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ABSTRACT
Nowadays, novel pharmacies have been screened from plants. Among them are the peptides, which showmultiple biotechnological activities.

In this report, a small peptide (Ala–Trp–Lys–Leu–Phe–Asp–Asp–Gly–Val) with a molecular mass of 1,050 Da was purified from Cycas revoluta

seeds by using reversed-phase liquid chromatography. This peptide shows clear deleterious effects against human epidermoid cancer (Hep2)

and colon carcinoma cells (HCT15). It caused inhibition of cancer cell proliferation and further disruption of nucleosome structures, inducing

apoptosis by direct DNA binding. A remarkable antibacterial activity was also observed in this same peptide. Nevertheless, no significant lysis

of normal RBC cells was observed in the presence of peptide. Additionally, an acetylation at the N-termini portion is able to reduce both

activities. Bioinformatics tools were also utilized for construction of a three-dimensional model showing a single amphipathic helix. Since

in vitro binding studies show that the target of this peptide seems to be DNA, theoretical docking studies were also performed to better

understand the interaction between peptide and nucleic acids and also to shed some light on the acetyl group role. Firstly, binding studies

showed that affinity contacts basically occur due to electrostatic attraction. The complex peptide-ssDNA was clearly oriented by residues

Ala1, Lys3, and Asp6, which form several hydrogen bonds that are able to stabilize the complex. When acetyl was added, hydrogen bonds are

broken, reducing the peptide affinity. In summary, it seems that information here provided could be used to design a novel derivative of this

peptide which a clear therapeutic potential. J. Cell. Biochem. 113: 184–193, 2012. � 2011 Wiley Periodicals, Inc.
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N umerous polypeptides possess a biological activity that

makes them potential drugs. Among them are included the

anticancer agents. For this reason, several peptides have been

evaluated and are now in clinic trials of phase II and III in order to

treat tumor cells [Torchilin and Lukyanov, 2003]. Moreover, several

advanced techniques have been developed to kill cancer cells,

despite the efficiency of chemotherapy and, more recently,

biochemotherapy, especially for metastatic disease stages [Espinosa

et al., 2004]. While some agents are completely unspecific, causing

several collateral effects, some peptides have been screened

since they can directly act on target cells and/or will elicit an

immune response that may be effective to control infections and

reduce tumor development. Furthermore, peptides have also

attracted attention as drug candidates owing to their possession

of certain key advantages over alternative chemotherapy molecules.

Peptides allow structural changes to incorporate protective
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substitutions, chiral derivatives, non-natural amino acids, and other

modifications aiming at increased stability, efficiency, and resis-

tance to proteolysis [Otero-Gonzalez et al., 2010; Gong et al., 2011].

Several hundred peptide sequences with biological activity have

been recognized and a few of them are in clinical trial [Rawat et al.,

2006]. Finally, peptide-based vaccines are now in development for

various pathologies including cancer [Roy et al., 2010].

Among the various goals of anticancer pharmacies, DNA is a

main target for numerous antitumor drugs [Purcell et al., 2007].

Reversible or irreversible modifications of the nucleic acids can lead

to disruption of the transcription and/or replication, initiating

ultimately the death of cancer cells [Mader et al., 2011]. The

development of functionalities that bind DNA is of prime

importance in cancer chemotherapy and design of synthetic

peptide. The inherent dark toxicity and cellular resistivity have

generated subsequent interest to develop a new generation of DNA

binding peptide-based anticancer agents. On other hand, the

structural changes of DNA based on the interaction of small

molecular mass ligands with deoxyribonucleic acid have attracted

attention in the medicinal design of anticancer and anti-AIDS drugs

[Rees et al., 1993; Sartorius and Schneider, 1995; Yang and Wang,

1996]. Additionally to common peptide screening, in vitro and in

silico studies of small oligopeptides may shed some light on these

processes, by providing simple systems where molecular interac-

tions can be characterized in detail. However, to date, little emphasis

has been placed on tailoring the coordinated peptides to a DNA-

binding activity in vitro and in silico. The present study was

undertaken to identify a naturally occurring seed peptide capable of

inhibiting the growth of cancer cells, and to investigate its biologic

behavior to bind DNA in vitro and in silico. Different peptide

database (http://aps.unmc.edu/AP/main.php) possess various pep-

tides with anticancer activity [Rozek et al., 2000; Perera et al., 2009;

Wu et al., 2009; Feliu et al., 2010]. Nevertheless, only a few of them

have been isolated from plant seeds and also show activity against

human epidermoid cancer (Hep2) cells [Paganuzzi et al., 1985], as

most of them were not clearly evaluated according to their

mechanism of action. Furthermore, very little structural characteri-

zation by homology modeling and docking studies was observed in

the literature [Tan et al., 2009].

