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Abstract

Phagocytosis plays a key role in nutrient uptake and virulence of the protist parasite Entamoeba histolytica. Phagosomes
have been characterized by proteomics, and their maturation in the cells has been studied. However, there is so far not
much understanding about initiation of phagocytosis and formation of phagosomes at the molecular level. Our group has
been studying initiation of phagocytosis and formation of phagosomes in E. histolytica, and have described some of the
molecules that play key roles in the process. Here we show the involvement of EhAK1, an alpha kinase and a SH3 domain
containing protein in the pathway that leads to formation of phagosomes using red blood cell as ligand particle. A number
of approaches, such as proteomics, biochemical, confocal imaging using specific antibodies or GFP tagged molecules,
expression down regulation by antisense RNA, over expression of wild type and mutant proteins, were used to understand
the role of EhAK1 in phagocytosis. EhAK1 was found in the phagocytic cups during the progression of cups, until closure of
phagosomes, but not in the phagosomes themselves. It is recruited to the phagosomes through interaction with the
calcium binding protein EhCaBP1. A reduction in phagocytosis was observed when EhAK1 was down regulated by antisense
RNA, or by over expression of the kinase dead mutant. G-actin was identified as one of the major substrates of EhAK1.
Phosphorylated actin preferentially accumulated at the phagocytic cups and over expression of a phosphorylation defective
actin led to defects in phagocytosis. In conclusion, we describe an important component of the pathway that is initiated on
attachment of red blood cells to E. histolytica cells. The main function of EhAK1 is to couple signalling events initiated after
accumulation of EhC2PK to actin dynamics.
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Introduction

Phagocytosis is an essential process both in unicellular

organisms which use this process to obtain their food [1], and

multicellular organisms, where it plays a central role in the innate

immune system [2]. In the protist pathogen Entamoeba histolytica
it is an important process for nutrient uptake as well as for amoebic

invasion. Cells lose their ability to invade when phagocytosis is

inhibited [3–4]. However, the mechanism of phagocytosis,

particularly the initial steps leading to phagocytic cup formation

up to phagosome closure in E. histolytica, is not clearly understood

unlike metazoan systems where the process has been studied in

extensive detail [5–6]. Phagocytosis in E. histolytica is likely to

follow a different molecular path compared to mammals as a

number of molecules known to be involved in mammalian

phagocytosis could not be identified in this organism [7]. A

number of cell surface molecules, such as Gal/GalNAc lectin [8],

TMK96 [9], TMK39 [10], SREHP [11] and EhROM1 [12] have

been shown to be involved in adherence to other cells. It is not yet

clear if these molecules are amoebic receptors during phagocytosis

of different particles, such as RBC, bacteria and apoptotic human

cells [13]. The participation of Gal/GalNAc lectin as a receptor in

phagocytosis has been questioned, though it is likely that it may

still be a key molecule initiating signal transduction [14–15].

Analysis of the phagosome proteome has revealed involvement of

a large number of proteins in phagosome formation and

subsequent maturation [14,16–19]. Some of these, such as actin

[20], Arp proteins, actin binding proteins, PI3 kinase [21], P21

activated protein kinase (PAK) [22], and different GTPases are

already known to be part of phagocytic and signalling pathways

[23–24]. A transmembrane kinase PATMK was identified from

one of the proteomic screens of phagosomes [9]. Detailed analysis

suggested that PATMK is localized at the site of RBC attachment

to E. histolytica cells and that it is involved in phagocytosis.

Though many of the identified molecules are suggested to be part

of the phagocytic pathways, detailed molecular mechanisms have

not yet been elucidated. Myosin 1B has also been suggested to be

one of the key molecules in phagocytosis of human cells [25]. Over

expression of myosin 1B reduces phagocytic capabilities of

amoebic cells, probably through altering the level of actin network

[26]. Previous studies from our laboratory have shown that

calcium binding protein1 (EhCaBP1) is involved in the initiation of
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phagocytosis [27]. EhCaBP1 is recruited to the phagocytic cups

with the help of a C2 domain-containing protein kinase

(EhC2PK). EhC2PK binds phosphatidylserine-containing mem-

branes in the presence of Ca2+ through its C2 domain. Both

EhCaBP1 and EhC2PK are likely to be involved in cup

progression through recruitment of proteins that regulate actin

dynamics, and both of these proteins leave phagocytic cups before

closure [28]. A calmodulin-like calcium binding protein EhCaBP3

has also been implicated to participate in erythrophagocytosis

[29]. It is recruited during cup formation and stays till phagosomes

are formed. EhCaBP3 binds atypical myosin 1B, and is suggested

to be involved in phagosome closure.

The spatial and temporal regulation of actin dynamics is the key

for controlling phagocytosis. Blocking actin dynamics by inhibitors

leads to a reduction in phagocytosis [30]. Though this area has

been extensively investigated in metazoans, not much is known in

protist parasites, particularly E. histolytica. Only the homologs of a

few molecules known to play important roles in other systems have

been identified, mostly using bioinformatics tools [31]. The

participation of Ca2+ in phagosomal closure and maturation has

been suggested and it is believed that interaction of a particle with

phagocytic receptors generates Ca2+ oscillations in the cytoplasm,

which cause solubilisation and periphagosomal breakdown of actin

filaments surrounding the phagosomes [32]. Ca2+ signal may also

regulate actin dynamics through Ca2+ binding proteins (CaBPs)

that can sense alteration in Ca2+ concentration and modulate actin

filaments [33]. In Dictyostelium discoideum, two CaBPs (34 kD and

40kD) are involved in bundling and cross-linking of actin filaments

[34–35]. Overall, the localized control of actin dynamics around

the phagocytic cups helps to generate a force that propels

psuedopod movement around the particles, leading to engulfment.

The mechanisms that regulate actin dynamics in E. histolytica are

likely to be somewhat different as amoebic actin displays some

unusual properties. Amoebic actin can polymerize to form

filaments in vitro and the polymerized actin can induce myosin

ATPase displaying kinetics similar to that of rabbit actin [36].

However unlike other actin, this actin did not bind DNase I or

polymerize at low temperature. Moreover, amino acid sequence of

amoebic actin showed 10–15% differences compared with

different mammalian actins, suggesting that functional differences

may be due to sequence variations. However, antibodies to the

purified amoebic actin recognized actin from several eukaryotes

including protozoa indicating that there may be overall confor-

mation conservation among different actins [3,5–7,31,36].

It is clear from previous studies that the mechanisms regulating

phagocytosis in different systems may depend upon the nature of

particle or ligand. Therefore we have used only RBC uptake as a

system to study molecular mechanism of initiation and propaga-

tion of the phagocytic signal. Here we describe the functional

characterization of a novel alpha kinase-like kinase EhAK1.

Alpha-kinases are a class of atypical protein kinases, characterized

by unusual substrate specificity, and the absence of significant

sequence similarity to conventional protein kinases [37]. These

kinases phosphorylate serine and threonine residues in the context

of an alpha-helix present in the substrate. Many alpha kinases

carry domain(s) other than alpha kinase domain, allowing

participation in a variety of processes, such as protein translation,

Mg+2 homeostasis, intracellular transport, cell migration, and

proliferation. Some of the domains associated with alpha kinases

are channel, Ig, CaM, WD40 repeat and Arf-Gap (For a review

see Middlebeek et al, 2010). In this report, we show that EhAK1 is

required for the initiation of phagocytosis in E. histolytica. Our

results indicate that erythrophagocytosis is initiated by the

recruitment of EhAK1 with the help of EhCaBP1 at the RBC

attachment site, which is followed by recruitment of actin. We also

show that actin is a substrate of EhAK1 unlike other alpha kinases

which phosphorylate myosin [38]. Our data suggest that actin

phosphorylation is likely to be an important mechanism for

regulating localized actin dynamics.

Results

EhAK1 is a cytosolic protein and is involved in
erythrophagocytosis

Our previous work has shown the importance of EhCaBP1 in

RBC phagocytosis. Signalling through EhCaBP1 after attachment

of RBCs appears to be crucial for progression of phagocytic cups

towards phagosomes [27,39]. In order to identify the molecules

that may be involved in phagocytosis along with EhCaBP1 we had

carried out affinity chromatography of amoebic extract on an

EhCaBP1-Sepharose column [28]. Mass spectrometry of bound

molecules helped to identify a number of proteins, such as actin,

myosin and EhC2PK. The functional role of EhC2PK during

initiation of phagocytosis has already been described [28]. A

homolog of alpha kinase EhAK1 was also identified as one of the

EhCaBP1 binding proteins. Myosins play a critical role in

manipulating actin cytoskeleton function. Since alpha kinases are

known to control myosin through phosphorylation [40–41], we

decided to pursue EhAK1 as a potential regulator of phagocytosis-

related actin dynamics. E. histolytica encodes five alpha kinases, of

which EhAK1 and EhAK2 have unusual domain organization,

with alpha kinase domains at the N-terminus, and SH3 domains at

the C-terminus (Fig. S1). Association of a SH3 domain with

alpha kinase catalytic domain has not been seen among the known

alpha kinases [42]. The kinase domain of the other three alpha

kinases was located at C-terminal end and there was no other

recognisable domain in these molecules. EhAK1 and EhAK2

displayed low level of overall sequence conservation with other

alpha kinases (Fig. S1). Sequence similarity search using the

kinase domain of EhAK1 showed maximum identity (30%) with

alpha kinases from D. discoideum. The kinase domain has eight

conserved sub domains and a zinc-finger motif at its C-terminus,

Author Summary

Entamoeba histolytica is one of the major causes of
morbidity and mortality in developing countries. Phago-
cytosis plays an important role in both survival and
virulence, and has been used as one of the virulence
markers. E. histolytica displays a high rate of phagocytosis
and offers a unique system to understand the mechanism
of this important biological process seen in many
eukaryotic cells. However, the molecular mechanism of
the process is still largely unknown in E. histolytica, though
this pathway has been characterized in many systems. We
have been studying this pathway using red blood cells,
and have identified a number of molecules that are
involved during initiation. Here, we demonstrate that an
alpha kinase like atypical kinase EhAK1 is an important
component of the pathway that regulates erythrophago-
cytosis. We provide evidence that EhAK1 is recruited to the
phagocytic cups through EhCaBP1. We also show that over
expression of kinase defective mutant, or down regulation
of the gene using antisense RNA, led to defects in
phagocytosis. Actin appears to be one of the substrates
of EhAK1 and phosphorylation of actin is required for
phagocytosis. Our results suggest that E. histolytica has
evolved a novel pathway to carry out phagocytosis.

