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Abstract  

 

 

In the temperature field, a small particle will move towards the lower temperature 

side. This phenomenon is called thermophoresis, which influences the movement of soot 

particles in exhaust gas from combustors. In recent years, our group has developed a 

device for conducting experiments repeatedly under a microgravity environment in a very 

short period time, i.e. 0.3 s, by means of the free-fall method, to accumulate data of the 

thermophoretic velocity.  

Considering the environment of soot, it is indispensable to understand 

quantitatively the phenomenon for a gas mixture. However, before analyzing the 

phenomenon for the gas mixture, it would be desirable also to know the characteristics of 

the phenomenon for each gas component, since the combustion gas mixture contains 

many gas species. In the present work, the investigations have been carried out to 

examine the influence of gas species on thermophoretic velocity of particle. 

As the first step, the characteristics of the thermophoresis for several pure gases, 

i.e., argon, nitrogen, and carbon dioxide are experimentally examined. Particles adopted 

are PMMA spheres of 2.91 µm in mean diameter. The temperature gradient is set at 

10 K/mm, and the pressure is set at several conditions in the range from 20 kPa to 

100 kPa. Obtained experimental results are compared with theoretical predictions; a 

notable discrepancy is found for carbon dioxide, while the results for other two gases are 
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consistent with predictions. Some attempts are made to fix the discrepancy: first by 

modifying constants and second by modifying two empirical coefficients in the theory.  

In the next step, an attempt is made to investigate dependence of thermophoretic 

parameters on gas properties. Atmospheric gases chosen are pure gases of argon, nitrogen, 

carbon dioxide, methane, and nitrous oxide. The residue values for all combinations of 

the coefficients are calculated from the obtained experimental results; several 

combinations of the coefficients are possible to fit the prediction with the experimental 

results. The tangential momentum accommodation coefficient is estimated by assuming 

the thermal accommodation coefficient to be unity. Physical relationships between the 

coefficient and gas properties are investigated.  

In the final step, the thermophoretic velocity is experimentally investigated for 

several gas mixtures, i.e., argon-nitrogen, argon-carbon dioxide, and nitrogen-carbon 

dioxide. The temperature gradient and the pressure are 60 K/mm and 70 kPa, respectively. 

The tangential momentum accommodation coefficient is estimated from experimental 

result by assuming the thermal accommodation coefficient at unity, and it is compared 

with predictions calculated from values of composing pure gases by means of some 

methods given in references; among those methods, the intermolecular-interaction-based 

method is found to be the best for all mixture conditions.  
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Chapter 1  

 

Introduction  

 

 

1.1 Background 

The improvement in technology produces development in transportation and 

industrial such that our lives become convenient. However this improvement requires 

increment in the energy consumption. Since 1970, the world energy consumption growth 

is about 2.3% per year [1]. It is estimated about 86% of the energy source is produced 

from fossil fuels such as coal, petroleum, and natural gas. Fossil fuels are of great 

importance since they can produce significant amount of energy per unit weight. 

Consumptions of all these three sources have been increased such that the reserves of 

these sources have been used up quickly. Some developments have been done to produce 

alternative energy from the non-fossil sources such as nuclear and biomass energies. 

Some of these developments have reached the practical stage but only 16% of the global 

final energy consumption comes from these sources. Currently, fossil fuels are still 

considered as valuable energy sources; which is important to be used efficiently. 

Significant amount of heat energy is released due to the combustion of fossil fuels. 

However, the use of fossil fuels raises the environmental concerns. Burning of fossil fuels 

produces carbon dioxide, which is one of the greenhouse’s gases that enhances radiative 

forcing, which contributes to global warming. It is important to understand the 
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combustion phenomenon in a combustion chamber since improvement of the energy 

efficiency will produce undesirable gas emissions and environmental pollution.  

Soot is one of the main pollutants emitted from the combustion devices. It is 

important to understand the behavior of soot particles in the combustion field for 

emission control. Dobashi et al. [2] have conducted experiments to examine smoke 

generation process in a flickering pool fire and have found the residence time of soot 

particle in the soot production is increased by the flickering motion of the flame. It is 

noted that the thermophoretic force might increase the residence time in the soot 

production region. Quantitative understanding of the phenomenon is indispensable for 

controlling the movement of particles in this system.  

There have been some direct measurements on the thermophoretic phenomenon 

of such an aggregate particle. Zheng and Davis [3] have measured the thermophoretic 

force acting on an aggregate of polystyrene latex spheres, and found that the force is 

affected by the number of primary spheres in the aggregate. Suzuki and Dobashi [4] have 

conducted direct measurements on the thermophoretic velocity of the soot particles, and 

have revealed that the velocity is dependent not only on the macroscopic size of the soot 

particle but also on the aggregation condition; experimental results suggest that this 

phenomenon is dominated by the size of primary spheres when the aggregation is coarse. 

Thus, prior understanding for an aggregate, well knowledge about the phenomenon for a 

single sphere is important. 
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1.2 Existing Theory of Thermophoresis  

Thermophoresis is the phenomenon that a small particle in a gas with a 

temperature gradient moves toward the lower temperature side. This phenomenon is 

caused by the momentum exchange between the gas molecules and the particle. The 

primary mechanism of this  exchange  is  the gas molecules  collide  from  the higher 

temperature side and later transfer negative momentums to the particle with  amount that 

exceed  those of  positive  momentums  transferred  by  the gas  molecules colliding from 

the lower temperature side. As the result of this momentum exchange, both the particle 

and the surrounding gas move in mutual opposite direction. The flow of the gas is 

referred to as the superficial slip flow.  

There are several theoretical works have been carried out to study the 

thermophoretic phenomenon of a spherical particle. Theories of this phenomenon are 

derived by considering the boundary condition on the surface of a single spherical 

particle suspended in a gas with a temperature gradient. Brock [5] derived a theoretical 

solution to the thermophoretic force on the particle by applying a slip boundary condition 

on its surface, which includes effects of the thermal slip, the viscous slip, and the 

temperature jump. The equation is shown as below: 

( )
( )( )

)11(,
221212

9

0

−∇
+++

+
−= T

KnCkKnC

KnCk

T

dµ
F
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T

F

2

T ρ
π

 

where µ, d, |∇T|, ρ, TF0, k, Kn, CM, and CT  are the viscosity, the particle diameter, the 

temperature gradient, the density of the surrounding gas, the reference temperature, the 

gas-to-particle thermal conductivity ratio, Knudsen number, constants for slip flow, and 

temperature jump, respectively. Here, the reference temperature TF0 is defined as the 

supposed gas temperature at the center of the particle in the given temperature field 
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without the existence of the particle, and Knudsen number Kn is the ratio of the mean-

free-path l  to the particle radius. The mean-free-path is calculated from the following 

equation [6]: 

)21(,
8499.0

0 −= FRT

P
l

πµ  

where P and R are the pressure and the gas constant, respectively. 

Derjaguin and Yalamov [7] derived the thermophoretic velocity from the Brock’s 

theoretical solution by equating the balance between the thermophoretic and the drag 

forces:  

)31(.0 −=+ DT FF  

Here, the drag force FD is given as follows: 

)41(,
3

−=
C

T
D

C

dV
F

πµ
 

where VT and CC are the thermophoretic velocity and Cunningham’s correction factor, 

respectively. The slip correction factor adopted is KnACC += 1 , where 

( )KnA /10.1exp4.0257.1 −+= [8]. Thus, the equation of thermophoretic velocity is 

shown as below: 
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Hoshino et al. [9] have derived an improved theoretical solution of the 

thermophoretic velocity by applying the boundary condition proposed by Lockerby et al. 

[10], which includes the thermal stress slip and the higher order isothermal slip. The 

equation is given as follows: 
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where Pr and γ are Prandtl number and the specific heat ratio, respectively. Detail of the 

derivation of thermophoretic velocity is shown in Appendix A. 

 

1.3 Previous Experiments of Thermophoresis  

Several experiments have been performed to measure the thermophoretic force or 

the thermophoretic velocity. Fredlund [11] attempted a systematic experiment to examine 

the effect of the temperature field upon a disk suspended on a balance. The experiments 

have been performed with various gases: hydrogen, argon, nitrogen, oxygen, and air. It is 

shown that at the given distance between the plates with different temperatures, the 

thermophoretic force is a linear function of pressure.  

The thermophoretic force and the thermophoretic velocity are measured by 

several methods: Millikan cell [12 – 15], electrodynamic balance [16, 17], precipitation 

in a thermoprecipitator [18, 19], jet technique [8, 20, 21], and deflection of a particle 

suspended by a small wire [22, 23].  

Above experimental methods are complex in practical implementation, and as a 

consequence, involve numerous errors. Among those, errors caused by buoyancy are the 

largest problem; in a field with a temperature gradient, buoyancy induces natural 

convection, which influences the movement of particles and disturbs the measurement. 

The velocity of such natural convection is usually comparable to the thermophoretic 

velocity and cannot be measured directly. To avoid this problem, some experiments have 

been conducted under microgravity conditions. Toda et al. [24, 25] performed 
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experiments in a drop tower facility and demonstrated that the microgravity environment 

satisfactorily suppresses the disturbance. Prodi et al. [26, 27] also conducted microgravity 

experiments by means of a drop tower facility and/or parabolic flights. However, their 

reported data still seem to contain some errors, possibly owing to limited trial numbers of 

experiments, so that those data are not sufficient enough to make a quantitative 

comparison with theories [28]. 

 

1.4 Motivation of Present Work 

Recently, our group has developed a device for conducting experiments 

repeatedly under a microgravity environment in a very short period of time, i.e. 0.3 s, by 

means of the free-fall method, to accumulate data of the thermophoretic velocity. It has 

been confirmed that satisfactory accuracy can be attained if the amount of data is 

sufficient for statistical treatment [28]. By comparing the obtained experimental results 

with the existing theory as shown in Eq. (1-5), a notable difference is found for particles 

with high thermal conductivity [29].  

The problem of the difference has been solved by reconsidering the boundary 

condition to improve the theory as shown in Eq. (1-6). Figure 1.1 shows the comparison 

between these equations for PMMA, Al2O3, and Zn. Results show that the prediction 

from Eq. (1-6) agrees satisfactorily with the experiments for all types of test particles.  

Considering the environment of soot, it is indispensable to understand 

quantitatively the phenomenon for gas mixtures. Before analyzing the phenomenon for 

the gas mixture, it would be desirable also to know the characteristics of the phenomenon 

for each gas component, since the combustion gas mixture contains many gas species. 
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Fig. 1.1 Thermophoretic velocities for different type of particles. 

 

1.5 Scope and Objective of Present Work   

The main objective of the present study is to investigate the influence of gas 

species on the thermophoretic velocity. Systematic investigations have been carried out in 

order to achieve the objective. For the first step, the characteristics of the thermophoresis 

for several pure gases, i.e., argon, nitrogen, and carbon dioxide are experimentally 

examined. Obtained experimental results are compared with theoretical predictions; a 

notable discrepancy is found for carbon dioxide, while the results for other two gases are 

consistent with predictions. Some attempts are made to fix the discrepancy: first by 

modifying constants and second by modifying two empirical coefficients in the theory. In 

the next step, an attempt is made to investigate dependence of the thermophoretic 

parameters on gas properties; the thermophoretic parameters for argon and nitrogen are 

reexamined, and compared with those of carbon dioxide, methane, and nitrous oxide. In 

Equation 1-5 

Equation 1-6 
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the final step, thermophoretic velocities are experimentally measured for several gas 

mixtures, i.e., argon-nitrogen, argon-carbon dioxide, and nitrogen-carbon dioxide. The 

tangential momentum accommodation coefficient is estimated from experimental result 

by assuming the thermal accommodation coefficient at unity, and it is compared with 

predictions calculated from values of composing pure gases by means of some methods 

given in references.  

 

 Dissertation Outline 

In Chapter 1, brief introduction about the background and previous theoretical 

and experimental works of thermophoresis phenomenon is described. The motivations, 

scope and objective of the present study have also been addressed.     

Experimental apparatus and particle sample used in the present study have been 

presented in Chapter 2. In the section of experimental apparatus, information about the 

configuration of experimental apparatus, the temperature control, and the relay control 

have been described. Information about the material, the diameter distribution, and the 

mean diameter of particles are reported in the section of particle sample. 

The explanation about the experimental method is given in Chapter 3. 

Information about methods for measurement of the thermophoretic velocity, 

measurement of the temperature field, blowing particles, and experimental condition are 

presented.  

Considering the environment of soot, it is indispensable to understand 

quantitatively the thermophoretic phenomenon for pure gases and gas mixtures. For the 

first step in this investigation, the characteristics of the thermophoresis for several gas 
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species have been experimentally examined in Chapter 4. Atmospheric gases chosen are 

pure gases of argon, nitrogen, and carbon dioxide. Obtained experimental results have 

been compared with theoretical predictions. Some attempts are made to fix the 

discrepancy for carbon dioxide. 

It would be desirable to know physical relationship between the coefficients and 

the gas properties since the combustion gas mixture contains many gas species. An 

attempt is made to investigate dependence of the thermophoretic parameters on gas 

properties; the thermophoretic parameters are examined for argon and nitrogen, carbon 

dioxide, methane, and nitrous oxide. The residue values of all combinations of 

accommodation coefficients are calculated from the obtained experimental results. The 

tangential momentum accommodation coefficient is estimated by assuming the thermal 

accommodation coefficient to be unity. Relations between the tangential momentum 

accommodation coefficient and gas properties have been discussed and presented in 

Chapter 5.  

The obtained experimental results in Chapter 5 show the coefficients are 

approximately the same for argon and nitrogen, while a significant difference is seen for 

carbon dioxide, methane and nitrous oxide. A problem arises here for the treatment of the 

tangential momentum accommodation coefficients for a mixture of pure gases having 

different values. It should better be confirmed even when the mixture is composed of 

pure gases that have the same coefficient value. Therefore, further investigation in 

Chapter 6 has been carried out to determine the tangential momentum accommodation 

coefficient that is estimated from the experimental results by assuming the thermal 

accommodation coefficient at unity. The estimated coefficient has been compared with 
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predictions calculated from values of composing pure gases by means of some methods 

given in the references to determine the appropriate method for evaluating the mixture’s 

coefficients. Gas mixtures chosen are argon-nitrogen, argon-carbon dioxide, and 

nitrogen-carbon dioxide.  

Finally, the general conclusions of the current study and suggestion for further 

research have been addressed in Chapter 7. 
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Experimental Apparatus and Particle Sample  

 

 

2  Experimental Apparatus and Particle Sample 

2.1 Experimental Apparatus 

2.1.1 Configuration of Experimental Apparatus 

Experimental apparatus is divided into three main units: drop tower, drop unit and 

measuring unit. Table 2.1 shows the specification of equipment used in each unit. Each 

unit is explained as follows: 

 

2.1.1.1 Drop Tower 

Figures 2.1 and 2.2 show the overview and the schematic of the apparatus, which 

is included a drop tower, a measuring unit, and a damping cushion. The measuring unit is 

hung at the top of the drop tower by an electric magnet. The unit starts falling when the 

electric magnet is deactivated. The falling distance is 0.6 m, which corresponds to the 

duration time of the microgravity condition at 0.3 s. In this research, the drop tower with 

the height about 2 m is chosen based on consideration of the drop distance, the height of 

the drop unit, and height of the damping cushion.  

The framework of the drop tower is W1 m ×  L0.7 m ×  H2 m and is 

manufactured from angle frames. The base of the tower is fixed to the floor by bolts for 
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preventing the movement of the tower during experiments. The electric magnet is 

attached to the center of the upper of the drop tower to hang the drop unit 1 m height 

from the floor. When the magnet is deactivated, the drop unit falls before it hits the 

damping cushion. The damping cushion is chosen from the commercial comforter and is 

placed inside the cardboard box with the size of W0.9 m × L0.6 m × H0.4 m.  

Figure 2.3 shows a variation of the gravity level during an experiment. The 

gravity level is measured by the G-sensor attached on the measuring unit. The duration 

time of the free-fall is about 0.3 s as seen in the figure. When the electric magnet is 

deactivated at t = 0, the gravity level in z-axis changes from −−−−1.0 G to +0.4 G once, 

possibly owing to the vibrational motion of the frame of the unit, and then decays as time 

passes until the unit reaches the cushion. The range between ±0.1 G in gravity level is 

regarded as the microgravity condition in this work, the duration time of which is about 

0.25 s. 
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Table 2.1 Specification of equipment. 