Another interesting issue observed in the literature is peptide

promiscuity, in which multiple functions are associated with a

single molecule [Franco, 2011]. This property is also extremely

desirable for drug development. Among multiple functions, several

plant peptides have shown antimicrobial activity [Mandal et al.,

2009; Otero-Gonzalez et al., 2010; Moreira et al., 2011; Ribeiro et al.,

2011] but few peptide groups are able to control tumors and

pathogens at the same time [Ireland et al., 2010]. This is much more

commonly observed in peptides from animal sources such as

crotamine [Kerkis et al., 2010] and LL-37 [Mader et al., 2011]. In

addition to these facts, the Cycas revoluta have been studied in last

few years as an important source of proteinaceous compounds

with biotechnological potential as antifungical, antibacterial, and

antitumors [Yokoyama et al., 2008, 2009]. With this in mind, this

report describes the isolation of a novel peptide from C. revoluta

seeds, here synthesized in acetylated and non-acetylated forms, with

antitumor activities against Hep2 and human colon carcinoma

(HCT15) cells. Nevertheless, no significant lysis of normal RBC cells

was observed in the presence of peptides. Aiming to evaluate the

acetylation effects over C. revoluta peptide DNA binding properties a

modified peptide was produced containing two acetyl groups since

several reports showed that acetyl groups could be effective for

regulation of chromatin structure and function, and sometimes the

acetylated form showed a dramatic effect on DNA binding properties

[Johnson and Turner, 1999]. Peptide-DNA complexes were observed

and an in silico explanation by molecular modeling and docking

was provided. Finally, a secondary antimicrobial activity was

obtained, showing a possible multifunctionality in a single peptide.

MATERIALS AND METHODS

SAMPLE PREPARATION

Mature seeds of C. revoluta were collected from different plants

grown on the University of Texas Medical Branch campus, USA. The

seeds were individually cracked and ground to flour. Thirty grams

of the seeds were extracted with 100ml of phosphate-buffered

saline (0.1M PBS, pH 7.4) containing protease inhibitor cocktail

(Sigma). The extraction mixture was shaken for 48 h at 48C, and
centrifugation of the protein extract took place at 12,000g for

30min. Peptides less than 3 kDa were extracted from the super-

natants using a 3 kDa cut-off membrane (Millipore) and further

lyophilized. Dry samples were dissolved in 1ml of 5% (v/v)

acetonitrile solution containing 0.01% (v/v) trifluoroacetic acid

(TFA).

PEPTIDE PURIFICATION

Samples were fractionated by using reversed-phase HPLC (Agilent

1100 series) with a ZORBAX-300SB-C18 column (4.6mm�
150mm, particle size 5mm), at a flow rate of 600ml min�1, by

using a linear acetonitrile gradient (5–60%, v/v) for 120min at 308C.
TFA at 0.04% (v/v) was used as ion pairing agent. The elution was

monitored at 220 nm with a UV/DAD detector (DAD, G1315B).

Selected fractions of the HPLC chromatogram were collected using a

coupled fraction collector (GILSON, France). Individual fractions

were concentrated by Speed-Vac. The target fraction, which showed

anticancer activity, was re-chromatographed in the same column, at

a flow rate of 600mlmin�1, under isocratic elution with 55% (v/v)

acetonitrile containing 0.04% (v/v) TFA. The elution was monitored

at 220 nm. Selected fractions were collected and processed for

further studies.

MASS SPECTROMETRY ANALYSIS

Purified lyophilized peptide was resuspended in reduction and

alkylation buffer (0.5M Tris-buffer pH 8.0, 6M guanidine

hydrochloride, 1mM DTT, and 20mM EDTA) to a concentration

of 1mgml�1. The solution was overlaid with N2 gas and then

incubated at 558C for 2.5 h. Again, freshly prepared 0.5mMDTT was

added and incubated for another hour. The solution was cooled to

room temperature for 10min, and iodoacetamide was added to

buffer for a final concentration of 3mM and incubated for 10min in

the dark. The lyophilized peptides were resuspended in 5% (v/v)

acetonitrile solution containing 0.01% (v/v) TFA. Two microliters of

peptide solution was mixed with 24ml of a-cyano-4-hydroxycin-
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namic acid (CHCA) 10mgml�1, used as matrix. Then, 1.0ml sample

was spotted onto the MALDI 100-well stainless steel sample plate

and allowed to air dry prior to the MALDI analysis [Mandal et al.,

2009, 2010]. A Voyager Time-of-Flight mass spectrometer (Applied

Biosystems, Foster City, CA) was used to obtain MALDI mass spectra

equipped with 337 nm N2 laser and operated in accelerating voltage

20 kV. The spectra were recorded in the positive ion linear mode.

Reproducibility of the spectrum was checked five times from

separately spotted samples.

AMINO ACID SEQUENCING

HPLC fractions were lyophilized and resuspended in 5% acetic acid,

and the fraction was submitted for amino acid sequencing by Edman

degradation at the UTMB Peptide Sequencing Facility. ‘‘After

sequencing, the peptide was designated as Cr-ACP1.’’

