a3, or a2 and a3 to discern

x from other objects.
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Table 6.1: An example of incomplete decision table

Cases a1 a2 a3 a4 d
x1 2 1 * * d2

x2 * 1 1 1 d1

x3 1 1 1 * d2

x4 1 1 2 1 d2

x5 2 1 2 * d2

x6 * 2 1 1 d3

Table 6.2: The discernibility matrix1

Cases x2 x3 x4 x5 x6

x1 a1 a1 a2

x2 a3 a3 a2

x3 a3 a1, a3 a2

x4 a1 a1, a3

x5 a1, a3

The discernibility function to discern all objects from each other is consequently

defined as:

∆ =
∧

x,y∈U×U
x 6=y

∨
σA(x, y). (6.3)

Table 6.1 is used to illustrate the method of discernibility matrices. From this

table, the matrix shown in Table 6.2 is derived. Based on this, discernibility functions

can be induced as follows:

∆(x1) = a1 ∧ a1 ∧ a2 = a1 ∧ a2,

1Note that discernibility matrix are symmetric so we need only half of the elements in the table.
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∆(x2) = a3 ∧ a3 ∧ a2 = a2 ∧ a3,

∆(x3) = a1 ∧ a3 ∧ (a1 ∨ a3) ∧ a2 = a1 ∧ a2 ∧ a3,

∆(x4) = a1 ∧ a3 ∧ a3 ∧ a1 ∧ (a2 ∨ a3) = a1 ∧ a3,

∆(x5) = a3 ∧ (a2 ∨ a3) ∧ a1 ∧ (a2 ∨ a3) = a1 ∧ a3,

∆(x6) = a2 ∧ a2 ∧ a2 ∧ (a2 ∨ a3) ∧ (a2 ∨ a3) = a2,

∆ = a1 ∧ a2 ∧ a3 ∧ (a1 ∨ a3) ∧ (a2 ∨ a3) = a1 ∧ a2 ∧ a3.

Because ∆ = a1∧a2∧a3, P = {a1, a2, a3} is thus only one reduct of this information

system.

According to [61, Chapter 5], the method of obtaining reduct and core has many

advantages, in particular it enables simple computation. This approach, however,

cannot be applied to some rough set models, for example, with relations defined

in [51, 52, 54, 76, 83]. In Table 6.1, using the limited tolerance relation [76], x1 and

x2 are discerned by individual attribute a1, a3 or a4. However, x1 is tolerant of x2

based on A = {a1, a2, a3, a4}, such that LTORA(x1, x2) = true. In the other words,

we could not distinguish x1, x2 even a1, a3 or a4 do exist.

There is another approach to obtain reducts and cores that could deal with missing

values in incomplete information systems [39]. This method computes significances

of every attributes based on the notion of rough entropy [4, 29]. This approach,

however, faces the same problem regarding to the above explanation.

6.1.2 Reducts and Cores in Imperfect Information Systems

In this section, we shall propose a method to derive reducts and cores for imperfect

information systems based on extended tolerance relation as well as Dempster-Shafer

based relation. In Chapter 2, the definition of reducts and cores are discussed for

complete information system. Reducts and cores in imperfect information system is

also defined as follows:
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Definition 6.1.1. A set of conditional attributes P ⊆ A is a reduct of an imperfect

information system, if the neighbourhoods induced by P are the same as the

neighbourhoods induced by all of the attributes in set A and no attribute can be

removed from P without changing the neighbourhoods.

To obtain reducts and cores, we introduce a comparison function of two attribute

sets.

Definition 6.1.2. The comparison, a Boolean function between two relations in

terms of two attribute sets P,Q ⊆ A in an imperfect information system is defined

as follows:

ω(P,Q) = (∀(x, y) ∈ U × U,RP (x, y)⇔ RQ(x, y)). (6.4)

If ω(P,Q) = 1, two relations developed from two different attribute sets P,Q

make the same neighbourhoods. Now, for imperfect decision tables, relative reducts

and cores are obtained based on a function called generalized decision function. A

generalized decision function of object x is the set of decision of objects belonging to

the successor or predecessor of x.

Definition 6.1.3. In imperfect decision table I = (U,A ∪ {d}), P ⊆ A is a set of

conditional attributes and F (Vd) is the power set of Vd, the function δP : U → F (Vd)

is defined as:

δP (x) = {di ∈ Vd|di = fd(y), y ∈ setRP (x)}, (6.5)

where setRP (x) denotes either successor or predecessor of x.