  
Maker Model Specification 

A 
Electric 

magnet 
Toho Electrical TRM76-24V 

Outward appearance:  

φ 76.3 × 100 

Maximum load: 700 N 

Voltage: DC 24 V 

B G-sensor Slik 
G-MEN 

DR10 

Measurement range: 

 − 10～10 G 

Measurement sensitivity:  

0.1 G 

C G-sensor Slik 
G-MEN 

DR02 

Measurement range:  

− 2～2 G 

Measurement sensitivity:  

0.02 G 

D Laser Broadband 
MGL532-

400-1 % 

Peak power : 500 mW 

Wave length : 501~561 nm 

E 
Electromagnet 

valve 
CKD S-21 

Pressure:  

− 0.1~0.16 MPa 

F 
High-speed 

camera 
Katokoken K-Ⅱ 

Frame rate : 200 fps 

Shutter speed : 1/200 s 

Pixel count : 640 × 480 

G Micro-lens Keyence SLB-50-300P 

Optical magnification : × 2 

Working distance : 66.9 mm 

Imaging view : 2.4 × 1.8 

H Ball valve Swagelok SS-6P6T 
Maximum pressure:  

20.6 MPa 

I Needle valve Swagelok SS-6L 
Maximum pressure:  

6.89 MPa 

J 
Electromagnet 

valve 
CKD AB31022 Input voltage: AC100 V 

K 
Pressure 

gauge 
Migishita S-21 

Pressure range: 

− 0.1~0.16 MPa 

L 
Pressure 

gauge 
Naganokeiki 

DG85-31A-

6C11 
 

M 
Seamless 

cylinder 
Swagelok 304L-HDF2 

Maximum pressure: 

3.44 MPa 

Volume: 150 cm
3
 

N PLC OMRON   

O 
Switching 

power supply 
TDK-Lambda HK150A-24 

Step-down AC100 V to 

DC24 V  

 

 



Chapter 2: Experimental Apparatus and Particle Sample 

 

17 

 

Fig. 2.1 Overview of apparatus. 

 

Fig. 2.2 Schematic of apparatus. 
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Fig. 2.3 Gravity level during experiment.  

Gravity level is measured by the G-sensor which is attached on the measuring unit.  

 

2.1.1.2 Drop Unit  

Figure 2.4 shows the drop unit. The size of the unit is W0.6 m × L0.32 m × 

H0.3 m, which is constructed from the measurement unit, laser, electromagnetic valve, 

and steel plate. The angle frame is used to reduce the vibration during the drop. The steel 

wire and α-gel cushion are assembled to the frame of the unit for reducing the impact at 

the beginning of the drop. The chain is attached to the steel plate, which is connected to 

the electric magnet at the drop tower to hang the drop unit. The unit is hanging 1.0 m 

height from the floor as seen in Fig. 2.2. When the electric magnet is deactivated, the unit 

drops and hits the cushion. 
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Fig. 2.4 Drop unit. 

 

(a) Overview  

(b) Top view  
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2.1.1.3 Measuring Unit 

Figure 2.5 shows the schematic of the measuring unit. The unit includes the 

pressure vessel, the particle reservoir, the laser, and the high-speed camera. This unit is 

assembled on the aluminum base of the drop unit. Figure 2.6 shows the schematic of the 

pressure vessel, which is main part of the measuring unit.  

 

(b) Top view of measurement unit 

(a) Overview of measurement unit 
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Fig. 2.5 Schematic of measuring unit. 

 

(a) Pressure vessel 

Figure 2.6 shows a cross-section of the pressure vessel. Placed in the vessel is a 

cylindrical thin chamber of 1.5 mm in height between two opposing aluminum plates of 

10 mm × 80 mm × 80 mm. The upper plate, initially at the room temperature, is kept cool 

by moving it 15 mm away from the bottom plate while the latter is under the process of 

heating to raise its temperature, which is shown in Fig. 2.6(a). Keeping this arrangement, 

the vessel is evacuated by a pump. When the bottom plate reaches the appointed 

temperature, the upper plate is put in place where the distance between the plates is 

1.5 mm as seen in Fig. 2.6 (b). Then, the vessel is filled with the test gas. The 

(b) Front view of measurement unit 

① Laser ② High speed camera ③ Compound pressure gage  

④ Micrometer pressure gauge ⑤ Seamless cylinder  

⑥ Electromagnetic valve ⑦ Ball valve  

⑧ Needle valve ⑨ Particle reservoir ⑩ Thermocouple   

⑪ Vacuum exhaust valve 
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temperature of the both plates is measured by two thermocouples, which are connected to 

the temperature control unit.  

 

 

Fig. 2.6 Schematic of pressure vessel. 

(a) Heating bottom plate 

(b) During experiment 

⑫  Handle 

 
⑬  Seal valve 
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A sidewall of the vessel is attached with the mirror for capturing the image of 

particles via the high-speed camera. Figure 2.7 shows the coordinate system in the vessel. 

The origin is fixed at the center of the bottom plate. x, y, and z –axis’s represent the 

horizontal, the vertical, and the optical directions, respectively.  

 

 

Fig. 2.7 Coordinate system in pressure vessel. 

 

(a) Top view of pressure vessel 

(b) Side view of pressure vessel 
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(b) Particles blowing 

The method for particles blowing is explained by using Fig. 2.5.  Both inlet and 

outlet valves are open when some particles are inserted to the particle reservoir. The 

pressure vessel is evacuated by the pump before it is refilled with the test gas to the target 

pressure. The compound pressure gauge is used to show the pressure. Later, the 

electromagnetic valves are closed and the small amount of the pressure is added to create 

a different pressure between the right side and the left side of the electromagnetic valve at 

the inlet. This pressure is indicated by the micrometer pressure gauge. Several 

preparatory experiments have been conducted to find the appropriate pressure for 

blowing the particles into the measurement field. The ball and needle valves are closed 

after setting the pressure. The particle reservoir includes the handle allowing the reservoir 

to open and close during the experiment. The reservoir is closed when the pressure vessel 

is evacuated and refilled with the test gas in order to prevent the particles in the reservoir 

from disappearing. The reservoir is opened after setting the blow pressure. 

 

(c) Imaging unit  

Those blown particles are illuminated by the laser beam introduced into the 

chamber to produce scattering lights, the image of which is recorded by a high-speed 

camera under the condition of the frame rate at 200 fps and of the shutter speed at 2 ms. 

The laser used in this research is chosen from the all-solid-state green laser. It is selected 

based on the high output power stability, ultra compact, good beam profile, and easy for 

operating. Since the distance between the plates is only 1.5 mm, the micro-lens is 

attached to the camera to enlarge the image of the measurement field.  
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2.2 Particle Sample 

It is noted that the measurement accuracy of thermophoretic velocity is influenced 

by variation of the size and the shape of particles. In the present work, particles having a 

small variation of the size and the shape are chosen in order to increase the measurement 

accuracy. The thermophoretic velocity is derived from the balance between the 

thermophoretic force and the drag. The drag is estimated from the Stokes’ law. Even the 

shape of particles influences the drag on the particles, the Stokes’ approximation is 

applicable since Reynolds number is far less than one.  

It is necessary to carefully choose the size of particles since the size influences on 

the Knudsen number, which one of the important parameter in the thermophoresis. The 

following conditions should be considered during the selection of the particle: 

(1) Viscosity drag is verified. 

(2) Physical characteristics are known. 

(3) Particle size is in µm. 

(4) Cohesion between particles is difficult to happen. 

(5) Spherical particles. 

Sample particles used in this research are PMMA (polymethylmethacrylate) 

sphere particle from Sekisui Plastics Co., Ltd. The density and the thermal conductivity 

of the particles are 1200 kg/m3 and 0.21 W /(m K), respectively. These particles are 

chosen since the size is quite uniform. Figures 2.8 and 2.9 show the SEM image and the 

probability density distribution of the particles diameter measured from the images, 

respectively. The mean diameter of these particles is 2.91 µm as shown in Table 2.2. 
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Fig. 2.8 SEM image of PMMA particles. 

 
Fig. 2.9 Diameter distribution of particles.  

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

Diameter, d  [μm]

P
ro

b
a
b
il

it
y

 d
e
n
si

ty
, 
[μ

m
-1

]

Diameter, d, µm 

 
P

ro
b

ab
il

it
y

 d
en

si
ty

, 
µ

m
-1

 

0 



Chapter 2: Experimental Apparatus and Particle Sample 

 

27 

 

Table 2.2 Diameters of PMMA particles 

Mean, µm Standard deviation, µm 
Confidence interval (95%) 

for the mean, µm 

2.91 0.09 0.03 
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Chapter 3  

 

Experimental Method  

 

 

3 Experimental Method 

Experimental method is divided into four main sections: measurement of the 

thermophoretic velocity, measurement of the temperature field, method for blowing 

particles, and experimental condition. Each section is explained as follows: 

 

3.1 Measurement of Thermophoretic Velocity 

3.1.1 Reference Temperature  

The thermophoresis is a phenomenon due to the momentum exchange from the 

collision between of gas molecules and the particle. The mean velocity of gas molecules 

increases as the temperature increases, such that the momentum of gas molecules 

increases accordingly. The measurement of the thermophoretic velocity should be taken 

at a fixed temperature since the velocity is dependent on not only the temperature 

gradient but also the temperature itself.  

In this research, two experiments with different conditions are conducted: first is a 

pure gas and another is a gas mixture. For the former one, the thermophoretic velocity is 

measured at 313±2 K. Figure 3.1 (a) shows the position of the reference temperature; 

which is 1.0 mm from the hot surface. For the latter one, the measurement is performed at 
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338±10 K. The position of the reference temperature is determined at 1.2 mm from the 

hot surface as shown in Fig. 3.1 (b). It is noted that the position of the reference 

temperatures are different between these two experiments. The position is related to the 

measurement area. For the former experiment in carbon dioxide, most of particles drop 

quickly than the latter condition. The measurement could not be done since there is no 

particle in the measurement area when the measuring unit is dropped. Thus, the 

measurement area is changed, such that the position is changed accordingly, in order to 

easily capture the image of particles during the experiment.  

 

 

(a) Pure gas 

313 ± 2 K 

10 K/mm 
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Fig. 3.1 Determination of temperature gradient and temperature reference for each 

experiment. 

 

3.1.2 Measurement Software of Thermophoretic Velocity 

The movement of particles is captured via a high-speed camera. The image is 

analyzed by using two-dimensional image measurement software.  Table 3.1 shows the 

specification of the measurement software. This software analyzes the position for each 

selected particle from the image. The position is measured based on two-dimensional 

coordinate. The setting of the brightness and the contrast can be adjusted in order to make 

the image more clearly.  

(b) Gas mixture 

338 ± 10 K 

60 K/mm 
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Table 3.1 Specification of measurement software. 

Name Maker Model Hardware requirement 

A two-dimensional image 

measurement software 

Library 

company 

Move-tr / 

2D 7.0 

OS : 

Windows2000/XP/Vista 

CPU :  

PentiumⅢ and above 

Memory :  

256 MB and above 

 

The thermophoretic velocity is calculated based on position of each particle 

provided via the measurement software. Figure 3.2 shows the position for several PMMA 

particles in surrounding gas of nitrogen. The result shows that the position of particle is 

proportional to the time. In order to obtain accurate results, the measurement of position 

should be larger than 10 scenes. The thermophoretic velocity for each particle is 

estimated by means of the least-squares method. 
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Concerning the measurement from the software, there is a possibility that a 

particle is mistakenly selected. The position of each particle is confirmed from the graph 

in order to remove this error. Figure 3.3 shows the comparison of the movement between 

two particles. In the case of the particle noted as ‘A’, the position is constantly increased 

by the number of scene. On the other hand, in the case of the particle ‘B’, the notable 

change in the position is seen at scene number 24. The thermophoretic velocity is re-

estimated after removing such error. 

 

 
Fig. 3.3 Comparison of movement between particles. 
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3.1.3 Statistical Analysis of Measured Data  

Experiments have been conducted repeatedly to accumulate data of the 

thermophoretic velocity. The satisfactory accuracy can be attained if the amount of data 

is sufficient for statistical treatment. Confidence interval is determined for indicating the 

range of expected mean value of the population.  

For samples X1, X2,..., Xn from a normally distributed population with mean m and 

variance σ2, the probability density of the population is given as follows: 
 
 

,95.096.1 =








≤−
n

mXP
σ

　　  

,96.196.1
n

Xm
n

X
σσ

+≤≤−  

where X and nσ are the sample mean and the standard error, respectively. Equation 

(3-2) expresses the 95% confidence interval of the mean for thermophoretic velocity. In 

this work, it is 95% confident that the mean value is in the confidence interval.  

 

3.2 Measurement of Temperature Field  

The temperature field is created by using the temperature control unit. The lower 

plate is heated via a plate heater while the upper plate is kept cold in order to perform the 

temperature gradient. When the bottom plate reaches its pointed temperature, the upper 

plate is put in the place where the distance between the plates is 1.5 mm. It should be kept 

in mind that the target temperature of cold plate should be higher than environmental 

temperature. The measuring unit is dropped when the temperature of upper plate becomes 

(3-1) 

(3-2) 
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the target temperature. Efficiency of the experiment is increased by preparing two upper 

plates; which are changing after every experiment.  

The temperature field during the experiment is monitored by measuring 

temperatures at two points in the vessel: one is in the upper plate and the other in the 

bottom one. The temperature field is controlled based on these measured temperatures. 

Before making experiments, the preparatory measurement for the temperature field is 

conducted by inserting two more thermocouples suspended in the chamber at different 

heights. Measuring two points is sufficient because the linearity of the temperature field 

has already been confirmed by the Mach-Zehnder interferometry. The relation between 

these temperatures at monitoring points and the actual temperature field in the chamber is 

examined from this preparatory measurement. When conducting thermophoresis 

experiments, additional two thermocouples are removed; the temperature field is 

controlled based on the temperatures at those two monitoring points.  

It is noted that the maximum temperature of the plate heater is 300ºC. The 

experiment should be conducted lower than this temperature. The heater plate is fixed 

3 mm under the bottom plate, thus the temperature of bottom plate is considered to be the 

same as the temperature of the heater plate. Therefore the temperature of the bottom plate 

is controlled below than the maximum temperature of the heater plate.  

Figure 3.4 shows a circuit diagram of temperature controller. Thermocouples I 

and II indicate the temperature of bottom and upper plates, respectively. Output I 

responses to the temperature setting from the thermocouple I. The output I is connected 

to the solid stay relay (SSR), which is used to control the temperature of bottom plate 

such that the temperature becomes constant when it reaches the target temperature. 
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Figure 3.5 shows the temperature variation for both plates during the experiment. Blue 

and red lines represent the temperature for bottom and upper plates, respectively. For 

example, the temperature of bottom plate is set at 210ºC and the distance between plates 

is 1.5 mm. It is seen that the temperature of bottom plate becomes constant after the plate 

reaches its target temperature while the temperature of upper plate increases as time 

increases. 

 

 
Fig. 3.4 Circuit diagram of temperature controller.  
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Fig. 3.5 Relation between time and temperature. 

 

3.3 Method for Blowing Particles  

The sequence controller is used for controlling each stage during the experiment 

such as recording the image of measurement field, falling of the drop unit, and blowing 

particles. Figure 3.6 shows the time chart during the experiment. The chart shows that 

after the high-speed camera is started, the electromagnet is deactivated to create the 

microgravity environment and particles  movement in the measurement field are recorded. 