PEPTIDE SYNTHESIS

Peptide synthesis reagents including Fmoc amino acids (AnaSpec

Inc., San Jose, CA) and coupling solvents (PE Biosystems, Applied

Biosystems) were used to synthesize the peptide on an ABI 431A

peptide synthesizer (Applied Biosystems) using double coupling for

all residues. The scale of synthesis was 0.25mmol and synthesized

by the UTMB peptide synthesis core facility. After cleavage, the

resuspended peptide was further purified by reversed-phase high

performance liquid chromatography (RP-HPLC) using the same

gradient program as described above in purification of the native

peptide. The major peak was lyophilized and its purity checked by

matrix assisted laser desorption ionization time of flight mass

spectrometry (MALDI-ToF-MS) analysis with matrix a-cyano in

proportion 3:1 matrix-sample.

PEPTIDE ACETYLATION

Two milligrams of peptide was reconstituted with 200ml of 50mM

ammonium bicarbonate buffer and 500ml of acetylation reagent

(200ml acetic anhydrideþ 600ml methanol). The reaction was left at

room temperature for 1 h. Methanol and unreacted acetic anhydride

were then removed with Speed-Vac and lyophilized. The resulting

acetylated peptide was confirmed by MALDI-ToF-MS and was

futher denominated Cr-AcACP1.

BACTERICIDAL ASSAYS

S. epidermidis, Bacillus subtilis, Pseudomonas aeruginosa, and

Escherichia coli ATCC 8739 were used for antimicrobial bioassays.

The bacterial species were cultured in 1.0ml LB broth (10 g L�1 NaCl,

5 g L�1 yeast extract, and 45 g L�1 bactopeptone) for 2 h, at 378C.
Acetylated and non-acetylated peptides were re-suspended in

50mM PBS (pH 7.4), filtered through 0.22mm nylon membranes,

and incubated at 512 and 100mgml�1 final concentrations,

respectively, with 5� 106 CFUml�1 of each bacterial species for

4 h, at 378C. PBS (pH 7.4) and chloramphenicol (40mgml�1) were

used as negative and positive controls, respectively. Bacterial

growth was measured at 595 nm, every hour within the period of

incubation, carried out according to protocols described by the

National Committee for Clinical Laboratory Standards guidelines

[Wikler et al., 2005]. Each experiment was carried out in triplicate.

In addition, to determine the MIC value, purified peptides were

serially diluted from 256 to 2mgml�1 in LB medium. In each well of

a 96-well polypropylene plate, 100ml of each peptide dilution and

10ml of cell suspension of bacteria were added (approximately

5� 106 CFU of bacteria). The plates were incubated for 12 h at 37 8C.
During this period the absorbance was measured in a plate reader

(Bio-Rad 680 Microplate Reader) at 595 nm every 30min.

CYTOTOXICITY ANALYSIS

Hep2, non-carcinoma mouse embryo fibroblast cells (NIH 3T3) and

HCT15 cells were obtained from the National Center for Cell Sciences

(Pune, India). The cells were cultured as monolayers in minimum

essential medium (MEM) supplemented with 10% (v/v) heat-

inactivated fetal bovine serum (FBS) and antibiotics, and incubated

at 378C in a humidified atmosphere of 95% air and 5% CO2. Cells

were plated at a density of 2,500 cells per well in a 96-well flat-

bottomed plate and allowed to attach to the culture surface

overnight. At the next day, broth was aspirated off, washed with PBS

(1�) buffer and 200ml of each peptide-containing (0–4.0mM)

medium were separately added in triplicates. After 72 h incubation,

the medium was newly aspirated off and washed with PBS (1�)

buffer, following the addition of 50ml of 3-[4,5-dimethylthiazol-2-

yl]-2,5-diphenyltetrazolium bromide (MTT reagent) at a standard

concentration of, 3mgml�1 to each well and further incubating for

3 h. At the end of the incubation, the MTT-containing medium was

aspirated off and once more washed with PBS (1�) buffer and then

200ml of DMSO solution was added to each well. After 10min,

optical density was determined using a MultiSkan plate reader

(LabSystems) at a wavelength of 570 nm.

CELL CYCLE ANALYSIS

Cells were seeded at an equal density per dish and allowed to adhere.

After 24 h, cells were synchronized at G1 phase in complete medium

supplemented with 2% FBS (for 24 h) according Kues et al. [2000]

and further treated with the different peptide concentrations along

with the control (0.1% DMSO). After treatment, cells were collected

and washed in PBS and incubated in 70% ethanol for 45min at 48C
or kept at �208C overnight for fixation. Cells were centrifuged,

washed, and then incubated with PI solution (40mgml�1 PI,

100mgml�1 RNase A in PBS) at 378C for 1 h. Apoptotic cells were

determined by their hypochromic sub-diploid staining profiles. The

distribution of cells in the different cell cycle phases was analyzed

from the DNA histogram using Becton–Dickinson FACSCalibur flow

cytometer and Cell Quest Pro software.

