
Insects owe much of their extraordinary evolutionary
success to flight. Compared with their flightless ancestors,
flying insects are better equipped to evade predators, search
food sources and colonize new habitats. Because their survival
and evolution depend so crucially on flight performance, it is
hardly surprising that the flight-related sensory, physiological,
behavioral and biomechanical traits of insects are among the
most compelling illustrations of adaptations found in nature.
As a result, insects offer biologists a range of useful examples
to elucidate both structure–function relationships and
evolutionary constraints in organismal design (Brodsky, 1994;
Dudley, 2000). 

Insects have also stimulated a great deal of interest among
physicists and engineers because, at first glance, their flight
seems improbable using standard aerodynamic theory. The
small size, high stroke frequency and peculiar reciprocal
flapping motion of insects have combined to thwart simple
‘back-of-the-envelope’ explanations of flight aerodynamics.

As with many problems in biology, a deep understanding of
insect flight depends on subtle details that might be easily
overlooked in otherwise thorough theoretical or experimental
analyses. In recent years, however, investigators have benefited
greatly from the availability of high-speed video for capturing
wing kinematics, new methods such as digital particle image
velocimetry (DPIV) to quantify flows, and powerful computers
for simulation and analysis. Using these and other new
methods, researchers can proceed with fewer simplifying
assumptions to build more rigorous models of insect flight. It
is this more detailed view of kinematics, forces and flows that
has led to significant progress in our understanding of insect
flight aerodynamics. 

Experimental challenges
Because of their small size and high wing beat frequencies,

it is often quite difficult to quantify the wing motions of free-
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The flight of insects has fascinated physicists and
biologists for more than a century. Yet, until recently,
researchers were unable to rigorously quantify the
complex wing motions of flapping insects or measure the
forces and flows around their wings. However, recent
developments in high-speed videography and tools for
computational and mechanical modeling have allowed
researchers to make rapid progress in advancing our
understanding of insect flight. These mechanical and
computational fluid dynamic models, combined with
modern flow visualization techniques, have revealed that
the fluid dynamic phenomena underlying flapping flight
are different from those of non-flapping, 2-D wings on
which most previous models were based. In particular,
even at high angles of attack, a prominent leading edge
vortex remains stably attached on the insect wing and does
not shed into an unsteady wake, as would be expected
from non-flapping 2-D wings. Its presence greatly
enhances the forces generated by the wing, thus enabling
insects to hover or maneuver. In addition, flight forces are
further enhanced by other mechanisms acting during

changes in angle of attack, especially at stroke reversal,
the mutual interaction of the two wings at dorsal stroke
reversal or wing–wake interactions following stroke
reversal. This progress has enabled the development of
simple analytical and empirical models that allow us to
calculate the instantaneous forces on flapping insect wings
more accurately than was previously possible. It also
promises to foster new and exciting multi-disciplinary
collaborations between physicists who seek to explain the
phenomenology, biologists who seek to understand its
relevance to insect physiology and evolution, and
engineers who are inspired to build micro-robotic insects
using these principles. This review covers the basic
physical principles underlying flapping flight in
insects, results of recent experiments concerning the
aerodynamics of insect flight, as well as the different
approaches used to model these phenomena.
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flying insects. For example, an average-sized insect such as the
common fruit fly Drosophila melanogasteris approximately
2–3·mm in length and flaps its wings at a rate of 200·Hz. Just
the mere quantification of motion for such small and fast-
moving wings continues to pose significant challenges to
current technology. Early attempts to capture free-flight wing
kinematics such as Ellington’s comprehensive and influential
survey (Ellington, 1984c) relied primarily on single-image
high-speed cine. Although quite informative, especially
because film continues to offer exceptional spatial resolution,
single-view techniques cannot provide an accurate time course
of the angle of attack of the two wings. More recent methods
have employed high-speed videography (Willmott and
Ellington, 1997b), which offers greater light sensitivity and
ease of use, albeit at the cost of image resolution. A further
consideration is that insects rely extensively on visual
feedback, and hence care must be taken to ensure that lighting
conditions do not significantly impair an insect’s behavior. 

Even more challenging than capturing wing motion in 3-D
is measuring the time course of aerodynamic forces during the
stroke. At best, flight forces have been measured on the body
of the insect rather than its wings, making it very difficult
to separate the inertial forces from the aerodynamic forces
generated by each wing (Cloupeau et al., 1979; Buckholz,
1981; Somps and Luttges, 1985; Zanker and Gotz, 1990;
Wilkin and Williams, 1993). In addition, tethering can alter the
wing motion, and thus forces produced, as compared with free-
flight conditions. Researchers have overcome these limitations
using two strategies. The first method involves constructing
dynamically scaled models on which it is easier to directly
measure aerodynamic forces and visualize flows (Bennett,
1970; Maxworthy, 1979; Spedding and Maxworthy, 1986;
Dickinson and Götz, 1993; Sunada et al., 1993; Ellington et
al., 1996; Dickinson et al., 1999). A second approach is to
construct computational fluid dynamic simulations of flapping
insect wings (Liu et al., 1998; Liu and Kawachi, 1998; Wang,
2000; Ramamurti and Sandberg, 2002; Sun and Tang, 2002).
The power of both these approaches, however, depends
critically on accurate knowledge of wing motion. 

Conventions and terminology
Because most literature on flapping flight has adopted

standard terminology borrowed from fixed wing aerodynamics,
it is necessary to first develop a nomenclature that allows us to
unambiguously distinguish between these two types of flight.
As in fixed wing aerodynamics, ‘wing span’ refers to the length
between the tips of the wings when they are stretched out
laterally (Fig.·1A), whereas ‘wing length’ refers to the base-to-
tip length of one wing. Wing span is often given as twice wing
length, thereby ignoring the width of the animal’s thorax. ‘Wing
chord’ refers to the section between the leading and trailing
edge of the wing at any given position along the span (Fig.·1A).
The ratio of span to mean chord is an important non-
dimensional morphological parameter termed ‘aspect ratio’.
‘Angle of attack’ refers to the angle that the wing chord makes

with the relative velocity vector of the fluid far away from the
influence of the airfoil, i.e. relative to the ‘far-field flow’ or
‘free-stream flow’ (Fig.·1B). The restriction to far-field flow in
this definition is necessary because the presence of the airfoil
influences the fluid field immediately around it. In all real
airfoils, the process of generating lift creates an induced
downwash in the flow all around the wing. Although the
magnitude of this downwash (U′) is small compared with the
‘free-stream velocity’ (U`), it can significantly alter the
direction of resultant velocity and thus attenuate the
performance of the wing by lowering the angle of attack
(Fig.·1B; Munk, 1925a; Kuethe and Chow, 1998). For this
reason, it is important to qualify whether the angle of attack is
measured with respect to the gross flow in the immediate
vicinity of the wing or far away from it. The angle of attack
relative to the direction of free-stream velocity is called
‘geometric angle of attack’ (α), whereas the altered angle of
attack relative to the locally deflected free stream is called the
‘aerodynamic’ or ‘effective angle of attack’ (α′) , where:

Because it is difficult to physically measure the downwash-
related deflection of the free stream, most insect flight studies
report geometric rather than aerodynamic angles of attack.