Definition 6.1.4. The comparison Boolean function between two relations in terms

of attribute sets P,Q ⊆ A in an imperfect decision table is defined as follows:
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ω′(P,Q) = (∀(x, y) ∈ U × Γx, RP (x, y)⇔ RQ(x, y)), (6.6)

where Γx = {z ∈ U |fd(z) 6∈ δP (x)}.

Proposition 6.1.1. Attribute a ∈ A is indispensable in A if and only if ω(A −

{a}, A) = 0 for imperfect information systems and ω′(A − {a}, A) for imperfect

decision tables.

Proof. Attribute a is indispensable in A if and only if (∃x ∈ U, setRA−{a}(x) 6=

setRA(x)) if and only if (∃(x, y) ∈ U × U), RA−{a}(y, x) 6⇔ RA(y, x). Thus, ω(A −

{a}, A) = 0, from Definition 6.1.2, or ω′(A− {a}, A) = 0, from Definition 6.1.4.

This proposition is applied in both imperfect information systems and imperfect

decision tables. Function ω(A − {a}, A) = 0 or ω′(A − {a}, A) = 0 means that if a

is removed from A, the neighbourhoods based on relation R in terms of A− {a} are

different from the neighbourhoods based on A. Attribute a is thus indispensable in

the conditional attribute set A.

Definition 6.1.5. The core of A is the set of all indispensable attributes and defined

by core(A) = {a ∈ A|ω(A − {a}, A) = 0} for imperfect information system and

core(A) = {a ∈ A|ω′(A− {a}, A) = 0} for imperfect decision table.

Proposition 6.1.2. A subset P ⊆ A is a reduct of the imperfect information system

(or decision table) if and only if

(i) ω(P,A) = 1 for imperfect information system (or ω′(P,A) = 1 for imperfect

decision tables).

(ii) for all a ∈ P , ω(P − {a}, P ) = 0 for imperfect information system (or ω′(P −

{a}, P ) = 0 for imperfect decision tables).
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Table 6.3: An imperfect table for knowledge acquisition

Cases Temperature Headache Nausea Flu
x1 high yes:0.9; no:0.1 no yes
x2 very-high yes yes yes
x3 high:0.3; normal:0.7 no no no
x4 high yes yes yes
x5 high yes:0.1; no:0.9 yes no
x6 normal yes no no
x7 normal no yes no
x8 very-high:0.3; high:0.7 yes yes:0.7; no:0.3 yes

Proof. Following the definition of reducts stated at the beginning of this section,

P ⊆ A is a reduct if and only if

(i) neighbourhoods of any objects induced by P are the same as the neighbourhoods

of these objects induced by all attributes in set A.

(ii) no attribute can be removed from set P without changing neighbourhoods of

objects.

Based on Definitions 6.1.2 and 6.1.4, we have (i) ⇔ ω(P,A) = 1 for imperfect

information systems (or⇔ ω′(P,A) = 1 for decision tables). For the second condition,

(ii) means all attributes in P are indispensable. Consequently, (ii) ⇔ for all a ∈

P , ω(P − {a}, P ) = 0 for imperfect information systems (or ⇔ for all a ∈ P ,

ω(P − {a}, P ) = 0 for imperfect decision tables), according to Proposition 6.1.1.

The information presented in Table 6.3 is used to illustrate the method. In

this example, suppose that the extended tolerance relation method introduced in

Chapter 4 is employed. The chosen threshold α is 0.1. Tolerance degrees among

objects in terms of all attributes are calculated based on extended tolerance relation

and then shown in Table 6.4. Note that tolerance relations are symmetric so we need
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Table 6.4: Tolerance degrees among objects on all attributes

x2 x3 x4 x5 x6 x7 x8

x1 0 0.515 0 0 0 0 0.095
x2 0 0 0 0 0 0.605
x3 0 0 0 0 0
x4 0.550 0 0 0.745
x5 0 0 0.024
x6 0 0
x7 0

Table 6.5: Tolerance degrees among objects on {Headache,Nausea}

x2 x3 x4 x5 x6 x7 x8

x1 0 0.550 0 0 0.950 0 0.135
x2 0 1.000 0.550 0 0 0.850
x3 0 0.135 0 0.850 0
x4 0.550 0 0 0.850
x5 0 0.950 0.035
x6 0 0.650
x7 0

only half of the elements in the table. The italic styled numbers highlight the degrees

that are greater or equal the threshold.

