Electronic structure and spectroscopy of O₂ and O₂⁺

Gabriel J. Vázquez¹ H. P. Liebermann² H. Lefebvre-Brion³

¹Universidad Nacional Autónoma de México Instituto de Ciencias Físicas Cuernavaca, México

²Universität Wuppertal Fachbereich C–Mathematik und Naturwissenschaften Wuppertal, Germany

> ³Université de Paris Sud Laboratoire de Photophysique Moléculaire Orsay, France

1/1

E M

69th ISMS University of Illinois, 15–20 June 2014

・ロ> ・目> ・目> ・目・ のQQ

M 2/1

Outline

In this presentation I will show a sample of ongoing electronic structure calculations of O_2 and O_2^+

O₂ molecule

- Some singlets
- Triplets
- Quintets
- Septets

O_2^+ cation

- Some doublets
- Quartets
- Sextets

Comments of the computation of O₂^{**} superexcited states

≣ M

< 日 > < 回 > < 回 > < 回 > < 回 >

Ab-initio electronic structure calculations of O₂ and O₂⁺

Type: SCF MRSD(TQ)–CI Package: MRD–CI ^a O basis: cc–pVQZ + + diffuse(three *s*, three *p*, one *d*) Functions: O(8s7p4d2f) Total 16s14p8d4f 146 atomic functions

SCF: D_{2h} symmetry Core: $1\sigma_g^2 1\sigma_u^2 1s(O_1)$ and $1s(O_2)$ CI: 12 active e⁻ Excitations: S + D + (T, Q)MO's $O_2(X^3\Sigma^-)$ Conf. $O_2(X) 1\sigma_g^2 1\sigma_u^2 2\sigma_g^2 2\sigma_u^2 3\sigma_g^2 1\pi_u^4 1\pi_g^2$

3/1

E M

Molecular states	Number of states	Limit	D ₀ (eV) ^a
${}^{5}[\Sigma^{-},\Pi,\Delta]_{q,u}$	6	O(¹ D)+O(⁵ S°)	
$^{1,5}[\Sigma^+(2),\Delta]_q, {}^3[\Sigma^+(2),\Delta]_u, {}^{1,5}[\Sigma^-]_u, {}^3[\Sigma^-]_q, {}^{1,3,5}[\Pi]_{q,u}$	18	$O(^{3}P) + O(^{3}P)$	
$^{1,3,5,7}[\Sigma^+,\Pi]_{q,u}$	16	O(³ P)+O(⁵ S°)	
$^{1}[\Sigma^{+}]_{q}$	1	$O(^{1}S)+O(^{1}S)$	
$[\Sigma^+,\Pi,\Delta]_{q,u}$	6	$O(^{1}D)+O(^{1}S)$	
${}^{3}[\Sigma^{-},\Pi]_{q,u}$	4	$O(^{3}P)+O(^{1}S)$	
$^{1}[\Sigma^{+}(3), \Delta(2), \Gamma]_{q}, ^{1}[\Sigma^{-}(2), \Delta]_{u}, ^{1}[\Pi(2), \Phi]_{q, u}$	15	$O(^{1}D)+O(^{1}D)$	
${}^{3}[\Sigma^{+}, \Sigma^{-}(2), \Pi(3), \Delta(2), \Phi]_{q, u}$	18	$O(^{3}P)+O(^{1}D)$	
$^{1,5}[\Sigma^+(2), \Delta]_g, {}^3[\Sigma^+(2), \Delta]_u, {}^{1,5}[\Sigma^-]_u, {}^3[\Sigma^-]_g, {}^{1,3,5}[\Pi]_{g,u}$	20	$O(^{3}P)+O(^{3}P)$	5.1156
^a Expansion are referred with respect to $O_{2}(y^{3}\nabla^{-}y'' = 0)$			

Molecular states correlating to the lowest dissociation limits of O_2 , along with their respective dissociation energies.^{*a*}

^a Energies are referred with respect to $O_2(X^3\Sigma_q^-, v''=0)$.

4/1

э

Μ

< D > < B > < E > < E >

It is somewhat unexpected since the high-multiplicity states are most often unbound

M 21 / 1

Molecular states	Number of states	Limit	Dissociation energy, D(eV) ^a
${}^{2}[\Sigma^{+},\Pi]_{a,u}$	4	O ⁺ (² P)+O(¹ S)	27.940
$^{2,4,6,8}[\Sigma^+]_{q,u}$	8	$O^{+}(^{4}S)+O(^{5}S)^{b}$	27.879
$^{2}[\Sigma^{-},\Pi,\Delta]_{g,u}$	6	$O^{+}(^{2}D)+O(^{1}S)$	26.246
${}^{2}[\Sigma^{+}(2), \Sigma^{-}, \Pi(3), \Delta(2), \Phi]_{g,u}$	18	O ⁺ (² P)+O(¹ D)	25.717
$^{2}[\Sigma^{+}(2), \Sigma^{-}(3), \Pi(4), \Delta(3), \Phi(2), \Gamma]_{q, u}$	30	$O^{+}(^{2}D)+O(^{1}D)$	24.024
$^{2,4}[\Sigma^+, \Sigma^-(2), \Pi(2), \Delta]_{g,u}$	24	$O^{+}(^{2}P)+O(^{3}P)$	23.750
$4[\Sigma^{-}]_{q,u}$	2	O+(⁴ S)+O(¹ S)	22.923
$^{2,4}[\Sigma^{+}(2), \Sigma^{-}, \Pi(3), \Delta(2), \Phi]_{q,u}$	36	$O^{+}(^{2}D)+O(^{3}P)$	22.057
$4[\Sigma^{-},\Pi,\Delta]_{g,u}$	6	$O^{+}(^{4}S)+O(^{1}D)$	20.700
$^{2,4,6}[\Sigma^+,\Pi]_{g,u}$	12	$O^{+}(^{4}S)+O(^{3}P)$	18.733

Molecular states correlating to the lowest dissociation limits of O_2^+ , along with their respective dissociation energies.^{*a*}

^a Energies are referred with respect to $O_2(X^3\Sigma_q^-, v''=0)$.