Figure 3.7 shows the ladder chart of programmable logic controller (PLC). Symbols T, B, 

M, and Q in the chart represent the timer, the button, auxiliary relay, and output relay, 

respectively. Q1, Q2, and Q3 are the electric magnet for holding the drop unit, the inlet 
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and the magnet for holding the drop unit is activated by pushing the button ④. When the 

temperature of the upper plate becomes the target temperature, the button ② is pushed 

such that both electromagnetic valves at the inlet and the outlet are simultaneously 

opened for 0.01 s. Some particles are blown into the chamber from a particle reservoir 

upstream the inlet. The magnet holding the measuring unit is deactivated 0.85 s after the 

closure of both valves. The disturbances caused by the blow are expected to cease within 

this period before the drop; since it is larger than both characteristic times for the flow 

field and the temperature field to reach the steady state; those characteristic times are 

expressed as ( ) νδ /2
2=ft and ( ) αδ /2

2=tt , respectively, where δ, ν, and α are the 

distance between two plates, the kinematic viscosity, and the thermal diffusivity, 

respectively. The largest values of those for present conditions are estimated at 0.06 s and 

0.05 s, respectively.  

 

Fig. 3.6 Time chart. 
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Fig. 3.7 Ladder chart of PLC. 

 

The movement of particles in the microgravity environment has been confirmed 

by conducting the experiment without temperature gradient. Figures 3.8 and 3.9 show the 
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that there is negligible effect of blowing and gravitational since the particles has almost 

no movement in the horizontal and the vertical directions.  
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Fig. 3.8 Movement of particles in vertical direction.  
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Fig. 3.9 Movement of particles in horizontal direction.  
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3.4 Experimental Condition 

3.4.1 Pure Gases 

Experiments are conducted with the test gas of argon, nitrogen or carbon dioxide. 

The target temperature and the temperature gradient are 313 K and 10 K/mm, 

respectively. Various pressure conditions are chosen from 20 kPa to 100 kPa. The 

thermophoretic velocity for each particle is individually measured, and the mean value 

and its 95% confidence interval for each experimental condition are statistically obtained. 

 

3.4.2 Gas Mixtures 

The experimental configuration used in this work is the same as the pure gases 

except that a gas mixer is introduced. A mixture of two gases is created before it is 

inserted into the pressure vessel, in which particles are supplied to measure the 

thermophoretic velocity. The mixer is evacuated by a pump before two gases feed into it. 

Gas mixtures in various ratios are prepared by adjusting the partial pressure of each gas. 

The gases used in this work are argon, nitrogen, and carbon dioxide. The pressure, the 

reference temperature, and the temperature gradient of the surrounding gas are 70 kPa, 

338 K, and 60 K/mm, respectively. It is noted that the temperature gradient in this work 

is increased, and the reference temperature is changed accordingly, from the previous 

condition such that the thermophoretic velocity increases and the measurement accuracy 

increases. 



Chapter 4: Effect of Gas Species  

 

41 
 

Chapter 4  

 

Effect of Gas Species  

 

 

4.1 Introduction 

Thermophoresis is the phenomenon that a small particle in a gas with a 

temperature gradient moves toward the lower temperature side. This phenomenon is 

supposed to influence practically on the movement of soot particles in exhaust gas from 

combustors, especially near cool walls around the hot gas flow, where the temperature 

gradient can become as large as the order of 102 K/mm. For example, the measured size-

distribution of particulate matter is influenced by the temperature of the transfer tube 

connecting the exhaust pipe of a diesel engine to the dilution tunnel ahead of the 

measuring device [1]. It is described in the Chapter 1 that there have been some direct 

measurements on the thermophoretic phenomenon of such an aggregate particle. The 

results of measurements on the thermophoretic velocity of soot particles suggested that 

the velocity is dependent not only on the macroscopic size of the soot particle but also on 

the aggregating condition [2, 3]. Suzuki et al. [3] have shown experimental results 

suggesting that the phenomenon is dominated by the size of primary spheres when the 

aggregation is coarse. Thus, the understanding of the phenomenon for a single sphere is 

indispensable before understanding for an aggregate.  
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The thermophoretic phenomenon of a spherical particle has been studied both 

theoretically and experimentally. The detail of these works is described in the Chapter 1. 

Experimental methods in the previous works are complex in practical implementation, 

and as a consequence, involve numerous errors. Among those, errors caused by buoyancy 

are the largest problem; in a field with a temperature gradient, buoyancy induces natural 

convection, which influences the movement of particles and disturbs the measurement. 

The velocity of such natural convection is usually comparable to the thermophoretic 

velocity, and cannot be measured directly. Toda et al. [4, 5] and Prodi et al. [6, 7] have 

conducted some experiments under microgravity conditions in order to avoid this 

problem. However, their reported data still seem to contain errors, possibly owing to 

limited trial numbers of experiments, so that those data are not sufficient to make 

quantitative comparison with theories [8]. 

Recently, our group has developed a device for conducting experiments 

repeatedly under a microgravity environment in a very short period time, i.e. 0.3 s, by 

means of the free-fall method, to accumulate data of the thermophoretic velocity. It has 

been confirmed that satisfactory accuracy can be attained if the amount of data is 

sufficient for statistical treatment [8]. By comparing the obtained experimental results 

with the existing theory [9], a notable difference is found for particles with high thermal 

conductivity [10]. The problem of the difference has been solved by reconsidering the 

boundary condition to improve the theory [11]. Hoshino et al. [12] has derived an 

improved theoretical solution of the thermophoretic velocity by applying the boundary 

condition proposed by Lockerby et al. [13], which includes the thermal stress slip and the 

higher order isothermal slip.  
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Considering the soot environment, it is indispensable to understand quantitatively 

the phenomenon for a gas mixture. Before analyzing the influence of the composition of 

the gas mixture, it is indispensable to know the characteristics of the phenomenon for 

each gas component since the combustion gas mixture contains many gas species.  

In this study, the characteristics of the thermophoresis for several gas species, i.e., 

argon, nitrogen, and carbon dioxide are experimentally examined. The first one is chosen 

as the reference, and the latter two are chosen as the major components of exhaust gas 

from combustors.  

 

4.2 Theory for Thermophoretic Velocity  

The theory adopted in this work is based on the works by Hoshino et al. [12] and 

by Chang and Keh [14]. The thermophoretic velocity is calculated from the balance 

between the thermophoretic and the drag forces, the equation of which is shown as 

below: 
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where μ, |∇T|, ρ, TF0, Cf, k, Kn, h, CM, CT, CS, and CH  are the viscosity, the temperature 

gradient, the density of the surrounding gas, the reference temperature, the slip correction 

factor of the drag force for rarefied condition, the gas-to-particle thermal conductivity 

ratio, Knudsen number, the term of higher order isothermal slip, and constants for slip 

flow, temperature jump, thermal creep, and thermal stress slip, respectively. Here, the 

reference temperature TF0 is defined as the supposed gas temperature at the center of the 

particle in the given temperature field without the existence of the particle, and Knudsen 
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number Kn is the ratio of the mean-free-path l  to the particle radius. The mean-free-path 

is calculated from the following equation [15]: 

)24(,
8499.0

0 −= FRT

P
l

πµ
 

where P and R are the pressure and the gas constant, respectively. The slip correction 

factor fC  adopted in this work is Cunningham’s correction factor KnAC fc += 1 , where 

( )KnA /10.1exp4.0257.1 −+=  [16].  The term h of higher order isothermal slip is 

written as below: 

( ) )34(,1
2

9 12 −−= −γ
π

Knh Pr  

where Pr and γ are Prandtl number and the specific heat ratio, respectively.  

Equation (4-1) is basically identical to both of those proposed by Hoshino et al. 

[12] and Chang and Keh [14]. If constant values CS = 0.75 and CH = 1.00 [13] are applied, 

the equation becomes just the same as the one given by Hoshino et al. [12]. On the other 

hand, the equation becomes the same as the one given by Chang and Keh [14] by 

neglecting the term h, which is usually negligible in the range of Kn ≤ 0.1, and applying 

Basset’s correction [17], ( ) ( )KnCKnCC MMfb 2131 ++= , instead of the Cunningham’s 

correction for the slip correction factor fC . The Basset’s correction is applicable in 

Kn ≤ 0.1 while the Cunningham’s one in Kn < 1, and both are basically identical in 

those applicable ranges. 

Two constants CM and CT are calculated as follows from two empirical 

coefficients, i.e., the tangential momentum accommodation coefficient αm and the 

thermal accommodation coefficient αt : 
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These accommodation coefficients represent the magnitude of the momentum and 

energy exchange in the collision between gas molecules and the particle [15, 18], which 

are defined as below: 
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where M and E are average tangential components of the momentum and the energy flux 

normal to the particle surface, respectively, of gas molecules, and subscripts i, r, and s 

refer to incident molecules, molecules reflecting from the surface, and molecules leaving 

the surface in equalibrium with the surface, respectively. For example, α = 1 corresponds 

to the situation that incident molecules achieve complete equilibrium with the particle 

surface before leaving, while α = 0 corresponds to the situation of complete specular 

reflection.  

In many cases, values of accommodation coefficients are simply assumed to be 

unity [10, 11]. There are some experimental measurements, e.g., Thomas and Lord [19] 

and Douglas [20], who measured accommodation coefficients on steel spheres and gas 

covered tungsten tube, respectively. Although those experiments report values different 

from unity under some conditions, yet there are no commonly accepted values. 
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4.3 Results 

Figure 4.1 shows examples of the movement of particles during a free-fall in the 

surrounding gas of argon at 20 kPa. The measurement of the velocity should be taken at a 

fixed temperature since the thermophoretic velocity is dependent on not only the 

temperature gradient but also the temperature itself. The velocity of each particle is 

measured by tracing its movement while it travels within the range of the temperature 

between 313±2 K. It is seen from the figure that the velocity of each particle can be 

considered as constant in the range. The velocity is constant also in other two gases. 

 

Fig. 4.1 Movement of particles in surrounding gas of argon. 

Table 4.1 shows the statistical data for the tested pressure conditions with the 

argon gas. It is noted that the 95% confidence interval indicates not the range of data 

scattering but the range of expected mean value of the population. It is seen that the 

confidence interval is roughly estimated at around 0.01 mm/s to 0.02 mm/s. The ratio of 

the confidence interval to the mean value is only 3% for the pressure at 20 kPa. As the 

pressure increases, the velocity decreases, and as a consequence, the ratio tends to 

increase.  
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Table 4.1 Statistical data of thermophoretic velocity in surrounding gas of argon. 

Pressure, P, kPa 20 40 60 80 100 

Sampling number, n, −−−− 39 35 37 33 47 

Mean thermophoretic velocity, TV , 

mm/s 
0.538 0.183 0.111 0.075 0.066 

Standard deviation, σ, mm/s 0.053 0.044 0.026 0.030 0.036 

Confidence interval (95%), mm/s 0.017 0.015 0.009 0.011 0.011 

Ratio of confidence interval to mean 

thermophoretic velocity, −−−− 
0.03 0.08 0.08 0.15 0.17 

      

Figure 4.2 shows the thermophoretic velocity for each gas. The white rectangle 

(□), the black circle (●), and the white circle (○) represent experimental values for argon, 

nitrogen, and carbon dioxide, respectively. Error bars in the figure indicate the 95% 

confidence interval for the mean. The solid line is the prediction calculated by assuming 

constants to be identical to those in the previous work [11], namely, CM, CT, CS, and CH to 

be 1.000, 1.875, 0.750, and 1.000, respectively.  
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Fig. 4.2 Pressure dependence of thermophoretic velocity in each gas. 
Error bars represent the confidence interval (95%) for the mean. Predictions are 

calculated under the assumption of CM = 1.000, CT = 1.875, CS = 0.750, and CH = 1.000. 
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For argon and nitrogen, predictions are in good agreement with experiments 

throughout all the tested pressure conditions; the solid line runs through the range of the 

confidence interval at every tested pressure. On the other hand, for carbon dioxide, 

discrepancy is seen at low pressure conditions; the prediction is within the range of the 

confidence interval only when the pressure is at 100 kPa or 80 kPa. As the pressure 

decreases, discrepancy becomes notable; the experimental value at 20 kPa is 0.182 mm/s, 

which is 70% of the theory. 

 

4.4 Discussion 

It is quite interesting that the discrepancy is seen only for carbon dioxide. Also, 

previous work [11] has shown satisfactory accordance between the prediction and the 

experiment for the air. As noted earlier, the theory contains four constants, CM, CT, CS, and 

CH, and the former two of these are calculated from accommodation coefficients αm and 

αt. These constants and coefficients have been determined empirically; different 

researchers have given different proposed values. Attempts should be made for finding 

suitable values to fit the prediction to these experimental results.  

The first attempt is done by applying proposed values from references, which are 

shown in Table 4.2. The set of values noted as Case 1 is from the paper by Hoshino et al. 

[11], and those as Case 2 and 3 are both from the paper by Chang and Keh [14]. Figure 

4.3 shows predictions together with experimental results. The vertical axis represents the 

reduced thermophoretic velocity, which is a dimensionless parameter defined as follows: 
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where υ  is the kinematic viscosity of the gas. This parameter is often used when making 

comparison between different conditions. Lines labeled as Prediction 1, 2, and 3 are those 

predicted from Eq. (4-1) by applying values of Case 1, 2, and 3, respectively. For both 

argon and nitrogen, the best fit to experimental results is Prediction 1, and then 

Prediction 3 follows; the velocity predicted from Case 3 is higher than the experiment at 

Kn = 0.25 for both two gases, whereas that from Case 1 is within the error bar throughout 

all the measured range of Kn. For carbon dioxide, on the other hand, there is no line 

predicting satisfactorily the experimental result at Kn = 0.15, though Prediction 3 seems 

to be better than Prediction 1. Prediction 2 can be omitted from the discussion since it 

obviously disagrees with the experiment for all gases.  

Table 4.2 Constants for each case. 

 CM,  ̶ CT,  ̶  CS,  ̶ CH,  ̶ αm,  ̶ αt,  ̶ References 

Case 1 1.000 1.875 0.750 1.000 (1.000) (1.000) [11] 

Case 2 1.140 2.180 1.170 1.000 (0.935) (0.925) [14] 

Case 3 1.140 2.180 1.170 3.000 (0.935) (0.925) [14]  

a Values in bracket are from Eqs. (4-4) and (4-5) (not directly given in the reference). 
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Fig. 4.3 Comparison between predictions and experiment in each gas. 
Error bars represent the confidence interval (95%) for the mean. Predictions are 

calculated using constants in Table 4.2. 
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Provisionally, Case 1 is chosen as the best among three cases; Case 3 is not good 

enough for high Kn for all tested gases in comparison to Case 1. Choosing Case 1 instead 

of Case 3 is also consistent with the previous work, in which experiments have been 

conducted in the air under the atmospheric pressure for particles of PMMA, alumina, and 

Zn [10]; as shown in Table 4.3, significant differences are seen between Case 3 and 

experimental results for alumina and Zn, whereas agreements are satisfactory for all 

particles with Case 1. In the theory, only the radius and the thermal conductivity are 

considered as particle-related parameters. It would be reasonable to assume that 

coefficients for CO2 are different from those for other gases; Sharipov [21] has reviewed 

related papers and summarized accommodation coefficients for various gases, in which 

CO2 values are notably different from Ar and N2. 

Table 4.3 Reduced thermophoretic velocity in air under atmospheric pressure. 

  VTR,  ̶  

Material Prediction (Case 1) Prediction (Case 3) Experiment* 

PMMA 0.167 0.210 0.172 ± 0.011 

Al2O3 0.037 -0.035 0.036±0.008 

Zn 0.049 -0.034 0.050±0.010 

*From Suzuki et al. [10]. 
 

The second attempt is done by changing the accommodation coefficients from 

Case 1 by means of the least square fit. The residue R representing the discrepancy 

between the experiment and the prediction is defined as follows: 
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where Ve, Vp, and n are thermophoretic velocities of the experiment and the prediction, 

and the number of the tested pressure conditions, respectively, and the subscript j refers 

to each tested condition. The values for CS and CH are unchanged from the Case 1, and 

those for CM and CT are calculated from Eqs. (4-4) and (4-5), respectively, with 

accommodation coefficients αm and αt determined such that the residue R  becomes the 

lowest. 