The tolerance degrees among objects when each attribute in {Temperature,

Headache, Nause} is removed are also displayed in the tables from 6.5 to 6.7.

From the tables of tolerance degrees, it is easily seen that w(A,A−{Temperature} =

0 because ETR0.1
A (x1, x8) = false, while ETR0.1

A−{Temperature}(x1, x8) = true. Thus,

Temperature is indispensable. In the same way, Headache and Nausea are also

indispensable. Therefore {Temperature,Headache,Nause} is the core and also the

unique reduct of this information system.
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Table 6.6: Tolerance degrees among objects on {Temperature,Nausea}

x2 x3 x4 x5 x6 x7 x8

x1 0 0.650 0 0 0 0 0.105
x2 0 0 0 0 0 0.105
x3 0 0 0.850 0 0.032
x4 1.000 0 0 0.245
x5 0 0 0.245
x6 0 0
x7 0

Table 6.7: Tolerance degrees among objects on {Temperature,Headache}

x2 x3 x4 x5 x6 x7 x8

x1 0 0.015 0.950 0.590 0 0 0.315
x2 0 0 0 0 0 0.650
x3 0 0.135 0 0.850 0
x4 0.550 0 0 0.850
x5 0 0 0.035
x6 0 0
x7 0

6.2 Decision Rules

Rule induction is one of the most important knowledge discovery techniques in

machine learning. A decision rule can be presented in the following expression:

r : ∧i(ai = v)→ (d = w)

where ai ∈ A, v ∈ Vai , and d and w is the decision attribute and a decision value

respectively. Set Ar = ∪{ai} is called condition set and attribute d is call decision of

rule r. Hereafter, fa(r) and fd(r) represent the value of attribute a ∈ Ar and decision

d, respectively, in r. RP (x, r), the same symbol for a relation between objects, is used

to represent the relation between object x and the conditional part of r with respect

to attribute set P ⊆ A.
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In supervised learning, rules are obtained from information which consists of

conditional and decisional attributes. However, due to imperfect data and/or some

other reasons, rules may conflict with each other. In Table 3.1 for example, the rule

from case x4: (Temperature = high)∧(Headache = yes)∧(Nause = yes)→ (Flu =

yes) conflicts with the rule of x5: (Temperature = high)∧ (Nause = yes)→ (Flu =

no) if it is assumed that the missing value of Headache is “yes”.

Rough sets, which describe a set of objects in the approximation space, play a vital

role in rules induction. Rules induced from the certain region (lower approximation)

and possible region (upper approximation) of a concept are called certain and possible

rules respectively [24, 87]. The following subsections discuss the limitation of a famous

algorithm and introduce a method to deriving certain and possible rules in imperfect

information systems.

6.2.1 LEM2 Algorithm

Among published rule induction algorithms, LEM2 (Learning from Examples Module,

version 2) of LERS (Learning from Examples using Rough Sets) is used commonly

since it gives better results [24]. The algorithm is based on the idea of blocks of

attribute-value pairs. For an attribute-value pair (a, v), a block [(a, v)] is a set of

all cases from U such that for attribute a has value v. This algorithm can be also

used for some rough set approaches in incomplete information systems [21, 73, 87] in

which objects belong to the block [(a, v)] if their values on a are tolerant of (similar

to) v. Let B be a non-empty lower or upper approximation of a concept represented

by a decision-value pair (d, w). Let us say that the set B depends on a set T of

attribute-value pairs if and only if

∅ 6= [T ] = ∩(a,v)∈T [(a, v)] ⊆ B (6.7)
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Table 6.8: An example incomplete table

Cases a b d
x1 a1 * d1

x2 * b1 d1

From the equation, it could be believed intuitively that the less cardinality of T

is the more objects T covers. Thus, set T is called a minimal complex of B if and

only if B depends on T and no proper subset T ′ exists such that B depends on T ′.

LEM2 algorithm defines each rule based on a minimal complex.