MICROSCOPIC ANALYSIS

Hep2 cells were treated with different concentrations of Cr-ACP1

and Cr-AcACP1 (0–4mM) for 48 h. Cells were washed with PBS.

Afterwards, 1ml of aqueous solution of ethidium bromide (EB,

100mgml�1) was added and the cell types were observed under a

fluorescence microscope (Olympus, Tokyo, Japan).

ELECTRO MOBILITY SHIFT ASSAY

Electrophoretic mobility shift assay (EMSA) was performed to

examine the peptide’s DNA binding activity. Synthetic peptides, Cr-

ACP1, and Cr-AcACP1 of 0, 0.8, and 1.0mM concentration with a

50-P32-labeled containing 2 nM oligo (50-CCG GCG CAG GGC TTA
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GGT CT-30) were incubated in 10ml of reaction buffer containing

25mM Hepes-KOH (pH 7.6), 50mM NaCl, 0.5mM EDTA, 0.5mM

DTT, and 12% glycerol at 208C for 15min, followed by

electrophoresis at room temperature in a 6% non-denaturing

polyacrylamide gel containing 25mM Tris–HCl, pH 7.5, 55mM

borate, and 0.6mM EDTA. The radioactivity in the DNA protein

complex was analyzed with a PhosphorImager (Molecular

Dynamics).

HEMOLYTIC ASSAY

Hemocompatibility study was performed following the protocol by

Mandal et al. [2011]. Briefly, RBC (from 6-week-old male BALB/c

mice) suspension was added to HEPES-buffered saline (negative

control), 1.0% Triton X-100 (positive control) and further incubated

with 1mM of Cr-ACP1 and Cr-AcACP1 peptides for 30min at 378C.
After incubation, the supernatants were transferred to a 96-well

plate. Hemolytic activity was determined by measuring the OD

absorption at 570 nm. Control samples of 0% lysis (in HEPES buffer)

and 100% lysis (in 1% Triton X-100) were considered in the

experiment. All assays were performed in triplicate. Hemolytic effect

of each treatment was expressed as percent cell lysis relative to the

positive control using the following formula: [(Abs570 of peptide)/

(Abs570 of positive control)]� 100.

IN SILICO ANALYSES AND MOLECULAR MODELING

Initially, PSI-BLAST was used in order to find best templates for

homology modeling no reliable data was obtained. I-Tasser server

[Roy et al., 2010] was utilized for discovery templates. The pdb 1d9j

[Oh et al., 1999] and 1b1v [Volkman et al., 1999] showed 45% and

23% of identity, respectively. Fifty theoretical three-dimensional

(3D) peptide structures were constructed using multiple templates by

Modeller v.9.8. The acetylated model was constructed in accordance

with MALDI-ToF data. The acetyl groups were added to amino acid

residues alanine (Ala1) and lysine (Lys3). The final models were

evaluated: that is, geometry, stereochemistry, and energy distribu-

tions in the models were performed using PROSA II to analyze

packing and solvent exposure characteristics and PROCHECK for

additional analysis of stereochemical quality [Morris et al., 1992;

Laskowski et al., 1996]. In addition, root main square deviation

(RMSD) was calculated by overlap of Ca traces and backbones onto

the template structure through the program 3DSS [Sumathi et al.,

2006]. The protein structures were visualized and analyzed on SPDB

viewer v.3.7 [Kaplan and Littlejohn, 2001] and Delano Scientific’s

PYMOL http://pymol.sourceforge.net/.

PEPTIDE-DNA DOCKING ANALYSIS

Molecular docking HEX v.5.1 [Ritchie, 2008] program was used to

examine possible modes of interaction between the peptides that

were acetylated and non-acetylated with single stranded DNA

(ssDNA) 50-CCGGC-30. Briefly, this procedure performed global

rotational and translational space scan by using Fourier transfor-

mations, which rank the output according to surface complemen-

tarity and electrostatic characteristics. A list of 50 complexes of

peptide-ssDNA was ranked and evaluated according to spatial

restraint, salt bridge formation, hydrogen bond, and hydrophobic

interaction for both peptides. Validation was carried out according

to biochemical data, stereochemical limitation, and formation

length using the Pymol program for visualization. The interaction

area was calculated through the number of contact points obtained

from amino acid residues interaction.