EhAK1 Participates in E. histolytica Phagocytosis
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Figure 1. EhAK1 is involved in phagocytosis. (A) Schematic representation of domain organization of EhAK1. EhAK1 is a 50 kDa protein with
two domains, alpha kinase domain (38–267 amino acids) and SH3 domain (322–380 amino acids). The three different constructs used are shown. Lys
85 is the nucleoside triphosphate binding site, K85A mutant is the kinase dead mutant, KD-kinase domain alone. (B) Purified recombinant EhAK1 or
K85A (2mg) was incubated in the presence of c-32P-ATP, MgCl2 and substrate (2mg) histone type (IIIS) at 30uC for 1 h. K85A mutant of EhAK1 exhibits
no autophosphorylation and substrate phosphorylation activities. The products were analysed on SDS-PAGE and visualized in a phosphorimager. (C)
Amoebic cells were stained for EhAK1 and EhTMKB1-9 (as membrane marker) using specific antibodies followed by Alexa488 and pacific blue-410,
respectively. (D) Quantitative analysis of fluorescent signals obtained from panel (C). Intensity of immunostain (EhAK1, EhTMKB1-9) was measured at
multiple locations in the membrane and cytosol and average relative intensity was computed by taking the signal from membrane as 100% for each
marker separately. For analysis, five random regions were selected from membrane (blue) and cytosol (red) and average intensity was computed for
each region. This was repeated for ten such cells (N = 10, bars represent standard error; scale bar, 5 mm). (E) Subcellular localization of EhAK1. E.
histolytica whole cell lysate prepared from mid log phase cells, was fractionated biochemically in to cytoplasmic and membrane fractions as described
in ‘‘Material and Methods’’. Fifty micrograms of protein of indicated fraction was separated on SDS-PAGE, electrophoretically transferred to PVDF
membranes and then immunostained with anti-EhAK1, anti-EhCaBP1 (cytoplasmic) and anti-EhTMK9 (membrane) antibodies as shown. (F) Imaging of
EhAK1 and actin during erythrophagocytosis. E. histolytica cells were grown for 48 h and incubated with RBC for different times at 37uC.
Immunostaining was performed using anti-EhAK1 antibody followed by Alexa-488. F-actin was stained with TRITC-phalloidin. Arrowheads indicate
phagocytic cups, asterisks mark just closed cups (before cessation) and star marks phagosome. Bar represents 5 mm. (G) Quantitative analysis of
fluorescent signals obtained by immunostaining of EhAK1 from different locations in E. histolytica cells (N = 5) as described in panel (D). *p-value#
0.05, **p-value#0.005, ***p-value#0.0005.
doi:10.1371/journal.ppat.1004411.g001
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which is present in all known alpha kinases [42] (Fig. S2).
Multiple alignments of different alpha kinases helped to identify

conserved residues in the EhAK1 kinase domain, including lysine

at 85th position that plays an important role in binding nucleoside

triphosphate. Mutation of this residue to alanine abolished the

catalytic activity of EhAK1 (Fig. 1A and 1B).

The sub-cellular distribution of EhAK1 was investigated by

using a specific antibody raised against the recombinant protein

(Fig. S3 and S4A). As a control we used antibodies against a

known membrane marker EhTMKB1-9 [43]. It is clear that the

majority of EhAK1 is present in the cytosol, unlike EhTMKB1-9

and that there is very little colocalization in the membrane

(Fig. 1C-D). This was further confirmed by cell fractionation

followed by identification of proteins by immunoblotting

(Fig. 1E). Distribution of EhAK1 was similar to that of EhCaBP1,

a cytoplasmic protein [44]. It was found in the cytoplasmic

fraction but not in the membrane fraction. On the other hand the

cell surface protein EhTMKB1-9 was detected only in the

membrane fraction. Localization of GFP-tagged full length

EhAK1 or the kinase domain (KD) alone, displayed a pattern

similar to that seen for untagged EhAK1 (Fig. S4B-C). We have

also analysed cells expressing GFP-EhAK1 using antibodies

against both GFP and EhAK1 and quantified signals in 5

randomly chosen spots within cytoplasm and the results showed

colocalization of signals from both stains (Fig. S4D). The results

suggest that the GFP tag does not affect the properties of EhAK1.

In order to study the distribution of EhAK1 during erythrophago-

cytosis E. histolytica cells were incubated with human RBCs for

different times, and then processed for visualization after staining.

Actin was also stained with phalloidin in order to identify cups and

phagosomes. Fig 1F shows images of representative cells at

different stages of phagocytosis. EhAK1 was found in the

phagocytic cups (marked with an arrow), and in just closed

phagosomes, that is, phagosomes after sealing but before cessation

(marked with an asterisk). It was not found in phagosomes after

cessation (marked with a star). Quantification of EhAK1 at

different stages of phagocytosis was done by measuring signals

from 10 different cells. The results clearly showed that EhAK1 is

enriched in phagocytic cups and it stays there till the phagosomes

separate out from plasma membrane (Fig. 1G). F-actin and

EhAK1 appeared to be colocalized at the phagocytic cups and

phagosomes before cessation, as confirmed using Pearson corre-

lation coefficient (r = 0.8260.2).

In order to investigate the participation of EhAK1 in the

phagocytic process in relation to the three known proteins,(Eh-

CaBP1, EhCaBP3 and EhC2PK) we carried out immunostaining

experiments in a pair-wise manner and analyzed the images both

visually as well as quantitatively, based on intensity of stain in

different compartments (Fig. 2A). The distribution of EhAK1

was found to be different from that of EhCaBP1 and EhCaBP3.

While EhCaBP1 left phagocytic cups before closure of the cups,

EhCaBP3 remained till the phagosomes separated from the

plasma membrane (Fig. 2A). Although EhAK1 colocalized with

EhCaBP1, EhCaBP3, EhC2PK, Ehmyosin1B and actin at the

cups (Fig. 2B), its distribution was distinctly different with respect

to the other molecules in just-closed phagosomes and phagosomes

after cessation. Therefore it appears that the role of EhAK1 in

phagocytosis may be different from the other indicated molecules.

To enable visualization by live cell imaging, we used cell-lines

expressing GFP-tagged EhAK1. As mentioned earlier, the

distribution of GFP-EhAK1 was similar to endogenous EhAK1.

GFP-EhAK1 was also colocalized with actin and was absent in

phagosomes after cessation, but present in phagosomes

before cessation (Fig. 3A–B). Moreover, we have analysed cells

expressing GFP-EhAK1 or GFP using antibodies against both

GFP and EhAK1. Results showed colocalization of signals from

both stains at phagocytic cups in cells over-expressing GFP-

EhAK1. We did not observe any GFP signal at phagocytic cup in

cells over-expressing only GFP (Fig. S4E). We also observed

similar distribution for the GFP-tagged kinase domain (GFP-KD),

reinforcing our earlier finding that GFP tag does not alter basic

property of EhAK1 (Fig. 3C–D). Live cell imaging of GFP-

EhAK1 expressing cells undergoing erythrophagocytosis showed

that EhAK1 accumulated rapidly at the site of RBC attachment

and remained there till closure of the cups. EhAK1 was absent in

phagosomes (Fig. 3E and Movie S1). Quantitative analysis of

the fluorescence signal (ROI) showed significant accumulation by

about 17s, reaching maximum intensity during closure of the cup

at about 30s. Subsequently signal intensity underwent a gradual

decline. It took about 38 s from the first appearance of EhAK1 to

its eventual disappearance from the cups (Fig. 3E). In contrast

there was no significant change in EhAK1 fluorescence intensity in

the cytoplasm during this period.

Next we generated conditional (tet-inducible) EhAK1-knock-

down cells by inducible expression of EhAK1 antisense RNA [27].

Western blot analysis showed that over-expression of antisense

EhAK1 RNA in the presence of tet reduced the level of EhAK1 by

70 to 75% in multiple replicates, as determined by densitometric

scanning (Fig. 4A). EhCaBP1 levels were also determined in

these cells to ensure that any changes in phagocytic properties of

EhAK1-AS cells may not be attributable to altered leads of

EhCaBP1 which has a known role in phagocytosis [27]. There was

no significant change in the level of EhCaBP1 in these cells

suggesting that the down regulation of EhAK1 was specific

(Fig. 4A). The down regulation of EhAK1 was also visualized by

immunostaining. Tet-induced antisense cells displayed a signifi-

cant reduction (about 80%) in fluorescent signal as compared to

vector control cells under similar conditions (Fig. S5). Further we

over-expressed EhAK1 and the kinase dead mutant (K85A-

EhAK1) by cloning the genes in the sense orientation in the same

vector system and GFP-vector respectively. Over-expression

increased the level of EhAK1 protein by about 40 to 50% in

multiple replicates (Fig. 4B). Mutant protein was identified by

GFP-tag and endogenous protein, by EhAK1 antibody in western

blots. The ratio between these two proteins was estimated to be

about 1.5 to 2.5 in different experiments (Fig. 4C). Erythro-

phagocytosis was measured in these cell lines in the presence and

the absence of tet using a colorimetric assay that quantifies total

amount of phagocytosed RBC and using equal number of cells for

all cases. It was reduced by 45 and 40% after 5 min, and 88 and

75% after 40 min of incubation with RBC in cells expressing

antisense EhAK1 and K85A mutant gene respectively, compared

with cells with only vector (Fig. 4D). On the other hand

phagocytosis in wild type EhAK1 over-expressing cells increased

by 20% in presence of tet as compared to that in absence of tet

(Fig. 4D). The observed reduction in erythrophagocytosis may be

due to an effect at any of the steps in the process, namely initiation,

progression of cups or cessation of phagosomes. This was

investigated by determining the number of cups or phagosomes

formed at different time points. In wild type cells the number of

cups almost reached saturation by 3 min (average 0.6 cups/cell)

and did not increase after 8 min (average 0.5 cups/cell). On the

other hand, very few cups were visible in mutant (average 0.06

cups/cell) and antisense cells (average 0.04 cups/cell) by 5 min.