However, as the same problem with the method of discernibility matrices to

induce reducts and core, the belief mentioned above also does not hold in some cases

such as relations defined in [51, 52, 54, 76, 83]. For example, using the limited

tolerance relation [76], the pair {(a, a1)} covers only x1, {(b, b1)} covers only x2, yet

{(a, a1), (b, b1)} covers both x1 and x2 in Table 6.8, which violates the intuitive belief.

Thus, in the next subsection, we will introduce a method to derive decision rules for

not only valued tolerance/similarity relation and Dempster-Shafer based relation but

also for other approaches in imperfect decision tables.

6.2.2 Obtaining Decision Rules in Imperfect Information

Systems

Taking imperfect data representation introduced in Chapter 3, Section 3.3 into

account, a method to obtain decision rules in imperfect information systems will be

step by step introduced.

Definition 6.2.1. In imperfect decision table I = (U,A ∪ {d}), let txa,i be the i -th

possible value set of object x ∈ U on attribute a ∈ A, a candidate rule set suggested

from object x is denoted by S(x) and defined by the following equation:
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S(x) = {r|(a ∈ P ⊆ A,P 6= ∅, fa(r) ∈ ∪itxa,i) ∧RP (x, r)}. (6.8)

In the definition, possible conditional values of the candidate rule r are limited

using the possible values sets of object x and the conditional part of the rule should

be tolerant of (similar to) the object x with respect to attributes in Ar. From this

definition, the suggested rule set S(X) of an object set X ⊆ U is defined by

S(X) = ∪x∈XS(x) (6.9)

On the other hand, for rule r, a set of objects that rule r covers is defined by the

following equation

G(r) = {x|x ∈ U,RAr(x, r)} (6.10)

Rule r is optimal if and only if no rule r′ exists such that Ar′ ⊂ Ar, ∀a ∈ A′r,

fa(r) = fa(r
′), and G(r′) = G(r). Let G(R) = ∪r∈RG(r) denotes the set of objects

that rule set R covers, two new region concepts are defined as follows:

Definition 6.2.2. A rule set R is called a lower covering of a set of objects B if only

if the following conditions are satisfied:

1. each member of R is a optimal.

2. ∀r ∈ R, G(R− {r}) ⊂ G(R).

3. G(R) ⊆ B

4. and there is no rule set R′ such that G(R) ⊂ G(R′) ⊆ B

Definition 6.2.3. A rule set R is called an upper covering of a set of objects B if

only if the following conditions are satisfied:
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1. each member of R is a optimal.

2. ∀r ∈ R, G(R− {r}) ⊂ G(R).

3. G(R) ⊇ B

4. and there is no rule set R′ such that G(R) ⊃ G(R′) ⊇ B

Based on the two definitions above, we suggest an algorithm to induce certain and

possible rules by finding lower and upper coverings of a set of objects as follows:

Input: A set of object X ⊆ U

Output: lower covering R and upper covering R of X

Step 1:

Make a candidate rule set L = S(X);

Remove any rule in L which is not optimal;

L′ := {r|r ∈ L,G(r) ⊆ X};
L := L− L′;
R := ∅;
B := X;

Step 2:

If B = ∅ or L′ = ∅ then go to step 3;

Select the rule r ∈ L′ such that G(r) ∩B is the maximum;

If a tie occurs, select the rule with the smallest |Ar|;
If another tie occurs, select the first rule;

R := R∪ {r};
B := B − (B ∩ G(r));

Remove from L′ all rules r such that B ∩ G(r) = ∅;
Repeat the step 2;

Step 3:

R := R
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Table 6.9: Candidate rules2

Rules Temperature Headache Nausea Covered objects
r1 no x1, x3, x6, x7, x8

r2 yes x1, x2, x4, x5, x6, x8

r3 yes no x1, x6, x8

r4 no x1, x3, x5, x7

r5 no no x1, x3

r6 high x1, x3, x4, x5, x8

r7 high no x1, x3, x8

r8 high yes x1, x4, x5, x8

r9 high yes no x1, x8

r10 high no x1, x3, x5

r11 high no no x1, x3

r12 yes x2, x4, x5, x7, x8

r13 yes yes x2, x4, x5, x8

r14 very-high x2, x8

r15 high yes x4, x5, x8

r16 very-high no x8

Step 4:

Remove from L all rules r such that B ∩ G(r) = ∅;
If B = ∅ or L = ∅ then stop;