RESULTS AND DISCUSSION

PEPTIDE ISOLATION AND CHARACTERIZATION

In order to isolate low molecular mass (<3 kDa) anticancer peptides

from C. revoluta, crude extract was passed through a 3 kDa cut-off

ultra filtration membrane and further applied onto a reversed phase

chromatograph (RP-HPLC), Figure 1A shows the chromatographic

profile of peptides purified from C. revoluta. The antiproliferative

activity of each fraction was in vitro challenged against Hep2 cell

lines. Seven peaks were detected and the peak eluted at 41min

showed higher antiproliferative activity against Hep2 cells in

comparison to other HPLC fractions. MALDI-ToF-MS analysis of

fraction 5 showed that the monoisotopic peptide molecular mass

was 1050.89 (Fig. 1B). The peptide sequence obtained by Edman

degradation procedure (data not shown) was Ala–Trp–Lys–Leu–

Phe–Asp–Asp–Gly–Val (AWKLFDDGV) and was further named Cr-

ACP1. Synthesized peptide after acetylated modification was named

Cr-AcACP1, and was further confirmed by RP-HPLC and MALDI-

ToF-MS analysis. The monoisotopic acetylated peptide molecular

masses was 1092.94 and 1134.68, indicating that major quantity of

Cr-AcACP1 peptide received two acetyl groups, being one of them

linked to Ala1 and the other to Lys3 (Fig. 1C).

PROAPOPTOTIC ACTIVITY OF Cr-ACP1 AND Cr-AcACP1

Both the synthetic peptides, Cr-ACP1 and Cr-AcACP1, inhibited cell

proliferation of Hep2, and colon carcinoma cell, HCT15 in a dose-

dependent manner. Cell inhibition was prominent mainly at

concentrations of 1–2mM for Cr-ACP1 and 0.6–0.8mM for Cr-

AcACP1, as confirmed by MTT assay (Fig. 2a and c). The IC50 values

of Cr-ACP1 and Cr-AcACP1 in Hep2 cells were 1.5 and 0.8mM,

respectively. So, the results were obtained from both Hep2

and HCT15 cells found to be in good agreement for the apoptotic

activity of the peptides. Furthermore, the specificity of Cr-ACP1 and

Cr-AcACP1 to cancerous cells was evaluated by comparing with a

non-carcinoma mouse embryo fibroblast cell line NIH 3T3. Data

here reported revealed that acetylated and non-acetylated peptides

were less toxic to normal cells when compare to cancerous cell

(Fig. 2e). Hemocompatibility study revealed the effectiveness of both

the peptides where it showed no significant lysis of normal RBC cells

compare to positive control (Fig. 2d).

Both peptides seem to induce cell cycle arrest at the G0–G1 phase

of Hep2 cells, as shown in Figure 3. Several peptides have shown

anticancer activities [Gong et al., 2011; Mader et al., 2011], but only

a few of them have been purified from plants [Preza et al., 2010].

This study showed that peptides isolated from cacao seeds were

capable of controlling murine lymphoma. Moreover, the groups of

cyclic peptides known as cyclotides have also shown antitumor

activities in addition to several other peptide functions [Ireland

et al., 2010]. There were 23.69% and 59.05% relative increases for

24 h in the G0–G1 phase in epidermoid cancer cells with Cr-ACP1

and Cr-AcACP1 (0.8mM), respectively, compared with control
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cultures. Apoptosis induction occurred in a time-dependent manner

following peptide treatment. Cr-ACP1 increased apoptosis with

long-term treatment as quantified by flow-cytometry (data not

shown). This induction of programmed cell death was targeted on

DNA ladder confirmed by fluorescent microscopy. Nucleosome

deformation was observed under fluorescent microscopy after PI

staining (Fig. 3). The observation of Hep2 cells at higher doses

indicated loss of DNA after random DNA degradation. This result

indicates that Cr-AcACP1 was more active than Cr-ACP1 to kill the

cancerous cells.

Recent investigations have demonstrated that many apoptotic

cascades utilize mitochondria as the nodal point where diverse

apoptotic stimuli translate from initiation into execution undergo

critical mitochondrial changes, including the collapse of the inner

transmembrane potential, the generation of ROS, and the release of

cytochrome c [Zorov et al., 2006]. Our results show that the

exposure of Hep2 cells to Cr-ACP1 resulted in an improvement of

apoptotic process verified from chromatin condensation and the

assessment of sub-G0/G1 cells by FACS analysis. Earlier, Ellerby

et al. [Ellerby et al., 1999] designed a synthetic peptide of 14-amino

acids as KLAKLAKKLAKLAK, called (KLAKLAK)2, where all-D

enantiomer was used to avoid the degradation by proteases that

preferentially disrupts mitochondrial membranes and induces

mitochondria-dependent apoptosis. Thus, our result implies that

Cr-ACP1 possibly acts as a chemopreventive agent, inducing

inhibition of the growth of epidermoid carcinoma and colon

carcinoma cells of apoptosis.

DNA BINDING ACTIVITY OF Cr-ACP1 AND Cr-AcACP1

Aiming to provide direct evidence for Cr-ACP1 and Cr-AcACP1’s

role in DNA binding, we performed EMSA. Figure 2b clearly shows

that DNA binding activity increased as peptide concentration rose

(0mM, lane 1; 0.8mM, lane 2; 1.0mM, lane 3). This suggests that the

DNA binding activity of Cr-AcACP1 was twice that of Cr-ACP1.