Interestingly, the number of cups increased over time in mutant

cells but not in antisense cells, and by 8 min the cells showed a

significant number of cups (average 0.16/cell respectively)

(Fig. 4E–F). Phagocytosis was also visualised by using

EhAK1 Participates in E. histolytica Phagocytosis
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fluorescent-labelled RBCs. Many phagocytosed RBCs were visible

as green particles (arrow) inside amoebic cells. F-actin was also

labelled with phalloidin (red). The two stains did not merge as the

stains were in different compartments of phagocytosed RBCs; F-

actin being outside and RBCs inside the phagosomes. We have

analysed different optical sections of the images and the results

Figure 2. Colocalization of EhAK1 with EhMyosin 1B, EhC2PK, EhCaBP1 and EhCaBP3 at the phagocytic cup during
erythrophagocytosis. (A) Imaging of EhAK1, EhCaBP1 and EhCaBP3 during erythrophagocytosis. E. histolytica cells were incubated with RBC
for 5 min at 37uC. The cells were then fixed and immunostained with anti-EhAK1 antibody followed by Alexa-488. F-actin was stained with TRITC-
phalloidin and other indicated proteins were immunostained with respective antibodies and followed by Pacific blue-410. Arrowheads indicate
phagocytic cups, asterisks mark just closed cups and star marks phagosome. Bar represents 5 mm. Quantitative analysis of fluorescent signals
obtained by immunostaining of EhAK1, EhCaBP1 and EhCaBP3 from different locations in E. histolytica cells (N = 5) was done as described in Fig. 1D.
(B) The incubation and labelling conditions were as described in Fig. 1. Ehmyosin 1B, EhC2PK, EhCaBP1 and EhCaBP3 were immunostained with
specific antibodies and visualized using Pacific blue-410 (blue). Colocalization analysis from five cells was done by using JACoP (ImageJ). The
Pearson’s coefficient (r) of EhAK1 with EhAK1, EhCaBP1, EhCaBP3, Ehmyosin 1B and EhC2PK from phagocytic cups are indicated. *p-value#0.05, **p-
value#0.005, ***p-value#0.0005.
doi:10.1371/journal.ppat.1004411.g002
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show absence of merging of the two stains. Absence of F-actin

label in many phagosomes is due to the loss of F-actin during the

process of maturation (Fig. S6A and B). Using this system we

further observed that the number of phagocytosed RBCs

decreased significantly by 70% and 65% in EhAK1-AS or mutant

over-expressing cell lines as compare to control at 8 min (Fig.
S6C). Live cell imaging of phagocytosing fluorescent-RBC by cells

over-expressing mutant EhAK1 showed attachment of RBCs, but

a defect in uptake was noticed unlike normal cells (Movie S2 and
Movie S3). These results suggest that functional EhAK1 may be

required for erythrophagocytosis. Similar results were obtained

when cell proliferation was measured. A significant reduction in

proliferation was observed in both antisense and mutant over-

expressing cell lines (Fig. S7), consistent with our previous finding

with EhCaBP1 [27].

EhAK1 is recruited to the phagocytic cups through
EhCaBP1

The role of EhCaBP1 in recruitment of EhAK1 was investi-

gated by immunoprecipitation and pull down experiments using

either specific antibodies or affinity matrix for the GST-tag

attached to the recombinant proteins. The EhAK1 antibody

precipitated EhAK1 along with EhCaBP1 from the total cell lysate

in the presence of Ca2+, but not in presence of EGTA (Fig. 5A).
This binding was specific as EhCaBP2, a protein with 79%

identity at the amino-acid level with EhCaBP1, but with different

function [45], was not detected in the immunoprecipitate

(Fig. 5A). This interaction was further confirmed in vitro using

bacterially expressed EhAK1 as a GST-tagged protein. Binding of

EhCaBP1 to glutathione-Sepharose beads was also observed with

bacterially expressed K85A-EhAK1 mutant and with the kinase

domain (KD) alone (Fig. 5B). No binding was observed with a

Ca2+-binding defective mutant of EhCaBP1 (CaBP1DEF) [39]

(Fig. 5B). Binding to EhCaBP1 was abolished in the presence of

EGTA, demonstrating that Ca2+ is essential for interaction.

Interestingly we observed a low level of binding of only the KD

with EhCaBP1DEF or EhCaBP1 in the presence of EGTA,

whereas no binding was observed when full length protein was

used. This may be either due to of the conformation of the full

length protein or a negative influence of SH3 domain during the

interaction with EhCaBP1. We further confirmed the ability of the

kinase defective mutant K85A-EhAK1 to bind EhCaBP1 by an in
vitro competition assay. WT-EhAK1 was allowed to bind

EhCaBP1 in the presence of increasing concentration of GST-

K85A mutant and the complex was pulled down using anti

EhCaBP1 antibody (see ‘‘Materials and Methods’’). Results

showed decreased binding with increasing concentration of

K85A, suggesting that the mutant protein was capable of binding

EhCaBP1 and competing with wild type EhAK1 (Fig. S8). These

experiments indicate that the kinase domain of EhAK1 binds

EhCaBP1 in the presence of Ca2+. However, functional kinase

domain is not necessary for this binding.

If EhAK1 is recruited through EhCaBP1 it is expected that

EhAK1 recruitment will be reduced when EhCaBP1 levels go

down. This was checked by down-regulating EhCaBP1 through

antisense expression as described before [27]. Protein concentra-

tion in the cytosol and phagocytic cups was determined by

immunostaining. Representative images are shown, and quantita-

tive results are based on 5 different cells (Fig. 5C). In cells

transfected with vector alone, actin was seen mainly in phagocytic

cups, while EhAK1 and EhCaBP1 were visible in both cytosol and

phagocytic cups (Fig. 5C). The ratio of signal in cups versus

cytosol was 2.5 and 2.7 for EhAK1 and EhCaBP1 respectively. In

EhCaBP1-antisense cells the overall signal was reduced and the

ratio was negative, suggesting defective recruitment of EhAK1 to

the phagocytic cups in the absence of EhCaBP1 (Fig. 5C). In

normal cells phagocytic cups are visible within a minute after the

addition of RBCs. However, in antisense cells phagocytic cups

began to appear only after 5 min and, compared with vector

control, only 10% of the cells showed cup formation, suggesting

that these cells are defective in cup formation (Fig. S9). In cells

over expressing GFP-EhCaBP1DEF [39], there was no enrich-

ment of EhAK1, although the mutant EhCaBP1 was recruited to

phagocytic cups (Fig. 5C). The effect was specific to EhCaBP1, as

in EhCaBP3 down-regulated cells there was no significant

difference in the recruitment of EhAK1 (ratio of cups to cytosol,

2.5) (Fig. 5C). These results suggest that EhAK1 is involved in

phagocytosis and is recruited to phagocytic cups through

EhCaBP1, in a Ca2+-dependent manner.

In order to see if functional kinase domain is required and

sufficient for recruitment through EhCaBP1, cells expressing GFP-

KD and GFP-K85A-EhAK1 were observed at different times

during erythrophagocytosis. GFP-KD was seen in the cups along

with EhCaBP1 and actin (Fig. 6A). Interestingly, colocalization

was not visible all around the cup; it was more prominent in the

tips of expanding psuedopods (Fig. 6A). In GFP-K85A-EhAK1

over expressing cells, phagocytic cup formation was not seen at

3 min though many RBCs were seen attached to amoebic cells. A

few cups were visible at latter time points which displayed

enrichment along with EhCaBP1 (Fig. 6B). Examination of fifty

such cells showed that the numbers of cups were reduced by 88%

at 10 min (Fig. 6C). These results indicate that KD alone can

interact with EhCaBP1 and initiate cup formation, and that kinase

activity is required for stabilization and progression from cups to

phagosomes.

EhAK1 phosphorylates G-actin at Thr 107
To identify the possible substrate(s) of EhAK1 we used a mass

spectrometric approach, based on identification of E. histolytica
cytosol proteins phosphorylated by alpha kinase in vitro (as

described in ‘‘Materials and Methods’’). Three main phosphory-

lated bands (50, 43, 35 kDa) were observed in the autoradiogram

(Fig. 7A). Among these, 50 kDa bands is the autophosphorylated

form of EhAK1 as it was also seen with the lane containing only

the kinase domain. Since the intensity of the 35 kDa band was

low, and a faint band at the same position was also visible in the

lane containing the kinase dead mutant (Fig. 7A), we did not

pursue this as it may not be a genuine substrate for EhAK1, but

phosphorylation product of an endogenous kinase. Moreover, it

Figure 3. In vivo localization of GFP-EhAK1 in phagocytosing cells. (A) and (C) Imaging of GFP-EhAK1 and GFP-KD and colocalization with
actin during erythrophagocytosis. GFP-EhAK1 and GFP-KD expressing cells were grown for 48h with 30mg/ml G418 and incubated with RBC for
different time at 37uC. Immunostaining was performed using anti-GFP antibody followed by Alexa-488. F-actin was stained with TRITC-phalloidin.
EhCaBP1 was immunostained with specific antibodies and visualized using Pacific blue-410 (blue). Arrowheads indicate phagocytic cups, asterisks
mark just closed cups and star marks phagosome. Bar represents 5 mm. (B) and (D) Quantitative analysis of fluorescent signals was done as in Fig. 1D.
(E) Time lapse imaging of GFP-EhAK1. The montage shows a time series of GFP-EhAK1 expressing cells undergoing erythrophagocytosis where
phagocytic cups are marked by arrowhead and just closed phagosomes by star. Bar represents 10 mm. Graph shows the intensity of GFP-EhAK1 (ROI)
at a phagocytic cup every 3s. *p-value#0.05, **p-value#0.005, ***p-value#0.0005.
doi:10.1371/journal.ppat.1004411.g003
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would have been difficult to identify this protein due to its low

amount. Therefore, it is likely that the 43kDa band is the main

substrate of EhAK1, though other minor substrate(s) cannot be

ruled out. The 43 kDa region of the gel was subjected to mass

spectrometry and actin was identified as the main protein

(Fig. 7B). We did not observe peptide fragments from any other

protein of 43KDa, though it is likely that the gel fraction may have

contained proteins in addition to actin. Peptides were seen from

higher molecular weight proteins, such as Enolase (47 kDa). In

another approach to identify possible targets, the amoebic proteins

binding to EkAK1 were purified by affinity chromatography and

the bound proteins were identified by mass spectrometry (Table

S1). Actin and actin binding proteins were found to be the major

EhAK1 binding partners. Surprisingly we did not observe any of

the myosins among the bound proteins, since myosins are known

to be likely substrates of alpha kinases. It is possible that myosin

may be a substrate of EhAK1 under specific conditions. Actin was

further confirmed to be a substrate in an in vitro kinase assay in

which it was shown to be phosphorylated by the wild type protein

but not the kinase dead mutant (Fig. 7C). Further we performed

kinase assay using G-actin and F-actin separately. The results

clearly showed that EhAK1 could phosphorylate only G-actin but

not F-actin (Fig. 7D). Phosphorylation of G-actin was tested in

the presence of cytochalasin-D, an inhibitor that binds to the

Figure 4. EhAK1 is involved in the initiation of phagocytosis. (A) and (B) Fifty microgram of total cell lysate from indicated E. histolytica cell-
lines was analyzed by western blotting to measure the levels of EhAK1. EhCaBP1 was used as an internal control. Cells (HM1:IMSS) were transfected
with tet-inducible vector alone, antisense EhAK1 (AS) or sense EhAK1 (sense). Tetracycline (30 mg/ml) was added to induce gene expression in the +
tet lanes. TOC is tet-o-CAT vector and AS is antisense. (C) Western blot analysis (as in panels, A and B) with cells carrying GFP-K85A construct of EhAK1
cloned in a constitutive vector. Cells were grown at the indicated concentration of G418. (D) RBC uptake assay was performed using the indicated
cells grown with or without tet or G418. The experiments were carried out three times independently in triplicates. ANOVA test was used for
statistical comparisons. (E) Quantitative determination of phagocytic cups observed in the indicated cell-lines was carried out by randomly selecting
fifty cells in each experiment, and counting the number of phagocytic cups present in all these cells. (F) Cells were incubated with RBCs for the
indicated time at 37uC. Cells were then fixed and stained for actin with TRITC-Phalloidin, or immunostained with anti-EhAK1 antibody followed by
Alexa-488. The accumulation of actin at phagocytic cups is marked by solid arrowheads. Asterisks show attached RBCs at the site of phagocytosis. *p-
value#0.05, **p-value#0.005, ***p-value#0.0005
doi:10.1371/journal.ppat.1004411.g004
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barbed end of actin filaments and prevents further polymerization

leading to an increase in the availability of G-actin. High level of

G-actin phosphorylation was observed on addition of the inhibitor

(10 mM) presumably due to enhanced availability of G-actin

[27,46] (Fig. 7E). Different concentrations of cytochalasin D

were tried and it was found that 10 mM was sufficient to obtain

maximum effect. When phosphorylated actin was ultracentri-

fuged, most of the phosphorylated molecules were found in the

pellet fraction (F-actin) suggesting that p-G-actin can polymerize

into phosphorylated F-actin (Fig. 7F). No polymerization of G-

actin was seen in the presence of K85A-EhAK1 as there was no

visible band of radioactive actin in the pellet fraction (Fig. 7F).
Actin was present as non polymerized non radioactive form in the

supernatant (coomassie blue stained band) suggesting that

phosphorylation of G-actin is linked to its’ ability to polymerize

to F-actin.