^b The O fragment is excited in the 3s Rydberg state converging to $O^+(^4S)$.

22 / 1

Μ

Ab-initio computation of M** superexcited states

- Fairly high excitation energies (XUV, $\Delta E \gtrsim 12 \text{ eV}$)
- Numerous electronic states, mostly R-states, densely packed
- Overlap of rovibronic levels of various O₂^{**} R-states converging to different ionization limits
- Many possible perturbations/interactions
- Several relaxation processes of O₂^{**}
- Competition autoionization vs predissociation (and fluorescence)
- \Rightarrow O₂^{**} states difficult to compute ab-initio

No calculations of M** available !

QDT describes well high–n M** R-states, but not those with low–n n=3,4,5 which mix strongly with valence states.

27/1

Μ

The 14.33–15.69 eV region

- Region 865–790 Å fit for the study of O₂^{**} states
- At lower energies (E ≤ 14.33 eV) absorption bands strongly perturbed (irregular vibrational spacings)
- At higher E's (15.69 ≤ ΔE ≤ 16.53 eV) (790 Å ≥ λ ≥ 750 Å) severe overlap of various R–progressions (prevents detailed analysis/interpretation)
- Region 14.26–15.20 eV lends itself to study O₂^{**} states
- ⇒ bands display fairly regular spacings/structure, enabling assignments/interpretation of absorption spectrum and of underlying (competing) decay process, i.e., autoionization, predissociation

28 / 1

Μ

						2	
Sta	te	AIE	VIE	r _e	ω_e	Be	De
		eV	eV	Å	cm ⁻¹	cm ⁻¹	eV
А ² Г	٦,,	4.99		1.4090 (1.419)	898 (913)	(1.046)	1.76 (1.45)
а ⁴ Г	1 ₀	4.09		1.3814 (1.389)	1036 (1060)	(1.092)	2.69 (2.54)
Х ² Г	٦ _g	0.00		1.1164 (1.132)	1905 (1895)	(1.645)	6.78 (6.36)
X ³ Σ		0.00		1.2075 (1.216)	1580.2 (1564)	(1.424)	5.21 (5.09)

Spectroscopic constants of selected states of O_2 and O_2^{+a} .

^a Theoretical values in parenthesis.

31/1

Μ

Spectroscop	ic constants	of the	: I, I'	and I"
${}^{3}\Pi_{u}$ states of	f ¹⁶ O ₂ .			

State	Te	ω_{e}	$\omega_e x_e$	Be
	eV	cm ⁻¹	cm ⁻¹	cm ⁻¹
Α ² Π _u	17.10?	913		1.046
a ⁴ ∏ _{ui}	16.137	1035.69	10.39	
I′′ ³ Пu	14.646	1035	10.8	
I′ ³ ∏ _u	14.609	1046.2	11.0	
I ³ П _и	14.439	1049	11.5	
$J^3\Pi_{\mu}$				
H ³ П _µ				
Х ² П _g	12.074	1895		1.645
$X^{3}\Sigma_{a}^{-}$	0.000	1564		1.424

M 33 / 1

The Rydberg orbital of the I, I' and I'' ${}^{3}\Pi_{u}$ states

Authors	Year	1	l'	I″	Argument
Katayama & Tanaka ¹	1981	4s σ_g		$3d\delta_g$	1
Wu ²	1987	$3d\sigma_g$	$4s\sigma_g$	$3d\delta_g$	2
Čubrič et al. ³	1993	$4s\sigma_g$	$3d\delta_g$	$3d\sigma_g$	3
Demekhin et al.4	2010	$4s\sigma_g$	$\mathrm{3d}\delta_g$	$3d\sigma_g$	4

¹QDs O₂ united-atom orbitals; ²QD analysis; ³Autoionization dynamics of SO levels of I-states; ⁴Computed single-electron energies of Rydberg electrons.

⇒ Disagreement on the nature of the Rydberg orbital in the I-states. Has this question been settled ?

34 / 1

Μ

Summary

- A comprehensive ab-initio study of many electronic states of O₂, O₂⁺ and O₂⁺⁺ is currently underway
- PECs of about 150 electronic states of O₂, 100 of O₂⁺, and 20 of O₂⁺⁺
- Valence, Rydberg, ion-pair, cationic states
- Spectroscopic constants (*T_e*, *T_v*, ω_e, ω_e*x_e*, *B_e*, *D_e*, *D₀*, μ–functions, IP's, EA, etc.)
- The calculation revealed a rich electronic structure most notably for the high-spin states
- $\bullet~$ We plan to make an update of the spectroscopic data of O_2 and O_2^+ with our computed PECs as framework
- We did not compute the O₂^{**} R-states (e.g., H, J, I, I', I'') in the first attempt. We'll try again !
 - \Rightarrow A lot of work ahead ...

35 / 1

Μ

Work supported by Universidad Nacional Autónoma de México (UNAM) through DGAPA-PASPA

GJV would like to thank Prof. Yuxiang Mo of the Departments of Physics of Tsinghua University, Beijing, for hosting him during his sabbatical year

43 / 1

Μ

THAT OR YOUR TENTION ...

44 / 1

Μ