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Abstract. This study examines differences in the surface

black carbon (BC) aerosol loading between the Bay of Ben-

gal (BoB) and the Arabian Sea (AS) and identifies dominant

sources of BC in South Asia and surrounding regions during

March–May 2006 (Integrated Campaign for Aerosols, Gases

and Radiation Budget, ICARB) period. A total of 13 BC trac-

ers are introduced in the Weather Research and Forecasting

Model coupled with Chemistry to address these objectives.

The model reproduced the temporal and spatial variability of

BC distribution observed over the AS and the BoB during the

ICARB ship cruise and captured spatial variability at the in-

land sites. In general, the model underestimates the observed

BC mass concentrations. However, the model–observation

discrepancy in this study is smaller compared to previous

studies. Model results show that ICARB measurements were

fairly well representative of the AS and the BoB during the

pre-monsoon season. Elevated BC mass concentrations in the

BoB are due to 5 times stronger influence of anthropogenic

emissions on the BoB compared to the AS. Biomass burning

in Burma also affects the BoB much more strongly than the

AS. Results show that anthropogenic and biomass burning

emissions, respectively, accounted for 60 and 37 % of the av-

erage± standard deviation (representing spatial and tempo-

ral variability) BC mass concentration (1341± 2353 ng m−3)

in South Asia. BC emissions from residential (61 %) and in-

dustrial (23 %) sectors are the major anthropogenic sources,

except in the Himalayas where vehicular emissions domi-

nate. We find that regional-scale transport of anthropogenic

emissions contributes up to 25 % of BC mass concentrations

in western and eastern India, suggesting that surface BC mass

concentrations cannot be linked directly to the local emis-

sions in different regions of South Asia.

1 Introduction

Black carbon (BC), a byproduct of incomplete combus-

tion, is a key atmospheric aerosol species because it con-

tributes largely to the climate forcing (e.g., Ramanathan and

Carmichael, 2008; Wang et al., 2014; Hodnebrog et al., 2014)

and, along with other fine particulates, adversely affects hu-

man health (e.g., Dockery and Stone, 2007). BC is emit-

ted from various sources including industries, motor vehi-

cles, power plants, residential solid biofuel burning and open

biomass burning of forests, savannas and crop residues. The

total global emissions of BC aerosol estimated using bottom-

up approaches are 7500 Gg yr−1 in the year 2000 with an un-

certainty range of 2000 to 29 000 Gg yr−1 (Bond et al., 2013).
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BC has very low chemical reactivity in the atmosphere and

is removed primarily by the wet and dry depositions at the

surface. However, the wet deposition represents 70–85 % of

the global total loss (Pöschl, 2005). The average atmospheric

lifetime of BC is estimated to be about 1 week (Bond et al.,

2013), enabling BC aerosols to undergo regional and inter-

continental transport.

Different emission sources of BC show strong regional

variations (Lawrence and Lelieveld, 2010; Lu et al., 2011;

Bond et al., 2013); South Asia, with its large population den-

sity involved in a wide range of human activities, is consid-

ered to be one of the hotspots of BC emissions (Bond et al.,

2007). In addition, different emission inventories show an in-

creasing trend in BC emissions over South Asia (Granier et

al., 2011). Large emissions of BC in South Asia lead to BC-

induced radiative perturbation which is significantly higher

than the globally averaged estimates (Babu et al., 2004; Ra-

manathan and Carmichael, 2008). Model estimates show that

this forcing has the potential to affect the Asian summer

monsoon (Ramanathan et al., 2005; Lau et al., 2006) and Hi-

malayan glaciers (e.g., Menon et al., 2010; Yasunari et al.,

2010).

Many efforts have been made to measure BC mass con-

centration, document its diurnal, seasonal and spectral (ab-

sorption) characteristics and estimate local-scale BC-induced

radiative perturbation in a wide range of atmospheric condi-

tions (urban, rural, marine and high-altitude mountains) in

South Asia (e.g., Satheesh and Ramanathan, 2000; Babu et

al., 2004; Beegum et al., 2009; Gustafsson et al., 2009; Nair

et al., 2008, 2013; Marrapu et al., 2014). The regional- and

global-scale radiative impacts of BC and other short-lived

pollutants emitted from different sectors have also been es-

timated in some global modeling studies (e.g., Reddy et al.,

2005; Unger et al., 2009, 2010; Verma et al., 2011). How-

ever, the relative contributions of different emission sources

to atmospheric BC mass concentrations are still unknown for

South Asia, except for the Delhi region where the majority

of the atmospheric BC is attributed to emissions from trans-

portation (∼ 59 %) and domestic (∼ 32 %) sectors (Marrapu

et al., 2014).