All assays described above have been carried out using rabbit

muscle actin as substrate. Therefore, we tested if E. histolytica
actin can also be used as a substrate by EhAK1. As in the case of

rabbit actin, E. histolytica actin was also phosphophorylated by

wild type EhAK1 but not by K85A-EhAK1 mutant (Fig. 7G).
Further we identified phosphorylation sites in Ehactin by mass

spectrometry after immunoprecipitation from lysate using anti

actin antibodies followed by phosphorylation by EhAK1 (Fig. 7B
and Fig. S10). Only peptides from actin were observed. Our

analysis suggested that Thr 107 is likely to be the main

Figure 5. Recruitment of EhAK1 at the phagocytic cups through EhCaBP1. (A) Whole-cell lysate of E. histolytica was passed through agarose
conjugated with either anti-EhAK1 antibody or preimmune serum. Co-IP of EhCaBP1 and EhCaBP2 was checked using respective antibodies. (B) Co-
precipitation of EhCaBP1 or its calcium-binding defective mutant EhCaBP1DEF with GST-tagged protein (GST-EhAK1, GST-KD or GST-K85A) was
carried out using Glutathione Sepharose beads. Proteins were detected using the anti-EhCaBP1 antibodies in western blots. (C) EhAK1 is recruited to
the phagocytic cups through EhCaBP1. Cells containing indicated constructs were grown for 48 h in the presence of 30mg/ml tet or G418 and
incubated with RBC for 5 min at 37uC. The cells were then fixed and immunostained with specific antibodies as indicated. F-actin was stained with
TRITC-phalloidin. Arrowheads indicate phagocytic cups. Bar represents 5 mm. A few representative cells are shown. Graph shows quantitative analysis
of fluorescent signals of immunostained images for (N = 5) cells as described in Fig. 1D. *p-value#0.05, **p-value#0.005, ***p-value#0.0005.
doi:10.1371/journal.ppat.1004411.g005
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phosphorylation site of E. histolytica actin as phosphorylated

peptide containing T107 was observed in two independent

experiments. We have also observed non phosphorylated peptide

containing T107. Although existence of additional phosphoryla-

tion sites cannot be ruled out based on protein coverage obtained

in this set of experiments, mutation of Threonine 107 to alanine by

site directed mutagenesis also confirmed that it is the major

phosphorylation site in Ehactin as no phosphorylation of mutant

GFP-Ehactin (T107A) was found in presence of EhAK1

(Fig. 7H). These results suggest that G-actin is a substrate of

EhAK1 and Thr 107 is likely to be the main phosphorylation site.

In order to understand the effect of phosphorylation on actin

function we analysed sequence conservation and structural

features around T107 in both rabbit and amoebic actin (Fig.
S11). Sequence alignment clearly showed that T107 and

surrounding sequences in both rabbit and E. histolytica actin are

conserved. The site is located outside helical domains and maps

within a beta sheet. Further, we modelled the 3-D structure of wild

type Ehactin using structure of D. discoideum actin (PDB 3Ci51.A)

as a template and found there was a structural difference with

repeat to rabbit actin (RSMD value 2.12). The major difference

between the two structures was in the unstructured loop regions,

while the structure around T107 was found to be conserved (Fig.
S12A, and inset). We also modelled T107A mutant Ehactin

using D. discoideum actin (PDB 3Ci51.A) as a template and did

not find any significant difference with wild type Ehactin on

superposition (RMSD value of 0.001) (Fig. S12B).

As EhAK1 phosphorylates G-actin and interacts with Eh-

CaBP1, so we further checked whether the presence of EhCaBP1

had any effect on the level of actin phosphorylation. For this we

did in vitro actin phosphorylation in presence and absence of

EhCaBP1 and found that EhCaBP1 binding did not alter the

kinase activity of EhAK1 (Fig. S13).

Actin phosphorylation during erythrophagocytosis
To demonstrate EhAK1-dependent actin phosphorylation in

vivo we used custom generated phospho-specific antibody

(pT107). pT107 recognized only phosphorylated immunoprecip-

itated GFP-Ehactin but not GFP-T107A actin in western blots.

Moreover, phosphatase treatment abolished the signal, suggesting

that the antibody was specific for phosphorylated T107 actin (Fig.
S14A). This also strengthens our conclusion that T107 is the site

of phosphorylation and not another site whose phosphorylation is

regulated by T107. This antibody stained actin present at the

phagocytic cups suggesting that at least some of this actin may

already be phosphorylated (Fig. S14B). Moreover, phosphory-

lated rabbit actin was also recognized by this antibody suggesting a

conservation of T107 phosphorylation site in both E. histolytica
and rabbit actin (Fig. S15).

Phospho-specific antibody was used to measure p-actin levels in

whole cells containing both G- and F-actin. Antibody against total

actin (ICN Biochemicals) was used to determine levels of total

actin. There was no significant increase in the level of p-actin in

cells over-expressing wild type EhAK1 as compared to untrans-

fected cells (HM1 lane) (Fig. 8A). In cells expressing K85A-

EhAK1 and EhAK1-AS, there was a reduction in p-actin by about

50% and 48% respectively (Fig. 8A). On treatment of cells with

general kinase inhibitors, staurosporine and genistein there was no

significant reduction in p-actin levels. Insensitivity to staurosporine

and genistein is a known property of alpha kinases [47] (Fig.
S16). However, these inhibitors could block autophosphorylation

of EhC2PK, a kinase known to be sensitive to these inhibitors [48]

(Fig. S16). These results suggest that Thr107 is the major site of

actin phosphorylation by EhAK1 in vivo. It is unlikely that actin is

phosphorylated at this site by any other kinase.

To study the role of phosphorylation in actin mobilisation and

dynamics we over-expressed the GFP-tagged wild type and T107A

mutant actin by increasing the concentration of G418 as seen by

western blot. At 30mg of G418 the mutant actin was present at 2 to

2.5 fold higher concentration than wild type endogenous protein

(Fig. S17). While the wild type GFP-Ehactin reached phagocytic

cups as rapidly as the endogenous protein, T107A actin showed a

defect. Cells expressing high level of this mutant actin displayed

reduced phagocytic cup formation at 3 min, with reduced

enrichment of T107A actin at the cups. The cells had many

attached but not phagocytosed RBCs (Fig. 8B). Phalloidin

staining at the attachment site was also much reduced in these

cells compared with cells over-expressing wild type actin,

suggesting that the over-expression of mutant actin interfered

with recruitment of endogenous actin. By 5 min F-actin levels at

some phagocytic sites increased significantly though mutant actin

molecules continued to be scarce. Reduced accumulation of

endogenous actin in cells over-expressing the mutant actin

reflected in the small number of cups formed and the low level

of overall phagocytic events in these cells (Fig. 8B). The number

of cups in control cells was 1.5 fold higher than in cells expressing

mutant actin at 5 min (Fig. 8C). Erythrophagocytosis in cells

over-expressing T107A was only 18% of control, while there was

no significant change in cells over-expressing wild type actin

(Fig. 8D). Our results suggest that phosphorylation of actin by

EhAK1 is an important component of actin dynamics in E.
histolytica in relation to erythrophagocytosis.

Modulation of actin dynamics by EhAK1
Effect of EhAK1 on the amount of F-actin in E. histolytica

cells. In order to see if overall F-actin content is dependent on

cellular EhAK1 levels the amount of F-actin in E. histolytica cells

was measured using a rhodamine-phalloidin based fluorescence

assay (see ‘‘Materials and Methods’’). Over expression of EhAK1

in amoebic cells increased F-actin content by 2.1 fold as compared

to cells containing the vector alone. It decreased on expressing

antisense EhAK1 and K85A-EhAK1 by 0.7 and 0.6 fold

respectively (Fig. 9A). F-actin content also increased in E.
histolytica cells undergoing erythrophagocytosis. Comparatively,

there was a more pronounced effect observed in EhAK1 over

expressing cells than that in cells expressing K85A-EhAK1 or

antisense RNA (Fig. 9A). This could be due to a number of

factors, such as other proteins regulating actin dynamics and our

determination of F-actin levels in whole cells rather than in

localized areas. These results indicate a correlation between F-

actin content and cellular level of EhAK1.

EhAK1 enhanced the rate of actin polymerization by

phosphorylation of G-actin. In a previous section we have

shown that phosphorylated G-actin is efficiently polymerized to

Figure 6. Functional kinase domain is essential for initiation of phagocytosis. (A) and (B) E. histolytica cells containing GFP-KD or GFP-K85A
constructs were grown for 48h and incubated for the indicated times with RBCs. GFP-tagged proteins and EhCaBP1 were immunostained with anti-
GFP and anti-EhCaBP1 antibodies respectively. Solid arrow shows phagocytic cups and enrichment of indicated proteins. Scale bar, 5 mm. (C)
Quantitative analysis was carried out by selecting randomly fifty cells from each experiment and the numbers of phagocytic cups present in all cells
were counted. *p-value#0.05, **p-value#0.005, ***p-value#0.0005.
doi:10.1371/journal.ppat.1004411.g006
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F-actin. We checked the rate of actin polymerization in the

presence of EhAK1 and found that it increased by 560.1 fold

(0.25 mMS21) compared with the rate of polymerization in the

absence of EhAK1 (0.05 mMS21) or in the presence of kinase

dead mutant (0.048 mMS21) (Fig. 9B). These results show

that phosphorylation by EhAK1 increases the rate of actin

polymerization. This is probably achieved by altering the critical

concentration of actin required for polymerization. To test this,

different concentrations of actin were taken for polymerization

(overnight at 25uC) in the presence and the absence of EhAK1.