Hence, DNA binding is the probable cause of apoptosis induction.

Inactivation of oligonucleotides with functional peptides is an

alternative and fascinating way to control cancer cells. Recently,

NH–carbene complexes have started to contribute significant results

in DNA binding and are being widely used as anticancer drugs; they

are highly effective, but the patient is likely to suffer from severe

side effects [Roy et al., 2009]. Complexation data provided here

suggests that anticancer activity could be related to the process of

peptide-DNA binding since Cr-ACP1 showed lower affinity to DNA

in comparison to Cr-AcACP1. Anticancer activity was also improved

at the same rate (Fig. 2A) with the presence of the acetyl group. In

this context, natural peptides with DNA binding activity that

induces apoptosis in the cancer cell seem to be more promising, as

explained by in silico studies in the next topic.

ANTIMICROBIAL ACTIVITY

Another interesting issue observed here is peptide promiscuity, in

which multiple functions are associated with a single molecule

[Franco, 2011]. Since several plant peptides with similar physical–

chemical properties to the peptide presented here have shown

antimicrobial activity [Mandal et al., 2009; Otero-Gonzalez et al.,

Fig. 1. HPLC profile (A) showing the elution profile of peptides <3 kDa, fractionated onto reversed phase HPLC with a ZORBAX-300SB-C18 column at a flow rate of

600ml min�1, by using a linear acetonitrile gradient (5–60%, v/v) as observed at diagonal line. MALDI-TOF mass spectra of peptide fraction 5 (Cr-ACP1) acquired in linear

operating mode (B) and respective acetylated form (Cr-AcACP1) (C).
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2010; Moreira et al., 2011; Ribeiro et al., 2011], we also evaluated

the antimicrobial activity of Cr-ACP1. The antimicrobial activity of

both peptides was evaluated in vitro against four different human

pathogenic bacteria (Table I) showing that the acetylated form of Cr-

AcACP1 is less active than Cr-ACP1, in contrast to anticancer

activity, which was improved by the presence of acetyl groups. The

non-acetylated form showed higher potency toward B. subtilis,

P. aeruginosa, and E. coli (MIC 30mM) and lower against

S. epidermidis (MIC 60mM). These are a low MICs values when

compared to other antibacterial proteins. For example, potamin-1

(PT-1), a peptide from Solanum tuberosum which caused deleterious

effects against Clavibacter michiganensis development, showed an

MIC of 50mM [Kim et al., 2005]. Moreover is important to cite that

all strains affected by Cr-ACP1 are opportunistic human pathogens.

S. epidemidis is one of the most prevalent cutaneous resident

bacteria, being extremely resistant to conventional antibiotics.

Several studies have been identified S. epidermidis as a common

opportunistic pathogen of human skin that easily colonize on the

indwelling catheters surface, prosthetic joints, cerebrospinal fluid

shunts [Schoenbaum et al., 1975]. Moreover P. aeruginosa, is able to

cause lung infections, cystic fibrosis, nosocomial infections, and a

wide range of severe and sometimes fatal diseases in immunocom-

promised individuals [Cappello and Guglielmino, 2006]. Finally,

B. subtilis and E. coli may cause serious food poisoning suggesting

that peptide here reported could be usefully for the treatment of

multiple human infections.

In addition to a comparison between antimicrobial potencies, it is

also important to compare the effects of acetyl groups over the

bactericidal activities. It seems that acetylation was harmful to

bactericidal activity due to the blocking of amino acid residue Lys3

as here observed in Table I. This modification entails an imbalance in

the total charge preventing an electrostatic approximation to the

target. This result has also been observed in recent research that

evaluated the role of acetylation and charge exposition in

antimicrobial peptides based on human b-defensin-3. Despite of

their higher potency, when compared to Cr-AMP1, the acetylated

peptide, named Pep-1, showed an EC50 value of 32mM and for the

non-acetylated Pep-1 this was 2mM [Papanastasiou et al., 2009]

Fig. 2. Dose-dependent cytotoxic activity of Cr-ACP1 and Cr-AcACP1. Human epidermoid cancer cells (a); human colon carcinoma cells HCT15 (c), non-carcinoma mouse

embryo fibroblast cells NIH 3T3 (e) were grown in vitro in 96-well plates and treated with different concentrations (0.0–4mM) of peptide Cr-ACP1 (gray color) and Cr-AcACP1

(black color). The mean of the percentage cell viability (% of control) along with standard deviation of triplicate results are indicated. (b) Electro mobility shift assay for direct

evidence of Cr-ACP1 and Cr-AcACP1’s role in DNA binding. Cr-ACP1 and Cr-AcACP1 were incubated with oligo, 50-P32-labeled (50-CCG GGG CAG GGC TTA GGT CT-30) at a
concentration of 0mM (lane 1), 0.8mM (lane 2), and 1.0mM (lane 3). Results indicate that binding activity rose with increasing peptide concentrations and Cr-AcACP1 was

more active than only Cr-ACP1. (d) Hemolytic assay of Cr-ACP1 and Cr-AcACP1. The concentration of peptides were used at 1mM and incubated for 30min at 378C. Data are
the mean of triplicates� SD.
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corroborating data here presented that acetylation group could

reduce the effectiveness of some antimicrobial peptides.