Chemical transport models serve as our primary tool for

establishing the relation between the amount of an emitted

species and its atmospheric concentration. However, a de-

tailed evaluation of such models is required before conduct-

ing such an analysis. In this study, we first evaluate the per-

formance of the Weather Research and Forecasting Model

(Skamarock et al., 2008) coupled with Chemistry (WRF-

Chem) (Grell et al., 2005; Fast et al., 2006) using high-

resolution BC measurements made as a part of the Inte-

grated Campaign for Aerosols, Gases and Radiation Budget

(ICARB) (Moorthy et al., 2008). The evaluation exercise also

provides confidence in using the model for future studies.

The evaluated WRF-Chem configuration is then used to an-

swer the following two questions: (a) why is aerosol loading

higher over the Bay of Bengal (BoB) compared to the Ara-

bian Sea (AS)? (b) What were the most important sources of

surface BC aerosols in South Asia during the ICARB? It is

important to answer the first question because the stronger

aerosol radiative forcing over the Bay of Bengal has been

suggested to affect the monsoonal circulation and rainfall

over South Asia (Bollasina et al., 2013). The answer to the

second question has implications for improving air quality

in South Asia, but we need to extend this analysis to mul-

tiple years to account for long-terms change in the aerosol

emissions and meteorology. This study focuses only on the

ICARB period. Source contribution analysis for 1 complete

year is discussed in a separate paper (Kumar et al., 2015).

To answer the above questions, we introduce source-, sector-

and region-specific BC tracers in WRF-Chem.

We begin with a description of ICARB observations,

WRF-Chem configuration and implementation of BC tracers

in the WRF-Chem. In the Results section, we first evaluate

the model performance and then quantify the contribution of

different emission sources and sectors to total BC loading

and demonstrate the importance of regional transport in dis-

tribution of BC in the atmosphere of South Asia.

2 Experimental design

We use version 3.5.1 of the WRF-Chem model to simu-

late the geographical distribution of BC in South Asia and

surrounding regions. Recently, we set up WRF-Chem over

South Asia and demonstrated that WRF-Chem is able to

capture observed variations in meteorology (Kumar et al.,

2012a), gas-phase chemistry (Kumar et al., 2012b, 2013) and

dust aerosols (Kumar et al., 2014a, b) over South Asia. How-

ever, the model’s ability to simulate BC in South Asia and

surrounding regions has not been tested so far. In this study,

we attempt to fill this gap by comparing WRF-Chem simu-

lated BC with extensive measurements of BC made over the

Bay of Bengal and the Arabian Sea during 18 March–11 May

2006 during ICARB (see Fig. 1 for ship track) (Moorthy et

al., 2008) and average BC values reported at 12 inland sta-

tions in the model domain. ICARB was an integrated multi-

instrument, multi-platform field campaign and provided ex-

tensive co-located measurements of several aerosol param-

eters and trace gases over the Bay of Bengal, the northern

Indian Ocean and the Arabian Sea. ICARB observations re-

vealed large spatiotemporal heterogeneities in several aerosol

parameters including the BC mass concentrations and trace

gases over the oceanic regions around India (Moorthy et al.,

2008; Nair et al., 2008; Srivastava et al., 2012).

During the ocean segment of ICARB, a special labora-

tory was configured at the top deck of the ship called “Sagar

Kanya” and ambient air was drawn from a height of about

10 m above the water level into various instruments deployed

for measurements of trace gases and aerosols. BC mass con-

centrations were measured using an Aethalometer (AE 21 by

Magee Scientific) operated at a time base of 5 min and flow

Atmos. Chem. Phys., 15, 5415–5428, 2015 www.atmos-chem-phys.net/15/5415/2015/
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Figure 1. Spatial distribution of anthropogenic BC emissions over

the model domain. Different regions from which BC emissions are

tagged are shown with the Bay of Bengal and the Arabian Sea. Yel-

low line represents the ICARB ship track, with the number standing

for day of Month: Mr (March), Ap (April) and My (May). NI, WI,

EI and SI represent north, west, east and south India, respectively.

rate of 5 L min−1. The ship sailed in the BoB and the north-

ern Indian Ocean from 9 March to 13 April 2006 and in the

AS from 18 April to 11 May. The meteorological conditions

prevailing during the ICARB were composed mainly of calm

synoptic conditions with weak winds, clear skies and absence

of precipitation (except for 9 April). The ship did not face

any major weather system or cyclonic depression during the

whole campaign. Analysis of synoptic-scale wind patterns

showed the presence of weak westerly winds in the north-

ern BoB associated with a low-level anticyclonic circulation

centered at 88◦ E, 15◦ N, and weak easterly winds prevailed

south of 12◦ N in the BoB. During the AS segment of the

campaign, the synoptic winds were strong westerlies in the

northern AS which turned sharply to northerlies close to the

peninsular India due to the presence of a strong anticyclone

at 60◦ E, 16◦ N. Further details of the ship-cruise track, mea-

surement set up, uncertainties, quality control and analysis

of BC measurements and meteorological conditions during

ICARB are discussed in Nair et al. (2008).