The results showed that EhAK1 lowered the critical concen-

tration for polymerization from 0.55 mM to 0.28 mM (Fig. 9C).

Figure 7. EhAK1 phosphorylates G-actin at threonine 107. All phosphorylation reactions were carried out in vitro and products were resolved
on SDS-PAGE. Radiolabeled products were visualized in a phosphorimager. (A) Phosphorylation of Ehactin by EhAK1. Total cell lysate (200mg) was
incubated with c-32P-ATP in the presence of EhAK1 (2mg). Reaction was stopped with SDS sample buffer containing EDTA after boiling and samples
were resolved on 12% SDS-PAGE. Kinase dead mutant K85A was used as negative control. (B) Identification of phosphoylation site of Ehactin. The
43 kDa pEhactin band identified in panel (A) was cut out and subjected to mass spectrometry (LC-MS/MS). Table shows summary of the mass
spectrometry results, and the peptides that mapped to Ehactin sequence. The CID-MS3 spectrum of the Ehactin VAPEEHPVLLTpEAPMNPK
phosphopeptide showed 11th threonine position to be phosphorylated. Prominent y and b ions are shown, and [M + 3H]3+2P = 658. (C)
Phosphorylation of rabbit skeletal muscle actin by EhAK1. Rabbit actin (2mg) was incubated with either EhAK1 (2mg) or mutant K85A-EhAK1 (2mg) in
presence of kinase assay buffer. The input actin visualized by coomassie staining, is shown in the lower panel. (D) Phosphorylation of rabbit G-actin
by EhAK1. G-actin and F-actin were separated by ultracentrifugation (1, 00,000 g) as supernatant (G-actin) and pellet (F-actin). The separated fractions
(2mg) were used for kinase assay in the presence of EhAK1. (E) Phosphorylation of rabbit G-actin by EhAK1 in the presence of actin polymerization
inhibitor cytochalasin D. (F) Polymerization of phosphorylated rabbit G-actin. G-actin (2mg) was phosphorylated in the presence of EhAK1 (2mg) or
K85A (2mg) followed by ultracentrifugation at 1, 00,000 g to separate supernatant (G-actin) and pellet (F-actin). (G) Phosphorylation of Ehactin by
EhAK1. E. histolytica actin was immunoprecipitated from the total lysate with anti Ehactin antibody. Immunoprecipitated material was used for setting
up a kinase reaction with EhAK1. (H) Phosphorylation of GFP-tagged wild type and mutant Ehactin by EhAK1. Over-expressed GFP-tagged wild type
or mutant Ehactin was immunoprecipitated from total lysate with anti-GFP antibody. Immunoprecipitated material was used for setting up a kinase
reaction with EhAK1.
doi:10.1371/journal.ppat.1004411.g007
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Figure 8. Phosphorylated actin participates in phagocytosis. (A) E. histolytica cells carrying EhAK1 construct in the sense and the antisense
orientations and K85A in the sense orientation as indicated were induced with tet. Phosphorylated actin was detected by immunoprecipitation using
anti Ehactin antibody followed by western blots using anti-pEhactin antibody. (B) Indicated cell lines grown with 30 mg/ml G418 to enhance the
expression of transfected gene were incubated with RBC for 3 min at 37uC. The cells were then fixed and immunostained with anti-GFP. F-actin was
stained with TRITC-phalloidin. Arrowheads indicate phagocytic cups. Bar represents 20pixels. A few representative cells are shown. (C) Quantitative
analysis was carried out by selecting randomly sixty cells from each experiment and the numbers of phagocytic cups present in all cells were counted
(blue, GFP-actin; red, GFP-T107A). (D) RBC uptake assay was performed using indicated cells grown with G418. The experiments were carried out
three times independently in triplicates. *p-value#0.05, **p-value#0.005, ***p-value#0.0005.
doi:10.1371/journal.ppat.1004411.g008
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K85A-EhAK1 did not change the critical concentration (0.58 mM)

(Fig. 9C). Therefore, it appears that phosphorylation has an

important role in Ehactin dynamics.

Discussion

The spatial and temporal regulation of localized actin dynamics

plays a central role in cellular processes, such as phagocytosis and

psuedopod formation [49]. Actin cytoskeleton complex is assem-

bled at the site of phagocytosis by recruitment of a number of

components that help in the assembly of actin filaments which

generate the force required for engulfing the particles being

phagocytosed. The structure is then disassembled so that the

components can be used elsewhere. In highly phagocytosing cells,

such as E. histolytica the entire cycle must occur rapidly so that the

cells are able to phagocytose a large number of particles in a short

period [50]. We have been investigating the molecular mechanism

by which signalling is relayed in erythrophagocytosis from the

initiation site at the membrane, leading to formation of a dynamic

actin cytoskeleton complex. Since mechanisms of phagocytosis

vary depending upon the particle (live or apoptotic mammalian

cells, bacteria, RBC) used we have restricted our study to

phagocytosis of RBCs [13].

In this manuscript we show that an alpha kinase EhAK1 is

recruited at the initiation site and is directly involved in generating

dynamic actin filaments. The results presented here suggest that

EhAK1 is recruited to the phagocytic cups through EhCaBP1

bound to membrane associated EhC2PK [28]. This recruitment is

specific as EhAK1 does not bind EhCaBP3 [29]. Since EhCaBP1

forms a trimeric structure, it is possible that it can form a complex

with multiple binding proteins, for example EhC2PK and EhAK1

[51]. The formation of a protein-complex may help in stabilizing

phagocytic cups and their progression towards phagosome

formation. The binding of EhAK1 to EhCaBP1 takes place only

in the presence of Ca2+, which is different from the binding of

EhCaBP1 to EhC2PK where Ca2+ is not required. Thus

EhCaBP1 binds to its interacting partners in multiple ways, and

Ca2+ plays a subtle role by manipulating the interaction of some of

the components, which may determine their specific function in

phagocytosis.

Two main lines of evidence suggest that EhAK1 is involved in

phagocytosis; its presence at phagocytic cups during phagosome

formation, and reduction in the formation of phagocytic cups on

its down-regulation. Concentration of EhAK1 appears to directly

influence the rate of phagocytosis. It is likely that a threshold

concentration of EhAK1 is needed to initiate the process. Since

some amount of protein is present even on down-regulation by

antisense RNA, phagocytosis continues to take place, but at a slow

pace as the time taken by the molecule to reach the critical level

would be longer. Conversely, over-expression of EhAK1 resulted

in an increase in phagocytosis. Thus the rate of formation and

progression of phagocytic cups may be directly proportional to the

concentration of some key molecules, such as EhAK1 and its’

recruitment at the phagocytic cups. More data are required to

validate this further. Interestingly EhAK1 has an SH3 domain in

addition to an alpha kinase domain. Our results suggest that the

kinase but not SH3 domain is involved in EhCaBP1 binding. In fact

it appears that SH3 domain may have a negative effect, since we

observed low level of Ca2+-independent binding of EhCaBP1 to

KD, but no binding was observed with full length EhAK1. This was

a surprising observation as SH3 domains are known to participate in

protein-protein interaction and in recruitment at signalling sites

[52]. We also cannot rule out at this stage the role of SH3 domain in

recruitment of accessory proteins in phagosome formation.

The results presented here clearly show that actin is one of the

substrates of EhAK1, although alpha kinases have so far been

reported to mainly phosphorylate myosin [38]. It is unlikely that

myosins are one of the substrates as these were not only seen in

original screen, but also were not observed when EhAK1 affinity

chromatography was used for identifying its’ binding partners.

Though we find actin as a major substrate, other substrate(s) of

EhAK1 cannot be ruled. We have identified only one phosphor-

ylation site in Ehactin. It is possible that additional phosphoryla-

tion sites exist but were not seen due to partial (41%) coverage in

mass-spectrometry. However, this appears unlikely as no signifi-

cant phosphorylation was observed in the T107A actin mutant in

presence of EhAK1. Moreover, results obtained with pT107

antibody clearly show importance of T107 phosphorylation in

phagocytosis. Interestingly T107 maps outside alpha helical

regions of actin. The site is not only conserved in both rabbit

and amoebic actins, but also the 3D structures are nearly identical,

with RMSD 2.12. Therefore, it is not surprising that EhAK1 also

phosphorylates rabbit actin and the phosphorylated rabbit actin is

recognized by actin pT107. Some alpha kinases (for example,

eEF2 kinase) are also known to phosphorylate non alpha helical

regions. Moreover, TRPM6 and TRPM7 also phosphorylate

MHCB and MHCC, but unlike myosin heavy chain kinases of

Dictyostelium, non helical regions are phosphorylated [53–54].

Therefore, it is not surprising that EhAK1 phosphorylate actin at a

non helical region. Our data suggest that phosphorylation of actin

by EhAK1 helps phagocytic cups to become phagosomes through

enhanced actin dynamics. The evidence for the latter comes from

over-expression studies using T107A actin mutant cell-line where

a dominant negative phenotype was observed with respect to

phagocytosis. This is possible if phosphorylated actin has a major

role and is also preferred in formation of F-actin network,

particularly during phagocytosis. This was seen in experiments

done both in vitro and in vivo. The content of F-actin, initiation

and progression of phagocytosis were reduced in cells over-

expressing T107A actin, and the in vitro rate of actin polymer-

ization was also impaired in the mutant. Quantitative discrepancy

between results from in vitro and in vivo experiments may be due

to a difference in behaviour of rabbit and amoebic actins.

During progression of phagocytic cups towards phagosome,

EhAK1 is mainly present at the advancing end of the cup, and not

so much at the base of the cup. This is similar to Ptdins(4,5)P2,

GTP-CDC-42 and GTP-ARF6 [55]. All of these molecules are

associated with phagocytosis and their presence at the tip suggests

their participation in localized actin dynamics required to push

psuedopods to engulf RBCs. Though phosphorylation of actin has

been observed in many different systems, it was not observed in E.
histolytica prior to this report. A cAMP-dependent protein kinase

Figure 9. Modulation of actin dynamics by EhAK1. (A) Effect of EhAK1 on F-actin content of E. histolytica cells. E. histolytica cells (26105)
containing indicated constructs were grown in presence or absence of 30mg/ml tet or G418 for 48 h. Amount of F-actin was measured using TRITC-
phalloidin as described in ‘‘Materials and Methods’’. For phagocytosis, amoebic cells were incubated with RBCs for 10 min at 37uC. (B) Effect of EhAK1
on actin polymerization. Rabbit muscle actin (10:1 unlabelled and pyrene-labelled actin) was polymerized with and without indicated proteins as
described in ‘‘Materials and Methods’’. The increase in fluorescence of pyrene was observed at 407 nm. (C) Critical concentration was measured as
described in ‘‘Materials and Methods’’. The steady state pyrene fluorescence was recorded after incubating actin as above at the indicated
concentration for 16 h at 25uC in the presence of EhAK1 and K85A. *p-value#0.05, **p-value#0.005, ***p-value#0.0005.
doi:10.1371/journal.ppat.1004411.g009
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was shown to phosphorylate chicken smooth muscle G-actin [56].