From one stroke to the next, insects rapidly alter many
kinematic features that determine the time course of flight
forces, including stroke amplitude, angle of attack, deviation
from mean stroke plane, wing tip trajectory and wing beat
frequency (Ennos, 1989b; Ruppell, 1989), as well as timing
and duration of wing rotation during stroke reversal (Srygley
and Thomas, 2002). Moreover, they may vary these parameters
on each wing independently to carry out a desired maneuver.
Hence, it is misleading to lump all patterns of insect wing
motion into a single simple pattern. Mindful of this vast
diversity in wing kinematics patterns, the wing motion of
insects may be divided into two general patterns of flapping.
Most researchers have restricted their studies to hovering
because it is more convenient mathematically to calculate the
force balance by equating lift and weight in this case. While
hovering, most insects move their wings back and forth in a
roughly horizontal plane, whereas others use a more inclined
plunging stroke (Ellington, 1984c; Dudley, 2000). Despite
the predominance of the back-and-forth pattern, the terms
‘upstroke’ and ‘downstroke’ are used conventionally to
describe the ventral-to-dorsal and dorsal-to-ventral motion of
the wing, respectively. It is important to note that as insects fly
forward, their stroke plane becomes more inclined forward.
The term ‘wing rotation’ will generally refer to any change
in angle of attack around a chordwise axis. During the
downstroke-to-upstroke transition, the wing ‘supinates’
rapidly, a rotation that brings the ventral surface of the wing
to face upward. The wing ‘pronates’ rapidly at the end of the
upstroke, bringing the ventral surface to face downward
(Fig.·1C). 
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In the present review, ‘linear (or non-flapping) translation’
will refer to airfoils translating linearly (Fig.·1D), whereas
‘flapping translation’ will refer to an airfoil revolving around
a central axis (Fig.·1E). Since much of the theoretical literature
addresses the aerodynamic performance of idealized 2-D
sections of wings, it is important to distinguish between finite
and infinite wings. The term ‘finite wing’ refers to an actual 3-
D wing with two tips and thus a finite span length. From the
perspective of fluid mechanics, the importance of the wing tips
is that they create component of fluid velocity that runs along
the span of the wing, perpendicular to the direction of far-field
flow during linear translation. By contrast, ‘infinite wings’ are
theoretical abstractions of 2-D structures that can only create
chord-wise flow. Such wings are experimentally realized by
closely flanking the tips of the wings with rigid walls that limit
span-wise flow, thus constraining the fluid to move in two
dimensions. It is also important to note that, by definition, a 2-
D wing cannot perform flapping motions. Nevertheless, 2-D
formulations based on an infinite wing assumption have often
proved very useful in the study of animal flight and are
particularly relevant in cases where wings have a high aspect
ratio. 

Within the context of force and flow dynamics, the term
‘steady’ signifies explicit time independence, whereas the word

‘unsteady’ signifies explicit temporal evolution due to
inherently time-dependent phenomena within the fluid. In
flapping flight, steady does not necessarily imply time
invariant. Forces on airfoils may change with time without
being explicitly dependent on time, simply because the
underlying motion of the airfoils varies. If the forces at each
instant are modeled by the assumption of inherently time-
independent fluid dynamic mechanisms, then such a model is
called ‘quasi-steady’, i.e. steady at each instant but varying
with time due to kinematic time dependence. 

Background theory for thin airfoils
Before addressing the specific theoretical challenges posed

by insect flight aerodynamics, it is first necessary to introduce
general equations and physical principles that govern forces
and flows created by moving objects submersed in fluids.
These formulations borrow extensively from methods used by
physicists and engineers for nearly 100·years to predict the
forces created by thin flat wings moving at very low angles of
attack (Prandtl and Tietjens, 1957b; Milne-Thomson, 1966).

Unless otherwise mentioned, the theory in this section
applies to 2-D airfoils moving in incompressible fluids. Also,
in the analysis that follows, most key physical parameters
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Fig.·1. Conventions and terminology.
(A) Sketch of an insect. The wing
section is depicted by a segment drawn
perpendicular to a line joining the wing
base and wing tip. This segment,
representing the wing chord, connects
the leading edge (filled circle) to the
trailing edge. (B) Sectional view of the
insect wing. The free-stream velocity is
denoted by Ù, and downwash velocity
is denoted by U′ (written in bold to
signify their vector nature). The
geometric angle of attack (α) is the angle
that the wing section makes with U`.
The aerodynamic angle of attack (α′) is
given by the angle between the wing
section and the free-stream velocity
deflected as a result of the downwash.
(C) Phases of insect wing kinematics.
Wing pronation occurs dorsally as the
wing transitions from upstroke to
downstroke, and wing supination occurs
ventrally at the transition from
downstroke to upstroke. (D,E) Linear vs
flapping translation. In a linearly
translating wing (D), both wing tip and
base translate at the same velocity,
whereas in a flapping translating wing
(E), the tip rotates around an axis fixed at
the base.



appear as non-dimensional entities. Non-dimensional forms of
equations are scale-invariant, thereby making it possible to
compare flows across a wide range of scales. Although any
reasonable scheme of non-dimensionalizing parameters is
valid for the purpose of this review, the scheme conventionally
used is the one developed by Ellington (1984b–e) for the
purpose of insect flight aerodynamics. For more detailed
treatments of the physical concepts, the reader is referred to
classic fluid dynamics texts written by Lamb (1945), Landau
and Lifshitz (1959), Milne-Thomson (1966) and Batchelor
(1973) and books focusing on thin airfoil theory, such as
Glauert (1947) and Prandtl and Tietjens (1957b).

The fluid motion around an insect wing, like any other
submersed object, is adequately described by the
incompressible Navier–Stokes equation, a non-dimensional
form of which can be written as:

where û, t̂ , P̂are, respectively, the velocity of the flapping wing
relative to its fluid medium, time and pressure. All these
quantities are non-dimensionalized (denoted by ˆ) with respect
to their corresponding ‘characteristic’ measures. The choice of
a characteristic measure is somewhat arbitrary and often based
on the physicist’s intuition of which constants of the system
are physically meaningful. For example, when modeling the
flow around a section of a high aspect ratio wing, the chord
length is often used as the characteristic length measure. The
operator:

is a non-dimensional form of the vector ‘del’ operator, and i,
j and k are unit Cartesian vectors. The left-hand side of
equation·2 represents the Lagrangian (or material) derivative
of the velocity, incorporating both the implicit and explicit
dependence on time. In the Eulerian representation, the
Lagrangian derivative is simply the temporal derivative of the
motion of a fluid particle as measured by an observer moving
with the fluid. The denominator of the last term in equation·2
is the Reynolds number (Re), a non-dimensional parameter that
describes the ratio of inertia of a moving fluid mass to the
viscous dissipation of its motion. Reynolds number can be
calculated by the relation Re=(ρU`L)/η, where ρis the density
of the fluid medium, Ù is the velocity of the fluid relative to
the moving object, L is a characteristic length measure and η
is the dynamic viscosity of the fluid medium. This parameter
roughly characterizes the fluid dynamic regime in which an
insect operates from laminar (for low values of Re) to turbulent
(for high values of Re). When viscosity is large, Re is small
and the last term in equation·2 becomes relatively more
important than the pressure term. When viscosity is negligible,
the values of Reare large and the last term can be dropped
from the equation to obtain the inviscid form (i.e. zero
viscosity) of equation·2, usually called the ‘Euler equation’.

Equation·2 also provides the mathematical justification for the
use of dynamically scaled physical models. The non-
dimensionalized forces and flows generated by isometrically
scaled objects are the same provided that the Reare identical. 

The Navier–Stokes equation provides the fundamental
theoretical basis for simulating forces and flows from
arbitrary or measured kinematics. It is not, however, easy to
use in an experimental context, because it is quite difficult to
measure the pressure field in the space around a wing. An
alternative and sometimes more convenient form of the
Navier–Stokes equation may be derived by taking the curl of
both sides in equation·2. This eliminates the pressure term
because the curl of a gradient vanishes, and the equation
simplifies to: 

The quantity vˆ =,̂×û, defined as the ‘vorticity’ of the fluid, is
very useful in the conceptualization and characterization of the
flows around airfoils. For the case of steady inviscid flows,
v̂=0 and the flows are said to be ‘irrotational’. When flows are
irrotational over all space, it is often convenient to express the
velocity field as a gradient of a scalar potential function Φ
(i.e. û=,̂Φ). This approach, called the ‘potential theory’, has
proven very useful in the elucidation of many basic
aerodynamic theorems. Essentially, the technique involves
constructing specific forms of Φthat best describe a given
fluid dynamic phenomenon under its appropriate initial and
boundary conditions. Vorticity arises from a combination of
mutually orthogonal spatial derivatives of velocity at a given
point in space. Thus, its value at any given point does not offer
a complete picture of the related aerodynamic forces. To
calculate aerodynamic forces, small vorticity elements must be
integrated over a surface area around an airfoil. Using the
Stokes theorem, which relates the area integral of normal
component of vorticity to a line integral of velocity around a
closed contour Σbounding a surface S:

The quantity on the left-hand side of this equation is defined
as ‘circulation’ (often denoted by Γ). For potential flows, its
value around any closed contour not enclosing a wing section
is zero because vorticity is zero everywhere in accordance with
the assumption of irrotational flow. However, if the closed
contour encloses a wing section, then the presence of even the
slightest viscosity, and therefore a finite amount of shear at the
wing-fluid interface, will give rise to finite vorticity and thus
non-zero circulation. 