Select the rule r ∈ L such that G(r)−B is the minimum;

If a tie occurs, select the rule such that G(r) ∩B is maximum;

If a tie occurs, select the rule with the smallest |Ar|;
If another tie occurs, select the first rule;

R := R∪ {r};
B := B − (B ∩ G(r));

Remove any rule r ∈ R such that G(r) ⊂ G(R− {r});
Repeat the step 4;

Returning to the information in Table 6.3, using extended tolerance relation, the

threshold α is supposed to be 0.1,. It is then possible to induce certain and possible

rules for the concept X = {x|fFlu(x) = yes}.
2The absence of attribute values in a rule mean those value are not exist in conditional part of

that rule.
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At first, candidate rule set S(X) in which any rules that can satisfy one or more

cases in Table 6.3 is determined using equations (6.8) and (6.9). Then rules, that are

not optimal, will be removed. Rule r′ : (Temperature = very−high)∧ (Headadge =

yes) → (Flu = yes), for example, is not optimal because it covers the same set

{x2, x8} with rule r14 : (Temperature = very − high) → (Flu = yes) while Ar14 ⊂

Ar′ . The rules that are optimal are shown in Table 6.9. Then, to find certain rules,

rules in a candidate set which cover only objects belonging to X should be chosen.

Thus, the candidate set for certain rules is L′ = {r9, r14, r16}.

Going to the step 2 that is the step to induce certain rules, the maximal cardinality

of G(r) ∩ B is two. So the rule r14 that has the smallest number in cardinality of

its conditional attribute part is selected such that |Ar14| = 1. The first certain rule

presented by the first element of the lower covering, therefore, is:

(Temperature = very − high)→ (Flu = yes).

The above rule is now added to the certain rule set. All covered objects - x2, x8

- of this rule are also removed from the uncovered object set B, such that B =

B − {x2, x8} = {x1, x4}. Rule r16 is then deleted from L′ because it does not cover

any object in {x1, x4}. Next, rule r9 is chosen and it covers x1. The next certain rule,

thus, is:

(Temperature = high) ∧ (Headache = yes) ∧ (Nausea = no)→ (Flu = yes).

The step is stopped because L′ = ∅.

Going through the step 3 and 4, the possible rule set of the concept X is obtained

as follows:
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(Temperature = high) ∧ (Headache = yes)→ (Flu = yes),

(Temperature = very − high)→ (Flu = yes).

From the above, it is possible to see that x4 does not support any certain rule.

This is because any candidate rule in S(x4) would cover some other objects with

Flu=no. This type of rule may be present in possible rules instead.

6.3 Summary

In this chapter, the methods to obtain reducts and core and to derive decision rules

for imperfect information systems are introduced. These processes could avoid the

problems of algorithms published in the literature as discussed in each section.

At first, some steps to obtain reducts and cores are defined. A potential drawback

of the proposed approach is the computational complexity. However, an idea that is

a combination between the method of discernibility matrices and this method would

be a better solution. We are studying this direction and will complete it in the near

future.

Besides, a method of obtaining decision rules from an imperfect decision table

was also discussed and proposed. At the same time, the algorithm also can produce

both certain and possible rules without calculating approximation space for any set

of objects.
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Chapter 7

Conclusion

7.1 Summary of The Research

This research studies rough sets in imperfect information systems and establishes

two new models based on valued tolerance relation and Dempster-Shafer theory

based relation. Techniques to acquire knowledge in imperfect decision tables are

also suggested.

To begin with, the original rough set theory proposed by Pawlak and some

extended rough set models have been introduced. The basic concept of rough sets

is defined based on indiscernibility relations among data items. As a generalization,

Bayes rough set model based on variable precision is suitable for dealing with practical

human evaluation data. Another extension of rough set - fuzzy rough set - that is a

combination of fuzzy sets and rough sets, benefits the use of level in approximation

space definition by using membership functions. To be applied in real database, rough

set definitions for any relations are also reported. An arbitrary relation may have one

or more of reflexive, symmetric and transitive properties rather than all of properties

like equivalence relations in original rough set model.
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At the second point, the original rough set is also expanded to adapt requirements

of incomplete data in information systems, in which values may be lost or unknown.

As the simplest method, missing values are considered as the same as any possible

values. Tolerance/similarity relations among items are then defined based on

comparison between object attribute values for each attribute.

