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A theorem of Hardy states that, if f is a function on R such
that |f(x)| ≤ C e−α|x|2 for all x in R and |f̂(ξ)| ≤ C e−β|ξ|2 for
all ξ in R, where α > 0, β > 0, and αβ > 1/4, then f = 0.
Sitaram and Sundari generalised this theorem to semisimple
groups with one conjugacy class of Cartan subgroups and to
the K-invariant case for general semisimple groups. We ex-
tend the theorem to all semisimple groups.

1. Introduction.

The Uncertainty Principle states, roughly speaking, that a nonzero func-
tion f and its Fourier transform f̂ cannot both be sharply localised. This
fact may be manifested in different ways. The version of this phenomenon
described in the abstract is due to Hardy [3]; we call it Hardy’s Uncertainty
Principle. Considerable attention has been devoted recently to discovering
new forms of and new contexts for the Uncertainty Principle (see [2] for a
recent comprehensive survey). In particular, Sitaram and Sundari [4] gen-
eralised Hardy’s Uncertainty Principle to connected semisimple Lie groups
with one conjugacy class of Cartan subgroups and to the K-invariant case for
general connected semisimple Lie groups. We extend the theorem of Sitaram
and Sundari [4], and establish a form of Hardy’s Uncertainty Principle for
all connected semisimple Lie groups with finite centre.

2. The theorem.

Let G be a connected real semisimple Lie group with finite centre. Let KAN
be an Iwasawa decomposition of G, and let MAN be the associated minimal
parabolic subgroup of G. The Lie algebras of G and A are denoted by g
and a. The Killing form of g induces an inner product on a and hence on
the dual a∗; in both cases the corresponding norms are denoted by | · |. Haar
measures on K and G are fixed; that on K is normalised so that the total
mass of K is 1. Integrals over G and K are relative to these Haar measures.

Any irreducible unitary representation µ of M may be realised as the left-
translation representation on a finite-dimensional subspace Hµ of C(M), the
space of continuous complex-valued functions on M . For such a µ, and λ in
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the complexification a∗
C of a∗, we define the space H0

µ,λ to be the subspace
of C(G) of all functions ξ with the properties that

ξ(gan) = ξ(g) exp((iλ− ρ) log a) ∀g ∈ G ∀a ∈ A ∀n ∈ N

and
m 7→ ξ(gm) ∈ Hµ ∀g ∈ G.

Note that such functions are determined by their restrictions to K, i.e.,
effectively we are dealing with a subspace of C(K). The representation π0

µ,λ

of G is the left-translation representation of G on this space. We define the
inner product 〈ξ, η〉 of ξ and η in H0

µ,λ to be∫
K

ξ(k) η(k) dk;

‖ · ‖ denotes the associated norm.
Denote by Hµ,λ the completion of H0

µ,λ with this norm, and by πµ,λ the
extension of π0

µ,λ to Hµ,λ. The space Hµ,λ may be identified with a subspace
of L2(K), and H0

µ,λ with the space of continuous functions in Hµ,λ.

For µ in M̂ and λ in a∗, the representation πµ,λ is unitary. This repre-
sentation lifts to a representation of L1(G) by integration, as follows. First,
for f in L1(G) and ξ and η in Hµ,λ, the integral∫

G
f(g) 〈πµ,λ(g)ξ, η〉 dg

converges, to Bf (ξ, η) say. Next, Bf is a sesquilinear form on Hµ,λ. Thus
there exists a unique bounded operator, denoted πµ,λ(f), such that

〈πµ,λ(f)ξ, η〉 =
∫

G
f(g) 〈πµ,λ(g)ξ, η〉 dg ∀ξ, η ∈ Hµ,λ.

We denote by ‖ ·‖ the operator norm of such operators, relative to the given
norm on Hµ,λ. If λ ∈ a∗

C \ a∗, then the matrix coefficients g 7→ 〈πµ,λ(g)ξ, η〉
need not be bounded, and for general f in L1(G) it may not be possible to
define πµ,λ(f). However, for f which decays sufficiently rapidly at infinity
in G, in particular for f in the theorem below, πµ,λ(f) may still be defined
by the procedure above.

Theorem. Suppose that C, α, Cµ, βµ are positive constants and αβµ > 1/4
for all µ in M̂ , and that f is a measurable function on G such that

|f(kak′)| ≤ C exp(−α| log a|2) ∀k, k′ ∈ K ∀a ∈ A

and
‖πµ,λ(f)‖ ≤ Cµ exp(−βµ|λ|2) ∀µ ∈ M̂ ∀λ ∈ a∗.

Then f = 0.
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Proof. Let σ and τ be irreducible representations of K, with characters χσ

and χτ . Define fσ,τ by the formula

fσ,τ (g) = dim σ dim τ

∫
K

∫
K

χσ(k) χτ (k
′) f(kgk′) dk dk′.

By a straightforward estimate,

|fσ,τ (kak′)| ≤ C (dim σ dim τ)2 exp(−α| log a|2) ∀k, k′ ∈ K ∀a ∈ A.

Further, πµ,λ(fσ,τ ) is the composition Pσπµ,λ(f)Pτ , where Pσ and Pτ are the
projections of L2(K) onto the σ-isotypic and τ -isotypic subspaces, so that

‖πµ,λ(fσ,τ )‖ ≤ Cµ exp(−βµ|λ|2) ∀µ ∈ M̂ ∀λ ∈ a∗.

Now the arguments of Section 3 of [4] show that, if αµ is chosen such that
0 < αµ < α and αµβµ > 1/4, then

‖πµ,λ(fσ,τ )‖ ≤ Cσ,τ,µ

∫
G

Φi Re(λ)(x) |f(x)| dx

≤ C ′
σ,τ,µ exp

(
|λ|2

4αµ

)
∀µ ∈ M̂ ∀λ ∈ a∗

C,

where Φi Re(λ) denotes the usual elementary spherical function, and hence
that

πµ,λ(fσ,τ ) = 0 ∀µ ∈ M̂ ∀λ ∈ a∗
C.

By Harish-Chandra’s subquotient theorem (see G. Warner [5, p. 452]), if π is
any irreducible unitary representation of G on a Hilbert space Hπ, then there
exist µ in M̂ and λ in a∗

C and closed subspaces S0 and S1 of Hµ,λ such that π
is Năımark equivalent to the quotient representation π̇µ,λ of πµ,λ on S1/S0.
This means that there is an intertwining operator Aπ with dense domain
and range between (π,Hπ) and (π̇µ,λ, S1/S0). Consequently π(fσ,τ ) = 0,
first on the domain of Aπ by the intertwining property, and then on all Hπ

by continuity. In summary,

〈π(fσ,τ )ξ, η〉 = 0 ∀ξ, η ∈ Hπ,

and therefore, summing over σ and τ , we see that

〈π(f)ξ, η〉 = 0 ∀ξ, η ∈ Hπ.

It follows that π(f) = 0 for all π in Ĝ, the unitary dual of G, whence f = 0
by the Plancherel theorem. �

The argument of this paper may also be applied in other contexts. For
instance, we may show the following: if f is a measurable function on G,
rapidly decreasing in the sense that for any B in R+ there exists A in R+

such that

|f(kak′)| ≤ A exp(−αB| log a|) ∀k, k′ ∈ K ∀a ∈ A,
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and if on each principal series induced from the minimal parabolic subgroup,
the group-theoretic Fourier transform vanishes on a set of positive Plancherel
measure, then f is zero. This is a qualitative uncertainty principle related
to [1].
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