Under completely inviscid conditions, one would expect the
fluid to deflect only minimally by the presence of an airfoil,
thereby generating a flow field around the wing similar to the
one described in Fig.·2A. Under such conditions, the rear
stagnation point (where velocity is zero) would be present not
at the tip of the trailing edge but on the upper surface of the
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wing. However, to maintain this flow profile, the fluid must
turn sharply around the trailing edge causing a singularity or
‘kink’ in the flow at the trailing edge. Such a flow profile
necessitates a high gradient in velocity at the trailing edge,
thereby causing high viscous forces due to shear. The viscous
forces in turn will eventually eradicate this singularity. Thus,
the presence of even the slightest viscosity in the fluid
functions to smooth out sharp gradients in flow. This
phenomenon may be incorporated into an otherwise inviscid
formulation by adding a circulatory component to the flow field
(Fig.·2B). At a unique value of the additional circulation, the
stagnation point is stationed exactly at the trailing edge. When
this condition is met, the fluid stream over the plate meets the
fluid stream under the plate smoothly and tangentially at the
trailing edge (Fig.·2C). This phenomenon is called the ‘Kutta
condition’, which ensures that the slopes of the fluid streams
above and below the wing surface are equal, and thus the
vorticity (i.e. curl of the velocity) at the trailing edge is zero.
In addition, when satisfied, the Kutta condition ensures that the
inclined plate imparts a downward momentum to the fluid.
This, in essence, is the classic Kutta–Jukowski theory of thin
airfoils (Kuethe and Chow, 1998). For ideal fluids, the net force
acts perpendicular to the direction of motion with no
component in the plane of motion. Thus, this theory predicts
zero resistance in the direction of motion (or ‘drag’) for airfoils
moving through fluids at small angles of attack (called
D’Alembert’s paradox). However, in the presence of even the
smallest amount of shear, the net force vector is tilted
backward, i.e. normal to the wing. Even at reasonably high Re,
the net aerodynamic force on the wing surface is usually
perpendicular to the surface of the inclined wing rather than to
the direction of motion. The non-zero component of this force
normal to fluid motion is defined as ‘lift’, and the component
parallel to the fluid motion is defined as ‘profile drag’. The
component of drag due to viscous shear along the surface on
an airfoil is called ‘viscous drag’. 

Far from the airfoil, the behavior of the fluid is similar to
that expected by potential flow theory. For this reason,
although the fluid is not actually irrotational, potential theory
can be used to conveniently describe such situations as long as
the Kutta condition is satisfied. For steady inviscid flows, the
Kutta–Jukowski theorem relates circulation, and therefore
vorticity, around an airfoil to forces by the equation:

Note that lift can also be related to vorticity using equation·5.
In equation·6, L̂′ is the lift per unit span non-dimensionalized
with respect to the product of density of the fluid (ρ), mean
chord length, and the square of free-stream velocity of the fluid
(U`). This quantity (conventionally multiplied by two) is called
the ‘lift coefficient’ and is usually denoted in literature by CL.
Similarly, the non-dimensional drag is called the ‘drag
coefficient’ and is usually denoted by CD. For inviscid fluids
undergoing steady (non-accelerated) flows, 

or

When an airfoil starts from rest, the net circulation in the
fluid before the start of the motion is zero. Thus, equation·8 is
simply a mathematical expression for Kelvin’s law, which
states that the total circulation (and the total vorticity) in an
ideal fluid must remain zero at all times. In other words, if new
vorticity (or circulation) is introduced in an inviscid fluid (e.g.
through an application of the Kutta condition), then it must be
accompanied by equal and opposite vorticity. 

Physically, because the presence of viscosity disallows
infinite shear, the fluid immediately abounding the airfoil is
stationary with respect to the airfoil. This condition, called the
‘no-slip condition’, is an important boundary condition in most
analytical treatments of airfoils. Due to the no-slip condition,
a continuous layer forms over the airfoil across which the
velocity of the fluid goes from zero (for the stationary layer
adjoining the body) to its maximum value (corresponding to
the free-stream flow). Such regions are called ‘boundary
layers’ and their thickness depends on the Reynolds number of
the flow (Schlichting, 1979). Another boundary condition
arises from the requirement that the normal velocity of the fluid
on the surface of the airfoil must be zero. This condition is
sometimes called the ‘no penetration’ condition. These
boundary conditions apply at the interface of solids and fluids.
In free fluids, however, conditions may often arise where the
tangential, but not the normal, component of velocity is
discontinuous across two adjacent layers. Such interfaces have
high vorticity and are called ‘vortex sheets’, or ‘vortex lines’
for the two-dimensional case. 

When a volume element dVof the fluid has non-zero
vorticity v, it induces a velocity vat a distance rin the
neighboring region. The expression to calculate this velocity is
given by (in dimensional form): 

(9)dV,
⌠

⌡V

v ×
r

r3

1

4π
v =

(8)
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d

dt
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⌠

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Fig.·2. Kutta condition and circulation. The Kutta condition arises
from a sum of the flow around an airfoil placed in an inviscid fluid
(A) to additional circulation arising from the presence of viscosity
(B) to yield a smooth, tangential flow from the trailing edge (C).
When satisfied, the Kutta condition ensures that the vorticity
generated at the trailing edge is zero. For the inviscid case, the net
force on the airfoil (blue arrow) acts perpendicular to the free stream.



where r is the displacement vector or distance vector. This is
called the Biot-Savart’s law (Milne-Thomson, 1966), which, like
its electromagnetic analog, is an inverse square relationship.
This integral must be evaluated over the entire volume of the
fluid (V). Equation 9 is very useful in most vorticity-based
analyses of fluid dynamics, as well as in modeling the effects of
vortex dipoles on their surrounding medium.

The solenoidal (i.e. zero divergence) nature of vorticity
fields enables vorticity-based methods to define very useful
kinematic quantities called ‘moments of vorticity’. These
quantities are useful because their values are independent of
the conditions in the interior of a boundary surrounding the
region of interest since no new vorticity can be generated
within a fluid subject to conservative external forces. Instead,
vorticity is generated at the solid–fluid boundary and diffuses
into the fluid medium (Truesdell, 1954). Of particular utility
is the first moment of vorticity because it can be related to
aerodynamic forces. This quantity is given by:

where r is the distance from origin of an arbitrary co-ordinate
system moving with the free stream, ωis the vorticity and R
is the area of region of interest encompassing all vorticity
elements. For the two-dimensional incompressible viscous
case, the sectional aerodynamic force F may be derived from
the first moment of vorticity gby the equation:

where ρ is fluid density, A is the cross-sectional area of the
airfoil and n is the velocity of a point within the airfoil (Wu,
1981). The first term on the right-hand side of this equation
represents the temporal derivative of the first moment of
vorticity, which is equal to the force arising from the vorticity
created by the movement of the airfoil. The second term in the
equation represents the inertial force of the fluid displaced by
the wing section. For an infinitesimally thin wing, the sectional
area is negligible and force depends solely on the moment of
vorticity. For the simple case of any bound circulation, a stable
distribution of vorticity moves with the wing, and a constant
growth of the moment of vorticity results solely from the
wing’s motion. In agreement with the Kutta–Jukowski
theorem, the sectional lift is equal to the product of the
circulation created by a wing and its translational velocity (Wu,
1981). Equation 11 is more general, however, and can account
for forces generated when both the strength and distribution of
vorticity around the wing are changing, as might occur at the
start of motion, during rapid changes in kinematics or when
the wing encounters vorticity created by its own wake or that
of another wing. 

Theoretical challenges
The challenges in adopting the traditional methods described

in the previous section to insect flight are manifold and only
briefly described here. Determined primarily by their variation
in size, flying insects operate over a broad range of Reynolds
numbers from approximately 10 to 105 (Dudley, 2000). For
comparison, the Reynolds number of a swimming sperm is
approximately 10–2, a swimming human being is 106 and a
commercial jumbo jet at 0.8 Mach is 107. At the high Reynolds
numbers characteristic of the largest insects, the importance of
the viscous term in equation·2 may be negligible and, as with
aircraft, flows and forces may be governed by its inviscid form
(the Euler equation). Such simplifications may not always be
possible for most species, whose small size translates into low
Reynolds numbers. This is not to say that viscous forces
dominate in small insects. To the contrary, even at a Reynolds
number of 10, inertial forces are roughly an order of magnitude
greater than viscous forces. However, viscous effects become
more important in structuring flow and thus cannot be ignored.
Due to these viscous effects, the principles underlying
aerodynamic force production may differ in small vslarge
insects. For tiny insects, small perturbations in the fluid may
be more rapidly dissipated due to viscous resistance to fluid
motion. However, for larger insects operating at higher
Reynolds numbers, small perturbations in the flow field
accumulate with time and may ultimately result in stronger
unsteadiness of the surrounding flows. Even with the accurate
knowledge of the smallest perturbations, such situations are
impossible to predict analytically because there may be several
possible solutions to the flow equations. In such cases, strict
static and dynamic initial and boundary conditions must be
identified to reduce the number of solutions to a few
meaningful possibilities.