In Amoeba proteus also only G-actin was found to be phosphor-

ylated, but the phosphorylated actin was not able to polymerize

[57]. An atypical kinase, actin fragmin kinase of Physarum
polycephalum [58] was shown to phosphorylate the T202 residue

of G-actin, and on phosphorylation filament formation was

blocked. In D. discoideum Tyr-53 residue of actin gets phosphor-

ylated [59] and affects formation of actin filaments. The properties

of phosphorylated actin of E. histolytica are different from other

examples except that EhAK1 also phosphorylates only G-actin

and not F-actin. In E. histolytica, the phosphorylated form of G-

actin displays enhanced capability to form filaments. We are still

not clear about the mechanism of enhanced polymerization of G-

actin on phosphorylation.

Our earlier studies on EhCaBP1 revealed that cell proliferation

gets affected on either expression blocking or over expression of

Ca2+ binding defective mutant of this protein [27,39]. Though it

appears that this may be due to its’ effect on phagocytosis and

macropinocytosis as inhibition in these processes may reduce

nutrient uptake, participation of other pathways cannot be ruled

out. Since EhAK1 is a downstream signal transduction molecule of

EhCaBP1, it is not surprising to observe a similar effect on cell

proliferation on either down regulation of EhAK1 expression or

over expression of a dominant negative mutant. We are also

currently attempting to identify non phagocytic pathways where

EhCaBP1-EhAK1 system may participate.

In conclusion, we have described a novel mechanism of

regulation of phagocytosis in E. histolytica through manipulation

of actin dynamics. The proposed model based on this and our

previous work is shown in Fig. 10. The pathway initiated by

accumulation of EhC2PK after binding of RBC and recruitment

of EhCaBP1. This pathway may also be involved in other

processes, such as trogocytosis that is likely to be one of the

mechanisms of tissue invasion [60]. The atypical kinase EhAK1 is

recruited to the phagocytic cups through interaction with

EhCaBP1. Phosphorylation of localized G-actin leads to increased

rate of polymerization of actin at the tip of the expanding cup,

eventually engulfing the particle. Overall the coupling of actin

dynamics to signalling events initiated on attachment of RBC is

the key to successful completion of phagocytosis. There are a

number of unknown aspects of the pathway simplistically depicted

in the figure. We still do not know the substrate(s) of EhC2PK;

actin is definitely not a substrate (unpublished data). However, the

kinase activity is required for propagation of the signal leading to

phagosome formation. We believe that EhCaBP3 recruitment and

function is independent of EhCaBP1. Its’ major role is to further

recruit myosin1B and help in cessation process. We also do not

know the functions of SH3 domain and other alpha kinases

encoded by the genome. We do plan to systemically investigate

some of these questions in future. Our studies carried out so far

including results presented in this report suggest that E. histolytica
displays a novel signal initiation pathway that involves participa-

tion of calcium binding proteins and uses EhAK1 as one of the

main molecules that couple the two process, signalling and actin

dynamics. E. histolytica being an early branching eukaryote,

deciphering molecular mechanisms of phagocytosis in this

organism will help us to understand the evolution of related

pathways and processes in different systems.

Materials and Methods

Ethics statement
Both mice and rabbits used for generation of antibodies were

approved by the Institutional Animal Ethics Committee (IAEC),

Jawaharlal Nehru University (IAEC Code No. : 18/2010). All

animal experimentations were performed according to the

National Regulatory Guidelines issued by CPSEA (Committee

for the Purpose of Supervision of Experiments on Animals),

Ministry of Environment and Forest, Govt. of India.

Growth, maintenance, antibiotics and transfection of E.
histolytica

E. histolytica strain HM-1 trophozoites were maintained and

grown in TYI-S-33 medium supplemented with 125 ml of 250 U/

ml penicillin G (potassium salt from Sigma) and 0.25 mg/ml

streptomycin per 100 ml of medium as described before [61]. E.
histolytica trophozoites were transfected following methods

described before [27]. The transformants containing tetracycline

inducible system and constitutive GFP expression system were

grown in the presence of 10 mg/ml of hygromycin B and 10 mg/ml

of G418, respectively. For individual experiments, transfected cells

were first grown for 24 h (60–70% confluent) and then induced by

adding 30 mg/ml tetracycline in tetracycline inducible system and

30 mg/ml of G418 for constitutive GFP expression system

respectively for 48 h.

Cloning of various constructs used in this study
EhAK1 gene was cloned in the shuttle vector pEhHYG-tetR-O-

CAT in place of CAT gene using KpnI and BamHI in either the

sense or the antisense orientation. The full-length gene EhAK1,

Kinase domain (KD), K85A and Ehactin wild type and mutant

T107A were cloned in pEh-Neo-GFP vector at Xho 1 and

BamH1 sites such that GFP tags are at the amino terminal end of

indicated proteins. Kinase dead mutant (K85A) and Ehactin

T107A were made by site-directed mutagenesis. Oligonucleotides

used for making the above stated constructs are described below.

EhAK1F-59CGCGAATTCGTCACGGAGATATGATGGT-

AGAT, EhAK1R-59CGCGTC GACCATTGTAACA GTTTG-

TACTTTTG, KD F-59CGCCATGGGCTCACGAGATATG

ATGGTAGAT, KD R-59 CGCCTCGAGTGTAGTACCTTT-

TGTAGTGTCTG, Antisense F-59CGCGGATCCTCACGAG-

ATATGATGGTAGATCC, Antisense R59CCCGGTACC TTA-

CATTGTAACAGTTTGTACTTTTGC, Sense F-59CCCGG-

TACCTCACGAGATAT GATGGTAGATCC, Sense R-59

CGGGGATCCTTACATTGTAACAGTTTGTACTTTT GC,

EhAK1 GFP F-59 CCCCTCGAGTCACGAGATATGATGG-

TAGATCC, KD GFP F-59CCCCTCGAGTCACGAGATAT-

GATGGTAGATCC, Actin GFP F -59GGCCCTCG AGGGA-

GACGAAGAAGTTCAAGC, Actin GFP R 59 CCGGGG-

ATCCTTAGAAGCAT TTTCTGTGGAC.

Primers for site directed mutagenesis
K85AF 59CGTGGAGACAGAATTGTTCTTGCACGATT-

TTTCCAACAAAGACCGC K85AR 59GCGGTCTTTGTT-

GGAAAAATCGTGCAAGAACAATTCTGTCTCCACG R69A

F 59 CCATTTGCAAAAGGAGGAGAAGCTCTTGCTTTTC-

GTGC R69A R 59 GCACGAAAAGCAAGAGCTTCTCC-

TCCTTTTGCAAATGG D223A F 59CAATAATAAATTT-

TATCTTACTGCTCCAGCATTACATCA D223A R 59CT-

ATATGATGTAATGCTGGAGCAGTAAGATAAAATTTAT

Actin T107A F 59GAACATCCAGTTCTTTTAGCTGAAG-

CCCCAATGAATCC Actin T107A R 59GGATTCATTG-

GGGCTTCAGCTAAAAGAACTGGATGTTC

Immunoprecipitation
Cell lysate for immunoprecipitation contained 10 mM Tris-

HCl, pH 7.5, 150 mM NaCl, 2 mM p-hydroxymercuribenzoic
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Figure 10. Model depicting RBCs phagocytosis in E. histolytica. Model summarises predicted course of events for initiation of phagocytosis in
E. histolytica as derived from our experiments. There are other molecules involved in the process, but these are not shown here, for brevity. 1.
Attachment of RBC to the membrane increases concentration of EhC2PK at the attachment site (Ca2+ dependent). 2. Recruitment of EhCaBP1 at the
site through interaction with EhC2PK (Ca2+ independent). Recruitment of some actin molecules. 3. Recruitment of EhCaBP3 at the site (independent
of EhCaBP1). Recruitment of some actin molecules. 4. Recruitment of EhAK1 at the site through binding with EhCaBP1 (Ca2+ dependent). 5.
Recruitment of other actin modulating molecules. Activation of actin dynamics pathway including phosphorylation by EhAK1 leading to enhanced
actin dynamics. 6. Actin polymerization and progression of cups towards phagosome. 7. Recruitment of Ehmyosin 1B through EhCaBP3 and EhCaBP1,
EhC2PK, EhAK1 leave.
doi:10.1371/journal.ppat.1004411.g010
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acid (PHMB), 1 mM phenylmethylsulfonyl fluoride (PMSF),

protease inhibitor cocktail, 2 mM b-ME and 1% Triton 6100

and was prepared as described before [27]. It was used after

centrifugation at 15,000 rpm for removing cellular debris. Anti-

EhAK1 antibody was conjugated to CNBr-activated Sepharose

(1 g, Pharmacia) that was activated and processed as per the

manufacturer’s protocol. The conjugated CNBr-Sepharose beads

were incubated with E. histolytica lysate (500mg) for 4 h at 4uC.

The beads were then washed with wash buffer (10 mM Tris-Cl

(pH 7.5), 150 mM NaCl, 1 mM imidazole, 1 mM magnesium

acetate, 2 mM b-ME, 0.1% Triton 6100 and protease inhibitor

cocktail) thrice. Ca2+ is present unless otherwise indicated. Beads

were washed with 0.06 mM Tris-Cl (pH 6.8) and 100 mM NaCl

and finally with 0.06 mM Tris-Cl (pH 6.8). The pellet was

suspended in 26SDS polyacrylamide gel electrophoresis (PAGE)

buffer and boiled for 5 min followed by centrifugation for 5 min.

The proteins were then analysed by western blotting. For

immunoprecipitation of Ehactin, 5 ml of anti-Ehactin antibodies

(monoclonal, ICN Biochemicals) at 1:1000 dilution was incubated

with pre-cleared amoebic lysate and then allowed to bind with

protein A-Sepharose beads (Amersham) for 2 h at 4uC as

described before ([27]. Thereafter we followed the same protocol

as described above.

Western blotting
For immunodetection, samples were separated on 10–12%

SDS–PAGE as required. The gel was then transferred on to a

polyvinylidine fluoride membrane (PVDF) using a semi dry

transfer system and was further processed following standard

methods. The antigens were detected with polyclonal antibodies

raised in rabbit or mice as indicated (Anti-EhCaBP1 and

EhCaBP3; 1:5000, Anti-pEhC2PK; 1:100) anti-pEhActin (1:100

custom made from Abmart, china) followed by secondary anti-

rabbit and anti-mice immunoglobulins conjugated to HRPO

(1:10,000, Sigma). ECL reagents were used for visualization

(Millipore). GFP and GST antibodies used were obtained from

Molecular probes and Santa Cruz, respectively. The concentration

of proteins in a sample was estimated by bicinchoninic acid assay

using BSA as a standard.

GST-bead pull down assay
Purified GST-EhAK1 was allowed to bind Glutathione beads

(Amersham) for 1 h at 4uC in 1% PBS/BSA/0.1% tween-20.