In addition, we use average BC values reported for March

to May at 12 stations in the model domain (Table 1). These

stations are located in a wide range of chemical environ-

ments with Delhi, Kanpur, Kharagpur and Dibrugarh repre-

senting urban/semi-urban sites, Lhasa representing a high-

altitude urban site, Trivandrum representing a coastal semi-

urban site, Nainital, Nagarkot, Langtang and Nepal Climate

Observatory – Pyramid (NCO-P) representing high-altitude

cleaner sites and Minicoy and Port-Blair representing island

sites, respectively.

The WRF-Chem domain covers South Asia and surround-

ing oceanic regions with a horizontal grid spacing of 36 km

(Fig. 1) and 35 levels from surface to 10 hPa. Aerosol pro-

cesses are represented by the Model for Simulating Aerosol

Interactions and Chemistry (MOSAIC, Zaveri et al., 2008)

using four size bins. MOSAIC treats black carbon as inter-

nally mixed with other major aerosol species including sul-

fate, nitrate, organic carbon, liquid water, methanesulfonate,

chloride, carbonate, ammonium, sodium, calcium and other

inorganics (including dust) within each size bin. The aerosol

particles are considered hydrophilic and can activate to form

cloud droplets. Aerosol particles are subjected to both dry

and wet deposition (in- and below-cloud scavenging); the dry

deposition module follows Binkowski and Shankar (1995)

and wet deposition module follows Easter et al. (2004). Wet

deposition represents the major loss (∼ 84 %) process for BC

in our model domain. The gas-phase chemistry is represented

by Model for Ozone and Related Tracers (MOZART) chem-

ical mechanism (Emmons et al., 2010; Knote et al., 2014).

Initial and lateral boundary conditions for meteorological

and chemical fields are obtained from 6-hourly NCEP Fi-

nal Analysis Fields and MOZART-4 results (Emmons et al.,

2010), respectively. Analysis nudging is applied to horizontal

winds, moisture and temperature above the planetary bound-

ary layer with a nudging coefficient of 3× 10−4s−1.

Anthropogenic emissions of BC and other trace species

in India and regions east of India are taken from the South-

east Asia Composition, Clouds and Climate Coupling by

Regional Study (SEAC4RS) emissions inventory (Lu and

Streets, 2012), while those in the regions west of India

and the shipping emissions are taken from MACCity emis-

sion inventory (Granier et al., 2011). The spatial distribu-

tion of anthropogenic BC emissions is shown in Fig. 1

and shows highest values over the Indo–Gangetic Plain.

The total annual anthropogenic BC emissions in this com-

bined (SEAC4RS+MACCity) emission inventory for South

Asia (60–100◦ E, 5–37◦ N) are estimated as ∼ 1195 Gg yr−1.

These emission estimates are comparable to other regional

inventories such as System for Air quality Forecasting And

Research India (SAFAR-India: ∼ 1110 Gg yr−1) and Re-

gional Emission Inventory for Asia (REAS:∼ 1170 Gg yr−1)

but are significantly higher compared to Intercontinental

chemical Transport Experiment Phase B inventory (INTEX-

B: ∼ 550 Gg yr−1). Note that SAFAR-India does not pro-

vide emissions outside India. Biomass burning emissions of

trace gases and aerosols are obtained from the Fire Inven-

tory from NCAR (Wiedinmyer et al., 2011) and are dis-

tributed in the model vertically following the online plume-

rise module (Freitas et al., 2007). For the nearly 2-month

ICARB period (18 March–11 May 2006), total South Asian

biomass burning emissions (327 Gg) of BC are higher than

the total anthropogenic emissions (203 Gg) but ∼ 80 % of

the biomass burning activity occurs in Burma (93–100◦ E,

15–30◦ N). Note that biomass burning represents emissions

only from open fires, while emissions from residential solid

biofuel burning are included in the anthropogenic emissions.