Analytical models of insect flight
The experimental and theoretical challenges mentioned in

the previous sections constrained early models of insect flight
to analysis of far-field wakes rather than the fluid phenomena
in the immediate vicinity of the wing. Although such far-field
models could not be used to calculate the instantaneous forces
on airfoils, they offered some hope of characterizing average
forces as well as power requirements. Most notable among
these are the ‘vortex models’ (Ellington, 1978, 1980, 1984e;
Rayner, 1979a,b), both of which are derived by approximating
flapping wings to blades of a propeller or, more accurately, to
idealized actuator disks that generate uniform pressure pulses
to impart downward momentum to the surrounding fluid. By
this method, the mean lift required to hover may be estimated
by equating the rate of change of momentum flux within the
downward jet with the weight of the insect and thus calculating
the circulation required in the wake to maintain this force
balance. A detailed description of these theories appears in
Rayner (1979a,b) and Ellington (1984e) and is beyond the
scope of this review, which will focus instead on near-field
models. 

Despite the caveats presented in the last section, a few
researchers have been able to construct analytical near-field

(11)n dA,+ρ
dg

dt
F =− ρ
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models for the aerodynamics of insect flight with some degree
of success. Notable among these are the models of Lighthill
(1973) for the Weis-Fogh mechanism of lift generation (also
called clap-and-fling), first proposed to explain the high lift
generated in the small chalcid wasp Encarsia formosa, and that
of Savage et al. (1979) based on an idealized form of Norberg’s
kinematic measurements on the dragonfly Aeschna juncea
(Norberg, 1975). Although both these models were
fundamentally two dimensional and inviscid (albeit with some
adjustments to include viscous effects), they were able to
capture some crucial aspects of the underlying aerodynamic
mechanisms. Specifically, Lighthill’s model of the fling
(Lighthill, 1973) was qualitatively verified by the empirical
data of Maxworthy (1979) and Spedding and Maxworthy
(1986). Similarly, the model of Savage et al. (1979) was able
to make specific predictions about force enhancement during
specific phases of kinematics (e.g. force peaks observed as the
wings rotate prior to supination) that were later confirmed by
experiments (Dickinson et al., 1999; Sane and Dickinson,
2002). In studies on dragonflies and damselflies, the ‘local
circulation method’ was also used with some degree of success
(Azuma et al., 1985; Azuma and Watanabe, 1988; Sato and
Azuma, 1997). This method takes into account the spatial
(along the span) and temporal changes in induced velocity and
estimates corrections in the circulation due to the wake. The
more recent analytical models (e.g. Zbikowski, 2002; Minotti,
2002) have been able to incorporate the basic phenomenology
of the fluid dynamics underlying flapping flight in a more
rigorous fashion, as well as take advantage of a fuller database
of forces and kinematics (Sane and Dickinson, 2001).

Computational fluid dynamics (CFD)
With recent advances in computational methods, many

researchers have begun exploring numerical methods to
resolve the insect flight problem, with varying degrees of
success (Smith et al., 1996; Liu et al., 1998; Liu and Kawachi,
1998; Wang, 2000; Ramamurti and Sandberg, 2002; Sun and
Tang, 2002). Although ultimately these techniques are more
rigorous than simplified analytical solutions, they require large
computational resources and are not as easily applied to large
comparative data sets. Furthermore, CFD simulations rely
critically on empirical data both for validation and relevant
kinematic input. Nevertheless, several collaborations have
recently emerged that have led to some exciting CFD models
of insect flight.

One such approach involved modeling the flight of the
hawkmoth Manduca sextausing the unsteady aerodynamic
panel method (Smith et al., 1996), which employs the potential
flow method to compute the velocities and pressure on each
panel of a discretized wing under the appropriate boundary
conditions. Also using Manduca as a model, Liu and co-
workers were the first to attempt a full Navier–Stokes
simulation using a ‘finite volume method’ (Liu et al., 1998; Liu
and Kawachi, 1998). In addition to confirming the smoke
streak patterns observed on both real and dynamically scaled

model insects (Ellington et al., 1996), this study added finer
detail to the flow structure and predicted the time course of the
aerodynamic forces resulting from these flow patterns. More
recently, computational approaches have been used to model
Drosophila flight for which force records exist based on a
dynamically scaled model (Dickinson et al., 1999). Although
roughly matching experimental results, these methods have
added a wealth of qualitative detail to the empirical
measurements (Ramamurti and Sandberg, 2002) and even
provided alternative explanations for experimental results (Sun
and Tang, 2002; see also section on wing–wake interactions).
Despite the importance of 3-D effects, comparisons of
experiments and simulations in 2-D have also provided
important insight. For example, the simulations of Hamdani
and Sun (2001) matched complex features of prior
experimental results with 2-D airfoils at low Reynolds number
(Dickinson and Götz, 1993). Two-dimensional CFD models
have also been useful in addressing feasibility issues. For
example, Wang (2000) demonstrated that the force dynamics
of 2-D wings, although not stabilized by 3-D effects, might still
be sufficient to explain the enhanced lift coefficients measured
in insects. 

Quasi-steady modeling of insect flight
In the hope of finding approximate analytical solutions to

the insect flight problem, scientists have developed simplified
models based on the quasi-steady approximations. According
to the quasi-steady assumption, the instantaneous aerodynamic
forces on a flapping wing are equal to the forces during steady
motion of the wing at an identical instantaneous velocity and
angle of attack (Ellington, 1984a). It is therefore possible to
divide any dynamic kinematic pattern into a series of static
positions, measure or calculate the force for each and thus
reconstruct the time history of force generation. By this
method, any time dependence of the aerodynamic forces arises
from time dependence of the kinematics but not that of the fluid
flow itself. If such models are accurate, then it would be
possible to use a relatively simple set of equations to calculate
aerodynamic forces on insect wings based solely on knowledge
of their kinematics. 

Although quasi-steady models had been used with limited
success in the past (Osborne, 1950; Jensen, 1956), they
generally appeared insufficient to account for the necessary
mean lift in cases where the average flight force data are
available. In a comprehensive review of the insect flight
literature, Ellington (1984a) used the logic of ‘proof-by-
contradiction’ to argue that if even the maximum predicted lift
from the quasi-steady model was less than the mean lift
required to hover, then the model had to be insufficient.
Conversely, if the maximum force calculated from the model
was greater than or equal to the mean forces required for
hovering, then the quasi-steady model cannot be discounted.
Based on a wide survey of data available at the time, he
convincingly argued that in most cases the existing quasi-
steady theory fell short of calculating even the required average

Aerodynamics of insect flight 4197



lift for hovering, and a substantial revision of the quasi-steady
theory was therefore necessary (Ellington, 1984a). He further
proposed that the quasi-steady theory must be revised to
include wing rotation in addition to flapping translation, as well
as the many unsteady mechanisms that might operate. Since
the Ellington review, several researchers have provided more
data to support the insufficiency of the quasi-steady model
(Ennos, 1989a; Zanker and Gotz, 1990; Dudley, 1991). These
developments have spurred the search for specific unsteady
mechanisms to explain the aerodynamic forces on insect
wings.

Physical modeling of insect flight
Given the difficulties in directly studying insects or making

theoretical calculations of their flight aerodynamics, many
researchers have used mechanical models to study insect flight.
When constructing these models, the Reynolds number and
reduced frequency parameter (body velocity/wing velocity) of
the mechanical model is matched to that of an actual insect. This
condition, called ‘dynamic scaling’, ensures that the underlying
fluid dynamic phenomena are conserved. Because it is relatively
easier to measure and visualize flow around the scaled models
than on insect wings, such models have proved extremely useful
in identification and analysis of several unsteady mechanisms
such as the clap-and-fling (Bennett, 1977; Maxworthy, 1979;
Spedding and Maxworthy, 1986), delayed stall (Dickinson and
Götz, 1993; Ellington et al., 1996), rotational lift (Bennett,
1970; Ellington, 1984d; Dickinson et al., 1999; Sane and
Dickinson, 2002) and wing–wake interactions (Dickinson,
1994; Dickinson et al., 1999). These various mechanisms are
discussed in the following section.