Table 4.4 shows the result of the least square fit for carbon dioxide. The best fit is 

attained with the coefficients noted as “without limitation” in the table. It should be noted 

that both values are clearly above unity, which is curious when interpreting the physical 

meaning of those values. Based on the kinetic theory, both those coefficients should lie 

between 0 and 1 [9, 15, 18]. The Cercignani-Lampis (CL) model provides a more 

physical description of the gas-surface interaction [21, 22], which allows αm to vary 

between 0 and 2 while αt remains between 0 and 1. In this CL model, αm can exceed 

unity when the surface is rough. Considering this, additional work is done for the fitting 

by applying the limitation of 0 ≤ αt ≤ 1 and 0 ≤ αm ≤ 2 , the result of which is shown as 

“with limitation” in the table. In this case, R becomes the lowest when both the 

coefficients are bellow unity even αm is allowed to exceed it. 

Table 4.4 Estimated accommodation coefficients for carbon dioxide. 

 αm, −−−− αt, −−−− 

without limitation 1.193 1.307 

with limitation 0.841 1.000 
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Figure 4.4 shows the comparison of predictions based on these values. It is seen 

that both predictions are in good agreement with the experiment within the range of the 

tested conditions. The difference between these two predictions is notable only under the 

condition of higher Knudsen number than the current work.  

 

Fig. 4.4 Comparison of predictions for carbon dioxide. 
Error bars represent the confidence interval (95%) for the mean. The solid and the broken 
lines represent predictions calculated with the coefficients from least-square-fit “without 

limitation” and “with limitation”, respectively. 
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The latter is based on the work by Arya et al. [24], who have conducted a 

molecular simulation for a wall-slip phenomenon in rarefied gases. According to their 

result, the tangential momentum accommodation coefficient decreases as the collision 

diameter of the molecule increases. Among the gases used in this work, carbon dioxide 

has a notably larger collision diameter; based on the rigid sphere model, the diameter of 

argon, nitrogen, and carbon dioxide are 3.659 Å, 3.784 Å, and 4.643 Å, respectively [25]. 

This can explain qualitatively the results in this work if the coefficients “with limitation” 

are adopted for the carbon dioxide and those at unity are adopted for other two gases. The 

thermal accommodation coefficient “with limitation” is also consistent with the work by 

Winkler et al. [26], in which the coefficient αt is reported to be approximately unity for 

water vapor, a polyatomic gas having a large collision diameter. The constants and 

coefficients, however, cannot be determined from the results in this work, since several 

combinations of those are possible to fit predictions to experimental results. 
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4.5 Conclusions 

In this study, effects of gas species on the thermophoretic velocity are 

investigated, and following results are obtained:  

1. Experimentally-obtained pressure dependence of the thermophoretic velocity for 

both argon and nitrogen are quantitatively in good agreement with the theory, 

while notable discrepancy is seen for carbon dioxide, if values for the constants 

CM, CT, CS, and CH to be 1.000, 1.875, 0.750, and 1.000 are applied to the theory.  

2. Values of those empirical constants proposed in some references were applied to 

the theory and compared with experiments; none of those has reduced the notable 

deviation for the carbon dioxide at Kn = 0.15.  

3. The coefficients are calculated by means of the least square fit. The obtained 

values can be interpreted qualitatively by considering the effect of the molecular 

diameter on the tangential momentum accommodation coefficient. The proposed 

values of CM, CT, CS, and CH for carbon dioxide are 1.378, 1.875, 0.750, and 1.000, 

although further discussion will be required for the determination of the values. 
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Chapter 5  

 

Dependence on Gas Properties  

 

 

5.1 Introduction 

It is described in Chapter 4 that several experiments have been conducted to 

investigate the influence of gas species on the thermophoretic velocity. The velocities 

have been measured for pure gases of argon, nitrogen, and carbon dioxide. The results of 

pure argon and nitrogen have agreed satisfactorily with the theory [1, 2] without any 

modification, while carbon dioxide has exhibited a noticeable deviation from the theory. 

It has been demonstrated in that chapter that this deviation can be corrected by modifying 

two empirical constants, i.e., the tangential momentum accommodation coefficient and 

the thermal accommodation coefficient, which both are involved in the theory and 

usually assumed to be unity [3 – 6].   

Considering the environment of soot, one should know the accommodation 

coefficients of each gas species composing gas mixture. It would be desirable to specify 

physical relationship between the coefficients and the physical parameters for all gas 

species since the combustion gas contains many gas species. Some of these species are 

radical intermediates, e.g., OH, H, O, CH, etc. It is difficult for conducting the 

experiment using these gases since these gases are highly reactive.  
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In this study, an attempt is made to investigate dependence of thermophoretic 

parameters on gas properties; the parameters for argon and nitrogen are reexamined and 

compared with those of carbon dioxide, methane, and nitrous oxide. 

 

5.2 Calculation of Residue Value 

The thermophoretic parameters are determined based on the value of the residue. 

The residue R representing the discrepancy between the experiment and the prediction, 

which is defined as follows: 
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where Ve, Vp, and n are the thermophoretic velocity of the experiment, the prediction, and 

the number of the measured particles, respectively. The subscript j refers to each particle.  

The theory [1, 2] of the thermophoretic velocity is derived from the balance 

between the thermophoretic force and the drag force, which is given below: 
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where μ, |∇T|, ρ, TF0, Cc, k, Kn, Pr, γ, CM, and CT   are the viscosity, the temperature 

gradient, the density of the gas, the reference temperature, the Cunningham’s correction 

factor, the gas-to-particle thermal conductivity ratio, Knudsen number, Prandtl number, 

the specific heat ratio, and constants for slip flow and temperature jump, respectively. CM 

and CT constants containing the tangential momentum accommodation coefficient αm and 

the thermal accommodation coefficient αt, respectively, which are written as follows: 
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These accommodation coefficients represent the magnitude of the momentum and 

energy exchange in the collision between gas molecules and particles. Based on the 

kinetic theory, both coefficients should lie between 0 and 1 [7 – 9]. The Cercignani-

Lampis (CL) model provides a more physical description of the gas-surface interaction 

[10, 11], which allows αm to vary between 0 and 2 while αt remains between 0 and 1. In 

this CL model, αm can exceed unity when the surface is rough.  

In this work, the values of residue R are calculated for all combination of the 

coefficients. 

  

5.3 Results 

Figure 5.1 shows the reduced thermophoretic velocity for each gas species. The 

dimensionless reduced thermophoretic velocity is calculated as follows: 

)55(,0 −
∇

≡
T

TV
V FT

TR υ
 

where ʋ is the kinematic viscosity of the gas. The reduced velocity is often used when 

making comparison between different conditions. The black and the white symbols 

represent the obtained results from the previous work (Chapter 4) and this work, 

respectively. Lines represent predictions from different combinations of the coefficients, 

which will be explained later. Error bars in the figure indicate the 95% confidence 

interval for the mean. It is noted that the pressure, the reference temperature, and the 
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temperature gradient of those additional data from this work for argon, nitrogen, and 

carbon dioxide are 70 kPa, 338 K, and 60 K/mm, respectively. These results are added 

for increasing the number of experimental data such that the measurement accuracy 

increases. The residue values for all combination of the coefficients are calculated from 

the discrepancy between the experiment results and the prediction from Eq. (5-5).  
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Fig. 5.1 Reduced thermophoretic velocity for each gas species. 

Error bars represent the confidence interval (95%) for the mean. 

Figure 5.2 shows contours of residues for each gas species. Solid lines represent 

the contour of the residue. The residue values are calculated within the ranges of 

0 ≤ αt ≤ 1 and 0 ≤ αm ≤ 2, which are the limitations of both coefficients. It is seen that the 

contours have positive orientations for all tested gases. The dotted line represents the best 

approximation of the thermal accommodation coefficient for each tangential momentum 

accommodation coefficient. The thermal accommodation coefficient is determined such 

that the residue R becomes the lowest. 

There is a problem for estimating the coefficients since the fitting gives several 

possible combinations. The same problem has been noted also in the Chapter 4. It is 

impossible to make rigorous calculation of the coefficients owing to the complexity of 

the equation of thermophoretic velocity or force [12]. Figure 5.3 shows the minimum 

value of the residue for each tangential momentum accommodation coefficient for argon. 

It is seen that there are several coefficients exhibit approximately the same values of the 

10-2 10-1 100
0

0.1

0.2

0.3

0.4

0.5

Knudsen number, Kn, -

R
ed

u
ce

d
 t

h
er

m
o

p
h
o

re
ti

c 
v

el
co

it
y

, V
T

R
, 

-

(e) Nitrous oxide

 αm = 0.836, αt = 1.000
 αm = 0.600, αt = 0.778



Chapter 5: Dependence on Gas Properties 

 

67 

 

residues. A small increase up to only 4% is noticeable even the coefficient is reduced 

from 1.000 to 0.600. Comparisons of predictions between different combinations of the 

coefficients for each gas species are shown in Fig. 5.1. It is seen that for all gases, both 

predictions are in good agreement with the experiments within the range of the tested 

conditions. 

In order to investigate the dependence of the coefficients on the gas properties, the 

tangential momentum accommodation coefficient is estimated by assuming the thermal 

accommodation coefficient to be unity. The assumption of the coefficient is made on the 

basis of results in the Chapter 4; the thermophoretic velocity can be predicted 

quantitatively by modifying the tangential momentum accommodation coefficient while 

the thermal accommodation coefficient is assumed at unity. The assumption is also 

consistent with the work by Winkler et al. [13], in which the coefficient is reported to be 

approximately unity for water vapor, a polyatomic gas having a large collision diameter.  

The black arrow in Fig. 5.2 represents the estimated tangential momentum 

accommodation coefficient for each gas. The coefficients are approximately the same for 

argon and nitrogen, while a significant difference is seen in the coefficient between the 

other three gases. 
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Fig. 5.2 Residue values for all combinations of coefficients for each gas species. 

The broken line represents best approximation of thermal accommodation coefficient for 

each tangential momentum accommodation coefficient. 
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Fig. 5.3 Minimum value of residue of each tangential momentum accommodation 

coefficient for argon. 

 

5.4 Discussion 

It is interesting that the tangential momentum accommodation coefficient differs 

among the tested gases. The different coefficients between gases can be interpreted by 

gas properties. Several researches have been done to investigate the dependence of the 

coefficient on gas properties. Arya et al. [14] have conducted a molecular simulation for a 

wall-slip phenomenon in rarefied gases flowing through micro- and nano-channels and 

have found that the coefficient decreases as the collision diameter of the molecule 

increases. Gronych et al. [15] have performed experiments to determine the coefficient by 
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translation, rotation, and vibration. The coefficient has been suggested to be influenced 

by the degree of freedom.  

Table 5.1 shows the estimated tangential momentum accommodation coefficient 

and the gas properties for each gas species. It is seen that carbon dioxide has almost the 

same properties as nitrous oxide, while differences are found between other three gases. 

Table 5.1 Estimated tangential momentum accommodation coefficient and gas 

properties for each gas species. 

 

Gas αm, - 
Molecular 

weight, g/mol 
Degree of 

freedom, - 
Molecular 

diameter, Å 

Argon 0.987 39.944 3 3.659 

Nitrogen 0.986 28.02 5 3.784 

Carbon dioxide 0.821 44.01 5 4.643 

Methane 0.890 16.04 6 4.158 

Nitrous oxide 0.836 44.02 5 4.662 

 

Figure 5.4 shows the dependence of the tangential momentum accommodation 

coefficient on the molecular weight of gases. It is suggested that the coefficient decreases 

as the molecular weight increases [15]. Two disagreements are seen between the results 

in this work and the hypothesis given in the reference. In cases of methane, nitrogen, and 

argon, it is seen that the coefficient increases as molecular weight increases. In cases of 

carbon dioxide and nitrous oxide, the coefficients for both gases are smaller than the 

coefficient of argon even the molecular weights are approximately the same for those 

gases.  
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Fig. 5.4 Relation between coefficient and molecular weight. 

Figure 5.5 shows the dependence of the coefficient on the degree of freedom of 

gases. The result is inconsistent with the hypothesis that the coefficient is influenced by 

the degree of freedom [16]. It is seen that the results cannot be explained by a simple 

relationship between the coefficient and the degree of freedom. Two curious relationships 

are found from the results. First, the coefficients for argon and nitrogen are almost 

identical even both gases have different degree of freedom. Second, the coefficient for 

nitrogen is significantly greater than the coefficients for carbon dioxide and nitrous oxide, 

even nitrogen has the same degree of freedom with the other two gases.  

 

Fig. 5.5 Relation between coefficient and degree of freedom. 
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Figure 5.6 shows the dependence of the coefficient on the molecular diameter of 

gas molecule. The results in this work can be explained qualitatively based on the effect 

of molecular diameter; the coefficient decreases as the diameter increases. These results 

are consistent with the work done by Arya et al. [14]. The value of coefficient is 

presumably dependent upon the interaction characteristic between gas molecules and the 

surface. The results infer that when small gas molecule collides with the surface, it loses 

the tangential momentum more than a large gas molecule.  

 

Fig. 5.6 Relation between coefficient and molecular diameter. 

There is a possibility that the coefficient is also dependent on the material of the 

solid; Thomas and Lord [17] have measured coefficients for polished and rough surfaces 

of steel spheres to find some influence of surface condition of the solid wall. However, 
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5.5 Conclusions 

In this study, the thermophoretic parameters of several gases are estimated from 

the experimental results, and following results are obtained:  

1. The value of the residue R is calculated from the discrepancy between the 

experiment results and the prediction for all combinations on the coefficients; 

several combinations of the coefficients are possible to fit the prediction with the 

experimental results. 

2. The tangential momentum accommodation coefficient is estimated by assuming 

the thermal accommodation coefficient to be unity; the tangential momentum 

accommodation coefficient are approximately the same for argon and nitrogen, 

while a significant difference is seen for methane, nitrous oxide, and carbon 

dioxide. 

3. A relation is shown between the tangential momentum accommodation coefficient 

and the molecular diameter; the coefficient decreases as the diameter increases. 
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Chapter 6  

 

Effect of Molecular Fraction 

 

 

6.1 Introduction 

As noted earlier, the theory of thermophoretic velocity contains two empirical 

constants, i.e., the tangential momentum accommodation coefficient and the thermal 

accommodation coefficient, both which are usually assumed to be unity [1 – 4]. In the 

Chapter 5, the accommodation coefficients have been estimated for pure gases of argon, 

nitrogen, carbon dioxide, methane, and nitrous oxide. The results show the coefficients 

are approximately the same for argon and nitrogen, while significant differences are seen 

for other three gases.  

A problem arises here for the treatment of accommodation coefficients of a 

mixture of pure gases having different values, e.g., the mixture of nitrogen and carbon 

dioxide. It should better be confirmed even when the mixture is composed of pure gases 

having the same coefficient value, e.g. the mixture of argon and nitrogen, since there is 

no widely-accepted method so far for evaluating the coefficients of the mixture from the 

values of composing pure gases.  

There are some theoretical and experimental researches dealing with one of those 

coefficients of gas mixtures, although none of those gives explicit discussion for both the 

coefficients together. Mikami et al. [5] have measured heat-transfer coefficients of a 
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sphere in hydrogen-nitrogen and helium-nitrogen mixtures by utilizing a thermistor, and 

have compared those results with an analytical solution based on the Maxwell’s model; 

good agreement has been shown by applying a linearly-dependent relation of the 

accommodation coefficient to the gas concentration. Wise et al. [6] have conducted 

experiments to measure the heat transfer with a conductivity cell in a gas mixture of 

atomic and molecular oxygens. The coefficient for pure atomic oxygen is estimated from 

extrapolation of experimentally-determined thermal accommodation coefficients of 

mixtures containing small amount of atomic oxygen. Ivchenko et al. [7, 8] have studied 

the slip phenomenon in the flow of a gas mixture to develop an analytical solution for 

planar transport problems. Bentz et al. [9] have performed experiments with a spinning 

rotor gauge to measure the slip flow constant, which is related to the tangential 

momentum accommodation coefficient, for helium-argon, helium-nitrogen, and helium-

neon mixtures. Bentz et al.’s experimental results exhibit a nonlinear dependence on the 

mixture concentration; it seems to agree qualitatively well with the prediction from the 

Ivchenko et al.’s solution, though they have written of it “there are large differences”. 

Further investigation will be needed in order to determine the appropriate method for 

evaluating mixture’s coefficients. 