In real applications, however, information might be described imperfectly due to

not only missing values but also due to uncertainty and imprecision. A value is

uncertain when it is associated with probabilities. While, an object attribute value is

imprecise when a set of possible values is given. To deal multiple types of imperfection

in a single solution, this research suggests a representation of imperfect values.

Having studied several conventional methods to deal with missing values and

researched some special database, we next propose a new rough set model based on

valued tolerance relations. Frequencies of values appearing on a data set are used

for estimating probabilities of matching among data items on an attribute. They

are then employed for measuring tolerance degrees. Given a threshold for controlling

uncertainty level, a tolerance relation is defined.

Apart from valued tolerance relations, a relation based on Dempster-Shafer theory

is also introduced. Taking advantages of Dempster-Shafer theory that allow us to

assign a probability mass to a set of events into account, we first defined several

basic relations among objects on an attribute and determine mass assignment for

occurrence of these basic relations. Considering each attribute as a source of evidence,

a combination rule is then employed for calculating belief and plausibility functions on

the whole attribute set. Some equivalence, tolerance and similarity relations among

objects are then defined by comparing belief or plausibility of several hypotheses.

Finally, based on two rough set models introduced above, methods to acquire

knowledge in imperfect information system are also introduced. Due to the fact that
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algorithms published in the literature cannot be used in not only two new models but

also in some other approaches, techniques to derive reducts and core and to obtain

decision rules should be redefined. In this discussion, the algorithm of deriving rules

is able to obtain certain and possible rules without calculating approximations.

7.2 Contributions

The overall contribution of this research is introduction of rough set models

in imperfect information systems from their definitions to their applications of

knowledge discovering in such systems. The significant contributions could be stated

as follows:

1. The first is introduction of an imperfect data representation into rough set

models including missing, uncertain and imprecise values. It can also represent

fuzzy data. The representation could be utilized for any study in imperfect

information systems.

2. The second is proposing two rough set models which can define approximations

in information systems containing multiple types of imperfection. Those

approaches could open a new direction of rough set studies in imperfect

information systems.

3. The third is solving an issue existing in controversial models for incomplete

information systems. Using threshold for widening or thinning boundaries in

the extended tolerance relation, the problem of the tolerance relation is then

solved efficiently.

4. The last is suggesting techniques in knowledge discovery. The techniques allow

not only two rough set models proposed in the research but other models also to

98



be used for obtaining reducts, core and for deriving decision rules in imperfect

information systems.

7.3 Limitations

Studying rough sets in imperfect information systems is likely to bring much

advantage to knowledge discovery processes. Nevertheless, there are still a few

limitations in each discussion that would be studied in the future. At first, the

Dempster-Shafer theory based relations may require a complex computation due to

the combination rule of evidence. However, this is not in the scope of rough set

study. We thus only hope that the problem inherent in Dempster-Shafer approach

can be solved in the near future. Second, the computation of reducts and cores also

takes time. We also addressed an idea of discernibility matrices notion as a solution

to solve the problem.

7.4 Future Works

For further studying, we target three directions: solving the limitations existing in

the current work, applying the proposed rough set models to other machine learning

techniques, and implementing these models in a real application.

First of all, limitations of the current approach would give us the further work

of the research. The computation time to obtain reducts and core should be cut

down by applying the notion of the discernibility matrices. Formally, instead of

determining the matrix of |U | × |U | having the next set as its elements at row x and

column y by σA(x, y) = {a ∈ A|R{a}(x, y) = false}, we could define the elements

by σA(x, y) = {P |RP (x, y) = false}, where P ⊆ A is optimal such that there is
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x1 x2 x6 

x3 x4 x5 

Figure 7.1: A social network

no P ′ ⊂ P , RP ′(x, y) = false. The new entry σA(x, y) is the set of minimum

attribute sets which discern objects x and y. It is also possible to reduce the time

of the process to find out P for forming entry σA(x, y) in the above equation. Let

B = {a ∈ A|[∪ita,i(x)]
⋂

[∪ita,i(y)] = ∅}, objects x and y are clearly discerned by any

P ⊆ B, |P | = 1. The remain task is thus examining subsets of A− B for producing

entry σA(x, y).