Unsteady mechanisms in insect flight
Wagner effect

When an inclined wing starts impulsively from rest, the
circulation around it does not immediately attain its steady-
state value (Walker, 1931). Instead, the circulation rises slowly
to the steady-state estimate (Fig.·3). This delay in reaching the
steady-state values may result from a combination of two
phenomena. First, there is inherent latency in the viscous action
on the stagnation point and thus a finite time before the
establishment of Kutta condition. Second, during this process,
vorticity is generated and shed at the trailing edge, and the shed
vorticity eventually rolls up in the form of a starting vortex.
The velocity field induced in the vicinity of the wing by the
vorticity shed at the trailing edge additionally counteracts the
growth of circulation bound to the wing. After the starting
vortex has moved sufficiently far from the trailing edge, the
wing attains its maximum steady circulation (Fig.·3). This
sluggishness in the development of circulation was first
proposed by Wagner (1925) and studied experimentally by
Walker (1931) and is often referred to as the Wagner effect.
Unlike the other unsteady mechanisms described below, the
Wagner effect is a phenomenon that would act to attenuate

forces below levels predicted by quasi-steady models.
However, more recent studies with 2-D wings (Dickinson and
Götz, 1993) indicate that the Wagner effect might not be
particularly strong at the Reynolds numbers typical of most
insects. For infinite wings translating at small angles of attack
(less than 10°), lift grows very little, if at all, after two chord
lengths of travel. Similar experiments for flapping translation
in 3-D also show little evidence for the Wagner effect
(Dickinson et al., 1999). However, because this effect relates
directly to the growth of vorticity at the onset of motion, both
its measurement and theoretical treatment are complicated due
to interaction with added mass effects described in a later
section. Nevertheless, most recent models of flapping insect
wings have neglected the Wagner effect (but see Walker and
Westneat, 2000; Walker, 2002) and focused instead on other
unsteady effects. 

Clap-and-fling

The clap-and-fling mechanism was first proposed by Weis-
Fogh (1973) to explain the high lift generation in the chalcid
wasp Encarsia formosaand is sometimes also referred to as
the Weis-Fogh mechanism. A detailed theoretical analysis of
the clap-and-fling can be found in Lighthill (1973) and Sunada
et al. (1993), and experimental treatments in Bennett (1977),
Maxworthy (1979) and Spedding and Maxworthy (1986).
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Fig.·3. Wagner effect. The ratio of instantaneous to steady circulation
(y-axis) grows as the trailing edge vortex moves away from the
airfoil (inset), and its influence on the circulation around the airfoil
diminishes with distance (x-axis). Distance is non-dimensionalized
with respect to chord lengths traveled. The graph is based on fig.·35
in Walker (1931). The inset figures are schematic diagrams of the
Wagner effect. Dotted lines show the vorticity shedding from the
trailing edge, eventually rolling up into a starting vortex. As this
vorticity is shed into the wake, bound circulation builds up around
the wing section, shown by the increasing thickness of the line drawn
around the wing section. 



Other variations of this basic mechanism, such as the clap-and-
peel or the near-clap-and-fling, also appear in the literature
(Ellington, 1984c). The clap-and-fling is really a combination
of two separate aerodynamic mechanisms, which should be
treated independently. In some insects, the wings touch
dorsally before they pronate to start the downstroke. This phase
of wing motion is called ‘clap’. A detailed analysis of these
motions in Encarsia formosareveals that, during the clap, the
leading edges of the wings touch each other before the trailing
edges, thus progressively closing the gap between them
(Fig.·4A,B). As the wings press together closely, the opposing
circulations of each of the airfoils annul each other (Fig.·4C).
This ensures that the trailing edge vorticity shed by each wing
on the following stroke is considerably attenuated or absent.
Because the shed trailing edge vorticity delays the growth of
circulation via the Wagner effect, Weis-Fogh (1973; see also
Lighthill, 1973) argued that its absence or attenuation would
allow the wings to build up circulation more rapidly and thus
extend the benefit of lift over time in the subsequent stroke. In
addition to the above effects, a jet of fluid excluded from the
clapping wings can provide additional thrust to the insect
(Fig.·4C; Ellington, 1984d; Ellington et al., 1996). 

At the end of clap, the wings continue to pronate by leaving
the trailing edge stationary as the leading edges ‘fling’ apart
(Fig.·4D–F). This process generates a low-pressure region
between them, and the surrounding fluid rushes in to occupy this
region, providing an initial impetus to the build-up of circulation
or attached vorticity (Fig.·4D,E). The two wings then translate
away from each other with bound circulations of opposite signs.
Although the attached circulation around each wing allows it to

generate lift, the net circulation around the two-wing system is
still zero and thus Kelvin’s law requiring conservation of
circulation is satisfied (Fig.·4F; Spedding and Maxworthy,
1986). As pointed out by Lighthill (1973), this phenomenon is
therefore also applicable to a fling occurring in a completely
inviscid fluid. Collectively, the clap-and-fling could result in a
modest, but significant, lift enhancement. However, in spite of
its potential advantage, many insects never perform the clap
(Marden, 1987). Others, such as Drosophila melanogaster, do
clap under tethered conditions but only rarely do so in free flight.
Because clap-and-fling is not ubiquitous among flying insects, it
is unlikely to provide a general explanation for the high lift
coefficients found in flying insects. Furthermore, when
observed, the importance of the clap must always be weighed
against a simpler alternative (but not mutually exclusive)
hypothesis that the animal is simply attempting to maximize
stroke amplitude, which can significantly enhance force
generation. Several studies of peak performance suggest that
peak lift production in both birds (Chai and Dudley, 1995) and
insects (Lehmann and Dickinson, 1997) is constrained by the
roughly 180° anatomical limit of stroke amplitude. Animals
appear to increase lift by gradually expanding stroke angle until
the wings either touch or reach some other morphological limit
with the body. Thus, an insect exhibiting a clap may be
attempting to maximize stroke amplitude. Furthermore, if it is
indeed true that the Wagner effect only negligibly influences
aerodynamic forces on insect wings, the classically described
benefits of clap-and-fling may be less pronounced than
previously thought. Resolution of these issues awaits a more
detailed study of flows and forces during clap-and-fling. 
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Fig.·4. Section schematic of wings approaching
each other to clap (A–C) and flinging apart
(D–F). Black lines show flow lines, and dark
blue arrows show induced velocity. Light blue
arrows show net forces acting on the airfoil.
(A–C) Clap. As the wings approach each other
dorsally (A), their leading edges touch initially
(B) and the wing rotates around the leading
edge. As the trailing edges approach each other,
vorticity shed from the trailing edge rolls up in
the form of stopping vortices (C), which
dissipate into the wake. The leading edge
vortices also lose strength. The closing gap
between the two wings pushes fluid out, giving
an additional thrust. (D–F) Fling. The wings
fling apart by rotating around the trailing edge
(D). The leading edge translates away and fluid
rushes in to fill the gap between the two wing
sections, giving an initial boost in circulation
around the wing system (E). (F) A leading edge
vortex forms anew but the trailing edge starting
vortices are mutually annihilated as they are of opposite circulation. As originally described by Weis-Fogh (1973), this annihilation may allow
circulation to build more rapidly by suppressing the Wagner effect.
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Delayed stall and the leading edge vortex

As the wing increases its angle of attack, the fluid stream
going over the wing separates as it crosses the leading edge but
reattaches before it reaches the trailing edge. In such cases, a
leading edge vortex occupies the separation zone above the
wing. Because the flow reattaches, the fluid continues to flow
smoothly from the trailing edge and the Kutta condition is
maintained. In this case, because the wing translates at a high
angle of attack, a greater downward momentum is imparted to
the fluid, resulting in substantial enhancement of lift.
Experimental evidence and computational studies over the past
10·years have identified the leading edge vortex as the single
most important feature of the flows created by insect wings and
thus the forces they create. 

Polhamus (1971) described a simple way to account for the
enhancement of lift by a leading edge vortex that allows for
an easy quantitative analysis. For blunt airfoils, air moves
sharply around the leading edge, thus causing a leading edge
suction force parallel to the wing chord. This extra force

component adds to the potential force component (which acts
normal to the wing plane), causing the resultant force to be
perpendicular to the ambient flow velocity, i.e. in the direction
of lift (Fig.·5A). At low angles of attack, this small forward
rotation due to leading edge suction means that conventional
airfoils better approximate the zero drag prediction of
potential theory (Kuethe and Chow, 1998). However, for
airfoils with sharper leading edge, flow separates at the
leading edge, leading to the formation of a leading edge
vortex. In this case, an analogous suction force develops not
parallel but normal to the plane of the wing, thus adding to
the potential force and consequently enhancing the lift
component. Note that in this case, the resultant force is
perpendicular to the plane of the wing and not to ambient
velocity. Thus, drag is also increased (Fig.·5B). 