In this study, thermophoretic parameters are experimentally investigated for 

several gas mixtures, i.e., argon-nitrogen, argon-carbon dioxide, and nitrogen-carbon 

dioxide. The dependence of the tangential momentum accommodation coefficient on the 

concentration of the mixture is examined from the measured thermophoretic velocity. 
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6.2 Factors Affected by Gas Mixing  

The problem for a gas mixture is the treatment of two empirical parameters, i.e., 

tangential momentum- and thermal-accommodation coefficients, which characterize the 

interaction between the solid surface of the particle and surrounding gas molecules. In the 

gas mixture, a diffusiophoretic force will be exerted on a particle in addition to the 

thermophoretic force since the temperature gradient causes a concentration gradient. The 

thermodiffusiophoretic velocity for a gas mixture is shown as below: 
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where μ, |∇T|, ρ, TF0, Cc, k, Kn, Pr, γ, CM, CT, c’, D12, and |∇x1|  are the viscosity, the 

temperature gradient, the density of the gas, the reference temperature, the Cunningham’s 

correction factor, the gas-to-particle thermal conductivity ratio, Knudsen number, Prandtl 

number, the specific heat ratio, the constant for slip flow, the constant for temperature 

jump, the diffusion slip factor, the coefficient of molecular diffusion, and the 

concentration gradient, respectively. Here, the reference temperature TF0 is defined as the 

supposed gas temperature at the center of the particle in the given temperature field 

without the existence of the particle. The first term in the right hand side of eq. (6 - 1) is 

the thermophoretic term, which is the same as in the previous Chapters 4 and 5. The 

second term is the diffusiophoretic term [10], which is detail discussed in Appendix B. 

The density ρ, the viscosity µ, and the thermal conductivity of gas kf for a binary gas 

mixture are calculated as follows [11]: 
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where R, C, M, and x are the gas constant, Sutherland constant,  the molecular weight and 

the molar fraction, respectively. Subscripts j and n refer to the number of each gas 

species and the total number, respectively. Parameters c’, D12, and |∇x1| are calculated by 

complex equations given by Kihara [12] and Ivchenko et al. [8].  

Constants CM and CT in eq. (6 - 1) are the ones containing the tangential 

momentum accommodation coefficient αm and the thermal accommodation coefficient αt, 

respectively, which are written as follows: 
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In order to apply this same formula to a gas mixture, those coefficients of the mixture 

should be determined from values of each pure gas components.  

In this work, only the tangential momentum accommodation coefficient is derived 

from experimental results, and the other one, the thermal accommodation coefficient, is 

assumed to be unity on the basis of results in the Chapter 5, in which all the thermal 

accommodation coefficients have been estimated at unity for the same pure gases adopted 

in this work.  

There are three different methods for the calculation of the tangential momentum 

accommodation coefficient of a mixture, which are explained below:  

i. Energy-balance-based method 

The first one is given by Mikami et al. [5], who derived the tangential momentum 

accommodation coefficient for a gas mixture from the energy balance as below: 
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where x and M are the molar fraction and the molecular weight, respectively, and 

subscript j refers to the number of each gas species. 

ii. Mass-fraction-based method 

The second one is found in the ANSYS FLUENT theory guide [13], in which 

both the accommodation coefficients of a mixture are calculated simply by taking the 

mass-fraction weighted average of each gas species as follows: 
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where yj and α are the mass fraction of each gas species j and each accommodation 

coefficient, respectively. 

iii. Intermolecular-interaction-based method 

The last one can be derived from equations given by Ivchenko et al. [7, 8]. The 

constant CM for the slip-flow of a gas mixture was derived using the first-order Chapman-

Enskog approximation and the Maxwell method as below: 
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where P and b are the pressure and the transport coefficient [7, 8] of viscosity 

corresponding to arbitrary models of the intermolecular interaction, respectively, and 

subscripts 1 and 2 refer to components of the binary gas mixture. Here, it is noted that the 

literature adopts the following equation instead of eq. (6 - 8): 
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This equation is basically identical to the eq. (6 - 8): the additional coefficient of 

5π/16 to the eq. (6 - 8) makes the resultant value only 2% less. By equating those two eqs. 

(6 - 12) and (6 - 13), the tangential momentum accommodation coefficient of the mixture 

can be formulated as a function of the coefficients of two pure gases as follows: 
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6.3 Results 

Figure 6.1 shows measured velocities for argon-nitrogen, argon-carbon dioxide, 

and nitrogen-carbon dioxide mixtures. Lines represent predictions by above-mentioned 

methods, which will be explained later. Error bars in the figure indicate the 95% 

confidence interval for the mean.   

Nitrogen exhibits the highest thermophoretic velocity, followed by argon and 

carbon dioxide; the thermophoretic velocities for pure nitrogen, argon, and carbon 

dioxide are 0.880 mm/s, 0.673 mm/s, and 0.273 mm/s, respectively. For the mixture of 

argon-nitrogen, the thermophoretic velocity increases as the concentration of nitrogen 

increases. For mixtures of argon-carbon dioxide and nitrogen-carbon dioxide, the 

thermophoretic velocity decreases as the concentration of carbon dioxide increases.  

Figure 6.2 shows tangential momentum accommodation coefficients of pure gases 

of argon, nitrogen, and carbon dioxide. The accommodation coefficient αm for each 

experimental datum is calculated from eqs. (6 - 1), (6 - 8), and (6 - 9) by assuming αt = 1, 

and the mean value and its 95% confidence interval are statistically obtained for each 

experimental condition. White and black symbols represent values from the previous 

(Chapter 4) and this works, respectively. Solid lines indicate mean values among all 

pressure conditions. Coefficients from this work seem to be consistent with those from 

the previous.  
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Fig. 6.1 Thermophoretic velocity for each gas mixture. 

Error bars represent the confidence interval (95%) for the mean. 
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Fig. 6.2 Tangential momentum accommodation coefficient for each pure gas. 

Error bars represent the confidence interval (95%) for the mean. 
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Table 6.1 shows mean values of the coefficient from all the pressure conditions. 

Coefficients for argon and nitrogen are almost the same: 0.987 and 0.986, respectively. 

That for carbon dioxide exhibits a notably low value at 0.821. 

Table 6.1 Tangential momentum accommodation coefficient αm for each pure gas. 

Gas αm 

Argon 0.987 

Nitrogen 0.986 

Carbon dioxide 0.821 

 

Table 6.2 shows the tangential momentum accommodation coefficient calculated 

from experimental results. Error ranges indicate the 95% confidence interval for the mean. 

For argon-carbon dioxide and nitrogen-carbon dioxide, it is seen that the coefficient is 

dependent on the gas concentration. For the mixture of argon-nitrogen, the slightly 

increase up to 1% is noticeable in the mean value. However, it is difficult to make a 

statistically significant since the mean values are within the error range.  

Table 6.2 Estimated tangential momentum accommodation coefficientαm  

for each gas mixture. 

Ratio Ar:N2 Ar:CO2 N2:CO2 

1.00:0.00 0.987 ± 0.028 0.987 ± 0.028 0.986 ± 0.026 

0.75:0.25 0.989 ± 0.027 0.991 ± 0.025 0.965 ± 0.028 

0.50:0.50 0.993 ± 0.031 0.949 ± 0.029 0.905 ± 0.022 

0.25:0.75 0.992 ± 0.026 0.877 ± 0.022 0.846 ± 0.033 

0.00:1.00 0.986 ± 0.026 0.821 ± 0.031 0.821 ± 0.031 
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Figure 6.3 shows comparisons of the tangential momentum accommodation 

coefficient of experiments and predictions from eqs. (6 - 10), (6 - 11), and (6 - 14). In 

cases of gas mixtures of argon-nitrogen and argon-carbon dioxide, predictions by the 

energy-balance and the mass-fraction methods are almost identical. On the other hand, in 

the case of nitrogen-carbon dioxide, predictions by the energy-balance and the 

intermolecular-interaction methods give close results while the mass-fraction method is 

distinguishable from others. Although there is slightly difference between methods, all 

predictions agree satisfactorily with the experimental result for argon-nitrogen. For 

argon-carbon dioxide, disagreements are seen between the experimental result and 

predictions by the energy-balance and the mass-fraction methods. For nitrogen-carbon 

dioxide, slightly disagreement is noticeable between the mass-fraction method and the 

experimental result at 25% carbon dioxide. The intermolecular-interaction method seems 

to be the best for all those mixture conditions.   

Comparisons of thermophoretic velocities between predictions and experiments 

for gas mixtures are shown in Fig. 6.1. Although the difference is not so remarkable, the 

intermolecular-interaction method seems to be the best among compared three methods; 

the energy-balance and the mass-fraction methods underestimate the velocity for argon-

carbon dioxide. 
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Fig. 6.3 Comparison of tangential momentum accommodation coefficient for each 

gas mixture. 
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6.4 Discussion 

A problem in the determination of coefficients of a gas mixture is the uncertainty 

of those values of composing pure gases. Different researchers have proposed different 

values for a same pure gas. Table 6.3 shows comparisons of coefficients between several 

references for the concerned pure gases; the values obtained in this work are also shown. 

These differences in the table infer the possibility that the accommodation coefficient is 

dependent on the adopted method and/or the material of the solid. The surface condition 

of the solid wall may also have some influence: Thomas and Lord [14] have measured 

accommodation coefficients for polished and rough surfaces of steel spheres to find some 

difference as shown in the table. 

This problem should be considered when making quantitative comparison 

between values from different research works. With regard to the current and its 

preceding works, all experimental data are obtained from the same method and the same 

kind of particles. Thus, the comparison given in this work will not be concerned directly 

by the problem. 
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Table 6.3 Comparison of coefficients for pure gases. 

Tested gas αm, −−−− αt, −−−− Solid material Reference 

Argon 

0.931 1.102 
Steel spheres 

(polished surface) 
[14]  

1.049 1.161 
Steel spheres 

(rough surface) 
[14]  

0.916 1.000 Glass [15]  

1.000 0.900 Paraffin [3]  

0.987 1.000 PMMA This work 

Nitrogen 

1.000 0.680 Tungsten [16]  

0.911 1.000 Glass [15]  

1.000 0.900 Paraffin [3]  

0.986 1.000 PMMA This work 

Carbon 

dioxide 

1.000 0.720 Tungsten [16]  

1.000 0.450 Glass [17] 

1.000 0.450 
Polystyrene latex 

(PSL) sphere 
[17] 

0.993 1.000 Glass [15] 

0.821 1.000 PMMA This work 

 

Another problem is the assumption that the thermal accommodation coefficient is 

always at unity regardless of the mixing condition. This does not concern when applying 

energy-balance- and mass-fraction- based methods, since both these methods do not alter 

the coefficient of the mixture when both the pure gases have the same value at unity. The 

intermolecular-interaction-based method, on the other hand, may change the value of the 

thermal accommodation coefficient depending on the concentration as is the case of the 
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tangential momentum accommodation coefficient. So far, there is no reference that shows 

the way to calculate the thermal accommodation coefficient on the intermolecular 

interaction basis. Although there are such vulnerable points in the treatment of 

coefficients, the current work would be informative for a practical use in predicting the 

thermophoretic velocity for gas mixtures. Experimental results are satisfactorily predicted 

when the thermal accommodation coefficient is assumed to be unity and the other 

coefficient is calculated from pure gas values by means of the intermolecular-interaction-

based method. 
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6.5 Conclusions 

In this study, the thermophoretic velocity of gas mixtures are experimentally 

measured, and following results are obtained:  

1. The thermophoretic velocity depends on the concentration of the gas mixture. For 

an argon-nitrogen mixture, the velocity increases as the concentration of nitrogen 

increases; for argon-carbon dioxide and nitrogen-carbon dioxide mixtures, the 

velocity decreases as the concentration of carbon dioxide increases.  

2. The tangential momentum accommodation coefficient of a gas mixture is 

estimated from experimental results to clarify its dependence on the concentration 

by assuming the thermal accommodation coefficient at unity. The estimated 

coefficient is compared with predictions from three methods; it is found that the 

intermolecular-interaction-based method gives the best prediction among those 

three methods for all mixture conditions. 

3. It is shown that the thermophoretic velocity under a binary gas mixture condition 

is practically predicted from the intermolecular-interaction-based method. 
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Chapter 7  

 

Conclusions and Future Work 

 

 

7.1 Conclusions 

In the present work, influences of gas species on the thermophoretic velocity of 

PMMA particles are investigated. The main conclusions of this study are summarized 

follows. 

In the present study, effects of gas species on the thermophoretic velocity are 

investigated. The characteristics of the thermophoresis for argon, nitrogen, and carbon 

dioxide are experimentally examined. The obtained-experimental results are compared 

with the theory. It is seen that when values for the constants CM, CT, CS, and CH to be 

1.000, 1.875, 0.750, and 1.000 are applied to the theory, results for both argon and 

nitrogen are quantitatively in good agreement with the theory, while notable discrepancy 

is seen for carbon dioxide. The discrepancy for carbon dioxide is corrected by changing 

values of coefficients, which are calculated by means of the least square fit. It is found 

the proposed values of CM, CT, CS, and CH for carbon dioxide are 1.378, 1.875, 0.750, and 

1.000. 

The attempt is made to investigate dependence of thermophoretic parameters on 

gas properties. The thermophoretic parameters for argon and nitrogen are reexamined, 

and compared with those of carbon dioxide, methane, and nitrous oxide. The value of 



Chapter 7: Conclusions and Future Works 

 

97 

 

residue R is calculated for all combinations of coefficients. It is found that several 

combinations of the coefficients are possible to fit the prediction with the experimental 

results. The physical relationships between the tangential momentum accommodation 

coefficient and the gas properties are clarified by assuming the thermal accommodation 

coefficient to be unity. A relation is shown between the tangential momentum 

accommodation coefficient and the molecular diameter; the coefficient decreases as the 

diameter increases.  

The thermophoretic velocity is experimentally measured for several gas mixtures, 

i.e., argon-nitrogen, argon-carbon dioxide, and nitrogen-carbon dioxide. It is found that 

the thermophoretic velocity depends on the concentration of the gas mixture. In the case 

of an argon-nitrogen mixture, the velocity increases as the concentration of nitrogen 

increases. On the other hand, in cases of argon-carbon dioxide and nitrogen-carbon 

dioxide mixtures, the velocity decreases as the concentration of carbon dioxide increases. 

The tangential momentum accommodation coefficient of a gas mixture is estimated from 

experimental results. The dependence of the tangential momentum accommodation on 

the concentration is clarified by assuming the thermal accommodation coefficient at unity. 

The comparison is done between the estimated coefficient and predictions from three 

methods. It is found that the intermolecular-interaction-based method gives the best 

prediction among those three methods for all mixture conditions. It is shown that the 

thermophoretic velocity under a binary gas mixture condition is practically predicted 

from the intermolecular-interaction-based method. 
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7.2 Recommendations for Future Work  

 Influences of composition of gas mixture on thermophoretic velocity have been 

investigated in the present study. However, due to some limitations, other influences 

could not be examined in this study. Therefore, several suggestions for future works 

related to the influences on the thermophoresis phenomenon are given as follows: 

1. The water vapor is the clue of this work. However, it is excluded owing to 

technical reasons on conducting experiment. For this purpose, the apparatus need 

to be modified so that experiments can be conducted in such condition. 

2. The influence of thermal conductivity of particle would be an important topic to 

be explored. Experiments for different type of particles should be considered to 

investigate this influence. 

3. Considering the combustion environment, the thermophoresis phenomenon is 

supposed to influence on the movement of soot particles. The soot particle is 

generally an aggregate particle. The understanding of the phenomenon for an 

aggregate would be interesting topic in the future work.  
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Appendix A  

 

Thermophoretic Velocity 

 

 

The thermophoresis is caused by the momentum exchange between gas molecules 

and the particle. The primary mechanism of this exchange is that gas molecules colliding 

from the higher temperature side transfer negative momentums to the particles, the 

overall amount of which exceeds those of positive momentums transferred by gas 

molecules colliding from the lower temperature side. As the result of this momentum 

exchange, the particle and the surrounding gas move in mutually opposite directions. The 

flow of the surrounding gas is referred to as the superficial slip flow. 

 

A-1 Calculation  

A-1-1 Assumptions 

 For determining the governing equations and boundary conditions, the following 

assumptions are made: 

1. A spherical particle is placed into the gas having a constant temperature gradient 

and fixed in its position. 