The parameterization used for other atmospheric processes

www.atmos-chem-phys.net/15/5415/2015/ Atmos. Chem. Phys., 15, 5415–5428, 2015
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Table 1. WRF-Chem simulated BC mass concentration (mean± standard deviation) averaged over the period of 18 March to 11 May 2006,

and observed range of average values during March–May at nine inland stations located in the model domain. The observed BC values are

taken from the papers listed in the reference column.

Site name Lat, long, alt Mean observed WRF-Chem References

range (Mar–May) (18 Mar–11 May 2006)

Delhi 28.6◦ N, 77.2◦ E, 260 m 8–12 µg m−3 6.7± 4.0 µg m−3 Beegum et al. (2009)

Kanpur 26.4◦ N, 80.3◦ E, 142 m 2–5 µg m−3 4.7± 2.7 µg m−3 Ram et al. (2010)

Kharagpur 22.5◦ N, 87.5◦ E, 28 m 2–5 µg m−3 3.7± 2.8 µg m−3 Beegum et al. (2009)

Dibrugarh 27.3◦ N, 94.6◦ E, 111 m 5–10 µg m−3 3.7± 3.1 µg m−3 Pathak et al. (2010)

Trivandrum 8.5◦ N, 76.9◦ E, 3 m 1.8–3 µg m−3 0.9± 0.6 µg m−3 Beegum et al. (2009)

Minicoy 8.3◦ N, 73.0◦ E, 1 m 0.065–0.22 µg m−3 0.24± 0.15 µg m−3 Beegum et al. (2009)

Port-Blair 11.6◦ N, 92.7◦ E, 60 m 1.3–1.8 µg m−3 0.7± 0.8 µg m−3 Beegum et al. (2009)

Nainital 29.4◦ N, 79.5◦ E, 1958 m 0.8–1.5 µg m−3 1.2± 0.8 µg m−3 Beegum et al. (2009)

Nagarkot 27.7◦ N,85.5◦ E, 2150 m 1.5 µg m−3 1.3± 1.1 µg m−3 Carrico et al. (2003)

Lhasa 29.7◦ N, 91.1◦ E, 3663 m 2–3 µg m−3 0.42± 0.25 µg m−3 Zhang et al. (2008)

Langtang 28.1◦ N, 85.6◦ E, 3920 m 0.5 µg m−3 0.8± 0.5 µg m−3 Carrico et al. (2003)

NCO-P 28.0◦ N, 86.8◦ E, 5079 m 0.2–0.4 µg m−3 0.46± 0.39 µg m−3 Bonasoni et al. (2010)

Table 2. Parameterization used for selected atmospheric processes in WRF-Chem.

Process Parameterization

Cloud microphysics Morrison double moment (Morrison et al., 2009)

Radiation RRTMG short- and long wave (Iacono et al., 2008)

Surface layer MM5 similarity scheme (Beljaars, 1994)

Land surface model Noah land surface (Tewari et al., 2004)

Planetary boundary layer Yonsei university scheme (Hong et al., 2006)

Cumulus parameterization Grell-3-D (Grell and Devenyi, 2002)

Gas-phase chemistry MOZART (Emmons et al., 2010; Knote et al., 2014)

Photolysis Fast Troposphere Ultraviolet Visible (Tie et al., 2005)

Dry deposition Wesely (Wesely, 1989)

Wet deposition Neu and Prather (Neu and Prather, 2012)

Biogenic emissions MEGAN (Guenther et al., 2006)

Dust emissions GOCART (Ginoux et al., 2001)

along with schemes used for the biogenic and dust emissions

are listed in Table 2.

This study implements 13 BC tracers in the WRF-Chem

model to track BC emitted from different source types, sec-

tors and regions. The tracer approach has been used previ-

ously in WRF-Chem to study the budget of CO in the USA

(Pfister et al., 2011; Boynard et al., 2012) and South Asia

(Kumar et al., 2013), but BC tracers are implemented for the

first time in the model. BC tracers are artificial species added

to the simulation and experience the same transport, physical,

chemical and loss processes as a standard BC particle. How-

ever, the tracers do not affect the standard model results by

modifying the radiation, atmospheric processes and aerosol

properties.

We account for all sources of BC in the model by track-

ing BC emitted from anthropogenic (BC-ANT) and biomass

burning (BC-BB) sources within the domain and BC inflow

from the lateral domain boundaries (BC-BDY). The BC-

BDY tracer includes the contribution from all BC emission

sources located outside the selected domain and therefore its

distribution will provide information about background BC

levels for South Asia. In addition, we track BC emitted from

residential (BC-RES), transport (BC-TRA), industrial (BC-

IND) and power-plant (BC-POW) sectors to estimate the

contribution of different sectors to anthropogenic BC load-

ings. BC emissions from industrial, power and transportation

sectors are mostly due to combustion of fossil fuels, while

those from residential sectors are mostly due to biofuel com-

bustion.