This surprising and unexpected secondary function could be

explained by peptide promiscuity, observed in several other plant

antimicrobial peptides, such as defensins, cyclotides, and 2S

albumins [Franco, 2011], suggesting that these peptides could

bind to different targets. These data suggest that this peptide could

be used in the development of a therapeutic treatment against

microorganisms and, due to the low concentration needed, may

produce fewer toxic side effects.

MOLECULAR MODELING AND DOCKING OF PEPTIDES AND ssDNA

The 3D model of anticancer peptides showed 44% and 22% of

identity with structures deposited in Protein Data Bank (http://

www.pdb.org/pdb/home/home.do), with pdb code 1d9j and 1b1v,

respectively, which were chemically synthesized and the 3D

structures resolved by NMR. The peptide pdb: 1d9j is a hybrid of

antimicrobial sequences of cecropin-A (1-8 residue)—magainin-2

(1-12 residue) which naturally occurs in Hyalophora cecropia and

Xenopus laevis, and pdb: 1b1v is an insect cytokine peptide which

may be found naturally in the hemolymph tissue of Pseudoplusia

includens. The validation of the 3D model of peptide anticancer by

Ramachandran plot showed that in the model presented 100% of the

amino acid residues are in physically acceptable regions for

secondary structure formation in relation to torsion angles phi and

psi. The z-score value in PROSA II program can be used to check

whether the input structure is within the range of scores typically

found for native proteins of similar size. The z-score value was 0.8,

compared with NMR structures in anticancer peptides of similar

length (z-score 1 to �1.5) [Hwang et al., 1998; Kristiansen et al.,

2005; Wang et al., 2005]. The values of RMSD for anticancer peptide

were 1.63 and 1.02 Å.

The 3D non-acetylated anticancer peptide model presented

cationic (Lys3) and aromatic (Trp2) residues forming a single

amphipathic a-helice that showed 55% of hydrophobic residues.

This structural fold is commonly found in peptides with

multiple activities such as antimicrobial, antifungal, and antitu-

moral [Rodrigues et al., 2009]. Helene and Maurizot [Helene and

Maurizot, 1981] have observed that short oligopeptides containing

basic and aromatic residues provided simple systems where it was

possible to differentiate between single-stranded and double-

stranded structures by inserting their aromatic residue between

successive bases. On the other hand, the acetylated peptide presented

an identical structural scaffold. For model construction, in

accordance with MS data (Fig. 1), two acetyl groups were added,

the first being linked to Ala1 and the second bound to Lys3.

The interactions observed between DNA and acetylated and non-

acetylated peptides were analyzed in silico. The interactions

between non-acetylated peptide-ssDNAs suggest that the peptide

Fig. 3. Representative histogram plot of Hep2 cancer cells treated with Cr-ACP1 and Cr-AcACP1 (0.8mM) for 24 h. Control (0.1% DMSO) cultures (A), Cr-ACP1 (B), and

Cr-AcACP1 (C) indicating more cell cycle arrest at the G0–G1 phase in epidermoid cancer cells with Cr-AcACP1. Fluorescent microscopic analysis of DNA fragmentation and

apoptosis by of Hep2 cells treated with control (0.1% DMSO), (D); 0.8mM of Cr-ACP1 (E) and Cr-AcACP1(F).

TABLE I. Antimicrobial Activities of Cr-ACP1 and Cr-AcACP1

Peptides

Bacteria

MIC values (mM)

Cr-ACP1 Cr-AcACP1

S. epidermidis 60 230
B. subtilis 30 58
P. aeruginosa 30 58
E. coli 30 116

All assays were performed in triplicate do not differing more than 5%.

190 APOPTOTIC PLANT PEPTIDE WITH ANTIMICROBIAL ACTIVITY JOURNAL OF CELLULAR BIOCHEMISTRY



interacts with the sequence 50-CCGGC-30 of ssDNA through residues

Ala1, Lys3, and Asp6 of Cr-AcACP1 (Fig. 4A). In summary, the DNA

O30 atom receptors of G9 interact with the nitrogen atom of the

main chain of amino acid residue Ala1 with 2.72 Å. The atoms 1HZ

and 2HZ of NZ Lys3 lateral chain residue interact by N1 and O6

of nitrogen base G9, forming hydrogen bonds with 1.89 and 3.19 Å.