2. The flow is steady and symmetrical with respect to the z axis, which corresponds 

to the direction of the temperature gradient. 

3. The gas is incompressible. 
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4. Stoke’s approximation is applicable. 

 

A-1-2 Coordinate System 

 Spherical coordinates are adopted in this calculation. The relation between the 

spherical coordinates and a Cartesian coordinates is shown in Fig. A-1 and Eq. (A-1). 

 

Fig. A-1 Spherical coordinates 
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The center of the spherical particle is located at the origin of the coordinates. 

 

A-1-3 Governing Equations 

 The incompressible steady Navier-Stokes equation with Stokes’ approximation is 

shown as follows: 
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where pV and,,µ are the viscosity, the stream vector, and the pressure, respectively. 

 Equations of continuity, energy for the gas surrounding the particle, and heat 

conduction in the spherical particle are shown below: 
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where TF and TS are temperatures of the gas and the particle, respectively. 

 

A-1-4 Boundary Conditions 

 The matching condition for the thermal flux at the surface is shown below: 
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where kS and kF are thermal conductivities of the particle and the gas, respectively, a is 

the radius of the particle. 

The temperature jump condition at the surface is given as follows: 
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where l is the mean free path and CT is a constant for the temperature jump. 

The superficial slip condition on the surface of the spherical particle is shown as 

below: 
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where CM is the constant for slip flow, Vθ and Vr are θ and r elements of the stream vector, 

respectively, ρ is the density of the gas, TF0 is the reference temperature, ω is the element 

of vorticity in the ϕ direction, Pr is the Prandtl number, and γ is the ratio of specific heat.  

 In addition to the superficial slip condition, following boundary conditions are 

commonly set. Firstly, Vr should be zero at the surface. 

)9(A,0 −== arVr
 

 The faraway conditions are given as follows: 

)10(A,,cos,0,0 0 −∞→+∇=== rTrTTVV FFr θθ

 

where T∇ is the temperature gradient given to the domain. The axisymmetric conditions 

around z axis are shown below: 
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A-1-5 Derivation of Thermophoretic Force  

 The thermophoretic force FT is derived by integrating the superficial stress as 

follows: 
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where 
rrτ and θτ r

are the normal and the tangential components of viscous stress, 

respectively. The reference point of the pressure is settled at ,ar = .0=θ  
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A-1-5 Derivation of Thermophoretic Velocity 

 The thermophoretic velocity is derived from the balance between the 

thermophoretic force and the drag force. The equation is shown as follows: 
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Here, KnACC += 1 , where ( )KnA /10.1exp4.0257.1 −+= . 
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Appendix B  

 

Thermodiffusiophoretic Velocity 

 

 

For a gas mixture in the temperature gradient field, the heavier species in the 

mixture moves from a hot to cold region while the lighter species moves in the reverse 

direction. The concentration gradient, called as the Soret effect, is formed in the mixture 

as a result of a temperature gradient. Thus in the gas mixture, a diffusiophoretic force will 

be exerted on a particle in addition to the thermophoretic force. This phenomenon is 

called thermodiffusiophoresis.  

The diffusiophoretic force is given as follows: 

)1(B,'6 112 −∇−= xDacF
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where 'c , 12D , and 1x∇ are the diffusion slip factor, the coefficient of molecular 

diffusion, and the concentration gradient, respectively.  

 The diffusion slip factor 12c  is shown as follows: 
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where M is the molecular weight and σ is the molecular diameter, respectively. 

 The coefficient of molecular diffusion 
12D  is shown below: 
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where x , k , n , and Ω  are the molar fraction, the Boltzmann number, the number density, 

and the Ω -integral, respectively. 

 The concentration gradient 1x∇ is given as follows: 
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,
21

21

2

21

21 ∗










+

−









+
=

TT
k

MM

MM

nn

nn
k  

( ) ( )

( ) )5(B.
52

8

15
2,2

12

2,1

12

1,1

12 −








Ω

Ω−Ω
=∗

T
k  

The thermodiffusiophoretic velocity for the gas mixture is derived by equating the 

balance between forces acting on a particle: 
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a b s t r a c t

Microgravity experiments are conducted to measure the thermophoretic velocity, and

effects of gas species are investigated. Particles adopted are PMMA spheres of 2.91 mm

in mean diameter, and atmospheric gases chosen are pure gases of argon, nitrogen, and

carbon dioxide. The temperature gradient is set at 10 K/mm, and the pressure is set at

several conditions in the range from 20 kPa to 100 kPa. Terminal velocities of particles

suspended in a gas are individually measured during 0.25 s of the microgravity

condition, which is achieved by a free-fall. The accuracy of the measurement is attained

by accumulating data from repeated trials. Obtained experimental results are compared

with theoretical predictions; a notable discrepancy is found for carbon dioxide, while

the results for other two gases are consistent with predictions. Some attempts are made

to fix the discrepancy: first by modifying constants and second by modifying two

empirical coefficients in the theory.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Thermophoresis is the phenomenon that a small particle in a gas with a temperature gradient moves toward the lower
temperature side. This phenomenon is supposed to influence practically on the movement of soot particles in exhaust gas
from combustors, especially near cool walls around the hot gas flow, where the temperature gradient can become as large
as the order of 102 K/mm. For example, the measured size-distribution of particulate matter is influenced by the
temperature of the transfer tube connecting the exhaust pipe of a diesel engine to the dilution tunnel ahead of the
measuring device (Yuasa et al., 2011). A soot particle is generally an aggregate of fine primary spheres. There have been
some direct measurements on the thermophoretic phenomenon of such an aggregate particle. Zheng & Davis (2001) have
measured the thermophoretic force acting on an aggregate of polystyrene latex spheres, and found that the force is
affected by the number of primary spheres in the aggregate. Dobashi et al. (2000) and Suzuki & Dobashi (2007) have
conducted direct measurements on the thermophoretic velocity of soot particles, and have revealed that the velocity is
dependent not only on the macroscopic size of the soot particle but also on the aggregating condition; Suzuki & Dobashi
(2007) have shown experimental results suggesting that the phenomenon is dominated by the size of primary spheres
when the aggregation is coarse. Thus, the understanding of the phenomenon for a single sphere is indispensable before
understanding for an aggregate.
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The thermophoretic phenomenon of a spherical particle has been studied both theoretically and experimentally.
Theoretical works have been carried out by considering the boundary condition on the surface of a single spherical particle
suspended in a gas with a temperature gradient. Brock (1962) derived a theoretical solution to the thermophoretic force on
the particle by applying a slip boundary condition on its surface, which includes effects of the thermal slip, the viscous slip,
and the temperature jump. Derjaguin & Yalamov (1965) derived the thermophoretic velocity from the Brock’s theoretical
solution by equating the balance between the thermophoretic and the drag forces.

Experiments, on the other hand, have been performed by measuring the thermophoretic force or the thermophoretic
velocity. Fredlund (1938) attempted a systematic experiment to examine the effect of the temperature field upon a disk
suspended on a balance. The thermophoretic force and the thermophoretic velocity are measured by several methods: Millikan
cell (Rosenblatt & La Mer, 1946; Saxton & Ranz, 1952; Schadt & Cadle, 1961; Jacobsen & Brock, 1965), electrodynamic balance
(Li & Davis, 1995a, 1995b), precipitation in a thermoprecipitator (Schadt & Cadle, 1957; Keng & Orr, 1966), jet technique
(Kousaka et al., 1976; Prodi et al., 1979; Talbot et al., 1980), and deflection of a particle suspended by a small wire (Davis & Adair,
1975; Tong, 1975).

Above experimental methods are complex in practical implementation, and as a consequence, involve numerous errors.
Among those, errors caused by buoyancy are the largest problem; in a field with a temperature gradient, buoyancy induces
natural convection, which influences the movement of particles and disturbs the measurement. The velocity of such
natural convection is usually comparable to the thermophoretic velocity, and cannot be measured directly. To avoid this
problem, some experiments have been conducted under microgravity conditions. Toda et al. (1996, 1998) performed
experiments in a drop tower facility and demonstrated that the microgravity environment satisfactorily suppresses the
disturbance. Prodi et al. (2006, 2007) also conducted microgravity experiments by means of a drop tower facility and/or
parabolic flights. However, their reported data still seem to contain errors, possibly owing to limited trial numbers of
experiments, so that those data are not sufficient to make quantitative comparison with theories (Suzuki et al., 2009a).

Recently, our group has developed a device for conducting experiments repeatedly under a microgravity environment
in a very short period time, i.e. 0.3 s, by means of the free-fall method, to accumulate data of the thermophoretic velocity.
It has been confirmed that satisfactory accuracy can be attained if the amount of data is sufficient for statistical treatment
(Suzuki et al., 2009a). By comparing the obtained experimental results with the existing theory (Brock, 1962), two notable
differences are found; one is the substantial difference for particles with high thermal conductivity, and the other the
remarkable difference in the dependence of the humidity in the air (Suzuki et al., 2009b). The problem of the former
difference has been solved by reconsidering the boundary condition to improve the theory (Hoshino et al., 2010a). Hoshino
et al., (2010b) has derived an improved theoretical solution of the thermophoretic velocity by applying the boundary
condition proposed by Lockerby et al. (2004), which includes the thermal stress slip and the higher order isothermal slip.
However, even this improved theory cannot solve the problem of the latter difference. The deviation of the theory from the
experiment infers that the composition of the surrounding gas mixture has some unknown influence on the phenomenon.

Before analyzing the influence of the composition of the gas mixture, it is indispensable to know the characteristics of
the phenomenon for each gas component. Thus, in this study, the characteristics of the thermophoresis for several gas
species, i.e., argon, nitrogen, and carbon dioxide are experimentally examined. The first one is chosen as the reference, and
the latter two are chosen as the major components of exhaust gas from combustors. Water vapor is the clue of starting this
work, but it is excluded owing to technical reasons on conducting the experiment.

2. Theory for thermophoretic velocity

The theory adopted in this work is based on the works by Hoshino et al. (2010b) and by Chang & Keh (2012). The
thermophoretic velocity is calculated from the balance between the thermophoretic and the drag forces, the equation of
which is shown as below

VT ¼
2mCf

rTF0

½CSðkþCT KnÞþCHðCMCT Kn2þCMKn½k�1�Þ�

½1þ3CMKnþh�ð1þ2kþ2CT KnÞ
9rT9, ð1Þ

where m, 9rT9, r, TF0, Cf, k, Kn, h, CM, CT, CS, and CH are the viscosity, the temperature gradient, the density of the
surrounding gas, the reference temperature, the slip correction factor of the drag force for rarefied condition, the gas-to-
particle thermal conductivity ratio, Knudsen number, the term of higher order isothermal slip, and constants for slip flow,
temperature jump, thermal creep, and thermal stress slip, respectively. Here, the reference temperature TF0 is defined
as the supposed gas temperature at the center of the particle in the given temperature field without the existence of
the particle, and Knudsen number Kn is the ratio of the mean-free-path l to the particle radius. The mean-free-path is
calculated from the following equation (Kennard, 1938):

l¼
m

0:499P

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pRTF0

8

r
, ð2Þ

where P and R are the pressure and the gas constant, respectively. The slip correction factor Cf adopted in this work is
Cunningham’s correction factor Cf c ¼ 1þA Kn, where A¼ 1:257þ0:4expð�1:10=KnÞ (Talbot et al., 1980). The term h of
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higher order isothermal slip is written as below

h¼
9

2pPrKn2ð1�g�1Þ ð3Þ

where Pr and g are Prandtl number and the specific heat ratio, respectively.
Eq. (1) is basically identical to both of those proposed by Hoshino et al. (2010b) and Chang & Keh (2012). If constant values

CS¼0.75 and CH¼1.00 (Lockerby et al., 2004) are applied, the equation becomes just the same as the one given by Hoshino et al.
(2010b). On the other hand, the equation becomes the same as the one given by Chang & Keh (2012) by neglecting the term h,
which is usually negligible in the range of Knr0.1, and applying Basset’s correction (Basset, 1961), Cf b ¼ ð1þ3CMKnÞ=

ð1þ2CMKnÞ, instead of the Cunningham’s correction for the slip correction factor Cf . The Basset’s correction is applicable in
Knr0.1 while the Cunningham’s one in Kno1, and both are basically identical in those applicable ranges.

Two constants CM and CT are calculated as follows from two empirical coefficients, i.e., the tangential momentum
accommodation coefficient am and the thermal accommodation coefficient at

CM ¼
2�am

am
, ð4Þ

CT ¼
15

8

2�at

at

� �
: ð5Þ

These accommodation coefficients represent the magnitude of the momentum and energy exchange in the collision
between gas molecules and the particle (Kennard, 1938; Shen, 2010), which are defined as below

am �
Mi�Mr

Mi�Ms
, ð6Þ

at �
Ei�Er

Ei�Es
, ð7Þ

where M and E are average tangential components of the momentum and the energy flux normal to the particle surface,
respectively, of gas molecules, and subscripts i, r, and s refer to incident molecules, molecules reflecting from the surface,
and molecules leaving the surface in equalibrium with the surface, respectively. For example, a¼1 corresponds to the situation
that incident molecules achieve complete equilibrium with the particle surface before leaving, while a¼0 corresponds to the
situation of complete specular reflection.

In many cases, values of accommodation coefficients are simply assumed to be unity (Suzuki et al., 2009b; Hoshino
et al., 2010a). There are some experimental measurements, e.g., Thomas & Lord (1974) and Douglas (1982), who measured
accommodation coefficients on steel spheres and gas covered tungsten tube, respectively. Although those experiments
report values different from unity under some conditions, yet there are no commonly accepted values.

3. Experimental

3.1. Apparatus

Fig. 1 shows a schematic of the apparatus, which includes a drop tower, a measuring unit, and a damping cushion.
The measuring unit is hung at the top of the drop tower by an electric magnet. The unit starts falling when the electric

Cushion

0.6 m

Measuring unit 

Electric magnet 

Fig. 1. Schematic of apparatus.
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magnet is deactivated. The falling distance is 0.6 m, which corresponds to the duration time of the microgravity condition
at 0.3 s.

Fig. 2 shows a variation of the gravity level during an experiment. The gravity level is measured by the G-sensor
attached on the measuring unit. The duration time of the free-fall is about 0.3 s as seen in the figure. When the electric
magnet is deactivated at t¼0, the gravity level in z-axis changes from �1.0 G to þ0.4 G once, possibly owing to the
vibrational motion of the frame of the unit, and then decays as time passes until the unit reaches the cushion. The range
between 70.1 G in gravity level is regarded as the microgravity condition in this work, the duration time of which is about
0.25 s.

Fig. 3 shows a cross-section of the pressure vessel, the main part of the measuring unit. Placed in the vessel is a
cylindrical thin chamber of 1.5 mm in height between two opposing aluminum plates. The upper plate, initially at the
room temperature, is kept cool by moving it 15 mm away from the bottom plate while the latter is under the process of
heating to raise its temperature. Keeping this arrangement, the vessel is evacuated by a pump. When the bottom plate
reaches the appointed temperature, the upper plate is put in place where the distance between the plates is 1.5 mm. Then,
the vessel is filled with the test gas. When the temperature of the upper plate becomes the target temperature, both
electromagnetic valves at the inlet and the outlet are simultaneously opened for 0.01 s such that some particles are blown
into the chamber from a particle reservoir upstream the inlet. The magnet holding the measuring unit is deactivated 0.84 s
after the closure of both valves. The disturbances caused by the blow are expected to cease within this period before the
drop; since it is larger than both characteristic times for the flow field and the temperature field to reach the steady state;
those characteristic times are expressed as tf ¼ ðd=2Þ2=n and tt ¼ ðd=2Þ2=a, respectively, where d, n, and a are the distance
between two plates, the kinematic viscosity, and the thermal diffusivity, respectively (Toda et al., 1996,1998). The largest
values of those for present conditions are estimated at 0.06 s and 0.05 s. Those blown particles are illuminated by the laser
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Fig. 2. Gravity level during experiment Gravity level is measured by the G-sensor which is attached on the measuring unit.
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Fig. 3. Schematic of pressure vessel.
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beam introduced into the chamber to produce scattering lights, the image of which is recorded by a high-speed camera
under the condition of the frame rate at 200 fps and of the shutter speed at 2 ms.