EhCaBP1 or EhCaBP1DEF was then added to the reaction and

the reaction was incubated for 2 h at 4uC. The beads were then

washed thrice with 1% PBS/BSA/0.1% tween-20, and twice with

PBS. Bound proteins, eluted by adding 26 SDS–PAGE buffer,

were analysed by western blotting. The same procedure was

followed for other proteins with GST-tags.

Immunofluorescence staining
Immunostaining was carried out as described before [27].

Briefly E. histolytica cells were harvested via centrifugation and

washed with phosphosaline buffer and re-suspended in TYI-33

medium. The cells were then transferred onto acetone-cleaned

coverslips placed in a petri dish and was allowed to adhere for

10 min at 35.5uC. The culture medium was removed and the cells

were fixed with 3.7% pre-warmed paraformaldehyde for 30 min.

After fixation, the cells were permeabilized with 0.1% Triton X-

100/PBS for 1 min. The fixed cells were then washed with PBS

and quenched for 30 min in PBS containing 50 mM NH4Cl. The

coverslips were blocked with 1% BSA/PBS for 30 min, followed

by incubation with primary antibody at 37uC for 1 h. The

coverslips were washed thrice with PBS followed by 1% BSA/PBS

before incubation with secondary antibody for 30 min at 37uC.

Antibody dilutions used were: anti-EhAK1 at 1:100, anti-

EhCaBP1 at 1:200, anti-EhCaBP3 at 1:200, 1:300 dilution of

anti-rabbit Alexa 488, 556 and anti-mice Alexa556 (Molecular

Probes). TRITC-Phalloidin was used at 1:250. The preparations

were further washed with PBS and mounted on a glass slide using

DABCO (1,4-diazbicyclo (2,2,2) octane (Sigma) 2.5% in 80%

glycerol). The edges of the coverslips were sealed with nail-paint to

avoid drying. Confocal images were visualized using an Olympus

FLUOVIEW FV1000 laser scanning microscope with objective

lenses PLAPON 606 O, NA- 1.42. The raw images were

processed using FV10-ASW 1.7 viewer or Image J software.

Colocalization analysis was done by using JACoP (Image J).

Fluorescent labelling of RBCs
RBCs were stained with CFSE (Carboxyfluorescein succinimi-

dyl ester) following a modified protocol (Cell Trace CFSE

proliferation kit, Invitrogen). Cells (26107 cells/ml) were incubat-

ed in CFSE staining buffer (PBS containing 0.1% BSA and

2.5 mM CFSE) for 10 min at 37uC. The reaction was blocked with

complete medium in presence of 2% serum for 10 min on ice,

after which, RBC were washed three times with an excess of

incomplete media of E. histolytica.

Time-lapse imaging
The cells expressing GFP-EhAK1 were plated onto a 35 mm

glass bottom dish with 20 mm bottom well (In Vitro Scientific) and

then allowed to settle down and attached to the plate. The dish

was kept on a platform with a temperature controller to maintain

temperature at 37uC. High-resolution fluorescent time-lapse

imaging (Nikon A1R, Optics- Plan Apo VC606 oil DIC N2,

Camera- Nikon A1, NA-1.4, RI-1.515) of a moving and

phagocytosing amoeba was performed. The images were captured

at 3s interval. The raw images were processed using NIS element

3.20 or Image J software available freely on the web (http://rsb.

info.nih.gov/ij/).

Phagocytosis of red blood cells by E. histolytica
trophozoites

E. histolytica trophozoites were harvested in phosphosaline

buffer and equal numbers of amoebic cells (105 cells) were

incubated with ten million RBCs, previously washed with PBS and

incomplete TYI-33 for varying times at 37uC. Amoebae and

erythrocytes were collected by centrifugation and non-engulfed

RBCs were lysed with cold distilled water and centrifuged at

1000 g for 2 min. This step was repeated twice, followed by

resuspending the pellet in 1 ml formic acid to burst amoebae

containing engulfed RBCs. The optical density of the samples was

determined by spectrophotometry at 400 nm using formic acid as

the blank.

Actin polymerization assay and determination of critical
concentration

Polymerization assay was done as per the protocol supplied by

the manufacturer (www.cytoskeleton.com). Briefly, polymerization

of actin was monitored by an increase in fluorescence of pyrene-

labeled actin (cytoskeleton, USA) with excitation at 366 nm and

emission at 407 nm. The assays were carried out in a Cary Eclipse

Varian fluorescence spectrophotometer. A 100 ml sample contain-

ing 3 mM G-actin (10% pyrene labelled G-actin), was saturated

with EhAK1 or K85A-EhAK1 at 2.5 mM and the reactions were

carried out in polymerization buffer (5 mM Tris-HCl, pH 7.5,

1 mM dithiothreitol, 0.1 mM CaCl2, 0.01% NaN3, 100 m M KCl
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and 2 mM MgCl2, 1 mM ATP). For critical concentration curve,

10 mM of G-Actin (10% pyrene labelled) was polymerized in

polymerization buffer and was then diluted in the same buffer to

various concentrations (1, 2, 3, 4 and 5 mM). Before recording the

steady state fluorescence, diluted actin was incubated for 16 h at

25uC in the presence or the absence of EhAK1 (2.5mM) and K85A

(2.5mM).

Quantitation of polymerized actin
F-actin was quantified by using TRITC–phalloidin staining as

described [62]. Indicated amoebic cells were grown for 48 h in the

presence of 30mg/ml tetracycline and 30mg/ml G418 respectively.

The cells were harvested and washed with cold phosphosaline

buffer. The cells were resuspended in PBS # 7 and 26105 cells

were aliquoted in triplicate and incubated for 10 min at 37uC. The

cells were then treated for 1 min with 1% (v/v) triton-X100, and

cells were collected and washed three times with PBS # 7.

Staining was carried out by adding TRITC-phalloidin (3mM) for

1 h at room temperature on a shaker to keep the cells suspended.

Thereafter, the cells were centrifuged at 12,000 g for 2 min, to

remove unbound TRITC-phalloidin. Pellet was disrupted by

shaking and TRITC-phalloidin was extracted for 15 min by

adding 1 ml of methanol. After centrifugation at 12,000 g for 30 s,

the supernatant fraction was collected and the fluorescence was

measured in a Cary Eclipse Varian fluorescence spectrophotom-

eter at excitation and emission wavelengths of 540 nm and

565 nm respectively. For erythrophagocytosis, amoebic cells

(16105) were challenged with RBCs (amoeba: RBC; 1:100) for

10 min before extraction.

Sub-cellular fractionation of amoebic extract
Total cell lysate preparation. One million trophozoites

growing in log phase were harvested at 280 g for 7 min at 4uC.

The pellet was washed with cold PBS # 8 and then re-suspended

in 10 mM Tris-Cl pH 7.5, 150 mM NaCl, 1% Triton-X100,

2 mM PHMB and 16 protease inhibitor cocktail (Sigma). Lysate

was prepared by first freeze thawing three times followed by

sonication for 10 s to shear the genomic DNA and centrifugation

at 13000 g for 5 min to pellet down the debris. The supernatant

was collected and labelled as total cell lysate.

Sub-cellular fractionation. To separate membrane proteins

from cytoplasmic fraction, the cell extract was prepared by re-

suspending the cell pellet (,107, washed with PBS # 8) in 1 ml of

100 mM NaHPO4 buffer containing protease inhibitors (10 mM

NEM, 2 mM PMSF, 0.01 mM leupeptin and 2 mM PHMB). The

suspension was then subjected to three cycles of freeze-thawing

followed by centrifugation at 100,0006g for 30 min at 4uC. The

resulting supernatant was labelled as the cytoplasmic fraction and

the pellet which contained the membrane fraction was processed

further. The pellet was washed twice with above buffer and re-

suspended in the same buffer containing 1% Triton-X100 and re

centrifuged at 100,0006g for 20 min at 4uC to separate triton

soluble fraction from triton insoluble fraction. The protein content

of each fraction was estimated by BCA assay.

Phospho-proteomics. In phospho-proteomics first we did

kinase assay and then LC-MS/MS as described below.

Kinase assay. Actin or substrate phosphorylation was

measured as the amount of radioactivity incorporated (c-32P-

ATP) into the band which co-migrated with purified recombinant

protein. We have already seen that the phosphorylated and non

phosphorylated forms of actin co-migrate in SDS-PAGE. The

standard reaction mixture (40 ml final volume) contained 0.5 mM

MgCl2, 30 mM HEPES (pH 7.5), protease inhibitor, phosphatase

inhibitor cocktail and pure kinase (2 mg). Reactions were initiated

by the addition of (c-32P-ATP) (6000 Ci/mmol) to a final

concentration of 2.5 mM and incubated at 30uC for 1 h and was

stopped by adding SDS sample buffer containing 50 mM EDTA

followed by boiling. The samples were than resolved on SDS-

PAGE. Radioactive bands were detected by a Phosphor Imager

(Fujifilm). For phosphoproteomics we performed kinase assay by

adding non-radioactive ATP (sigma) and reaction was resolved on

SDS-PAGE. The substrate used was either whole cell lysate or

immunoprecipitated actin as indicated.

Mass spectrometry. SDS-PAGE protein band was excised

and then subjected to in-gel trypsin digestion. Briefly, the excised gel

was sliced to small pieces, transferred to a sterile siliconized tube and

destained by repeated washing with 50 mM NH4HCO3 and 50%

acetonitrile. Reduction was carried out by adding 75 ml of 10 mM

stock of dithiothreitol and incubation at 55uC for 30 min. The

solution was removed and 50 ml of 50 mM iodoacetamide (IAA)

was added and the mixture was incubated further at room

temperature, in the dark, for 40 min. Enzymatic digestion was

carried out by incubating the reaction mixture with trypsin (40 ng/

ml of 25 mM NH4HCO3) overnight at 37uC. Digested peptides

were reconstituted in 15ml of the 0.1% formic acid and 3ml of the

same was used for standard 70 min gradient RPLC-MS/MS

analysis, followed by acquisition of the data on LTQ-Orbitrap-MS

using DDNLMS3 (data dependent neutral loss MS3) scanning.

Generated data was matched against NCBI, using Sequest search

engine on Proteome discoverer 1.3 and checked for phosphoryla-

tion. Minimum of two High confident peptides was used as a

prerequisite to identify the proteins. Standard phosphopeptide

(25fmoles of mix) was spiked into 250 fmoles of Standard BSA digest

and analyzed to check the performance of the instrument.

Affinity purification and identification of EhAK1 binding
proteins

Conjugation of EhAK1 to CNBr-activated Sepharose 4B was

done as described before [29]. For purification of EhAK1 binding

protein, E. histolytica total cell lysate was made as described above.