Hydrogen interactions were observed in N1 and N2 of nitro-

base G6 with atoms at Asp6 lateral chain residue OD1 and OD2,

which present 2.93 and 2.56 Å, respectively, with stabilization of

peptide forward ssDNA, showing an interaction surface area of

50 Å2. This indicates once more that the hydrogen bonding net

observed here plays an essential role in the binding and stabilization

of peptides with a ssDNA. The Trp2 residue was positioned between

two hydrophilic branches and inserted into two nucleotide bases

that assist in a ‘‘hydrophilic hug.’’ Coleman and Oakley [1980]

observed that this might be an important factor in the recognition of

single-stranded nucleic acids by single-strand binding proteins. The

insertion of an aromatic amino acid side chain into an apurinic

site might form the basis for the selective recognition of such sites

in apurinic DNA [Behmoaras et al., 1981b]. As observed with

the peptide isolated here, the presence of hydrophobic residues

surrounding cationic residues is observed in 80% of peptides

with anticancer activity deposited on APD2 [Behmoaras et al.,

1981a].

Fig. 4. Theoretical docking studies showing the binary complex formed between Cr-ACP1 (a) and Cr-AcACP1 (b) anticancer peptides with a single stranded DNA 50-CCGGC-30.
Peptide and DNA are represented in ball stick format. Lateral chains involved in complex formation are labeled. Dotted lines indicate hydrogen bonds and respective distances in

angstroms. Pymol program was used for visualization.

JOURNAL OF CELLULAR BIOCHEMISTRY APOPTOTIC PLANT PEPTIDE WITH ANTIMICROBIAL ACTIVITY 191



The interaction observed for acetylated peptide with ssDNA

showed weak affinity to bacteria, when compared to Cr-ACP1, as

observed in in vitro assays. An explanation for this lower interaction

between acetylated peptide and bacteria suggests that acetylation at

Lys3 may block residue action due to a modification in charge

surface. On the other hand, the affinity observed in the electro

mobility shift assay between Cr-AcACP1 and ssDNA was twice as

high as that for Cr-ACP1, indicating that DNA interaction and

antimicrobial activity are not directly related. Cr-AcACP1 showed

the formation of a hydrogen bond between Ala1 (O) amino acid

residue in N-termini and hydroxyl (O6) of DG4 nucleotide with

distance of 3.22 Å. The oxygen of acetyl group linked to Lys3 formed

a hydrogen bond with N2 of DG4 with distance of 1.64 Å. A new

interaction was also observed only in the acetylated form between

oxygen (O) of Trp2 and N2 of DG6 with distance of 3.39 Å. In

addition, two other hydrogen bonds were observed. The first was

proposed between the oxygen donor (OD2) in Asp6 residue and the

receptor (O2) in DC7, and the second between the oxygen donor

(OD1) in Asp7 residue and the receptor OP1 DC8 with distances of

3.28 and 3.46 Å, respectively (Fig. 4B). The interaction surface area

observed between Cr-AcACP1 and ssDNA was 60 Å2 higher than the

interaction between Cr-ACP1 and ssDNA suggesting a major

affinity, as observed in gel experiments (Fig. 2B).

Although the acetylated peptide studied here has shown higher

ability to bind to DNA, some contrary results have previously been

observed. For example, the N-terminal acetylation of peptides

derived from histone H4 showed that the peptide lost the capability

to link DNA after acetylation due to the electrostatic change that

leads the chromatin to an extended form, reducing the interaction

[Cary et al., 1982].

CONCLUSIONS

In conclusion, the present work aimed to identify a novel

promiscuous peptide with anticancerous and bactericidal activity

isolated from plant seeds. It was clearly observed that the peptide

exhibited significant apoptotic activity in addition to DNA binding

property, indicating that further modifications of these compounds

may be promising candidates for clinical drug agents. These

adaptations could improve the activity and also the specificity,

transforming peptide here reported in a possible biopharmacy.

However, at this moment, it is impossible to forecast the utilization

of this peptide since modifications such as acetylation reduced

the peptide’s effectiveness against bacteria. This data suggest the

importance of N-termini for functional development. Otherwise, the

acetylated peptide showed higher affinity to DNA and also improved

anticancer activity, indicating that two indirectly related different

targets are observed here. Data reported in this work give the

probable mechanisms of interaction obtained by in silico studies.

These analyses demonstrated the ability to satisfactorily interact

with ssDNA, indicating that the role of the amino acid residues Ala1,

Trp2, Lys3, Asp6, and Asp7 is important for the stabilization complex,

in addition to the presence of an acetyl group. Therefore the small

peptide can block DNA replication and inhibit cancer development,

especially in its acetylated form. This information adds to the

available knowledge about anticancer plant peptides, and it should

be validated by NMR technology in the near future to construct

novel therapeutic treatments to combat cancer’s devastating effects.
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