For 2-D motion, if the wing continues to translate at high
angles of attack, the leading edge vortex grows in size until
flow reattachment is no longer possible. The Kutta condition
breaks down as vorticity forms at the trailing edge creating a
trailing edge vortex as the leading edge vortex sheds into the
wake. At this point, the wing is not as effective at imparting
a steady downward momentum to the fluid. As a result, there
is a drop in lift, and the wing is said to have stalled. For several
chord lengths prior to the stall, however, the presence of
the attached leading edge vortex produces very high lift
coefficients, a phenomenon termed ‘delayed stall’ (Fig.·6A).
The first evidence for delayed stall in insect flight was by
provided by Maxworthy (1979), who visualized the leading
edge vortex on the model of a flinging wing. However,
delayed stall was first identified experimentally on model
aircraft wings as an augmentation in lift at the onset of motion
at angles of attack above steady-state stall (Walker, 1931). At
the lower Reynolds numbers appropriate for most insects, the
breakdown of the Kutta condition is manifest by the growth
of a trailing edge vortex, which then grows until it too can no
longer stay attached to the wing (Dickinson and Götz, 1993).
As the trailing edge vortex detaches and is shed into the wake,
a new leading vortex forms. This dynamic process repeats,
eventually creating a wake of regularly spaced counter-
rotating vortices known as the ‘von Karman vortex street’
(Fig.·6A). The forces generated by the moving plate oscillate
in accordance to the alternating pattern of vortex shedding.
Although both lift and drag are greatest during phases when
a leading edge vortex is present, forces are never as high as
during the initial cycle. 

The leading edge vortex may be especially important
because insects flap their wings at high angles of attack. An
experimental analysis of delayed stall in 2-D showed that flow
separates to form a leading edge vortex at angles of attack
above 9°, a threshold well below those used by insects
(Dickinson and Götz, 1993). This study also directly measured
time-variant force coefficients and showed that the values
created by the presence of the leading edge vortex were at
least sufficient to account for the ‘missing force’ in quasi-
steady models. However, direct evidence that insect wings
actually create leading edge vortices came from Ellington et
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Fig.·5. Polhamus’ leading edge suction analogy. (A) Flow around a
blunt wing. The sharp diversion of flow around the leading edge
results in a leading-edge suction force (dark blue arrow), causing the
resultant force vector (light blue arrow) to tilt towards the leading
edge and perpendicular to free stream. (B) Flow around a thin airfoil.
The presence of a leading edge vortex causes a diversion of flow
analogous to the flow around the blunt leading edge in A but in a
direction normal to the surface of the airfoil. This results in an
enhancement of the force normal to the wing section.



al. (1996), who used smoke to visualize the flow around both
real and 3-D model Manduca sextaat a Reynolds number in
the range of 103. In contrast to 2-D models, the leading edge
vortex was not shed even after many chords of travel and thus
never created a pattern analogous to a von Karman street.
Thus, the wing never stalls under these conditions (Fig.·6B).
These observations have been confirmed at lower Reynolds
numbers in experiments on model fruit fly wings, which
showed that forces, like flows, are remarkably stable during
constant flapping (Dickinson et al., 1999). What causes this
prolonged attachment of the leading edge vortex on a flapping
wing compared to the 2-D case? In their model hawkmoth,
Ellington and co-workers observed a steady span-wise flow
from the wing hinge to approximately three-quarters of the
distance to the wing tip, at which point the leading edge vortex

detaches from the wing surface. This spanwise flow is
entrained by the leading edge vortex, causing it to spiral
towards the tip of the wing (Fig.·7). A similar flow was
observed by Maxworthy (1979) during early analysis of the
3-D fling. Because this flow redirects momentum transfer in
the spanwise direction, it should correspondingly reduce the
momentum of the flow from the chordwise direction, causing
the leading edge vortex to remain smaller. A smaller leading
edge vortex allows the fluid to reattach more easily and the
wing can sustain this reattachment for a longer time. Thus,
axial flow appears to serve a useful role by maintaining stable
attachment of the leading edge vortex. As pointed out by
Ellington, a similar leading edge vortex is stabilized by an
axial flow generated due to the back-sweep of wings in delta
aircraft such as the Concorde, creating one of the more
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Fig.·6. A comparison of 2-D linear translation vs3-D flapping translation. (A) 2-D linear translation. As an airfoil begins motion from rest, it
generates a leading and trailing edge vortex. During translation, the trailing edge vortex is shed, leading to the growth of the leading edge
vortex, which also sheds as the airfoil continues to translate. This motion leads to an alternate vortex shedding pattern from the leading and
trailing edges, called the von Karman vortex street. This leads to a time dependence of the net aerodynamic forces (blue arrows) measured on
the airfoil. (B) 3-D flapping translation. As in A, when an airfoil undergoing flapping translation starts from rest, it generates a leading and
trailing edge vortex. However, as the motion progresses, the leading edge vortex attains a constant size and does not grow any further. Because
no new vorticity is generated at the leading edge, there is no additional vorticity generated at the trailing edge and the airfoil obeys the Kutta
condition. When established, the Kutta condition ensures that there is a net change in the direction of momentum resulting in a reactive
aerodynamic force on the airfoil (black arrows; mvi signifies initial momentum, mvf signifies final momentum and ∆mv signifies the difference
between initial and final momenta). After establishment of the Kutta condition, the measured net aerodynamic forces (blue arrows) stay stable
over a substantial period during translation and do not show time dependence. For Reynolds numbers of ≥100, this force acts normally to the
wing and can be decomposed into mutually orthogonal lift and drag components (green arrows). Ultimately, however, the net downward
momentum imparted by the airfoil to the fluid causes a downwash that slightly lowers the constant value of the net aerodynamic force on a
steadily revolving wing.



remarkable analogies between the biological and mechanized
worlds. 

Recently, using DPIV to map the flow structure on a model
fruit fly wing (Re=115), Birch and Dickinson (2001) reported
stable attachment of the leading edge vortex in the absence of
a prominent helical vortex. Whereas the axial flow within the
core of the vortex was nearly an order of magnitude lower than
on the Manducamodel in Re=103 range, they observed a
prominent axial flow within a broad sheet of fluid on top of the
wing behind the leading edge vortex that rolls into a prominent
tip vortex. These results from model hawkmoths and fruit flies
suggest that the 3-D flow structure may be quantitatively
different at high and low Reynolds numbers. 

Interestingly, the observed differences in the 3-D flow
structures do not seem to be reflected in the measured forces.
CFD simulations in 2-D (Wang, 2000; Hamdani and Sun,
2000) and 3-D (Ramamurti and Sandberg, 2002) airfoils show
a remarkable similarity in forces calculated at Re=100
and those calculated using the inviscid Euler equation
corresponding to an infinite Re(or Re=100·000 in the case of
Hamdani and Sun, 2000). These results suggest that although
viscosity is necessary for vorticity generation, its contribution
to net forces is very small beyond Re=100 and the forces may
be predominantly due to the dynamic pressure gradients across
the wing. The above conclusions from CFD models are also
supported by empirical data (Usherwood and Ellington,
2002b). Together, these results present a somewhat
paradoxical conclusion that forces remain relatively unaffected
even when flow structures vary substantially with an increase
in Reynolds number above 100. 

Although a detailed explanation of above results awaits a
more rigorous quantification of simultaneous flow and force
data, these differences should not obscure the more salient
general features of separated flow at high angles of attack. In
particular, the absence of periodic shedding in these recent
experiments indicates that the 3-D flow around a flapping wing
may be remarkably self-stabilizing over a Reynolds number

range of ≥100. For the existence of such stability, the creation
of vorticity at the leading edge is matched perfectly by the
convection and diffusion of vorticity into the wake, thus
creating a stable equilibrium. This situation may be analogous
to the continuous attachment of vortices behind bluff bodies at
Reynolds numbers below the threshold for von Karman
shedding (see, for example, Acheson, 1990). What maintains
the balance in creation and transport of vorticity and how does
this change with Reynolds number? Similarly, what determines
the magnitude of the leading edge vortex supported by a
flapping wing at equilibrium? Given the importance of the
leading edge vortex, the answers to these questions are critical
to determining the limits of aerodynamic performance in insect
flight. 