The total cell lysate was loaded into EhAK1- Sepharose column and

flow through was passed 3-4 times at a rate of 0.1 ml/min. unbound

proteins were washed with 30 ml bed volume of lysis buffer. The

bound proteins were eluted with 0.1M glycine, pH 2.5 and

immediately 1/10th volume of 1M Tris-cl (pH 8) was added to

maintain the pH. The entire chromatographic step was carried at

4uC. The eluted desalted samples were analysed by LC-MS as

described above.

General methods
All SDS-PAGE gel electrophoresis was done using 10%

acrylamide unless otherwise indicated. Proteins were estimated

by BCA assay and we have standard protocols were used for all

molecular techniques.

Statistical analysis
Statistical comparisons were made using a one-way ANOVA

test. Experimental values were reported as the means 6 s.e.

Differences in mean values were considered significant at *p-

value#0.05, **p-value#0.005, ***p-value#0.0005. All calcula-

tions of statistical significance were made using the GraphPad

InStat software package (GraphPad).

Supporting Information

Figure S1 Domain organization and phylogenetic anal-
ysis of different alpha kinases encoded by E. histolytica.
(A) Phylogenetic analysis of the alpha kinase family of E.
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histolytica. A PSI-Blast search was done to identify all

sequenced alpha kinases from genome database using EhAK1

alpha kinase domain. For some of the predicted sequences that

did not display alpha kinase domain using Scan prosite,

reciprocal PSI-Blast searches were performed to ensure that

they were indeed homologs of alpha kinases. Selected

sequences were then aligned using ClustalW2. A phylogenetic

tree was generated using PHYML. Bootstrap values of the

major branches are indicated. (B) (A) Schematic presentation

of domain organization of different alpha kinases EhAK1

(XP_656642), EhAK2 (XP_651695), EhAK3 (XP_652177),

EhAK4 (XP_654603), and EhAK5 (XP_654482) encoded by

E. histolytica genome.

(TIF)

Figure S2 Multiple sequence alignment of the kinase
domain of EhAK1 with respective domains of alpha
kinases from D. discoideum. D. discoideum alpha-kinases

(MHCK A-P42527, MHCKB-P90648, MHCKC-Q8MY12,

AK1-Q54DK4, VWkA-Q6B9X6) and EhAK1 alpha-kinase

domain (C4M9G9) were aligned using ClustalW2 and clustered

into eight sub domains. D. discoideum (D.d), E. histolytica (E.h)

and sequences representing P-loop, G-rich region and Zinc finger

motif are indicated. Invariant K85 that is predicted to be involved

in nucleoside binding site is also shown.

(TIF)

Figure S3 Purification of recombinant wild type EhAK1
and K85A-EhAK1. SDS page analysis of purified HIS-tagged

wild type EhAK1 and mutant K85A-EhAK1 is shown.

(TIF)

Figure S4 In vivo expression of EhAK1. (A) Western blot

analysis was used for checking the specificity of raised Anti-EhAK1

antibody in Entamoeba lysate (Anti-EhAK1 1;1000). Pre-bleed

was taken as control. (B) Schematic representation of the

constitutive expression system used for expression of GFP-

conjugated proteins in amoebic cells. Western blot analysis for

detection of endogenous EhAK1, overexpressed GFP, GFP-

EhAK1 and GFP-KD. Total cell lysate (50 mg) was separated in

SDS-PAGE and were transferred on to a PVDF membrane for

immunodetection. Anti-GFP antibody was used at 1:3000 dilution.

The bound antibodies were identified by an appropriate

peroxidase-labelled secondary antibody raised against rabbit

immunoglobulins and visualized with ECL reagents. (C) and (D)

Immunolocalization of EhAK1 in indicated E. histolytica cells.

Transfectants containing GFP-EhAK1, GFP-KD and only GFP

vector or normal amoebic cells were grown in presence or absence

of 30mg/ml G418. Immunofluorescence was performed using anti-

EhAK1 and anti-GFP antibodies followed by Alexa-555 (red) and

Alexa-488 (green) or Pacific blue-410 respectively. Nucleus was

stained using Hoechst (Blue). (Scale bar, 5 mm; DIC, differential

interference contrast). Quantitative analysis of fluorescent signals

was done as in Fig. 1d. (E) Imaging of EhAK1 during

erythrophagocytosis in cells containing GFP or GFP-EhAK1

constructs. Cells were grown for 48 h and incubated with RBC for

5 min at 37uC. Immunostaining was performed using anti-GFP or

anti-EhAK1 antibodies followed by Pacific blue-410 and Alexa-

488 respectively. F-actin was stained with TRITC-phalloidin.

Arrowheads indicate phagocytic cups. Quantitative analysis of

fluorescent signals was done as in Fig. 1d. Bar represents 5 mm.

(TIF)

Figure S5 Over-expression of antisense RNA of EhAK1.
Imaging of EhAK1 in E. histolytica cells. Normal amoeba and

EhAK1-AS were grown for 48 h in presence or absence of 20 mg/

ml tet. Immunostaining was performed using anti-EhAK1

antibody followed by Alexa-488. F-actin was stained with

TRITC-phalloidin. Quantitative analysis of fluorescent signals

obtained by immunostaining of EhAK1 from different locations in

E. histolytica cells and EhAK1 transfectants. For analysis, five

random regions were selected and average intensity was computed

for each region. This was repeated for five such cells (N = 5, bars

represent standard error). Bar represents 10 mm.

(TIF)

Figure S6 Phagocytic uptake of fluorescent labelled
RBCs. (A) Amoebic cells with and without indicated constructs

were incubated with fluorescent labelled RBCs for indicated time

at 37uC. These cells were then fixed and stained with TRITC-

Phalloidin. Arrows show attached RBCs at the site of phagocytosis

and star marks the phagocytized RBCs. (B) Z-section of the

amoebic cells incubated with fluorescent RBC’s (Green) and

stained with TRITC-phalloidin (Red). (C) Quantitative analysis

was carried out by selecting randomly fifty cells from each

experiment and the numbers of phagocytized RBCs present in all

cells were counted.

(TIF)

Figure S7 Proliferation of E. histolytica cells in pres-
ence of different constructs. All cells were grown in presence

of 20 mg/ml hygromycin/G418 and tetracycline was added to the

medium at 20 mg/ml at 0 h. Cells were grown in 5 ml culture

tubes in triplicate for all the experiments and counting was carried

out using a haemocytometer, after chilling the tube for 5 min.

(TIF)

Figure S8 In vitro competition assay. In vitro competition

assay of K85A-EhAK1 mutant and wild type EhAK1. Recombi-

nant wild type EhAK1 (2mg) was incubated with EhCaBP1 (2 mg)

in presence of increasing amount of GST- K85A-EhAK1.

EhCaBP1 was then immunoprecipitated with anti-EhCaBP1

antibody and the blot was developed EhAK1.

(TIF)

Figure S9 Effect of down regulation of EhCaBP1 during
phagocytosis. E. histolytica cells expressing anti sense EhCaBP1

RNA were incubated with RBC for indicated time interval (3, 5

and 10 min) at 37uC. The cells were then fixed and immuno-

stained with TRITC-phalloidin. Graph shows quantitative

analysis of number of phagocytic cups formed in these cell lines.

(TIF)

Figure S10 Complete b/y series of phospho-peptide of
Ehactin. Table shown complete ions series of phospho-peptide of

Ehactin.

(TIF)

Figure S11 Secondary structure alignment of E. histo-
lytica actin with other actins. Sequence alignment of actin

from E. histolytica (B1N2P0), O. Cuniculus (PDB-1IJJ), D.
discoideum (PDB-1NLV) and H. Sapiens (PDB-3BYH) with

superimposed secondary structure. The T107 site, which is

conserved and is present in beta sheet region is boxed. Alignment

figure produced with ESPript.

(TIF)

Figure S12 3D modelling of wild type Ehactin and
mutant T107A Ehactin. (A) 3-D structure of Ehactin was

modelled using actin of D. dicoideum (PDB 3Ci5.1.A) as template

(which had sequence identity of 90.8%, GMQE 0.99 and

QMEAN4-0.59 with Ehactin) using online SWISS-MODEL

software. The superimposed structure of Ehactin and rabbit

skeletal muscle actin (PDB 1iJJ) was generated using online
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FATCAT software which was further analyzed on PYMOL.

RMSD value of superimposed Ehactin and Rabbit skeletal muscle

actin was 2.12. (B) 3-D structure of Ehactin and mutant T107A

Ehactin was modelled and superimposed same as described in A)

which had RMSD value of 0.001.

(TIF)

Figure S13 Effect of EhCaBP1 on kinase activity of
EhAK1. Effect of EhCaBP1 on EhAK1 activity. Rabbit actin

(2mg) was incubated with EhAK1 (2mg) and mutant K85A-EhAK1

(2mg) in kinase buffer as described in ‘‘Materials and Methods’’.

(TIF)

Figure S14 Specificity of phospho-specific Ehactin anti-
body and in vivo distribution of p-Ehactin during
phagocytosis. A. Western blot analysis of immunoprecipitate

phosphorylated GFP-Ehactin, dephosphorylated GFP-Ehactin

and GFP-T107A mutant using anti-pEhactin antibody at dilution

1:100. B. E. histolytica cells were incubated with RBC for 3 min at

37uC. The cells were then fixed and immunostained with anti-

pEhactin. F-actin was stained with TRITC-phalloidin. Arrow

heads indicate phagocytic cups. Bar represents 5mm.

(TIF)

Figure S15 Western blot analysis of phospho-rabbit
actin. Purified non-phosphorylated and in vitro phosphorylated

rabbit skeletal muscle actin by EhAK1 were separated on a SDS-

PAGE and transferred onto a PVDF membrane. The phosphor-

ylated rabbit actin was visualized by immunostaining using anti-p-

T107 anti body at dilution 1: 100.

(TIF)

Figure S16 Effect of kinase inhibitors on p-Ehactin
levels. Cells were treated with kinase inhibitors genistien

(200mM) and staurosporine (2mM) for 30 min. Cell lysate were

prepared and were subjected to immunoprecipitation with anti-

Ehactin or anti-EhC2PK antibodies (as control) followed by

western blots.

(TIF)

Figure S17 In vivo over-expression of GFP-tagged wild
type and T107A actin. Western blot analysis of cell lines

expressing either wild type GFP-Ehactin or mutant GFP-T107A

actin with anti-Ehactin or anti-GFP antibody as indicated.

(TIF)

Movie S1 Live cell imaging of amoebic cells expressing
GFP-EhAK1. The movie represents temporal changes in amoeba

expressing GFP-EhAK1 during erythrophagocytosis. The enrich-

ment of EhAK1 takes place within 9 s at the site of RBC

attachment to the cell surface of amoeba. Bar represents 10 mm.

(AVI)

Movie S2 Live cell imaging of normal amoebic cells
phagocytosing labelled RBCs.

(AVI)

Movie S3 Live cell imaging of K85A-EhAK1 over-
expressing cells phagocytosing labelled RBCs.

(AVI)

Table S1 List of some peptide identified by LC/MS as a
EhAK1 binding proteins.

(DOCX)
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