3.2. Sample particles and experimental condition

Sample particles used in this work are PMMA sphere particles from Sekisui Plastics Co., Ltd. These are chosen since the
size is quite uniform; Fig. 4 shows the probability density distribution of the particle diameter d measured from SEM
images. The mean diameter and the standard deviation are 2.91 mm and 0.09 mm, respectively. The thermal conductivity is
measured by the manufacturer at 0.21 W/(mK).

Experiments are conducted under the microgravity condition with the test gas of argon, nitrogen or carbon dioxide. The
target temperature and the temperature gradient are 313 K and 10 K/mm, respectively. The temperature field during the
experiment is monitored by measuring temperatures at two points in the vessel: one is in the top plate and the other in
the bottom one. The temperature field is controlled based on these measured temperatures. Before making experiments,
the preparatory measurement for the temperature field is conducted by inserting two more thermocouples suspended in
the chamber at different heights. Measuring two points is sufficient because the linearity of the temperature field has
already been confirmed by the Mach–Zehnder interferometry (Toda et al., 1996,1998). The relation between these
temperatures at monitoring points and the actual temperature field in the chamber is examined from this preparatory
measurement. When conducting thermophoresis experiments, additional two thermocouples are removed; the tempera-
ture field is controlled based on the temperatures at those two monitoring points.

Various pressure conditions are chosen from 20 kPa to 100 kPa. The thermophoretic velocity for each particle is individually
measured, and the mean value and the 95% confidence interval for each experimental condition are statistically obtained.

4. Results

Fig. 5 shows examples of the movement of particles during a free-fall in the surrounding gas of argon at 20 kPa. The
measurement of the velocity should be taken at a fixed temperature since the thermophoretic velocity is dependent on not
only the temperature gradient but also the temperature itself. The velocity of each particle is measured by tracing its
movement while it travels within the range of the temperature between 31372 K. It is seen from the figure that the
velocity of each particle can be considered as constant in the range. The velocity is constant also in other two gases.

Table 1 shows the statistical data for the tested pressure conditions with the argon gas. It is noted that the 95%
confidence interval indicates not the range of data scattering but the range of expected mean value of the population. It is
seen that the confidence interval is roughly estimated at around 0.01 mm/s to 0.02 mm/s. The ratio of the confidence
interval to the mean value is only 3% for the pressure at 20 kPa. As the pressure increases, the velocity decreases, and as a
consequence, the ratio tends to increase.

Fig. 6 shows the thermophoretic velocity for each gas. The white rectangle (&), the black circle (K), and the white circle (J)
represent experimental values for argon, nitrogen, and carbon dioxide, respectively. Error bars in the figure indicate the 95%
confidence interval. The solid line is the prediction calculated by assuming constants to be identical to those in the previous
work (Hoshino et al., 2010a), namely, CM, CT, CS, and CH to be 1.000, 1.875, 0.750, and 1.000, respectively.

For argon and nitrogen, predictions are in good agreement with experiments throughout all the tested pressure
conditions; the solid line runs through the range of the confidence interval at every tested pressure. On the other hand, for
carbon dioxide, discrepancy is seen at low pressure conditions; the prediction is within the range of the confidence interval
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only when the pressure is at 100 kPa or 80 kPa. As the pressure decreases, discrepancy becomes notable; the experimental
value at 20 kPa is 0.182 mm/s, which is 70% of the theory.

5. Discussion

It is quite interesting that the discrepancy is seen only for carbon dioxide. Also, previous work (Hoshino et al., 2010a)
has shown satisfactory accordance between the prediction and the experiment for the air. As noted earlier, the theory
contains four constants, CM, CT, CS, and CH, and the former two of these are calculated from accommodation coefficients am

and at. These constants and coefficients have been determined empirically; different researchers have given different
proposed values. Attempts should be made for finding suitable values to fit the prediction to these experimental results.

The first attempt is done by applying proposed values from references, which are shown in Table 2. The set of values
noted as Case 1 is from the paper by Hoshino et al. (2010a), and those as Case 2 and 3 are both from the paper by Chang & Keh
(2012). Fig. 7 shows predictions together with experimental results. The vertical axis represents the reduced thermophoretic
velocity, which is a dimensionless parameter defined as follows:

VTR �
VT TF0

urT
, ð8Þ

where u is the kinematic viscosity of the gas. This parameter is often used when making comparison between different
conditions. Lines labeled as Prediction 1, 2, and 3 are those predicted from Eq. (1) by applying values of Case 1, 2, and 3,
respectively. For both argon and nitrogen, the best fit to experimental results is Prediction 1, and then Prediction 3 follows; the
velocity predicted from Case 3 is higher than the experiment at Kn¼0.25 for both two gases, whereas that from Case 1 is within
the error bar throughout all the measured range of Kn. For carbon dioxide, on the other hand, there is no line predicting
satisfactorily the experimental result at Kn¼0.15, though Prediction 3 seems to be better than Prediction 1. Prediction 2 can be
omitted from the discussion since it obviously disagrees with the experiment for all gases.

Provisionally, Case 1 is chosen as the best among three cases; Case 3 is not good enough for high Kn for all tested gases
in comparison to Case 1. Choosing Case 1 instead of Case 3 is also consistent with the previous work, in which experiments
have been conducted in the air under the atmospheric pressure for particles of PMMA, alumina, and Zn (Suzuki et al.,
2009b); as shown in Table 3, significant differences are seen between Case 3 and experimental results for alumina and Zn,
whereas agreements are satisfactory for all particles with Case 1. In the theory, only the radius and the thermal
conductivity are considered as particle-related parameters. It would be reasonable to assume that coefficients for CO2 are
different from those for other gases; Sharipov (2004) has reviewed related papers and summarized accommodation
coefficients for various gases, in which CO2 values are notably different from Ar and N2.
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Fig. 5. Movement of particles in surrounding gas of argon.

Table 1
Statistical data of thermophoretic velocity in surrounding gas of argon.

Pressure, P, kPa 20 40 60 80 100

Sampling number, n, – 39 35 37 33 47

Mean thermophoretic velocity, VT , mm/s 0.538 0.183 0.111 0.075 0.066

Standard deviation, s, mm/s 0.053 0.044 0.026 0.030 0.036

Confidence interval (95%), mm/s 0.017 0.015 0.009 0.011 0.011

Ratio of confidence interval to mean thermophoretic velocity, – 0.03 0.08 0.08 0.15 0.17

B.R. Mohd Azahari et al. / Journal of Aerosol Science 54 (2012) 77–8782



0.2

0.4

0.6

0.8

Pressure, P, kPa

T
he

rm
op

ho
re

tic
 v

el
oc

ity
, V

T
, m

m
/s

Experiment
Prediction

200

0.2

0.4

0.6

0.8

T
he

rm
op

ho
re

tic
 v

el
oc

ity
, V

T
, m

m
/s

0

0.2

0.4

0.6

0.8

T
he

rm
op

ho
re

tic
 v

el
oc

ity
, V

T
, m

m
/s

0

 Experiment
 Prediction

0

 Experiment
 Prediction

40 60 80 100 120

Pressure, P, kPa
20 40 60 80 100 120

Pressure, P, kPa
20 40 60 80 100 120
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the assumption of CM¼1.000, CT¼1.875, CS¼0.750, and CH¼1.000: (a) argon, (b) nitrogen and (c) carbon dioxide.

Table 2
Constants for each case.

CM, – CT, – CS, – CH, – am, – at, – References

Case 1 1.000 1.875 0.750 1.000 (1.000)a (1.000)a Hoshino et al. (2010a)

Case 2 1.140 2.180 1.170 1.000 (0.935)a (0.925)a Chang & Keh (2012)

Case 3 1.140 2.180 1.170 3.000 (0.935)a (0.925)a Chang & Keh (2012)

aValues in bracket are from Eqs. (4) and (5) (not directly given in the reference).
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The second attempt is done by changing the accommodation coefficients from Case 1 by means of the least square fit.
The residue R representing the discrepancy between the experiment and the prediction is defined as follows:

R�
Xn

j ¼ 1

ðVej�VpjÞ
2, ðj¼ 1,. . .,nÞ ð9Þ
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B.R. Mohd Azahari et al. / Journal of Aerosol Science 54 (2012) 77–8784



where Ve, Vp, and n are thermophoretic velocities of the experiment and the prediction, and the number of the tested
pressure conditions, respectively, and the subscript j refers to each tested condition. The values for CS and CH are
unchanged from the Case 1, and those for CM and CT are calculated from Eqs. (4) and (5), respectively, with accommodation
coefficients am and at determined such that the residue R becomes the lowest.

Table 4 shows the result of the least square fit for carbon dioxide. The best fit is attained with the coefficients noted as
‘‘without limitation’’ in the table. It should be noted that both values are clearly above unity, which is curious when
interpreting the physical meaning of those values. Based on the kinetic theory, both those coefficients should lie between 0
and 1 (Brock, 1962; Kennard, 1938; Shen, 2010). The Cercignani-Lampis (CL) model provides a more physical description of
the gas-surface interaction (Sharipov, 2003, 2004), which allows am to vary between 0 and 2 while at remains between 0
and 1. In this CL model, am can exceed unity when the surface is rough. Considering this, additional work is done for the
fitting by applying the limitation of 0ratr1 and 0ramr2, the result of which is shown as ‘‘with limitation’’ in the table.
In this case, R becomes the lowest when both the coefficients are bellow unity even am is allowed to exceed it.

Fig. 8 shows the comparison of predictions based on these values. It is seen that both predictions are in good agreement
with the experiment within the range of the tested conditions. The difference between these two predictions is notable
only under the condition of higher Knudsen number than the current work.

In order to interpret the different coefficients for the carbon dioxide, authors have found two different points of view from
literatures so far; one is the molecular weight, and the other the diameter of a molecule. The former is based on the work by
Gronych et al. (2004), who have conducted experiments to find out that the tangential momentum accommodation coefficient
increases as the molecular weight of the gas decreases. This may be related to the influence of gas species. However, applying

Table 3
Reduced thermophoretic velocity in air under atmospheric pressure.

Material VTR, – Experimenta

Prediction (Case 1) Prediction (Case 3)

PMMA 0.167 0.210 0.17270.011

Al2O3 0.037 �0.035 0.03670.008

Zn 0.049 �0.034 0.05070.010

a From Suzuki et al. (2009b).

Table 4
Estimated accommodation coefficients for carbon dioxide.

am, – at, –

Without limitation 1.193 1.307

With limitation 0.841 1.000
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Fig. 8. Comparison of predictions for carbon dioxide Error bars represent the confidence interval (95%). The solid and the broken lines represent

predictions calculated with the coefficients from least-square-fit ‘‘without limitation’’ and ‘‘with limitation’’, respectively.
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this effect for the explanation of the present results would not be appropriate; the molecular weight of argon is closer to carbon
dioxide rather than nitrogen, while the thermophoretic characteristic of the argon is much closer to the nitrogen rather than
the carbon dioxide.

The latter is based on the work by Arya et al., (2003), who have conducted a molecular simulation for a wall-slip
phenomenon in rarefied gases. According to their result, the tangential momentum accommodation coefficient decreases
as the collision diameter of the molecule increases. Among the gases used in this work, carbon dioxide has a notably larger
collision diameter; based on the rigid sphere model, the diameter of argon, nitrogen, and carbon dioxide are 3.659 Å,
3.784 Å, and 4.643 Å, respectively (Ivchenko et al., 2007). This can explain qualitatively the results in this work if the
coefficients ‘‘with limitation’’ are adopted for the carbon dioxide and those at unity are adopted for other two gases. The
thermal accommodation coefficient ‘‘with limitation’’ is also consistent with the work by Winkler et al. (2004), in which
the coefficient at is reported to be approximately unity for water vapor, a polyatomic gas having a large collision diameter.
The constants and coefficients, however, cannot be determined from the results in this work, since several combinations of
those are possible to fit predictions to experimental results.

6. Conclusions

In this study, effects of gas species on the thermophoretic velocity are investigated, and following results are obtained:

1. Experimentally-obtained pressure dependence of the thermophoretic velocity for both argon and nitrogen are
quantitatively in good agreement with the theory, while notable discrepancy is seen for carbon dioxide, if values for
the constants CM, CT, CS, and CH to be 1.000, 1.875, 0.750, and 1.000 are applied to the theory.

2. Values of those empirical constants proposed in some references were applied to the theory and compared with
experiments; none of those has reduced the notable deviation for the carbon dioxide at Kn¼0.15.

3. The coefficients are calculated by means of the least square fit. The obtained values can be interpreted qualitatively by
considering the effect of the molecular diameter on the tangential momentum accommodation coefficient. The
proposed values of CM, CT, CS, and CH for carbon dioxide are 1.378, 1.875, 0.750, and 1.000, although further discussion
will be required for the determination of the values.
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a b s t r a c t

The thermophoretic velocity of a particle in a gas mixture is measured by means of a
microgravity experiment. Adopted particles are PMMA spheres of 2.91 mm in mean
diameter, and gas mixtures chosen are argon–nitrogen, argon–carbon dioxide, and
nitrogen–carbon dioxide. The temperature gradient and the pressure are 60 K/mm and
70 kPa, respectively. Terminal velocities of particles suspended in a gas are individually
measured. The tangential momentum accommodation coefficient is estimated from
experimental result by assuming the thermal accommodation coefficient at unity, and it
is compared with predictions calculated from values of composing pure gases by means of
some methods given in references; among those methods, the intermolecular-interaction-
based method is found to be the best for all mixture conditions.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

A small particle suspended in a quiescent gas with a temperature gradient will move towards the lower temperature
side. This phenomenon, called thermophoresis, influences the soot formation process in combustion fields (Dobashi et al.,
2000). The phenomenon is also applied in a thermopositor used for collecting submicron size particles in a manufacturing
process of optical fibers (Morse et al., 1985). Quantitative understanding of the phenomenon is indispensable for controlling
the movement of particles in those systems.

Recent experiments by means of the free-fall method, which suppresses the buoyancy-induced disturbance to attain
satisfactory accuracy (Toda et al., 1996, 1998; Suzuki et al., 2009a), have exhibited a remarkable difference from the theory
when the air contains moisture (Suzuki et al., 2009b). This deviation infers the existence of unknown influence of gas
species and/or gas mixing on the phenomenon that has not been taken into consideration in the theory (Hoshino et al.,
2010b; Chang & Keh, 2012), which gives reasonable prediction in the case of dry air.

Influence of gas species on the thermophoretic phenomenon has been investigated in the previous work (Mohd Azahari
et al., 2012); the thermophoretic velocity has been measured for pure gases of argon, nitrogen, and carbon dioxide.
Satisfactory agreement with the theory is seen in cases of argon and nitrogen, while a noticeable deviation from the theory
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is seen in the case of carbon dioxide. It has been demonstrated in the paper that this deviation can be corrected by
modifying two empirical constants, i.e., the tangential momentum accommodation coefficient and the thermal accom-
modation coefficient, both which are involved in the theory and usually assumed to be unity (Li & Davis, 1995a; Prodi et al.,
2007; Suzuki et al., 2009b; Hoshino et al., 2010a).

A problem arises here for the treatment of accommodation coefficients of a mixture of pure gases having different values,
e.g., the mixture of nitrogen and carbon dioxide. It should better be confirmed even when the mixture is composed of pure
gases having the same coefficient value, e.g. the mixture of argon and nitrogen, since there is no widely-accepted method so
far for evaluating the coefficients of the mixture from the values of composing pure gases.