Kramer effect (rotational forces)

Near the end of every stroke, insect wings undergo
substantial pronation and supination about a spanwise axis,
which allows them to maintain a positive angle of attack and
generate lift during both forward and reverse strokes.
Furthermore, there is some evidence from both tethered
(Dickinson et al., 1993) and free (Srygley and Thomas, 2002)
flight that insects alter the timing of rotation during flight
maneuvers. The aerodynamic significance of these rotations for
flapping flight has been studied by Bennett (1970), and more
recently in detail by Sane and Dickinson (2002), but it is well
known in the aerodynamic literature in the context of fluttering
airplane wings due to the extensive theoretical work of Munk
(1925b), Glauert (1929), Theodorsen (1935), Fung (1969) and
supporting experimental evidence from Kramer (1932), Reid
(1927), Farren (1935), Garrick (1937), Silverstein and Joyner
(1939) and Halfman (1951).

When a flapping wing rotates about a span-wise axis while
at the same time translating, flow around the wing deviates
from the Kutta condition and the stagnation region moves away
from the trailing edge. This causes a sharp, dynamic gradient
at the trailing edge, leading to shear. Because fluids tend to
resist shear due to their viscosity, additional circulation must
be generated around the wing to re-establish the Kutta
condition at the trailing edge. In other words, the wing
generates a rotational circulation in the fluid to counteract the
effects of rotation. The re-establishment of Kutta condition is
not instantaneous, however, but requires a finite amount of
time. If, in this time, the wing continues to rotate rapidly, then
the Kutta condition may never be actually observed at any
given instant of time during the rotation but the tendency of
the fluid towards its establishment may nevertheless dictate the
generation of circulation. Thus, extra circulation proportional
to the angular velocity of rotation continues to be generated
until smooth, tangential flow can be established at the trailing
edge. Depending on the direction of rotation, this additional
circulation causes rotational forces that either add to or subtract
from the net force due to translation. This effect is also often
called the ‘Kramer effect’, after M. Kramer who first described
it (Kramer, 1932), or alternatively as ‘rotational forces’ (Sane
and Dickinson, 2002). 
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Fig.·7. Stable attachment of the leading edge vortex. As the flapping
wing translates, a span-wise velocity gradient interacts with the
leading edge vortex, causing the axial flow to spiral towards the tip.
The axial flow transports momentum out of the vortex, thus keeping
it stably attached. The vortex detaches at about three-quarters of the
distance to the wing tip and is shed into the wake. Thick black
arrows indicate downwash due to the vortex system generated by the
wing in its surrounding fluid. Figure adapted from VandenBerg and
Ellington (1997).



Using the conceptual framework described above, Sane and
Dickinson (2002) measured rotational coefficients (Kramer
effect) and, following the recommendation of Ellington
(1984d,f), included them with the translational coefficients in
the existing quasi-steady models. The revised quasi-steady
model was able to capture the corresponding time history of
the force traces, in addition to the stroke-averaged forces,
better than the quasi-steady models that take only translation
into account. Similar rotational force peaks were observed
in CFD simulations by Sun and Tang (2002), who described
these peaks as arising from ‘fast pitching-up rotation of the
wing near the end of the stroke’, but appear essentially
complementary to the Kramer effect. Both the revised quasi-
steady model and CFD models show close agreement with the
experimental measurements.

It is important to note that the Kramer effect (or the
rotational force of Sane and Dickinson, 2002) is
fundamentally different from the Magnus force, to which a
loose qualitative analogy was drawn in the past literature
(Bennett, 1970; Dickinson et al., 1999), leading to some
confusion. Magnus force arises from circulation generated by
a blunt body such as a spinning cylinder or sphere set into
translational motion with respect to the real fluid (see, for
example, Prandtl and Tietjens, 1957a). Although the Magnus
force can be calculated from this circulation using
Kutta–Jukowski theorem (as in airfoils), it excludes either
explicit or implicit application of the Kutta condition because,
by definition, blunt bodies have no surface singularities where
such a condition can hold. On the other hand, the application
of the Kutta condition is necessary and fundamental to all
calculations of aerodynamic forces on thin airfoils. As a result,
the mechanism of Magnus force applies only in relation to
cylinders, spheres and blunt objects, and extending it to
complex surfaces such as thin airfoils or other surfaces with
sharp edges is, at best, problematic (Schlichting, 1979). Not
surprisingly, therefore, the Magnus effect does not provide an
explanation of the rotational forces during pronation or
supination (Sun and Tang, 2002), nor is it possible to apply it
to calculations of forces or circulation on a flapping thin airfoil
without making severe assumptions (Walker, 2002).

Added mass
All the forces described in the previous section belong to the

class of circulatory forces because their action can be
mathematically described by calculating the changes in the
velocity potential around the wing. As previously described,
an inclined wing moving at a constant angle of attack is subject
to aerodynamic forces that can be adequately modeled by
accounting for the circulation around the wing using standard
potential theory. Other effects such as leading edge separation
may also be modeled by a variation of the same approach
(see, for example, Minotti, 2002). However, when the wing
accelerates, it encounters a reaction force due to the accelerated
fluid. This reactive non-circulatory force (Sedov, 1965) falls
outside the realm of standard circulation-based steady-state

analyses and is variably called ‘added mass’ (Vogel, 1994),
‘added mass inertia’ (Sane and Dickinson, 2001), ‘acceleration
reaction’ (Daniel, 1984; Denny, 1993) or ‘virtual mass’
(Ellington, 1984b) within the biological literature. Because
these forces typically occur at the same time as the circulatory
forces, it is usually difficult to measure them in isolation. In
addition, they also pose some difficulty in modeling because
added mass inertia has components arising from acceleration
of fluid relative to the wing, rotational acceleration due to wing
rotation and a cross-term arising from translational velocity
and angular velocity (Ellington, 1984d). It is possible,
however, to estimate the magnitude of added mass relative to
the contribution of circulatory forces. 

Methods of calculating added mass have been outlined in
various texts, most notably in Sedov (1965), Denny (1993)
and Lighthill (1975) or in research articles by Ellington
(1984d), Sunada et al. (2001), Sane and Dickinson (2002),
Zbikowski (2002) and Minotti (2002). The added mass force
is typically modeled in quasi-steady terms using a time-
invariant added-mass coefficient, and any time dependence is
implicit due to the time course of wing acceleration. In a
computational study of a 2-D insect wing, Hamdani and Sun
(2000) simulated a series of impulsive starts at different
accelerations. Their force predictions, based on the time
derivative of the moment of vorticity integral (equation·11)
over their simulated flow field, accurately matched prior
experimental results. The acceleratory forces at the start of
translation corresponded to a rapid rise in the moment of
vorticity. At this early stage of motion, the rise in the moment
of vorticity is due to both the convection and growth of
vorticity. Thus, added mass forces are closely tied to the initial
stages of flow separation and fluid acceleration, and further
experimental investigations offer a promising area for further
research.

Wing–wake interactions
The reciprocating pattern of wing motion used by insects

suggests that their wings might potentially interact with the
shed vorticity of prior strokes. That such interactions can result
in significant forces was first observed during 2-D motion on
an inclined plate (Dickinson, 1994). A similar phenomenon
was also observed with both force measurements and flow
visualization on a 3-D mechanical model of a fruit fly
(Dickinson et al., 1999). As the wing reverses stroke
(Fig.·8A–C), it sheds both the leading and the trailing edge
vortices (Fig.·8C). These shed vortices induce a strong inter-
vortex velocity field, the magnitude and orientation of which
are governed by the strength and position of the two vortices
(Fig.·8C,D). As the wing reverses direction, it encounters the
enhanced velocity and acceleration fields, thus resulting in
higher aerodynamic forces immediately following stroke
reversal (Fig.·8E). This phenomenon has been alternatively
called ‘wake capture’ or, more accurately, wing–wake
interaction. The magnitude and relative strengths of the shed
vortices, and therefore wake capture, are strongly dependent

Aerodynamics of insect flight 4203



on the kinematics of the wing immediately before and after
stroke reversal. 

Recently, Sun and Tang (2002) performed CFD simulations
for the kinematics similar to those in Dickinson et al. (1999)
and have proposed that the initial force peak is due to

acceleration of the wing rather than due to wing–wake
interactions. To show that wing–wake interaction produces a
negligible effect on forces, they started a wing from rest (in
still air) and compared the calculated forces with the forces on
a wing undergoing identical motion after stroke reversal.
Interestingly, the forces were nearly identical in the two cases
and they did not observe any force peaks due to wing–wake
interactions. Second, they varied the period of acceleration of
the wing immediately after stroke reversal. For higher values
of acceleration, they calculated force peaks similar in
magnitude and dynamics to the experiments of Dickinson et
al. (1999). From these experiments, they concluded that the
forces related to the acceleration of the wing, not wing–wake
interactions, fully account for the force peaks immediately
following stroke reversal.