The second target is using rough set models to deal with problems faced in social

network study [33, 64, 77]. Let take an example of analysing roles and positions of

people in a society. A role of each person is clarified by his connections to others.

Intuitively, two people may have the same role or position in their society if they have

relationships to the same group of people. A social network shown in Figure 7.1, for

example, illustrates a society. This society is made up from a collection of six people

from x1 to x6. Connections among individuals represent their relationship. In this

society, x1 and x2 have the same role because they connect to x3, x4 and x5. In social

network technique, this phenomenon is named as structural equivalence.

However, human relations among individuals are often complicated. A person may

have multiple connections to others. For example, Terry is a classmate of James at

high school and they are colleagues because they are working for the same company.
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Table 7.1: An information system of social connection

U x1 x2 x3 x4 x5 x6

x1 0 0 1 1 1 0
x2 0 0 1 1 1 0
x3 1 1 0 0 0 0
x4 1 1 0 0 0 0
x5 1 1 0 0 0 1
x6 0 0 0 0 1 0

In addition, human relationships are likely uncertain. For instance, we can assess a

friendship based on how close the friendship between two people is or how frequently

they get together.

In such kind of system, to analyse roles of people for multiple types of relations,

it is possible to use rough set models discussed in this research. A group of people

will present a universe of a system. Each people will also be a conditional attribute

of the system. Table 7.1, for example, shows complete information system I = (U,A)

induced from the social network in Figure 7.1 where U = {x1, x2, x3, x4, x5, x6} and

A = {x1, x2, x3, x4, x5, x6}. An object attribute value is 1 if there is a connection

between two people, otherwise the value is 0. In this table, x1 and x2 are equivalent

in terms of A. For complex human relations, it is possible to define an imperfect

information system and introduce a so-called structural tolerance relation using this

notion. We thus are able to classify groups of people playing the same role by inducing

approximations.

The last vital target is finding out a possible application of the discussed models,

hence these approaches become meaningful. In actual applications, there are many

situations in which we have to describe examples with imprecise as well as uncertain

representation rather than with singleton values. Affective images and impression

that are used in Kansei engineering [46, 47] are good examples.
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Table 7.2: Kansei information table for mobile phone design

U a1 a2 a3 a4 D
x1 2 1 0 0.8[metal],0.2[plastic] deluxe
x2 {1,2} 1 {0,1} 1.0[metal] deluxe
x3 2 {0,1} 1 0.7[metal],0.3[plastic] deluxe
x4 0 2 {1,2} 0.1[metal],0.9[plastic] cute
x5 1 0 2 0.2[metal],0.8[plastic] cute
x6 1 {0,1} 1 1.0[plastic] sporty
x7 1 0 {0,1} 0.1[metal],0.9[plastic] sporty
x8 2 0 0 1.0[plastic] sporty

WEB-based form feature extraction system for mobile phone design [62, 90] is

an example of applications. Some features of mobile phone design including body

shape, partition, screen position, arrangement of number keys, and function keys are

selected to evaluate. Numerous interviewees are then invited to give their felling about

combination of features. The product knowledge representation system in [62] allows

interviewees to chose just one value for each feature. However, human impression

probably need more than that. They may chose something between round and sharp

corners, for example, to evaluate each body shape from images provided.

To solve the problem above, it is possible to present impression data by uncertain

or imprecision values. Let the product feature set be A = {a1, a2, a3, a4}, which

denotes body shape, body ratio, bottom shape, material, respectively, and Kansei

adjectives set be D = {deluxe, cute, sporty}. Each kind of body shape, body ratio,

corner shape is shown by a picture and assigned with a number. Material types

are plastic and metal. A possible example of evaluation of interviewees is shown

in Table 7.2. Approximations are then derived based on rough set approach

discussed in this research. Consequently, these approximations could be used in

Kansei knowledge acquisition methods in [62, 90].
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7.5 Last Summary

In this research, we tried to convince the readers why a discussion of rough set models

is necessary for imperfect information systems. Two new approaches are also proposed

along with methods for acquiring knowledge hidden in decision tables. Although there

are still some problems encountered, we pointed out solutions and suggest applications

of the research. We hope that the issues can be solved in the near future and the

results become useful in actual applications.
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1343-0130, Fuji Technology Press Ltd. (May 2014).
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Applications, Vol. 89, No. 5, pp.1-8, Published by Foundation of Computer
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