There are some theoretical and experimental researches dealing with one of those coefficients of gas mixtures, although
none of those gives explicit discussion for both the coefficients together. Mikami et al. (1966) have measured heat-transfer
coefficients of a sphere in hydrogen–nitrogen and helium–nitrogen mixtures by utilizing a thermistor, and have compared
those results with an analytical solution based on the Maxwell's model; good agreement has been shown by applying a
linearly-dependent relation of the accommodation coefficient to the gas concentration. Wise et al. (1966) have conducted
experiments to measure the heat transfer with a conductivity cell in a gas mixture of atomic and molecular oxygens.
The coefficient for pure atomic oxygen is estimated from extrapolation of experimentally-determined thermal accommoda-
tion coefficients of mixtures containing small amount of atomic oxygen. Ivchenko et al. (1997, 2007) have studied the slip
phenomenon in the flow of a gas mixture to develop an analytical solution for planar transport problems. Bentz et al. (1999)
have performed experiments with a spinning rotor gauge to measure the slip flow constant, which is related to the
tangential momentum accommodation coefficient, for helium–argon, helium–nitrogen, and helium–neon mixtures. Bentz et
al.'s experimental results exhibit a nonlinear dependence on the mixture concentration; it seems to agree qualitatively well
with the prediction from the Ivchenko et al.'s solution, though they have written of it “there are large differences”. Further
investigation will be needed in order to determine the appropriate method for evaluating mixture's coefficients.

In this study, thermophoretic parameters are experimentally investigated for several gas mixtures, i.e., argon–nitrogen,
argon–carbon dioxide, and nitrogen–carbon dioxide. The dependence of the tangential momentum accommodation
coefficient on the concentration of the mixture is examined from the measured thermophoretic velocity.

2. Factors affected by gas mixing

The problem for a gas mixture is the treatment of two empirical parameters, i.e., tangential momentum- and thermal-
accommodation coefficients, which characterize the interaction between the solid surface of the particle and surrounding
gas molecules. In the gas mixture, a diffusiophoretic force will be exerted on a particle in addition to the thermophoretic
force since the temperature gradient causes a concentration gradient. The thermodiffusiophoretic velocity for a gas mixture
is shown as below

VTD ¼ 3μCc

2ρTF0

½ðkþ CTKnÞ þ ð4=3ÞðCMCTKn2 þ CMKn½k−1�Þ�
½1þ 3CMKnþ ð9=2πÞPrKn2ð1−γ−1Þ�ð1þ 2kþ 2CTKnÞ

∇T þCcc0D12 ∇x1 ;jj
���� ð1Þ

where μ, |∇T|, ρ, TF0, Cc, k, Kn, Pr, γ, CM, CT, c′, D12, and |∇x1| are the viscosity, the temperature gradient, the density of the gas,
the reference temperature, the Cunningham's correction factor, the gas-to-particle thermal conductivity ratio, Knudsen
number, Prandtl number, the specific heat ratio, the constant for slip flow, the constant for temperature jump, the diffusion
slip factor, the coefficient of molecular diffusion, and the concentration gradient, respectively. Here, the reference
temperature TF0 is defined as the supposed gas temperature at the center of the particle in the given temperature field
without the existence of the particle. The first term in the right hand side of Eq. (1) is the thermophoretic term, which is the
same as in the previous work (Mohd Azahari et al., 2012). The second term is the diffusiophoretic term (Waldmann, 1959).
The density ρ, the viscosity m, and the thermal conductivity of gas kf for a binary gas mixture are calculated as follows
(Richard, 1964)

ρ¼ P1

R1T
þ P2

R2T
; ð2Þ

μ¼ ∑
n

j

μj
1þ∑n

j¼ 1
n≠i

φjnðxn=xjÞ
; ð3Þ

kf ¼ ∑
n

j

kf j
1þ∑n

j¼ 1
n≠i

ϕjnðxn=xjÞ
: ð4Þ
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here,

φjn ¼
ð1þ ðμj=μnÞ1=2ðMn=MjÞ1=4Þ2

2
ffiffiffi
2

p
ð1þ ðMj=MnÞÞ1=2

; ð5Þ
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1
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� �
; ð6Þ

Cjn ¼ ðCjCnÞ0:5; ð7Þ

where R and C are the gas constant and Sutherland constant, respectively. Subscripts j and n refer to the number of each gas
species and the total number, respectively. Parameters c′, D12, and |∇x1| are calculated by complex equations given by Kihara
(1975) and Ivchenko et al. (2007).

Constants CM and CT in Eq. (1) are the ones containing the tangential momentum accommodation coefficient αm and the
thermal accommodation coefficient αt, respectively, which are written as follows:

CM ¼ 2−αm
αm

; ð8Þ

CT ¼
15
8

2−αt
αt

� �
: ð9Þ

In order to apply this same formula to a gas mixture, those coefficients of the mixture should be determined from values
of each pure gas components.

In this work, only the tangential momentum accommodation coefficient is derived from experimental results, and the
other one, the thermal accommodation coefficient, is assumed to be unity on the basis of results in the previous work (Mohd
Azahari et al., 2012), in which all the thermal accommodation coefficients have been estimated at unity for the same pure
gases adopted in this work.

The authors have found three different methods for the calculation of the tangential momentum accommodation
coefficient of a mixture, which are explained below

i. Energy-balance-based method
The first one is given by Mikami et al. (1966), who derived the tangential momentum accommodation coefficient for a
gas mixture from the energy balance as below

αm;mix ¼
∑2

j ¼ 1xjαm;j=
ffiffiffiffiffiffi
Mj

p
∑2

j ¼ 1xj=
ffiffiffiffiffiffi
Mj

p ; ð10Þ

where x andM are the molar fraction and the molecular weight, respectively, and subscript j refers to the number of each
gas species.

ii. Mass-fraction-based method
The second one is found in the ANSYS FLUENT theory guide (2009), in which both the accommodation coefficients of a
mixture are calculated simply by taking the mass-fraction weighted average of each gas species as follows:

αmix ¼ ∑
2

j ¼ 1
yjαj; ð11Þ

where yj and α are the mass fraction of each gas species j and each accommodation coefficient.
iii. Intermolecular-interaction-based method

The last one can be derived from equations given by Ivchenko et al. (2007). The constant CM for the slip-flow of a gas
mixture was derived using the first-order Chapman–Enskog approximation and the Maxwell method as below

CM ¼ 5
16

π
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1M1 þ x2M2

p
μ

ð2−α1mÞx1b1 þ ð2−α2mÞx2b2
α1mx1

ffiffiffiffiffiffiffi
M1

p
þ α2mx2

ffiffiffiffiffiffiffi
M2

p ; ð12Þ

where P and b are the pressure and the transport coefficient (Ivchenko et al., 2007) of viscosity corresponding to
arbitrary models of the intermolecular interaction, respectively, and subscripts 1 and 2 refer to components of the binary
gas mixture. Here, it is noted that the literature adopts the following equation instead of Eq. (8):

CM ¼ 5
16

π
ð2−αmÞ
αm

: ð13Þ

This equation is basically identical to the Eq. (8): the additional coefficient of 5π/16 to the Eq. (8) makes the resultant
value only 2% less. By equating Eqs. (12) and (13), the tangential momentum accommodation coefficient of the mixture
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can be formulated as a function of the coefficients of two pure gases as follows:

αm;mix ¼ 2 1þ P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1M1 þ x2M2

p
μ

ð2−α1mÞx1b1 þ ð2−α2mÞx2b2
α1mx1

ffiffiffiffiffiffiffi
M1

p
þ α2mx2

ffiffiffiffiffiffiffi
M2

p
 !−1

: ð14Þ

3. Experimental

The experimental configuration used in this work is the same as the previous (Mohd Azahari et al., 2012) except that a
gas mixer is introduced. A mixture of two gases is created before it is supplied into the pressure vessel, in which particles are
supplied to measure the thermophoretic velocity. The mixer is evacuated by a pump before two gases feed into it. Gas
mixtures in various ratios are prepared by adjusting the partial pressure of each gas. The gases used in this work are argon,
nitrogen, and carbon dioxide.

Sample particles used in this work are the same spherical PMMA particles used in the previous. As it is shown in Table 1,
those particles are quite uniform in size. The mean diameter and the thermal conductivity of these particles are 2.91 μm and
0.21 W/ (m K), respectively. The pressure, the reference temperature, and the temperature gradient of the surrounding gas
are 70 kPa, 338 K, and 60 K/mm, respectively. The measurement is performed by means of the free-fall method. Drop
experiments are conducted repeatedly to accumulate enough amounts of data. Details are described in the previous paper
(Mohd Azahari et al., 2012). It is noted that the temperature gradient in the present work is increased, and the reference
temperature is changed accordingly, from the previous condition such that the thermophoretic velocity increases and the
measurement accuracy increases.

The tangential momentum accommodation coefficient αm for each experimental datum is calculated from Eqs. (1), (8),
and (9) by assuming αt¼1, and the mean value and its 95% confidence interval are statistically obtained for each
experimental condition. It is noted that those data for pure gases include experimental results from the previous work
(Mohd Azahari et al., 2012). The experimentally-obtained coefficient αm of a gas mixture is compared with the ones
calculated from values of pure gases by Eqs. (10), (11), and (14).

4. Results

Fig. 1 shows measured velocities for argon–nitrogen, argon–carbon dioxide, and nitrogen–carbon dioxide mixtures. Lines
represent predictions by above-mentioned methods, which will be explained later. Error bars in the figure indicate the 95%
confidence interval for the mean.

Nitrogen exhibits the highest thermophoretic velocity, followed by argon and carbon dioxide; the thermophoretic
velocities for pure nitrogen, argon, and carbon dioxide are 0.880 mm/s, 0.673 mm/s, and 0.273 mm/s, respectively. For the
mixture of argon–nitrogen, the thermophoretic velocity increases as the concentration of nitrogen increases. For mixtures of
argon–carbon dioxide and nitrogen–carbon dioxide, the thermophoretic velocity decreases as the concentration of carbon
dioxide increases.

Fig. 2 shows tangential momentum accommodation coefficients of pure gases of argon, nitrogen, and carbon dioxide.
White and black symbols represent values from the previous (Mohd Azahari et al., 2012) and this works, respectively. Solid
lines indicate mean values among all pressure conditions. Coefficients from this work seem to be consistent with those from
the previous.

Table 2 shows mean values of the coefficient from all the pressure conditions. Coefficients for argon and nitrogen are
almost the same: 0.987 and 0.986, respectively. That for carbon dioxide exhibits a notably low value at 0.821.

Table 3 shows the tangential momentum accommodation coefficient calculated from experimental results. Error ranges
indicate the 95% confidence interval for the mean. For argon–carbon dioxide and nitrogen–carbon dioxide, it is seen that the
coefficient is dependent on the gas concentration. For the mixture of argon–nitrogen, the slightly increase up to 1% is
noticeable in the mean value. However, it is difficult to make a statistically significant since the mean values are within the
error range.

Fig. 3 shows comparisons of the tangential momentum accommodation coefficient of experiments and predictions from Eqs.
(10), (11), and (14). In cases of gas mixtures of argon–nitrogen and argon–carbon dioxide, predictions by the energy-balance and the

Table 1
Diameter of PMMA particles.

Mean
(mm)

Standard
deviation
(mm)

Confidence interval (95.0%)
for the mean (mm)

2.91 0.09 0.03
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mass-fraction methods are almost identical. On the other hand, in the case of nitrogen–carbon dioxide, predictions by the energy-
balance and the intermolecular-interaction methods give close results while the mass-fraction method is distinguishable from
others. Although there is slightly difference between methods, all predictions agree satisfactorily with the experimental result for
argon–nitrogen. For argon–carbon dioxide, disagreements are seen between the experimental result and predictions by the energy-
balance and the mass-fraction methods. For nitrogen–carbon dioxide, slightly disagreement is noticeable between the mass-
fraction method and the experimental result at 25% carbon dioxide. The intermolecular-interactionmethod seems to be the best for
all those mixture conditions.

Comparisons of thermophoretic velocities between predictions and experiments for gas mixtures are shown in Fig. 1.
Although the difference is not so remarkable, the intermolecular-interaction method seems to be the best among compared
three methods; the energy-balance and the mass-fraction methods underestimate the velocity for argon-carbon dioxide.
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Fig. 1. Thermophoretic velocity for each gas mixture. Error bars represent the confidence interval (95%) for the mean. (a) Ar-N2, (a) Ar-CO2 and (c) N2-CO2.
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Fig. 2. Tangential momentum accommodation coefficient for each pure gas. Error bars represent the confidence interval (95%) for the mean. (a) Argon,
(b) Nitrogen and (c) Carbon dioxide.

Table 2
Tangential momentum accommodation coefficient αm for each pure gas.

Gas αm

Argon 0.987
Nitrogen 0.986
Carbon dioxide 0.821
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Table 3
Estimated tangential momentum accommodation coefficient αm for each gas mixture.

Ratio Ar:N2 Ar:CO2 N2:CO2

1.00:0.00 0.98770.028 0.98770.028 0.98670.026
0.75:0.25 0.98970.027 0.99170.025 0.96570.028
0.50:0.50 0.99370.031 0.94970.029 0.90570.022
0.25:0.75 0.99270.026 0.87770.022 0.84670.033
0.00:1.00 0.98670.026 0.82170.031 0.82170.031
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Fig. 3. Comparison of tangential momentum accommodation coefficient for each gas mixture. Error bars represent the confidence interval (95%) for
the mean. (a) Ar-N2, (b) Ar-CO2 and (c) N2-CO2.
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5. Discussion

A problem in the determination of coefficients of a gas mixture is the uncertainty of those values of composing pure gases.
Different researchers have proposed different values for a same pure gas. Table 4 shows comparisons of coefficients between several
references for the concerned pure gases; the values obtained in this work are also shown. These differences in the table infer the
possibility that the accommodation coefficient is dependent on the adopted method and/or the material of the solid. The surface
condition of the solid wall may also have some influence: Thomas and Lord (1974) have measured accommodation coefficients for
polished and rough surfaces of steel spheres to find some difference as shown in the table.

This problem should be considered when making quantitative comparison between values from different research
works. With regard to the current and its preceding works, all experimental data are obtained from the same method and
the same kind of particles. Thus, the comparison given in this work will not be concerned directly by the problem.

Another problem is the assumption that the thermal accommodation coefficient is always at unity regardless of the
mixing condition. This does not concern when applying energy-balance and mass-fraction based methods, since both these
methods do not alter the coefficient of the mixture when both the pure gases have the same value at unity.
The intermolecular-interaction-based method, on the other hand, may change the value of the thermal accommodation
coefficient depending on the concentration as is the case of the tangential momentum accommodation coefficient. Authors
did not find so far any reference that shows the way to calculate the thermal accommodation coefficient on the
intermolecular interaction basis. Although there are such vulnerable points in the treatment of coefficients, the current
work would be informative for a practical use in predicting the thermophoretic velocity for gas mixtures. Experimental
results are satisfactorily predicted when the thermal accommodation coefficient is assumed to be unity and the other
coefficient is calculated from pure gas values by means of the intermolecular-interaction-based method.

6. Conclusions

In this study, the thermophoretic velocity of gas mixtures are experimentally measured, and following results are
obtained:

1. The thermophoretic velocity depends on the concentration of the gas mixture. For an argon–nitrogen mixture, the
velocity increases as the concentration of nitrogen increases; for argon–carbon dioxide and nitrogen–carbon dioxide
mixtures, the velocity decreases as the concentration of carbon dioxide increases.

2. The tangential momentum accommodation coefficient of a gas mixture is estimated from experimental results to clarify
its dependence on the concentration by assuming the thermal accommodation coefficient at unity. The estimated
coefficient is compared with predictions from three methods; it is found that the intermolecular-interaction-based
method gives the best prediction among those three methods for all mixture conditions.

3. It is shown that the thermophoretic velocity under a binary gas mixture condition is practically predicted from the
intermolecular-interaction-based method.
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Table 4
Comparison of coefficients for pure gases.

Tested gas αm αt Solid material Reference

Argon 0.931 1.102 Steel spheres (polished surface) Thomas and Lord (1974)
1.049 1.161 Steel spheres (rough surface) Thomas and Lord (1974)
0.916 1.000 Glass Sharipov (2004)
1.000 0.900 Paraffin Prodi et al. (2007)
0.987 1.000 PMMA This work

Nitrogen 1.000 0.680 Tungsten Douglas (1982)
0.911 1.000 Glass Sharipov (2004)
1.000 0.900 Paraffin Prodi et al. (2007)
0.986 1.000 PMMA This work

Carbon dioxide 1.000 0.720 Tungsten Douglas (1982)
1.000 0.450 Glass Li and Davis (1995b)
1.000 0.450 Polystyrene latex (PSL) sphere Li and Davis (1995b)
0.993 1.000 Glass Sharipov (2004)
0.821 1.000 PMMA This work
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