These results are puzzling for two reasons. First, to verify
their hypothesis of wing–wake interactions, Dickinson et al.
(1999) stopped the wing at stroke reversal. They argued that if
forces were augmented due to relative velocity between the
wing and the induced wake, then even a non-accelerating wing
should continue to generate forces as it encounters the wake
from its previous stroke. The results of these experiments
(fig.·4 of Dickinson et al., 1999), strongly suggested that
wing–wake interactions can indeed contribute significantly to
the aerodynamic forces immediately after stroke reversal.
Second, they visualized the near-field wake structure at the
instant of stroke reversal using particle image velocimetry.
These images revealed the substantial wake induced by the
previous stroke and also demonstrated its physical interaction
with the wing in the period immediately following stroke
reversal (Fig.·8A–E). It seems unlikely that this wing–wake
interaction would not be reflected in the time history of the
corresponding aerodynamic forces. At present, the cause of this
discrepancy between the CFD simulations (Sun and Tang,
2002) and the particle image velocimetric observations
(Dickinson et al., 1999) remains unclear. In any case, these
results strongly suggest that neither the wing acceleration nor
the wing–wake interactions should be ignored when modeling
wake capture. 

Current status of quasi-steady modeling
Many of the mechanisms outlined above may be described

by simple algebraic equations provided steady-state
assumption holds true. Because it is difficult to solve for the
full Navier–Stokes equations for flows around insect wings,
equations based on quasi-steady assumptions still hold some
practical utility in a comprehensive model of insect flight. The
lift and drag coefficients for flapping 3-D motions were
investigated first by Jensen (1956), Vogel (1967), Rees (1975),
Dudley and Ellington (1990a,b), Willmott and Ellington
(1997a) and Nachtigall (1977) on actual insects wings and
more recently on the physical models of flapping insect wings
by Dickinson et al. (1999), Sane and Dickinson (2001) and
Usherwood and Ellington (2002a,b) and in the computational
fluid dynamic models by Sun and Tang (2002). 
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Fig.·8 A hypothesis for wing–wake interactions. Parts A–F depict a
wing section as it reverses stroke. As the wing transitions from a
steady translation (A) phase and rotates around a chordwise axis in
preparation for a stroke reversal, it generates vorticity at both the
leading and trailing edges (B). These vortices induce a strong
velocity field (dark blue arrows) in the intervening region (C,D). As
the wing comes to a halt and then reverses stroke (D,E), it encounters
this jet. As the wing interacts with its wake, a peak is registered
in the aerodynamic force record (light blue arrows), which is
sometimes called wake capture or wing–wake interaction. U`, free-
stream velocity.



Fig.·9 shows a comparison among the lift-drag polars during
steady translation in non-flapping finite and infinite wings, as
well as for flapping wings. The aerodynamic coefficients
measured on flapping wings are significantly higher than the
corresponding coefficients for non-flapping finite wings. There
are several explanations for the significant differences. First,
the data on non-flapping finite wings represent time-averaged
forces collected on finite wings placed at fixed angles of attack
in a wind tunnel. If the non-flapping finite wings exhibited von
Karman vortex shedding, the force records would fail to reflect
the benefits of an initial temporary attachment of the leading
edge vortex, thus causing the force coefficients on flapping
wings to be higher than the force coefficients for non-flapping
finite wings. Moreover, the steady coefficients measured on
flapping wings are similar in magnitude to the ‘early’, pre-stall
force coefficients (measured at two chord length motion and
before von Karman shedding occurs) on an impulsively started
2-D plate whereas the non-flapping finite wings are similar in
magnitude to the ‘late’, post-stall force coefficients of the same
profiles (Dickinson and Götz, 1993). The instantaneous forces
measured on a flapping wing at constant angles of attack

provide further evidence that flapping wings do not show von
Karman shedding. In addition, following the inertial transients
arising from the impulsive start of the airfoil, the instantaneous
force coefficients reach steady values that remain constant
through a substantial duration of flapping translation
(Dickinson et al., 1999). However, if the wing continues the
flapping translation, the wings eventually show some decline
in performance. This may be explained by the fact that a wing
revolving in a propeller-like fashion eventually establishes a
strong downwash in the far-field, thus lowering the effective
angles of attack (Usherwood and Ellington, 2002a). An
alternative view is that, under steady flow conditions, non-
flapping finite wings with aspect ratios typical of insect wings
do not exhibit vortex shedding. Like flapping wings, they
rapidly attain a stable pattern of flow – although the strength
of the total circulation is substantially lower than with a
flapping motion at comparable angles of attack. In this view,
there is some feature of flapping motion – such as the span-
wise gradient in chord-wise velocity – that allows the leading
edge vortex to attain a greater strength than in the non-flapping
case. In the future, these issues might be resolved by
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simultaneous flow visualization and force measurement under
the two experimental conditions. Of special interest are
differences in convective processes such as axial flow
(Ellington et al., 1996), downwash induced by tip vortices or
diffusion that might limit the growth of vorticity at the leading
edge to different degrees in the two cases. 

When we revisit the proof-by-contradiction method using
these higher values of steady lift and drag coefficients
appearing in the recent literature on flapping wings, the
calculated average forces are proportionally higher and
sufficient to explain hovering. This has led to a revival of the
quasi-steady models in recent years. Indeed, when rotational
coefficients are included along with the translational
coefficients in the quasi-steady model, the time course of
aerodynamic force generation is also well captured (Sane
and Dickinson, 2002). However, such a model cannot yet
account for the force peaks resulting from wing–wake
interactions.

Future research and directions
Because both the absence of stall and Kramer effect can be

modeled using potential flow theory, the above results suggest
that simple analytical models can satisfactorily describe the
aerodynamic forces due to translation and rotation in a flapping
wing. It is also necessary to incorporate the unsteady
components due to wing–wake interactions and the non-
circulatory forces due to added mass into such models. Finally,
it is necessary to account for wing flexibility since the above
models are based on rigid wings. In general, the problem of
wing flexibility is very complex due to the various aero-elastic
effects on a moving wing. However, recent studies on wing
flexibility indicate that most of the wing flexion occurs not
from the aero-elastic interactions between the wing and the
fluid but simply from the inertial bending of the wing on
account of its mass distribution (Daniel and Combes,
2002). These results promise to substantially simplify the
incorporation of wing flexion into current quasi-steady models. 

These developments in the area of insect flight aerodynamics
will prove critical to biologists who seek to understand how
flight and flight-related adaptations have enabled insects to be
so extraordinarily successful in the course of their evolution.
In addition, they also promise to be useful in breaking new
ground in technology. The recent interest in developing insect-
inspired micro air vehicles (MAVs; also called micro-
mechanical flying insects or MFIs) has fostered a number of
strong collaborations between analytical and computational
fluid dynamicists, micro-robotics engineers and insect
flight biologists (Ellington, 1999; Zbikowski, 2002). The
combination of expertise from these different areas promises
to help insect flight biologists ask questions and devise
experiments that were previously inconceivable. From an
academic standpoint, the success of these projects will allow
us to satisfactorily demonstrate our understanding of the
fundamental fluid dynamic mechanisms underlying insect
flight.

List of symbols
,̂ del operator
A cross-sectional area of wing
CD drag coefficient
CL lift coefficient
dl̂ non-dimensional length element along the contour and

tangential at each point on it
i unit Cartesian vector
j unit Cartesian vector
k unit Cartesian vector
L length
L̂′ non-dimensional lift per unit span
n̂dŜ non-dimensional area surface element directed normal

to the surface
P̂ non-dimensional pressure
R area of region of interest encompassing all vorticity

elements
r displacement vector or distance vector
r distance
Re Reynolds number
t̂ non-dimensional time
U` free-stream velocity
û non-dimensional velocity of the flapping wing
U′ downwash velocity
v velocity
V volume
Φ scalar potential function
Γ circulation
Σ contour around the wing section
α geometric angle of attack
α′ aerodynamic or effective angle of attack
γ first moment of vorticity
η dynamic viscosity of fluid
ρ density of fluid
v vorticity of fluid
v̂ non-dimensional vorticity of fluid
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