Five regional tracers track BC emitted from north, west,

east and south India and from Burma (Fig. 1). Anthro-

pogenic emissions of BC from outside these five regions

are also tracked separately and are classified as other re-

gions. The initial and boundary conditions for all BC trac-

ers are set to 0 except boundary conditions for BC-BDY,

which are set equal to BC from MOZART-4. The model sim-

Atmos. Chem. Phys., 15, 5415–5428, 2015 www.atmos-chem-phys.net/15/5415/2015/
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Figure 2. Time series of percentage difference between total simu-

lated BC and sum of all the BC tracers (BCtrac =BC-ANT+BC-

BB+BC-BDY).

ulations started on 15 February 2006 at 00:00 UTC with a

time step of 180 s, and model results are output every hour.

The tracers are assumed to be well spun up when the sum

of BC tracers (BCtrac =BC-ANT+BC-BB+BC-BDY) ap-

proaches the total simulated BC. The time series of the

relative difference between domain-wide averaged BC and

BCtrac (Fig. 2) at the 1st, 10th and 20th model level shows

that the difference rapidly approaches 0 % in the first 15 days

of model run and remains close to 0 for the rest of the model

simulation. Thus, all tracers are spun up by 18 March 2006.

3 Model evaluation

We first examine the ability of WRF-Chem in reproduc-

ing the variability and features of the BC distribution ob-

served over the BoB and the AS during the ICARB campaign

(Nair et al., 2008). The WRF-Chem predicted BC mass con-

centrations (surface layer) are bi-linearly interpolated to the

ICARB ship track and compared to hourly ICARB BC mea-

surements (Fig. 3a). Both the model and observations show

significantly higher BC levels in the BoB as compared to

the AS. The average observed and modeled BC mass con-

centrations along the ship track are estimated as 755± 734

and 561± 667 ng m−3, respectively. The underestimation of

BC by the chemical transport models has been a common

problem in this region as has been shown in several previ-

ous studies (e.g., Nair et al., 2012; Moorthy et al., 2013).

However, the ratio of measured to modeled value (1.3) in

our study is closer to the lower end of the range (1.4–9) of

the corresponding ratios reported for marine sites in the Bay

of Bengal and the Arabian Sea (Moorthy et al., 2013). The

differences between WRF-Chem and observations could be

related to the uncertainties in BC emission estimates, model

transport and parameterization of aerosol processes. To eval-

Figure 3. (a) WRF-Chem predicted and measured BC along the

ICARB ship track during the ICARB period. (b) Percentage contri-

butions of BC-ANT, BC-BB and BC-BDY to modeled BC.

Figure 4. WRF-Chem predicted and observed latitudinal gradients

in BC mass concentrations along the ICARB ship track in the Bay

of Bengal and Arabian Sea regions. Horizontal bars represent 1σ

(standard deviation) variation in BC mass concentration averaged

over a 1◦ latitude bin.

uate the model’s ability to capture the spatial variability of

BC observed along the ICARB ship track, we compare co-

located observed and WRF-Chem predicted latitudinal dis-

tribution of BC mass concentrations (Fig. 4). Both the model

and observed values are averaged over 1◦ latitude bins for

this comparison. The model successfully captures the latitu-

dinal gradients of opposite sense in the BoB and AS with

both the model and observations showing an increasing ten-

dency in BC with latitude in the BoB but a decreasing ten-

dency in the AS. The modeled values generally match within

1 standard deviation in the Bay of Bengal and in the southern

part of the Arabian Sea but are much lower north of 10◦ N in

the Arabian Sea.

The ICARB observations provide only a snapshot of the

BC distribution because the ship was moving continuously in

space and time (Fig. 1). Here, we analyze the spatial distribu-

tion of BC mass concentrations averaged over the ICARB pe-

riod (Fig. 5a) to assess the representativeness of the ICARB

ship-borne observations. As for the ship observations, the av-

erage modeled spatial distribution also shows more elevated

BC levels in the BoB than the AS and latitudinal gradient

www.atmos-chem-phys.net/15/5415/2015/ Atmos. Chem. Phys., 15, 5415–5428, 2015
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Figure 5. Spatial distributions of (a) total BC and (e) total anthropogenic BC mass concentration averaged over the ICARB period. Percentage

contributions of BC-ANT (b), BC-BB (c) and BC-BDY to total BC and BC-RES (f), BC-IND (g) and BC-TRA (h) to total anthropogenic

BC.

of opposite sense in the BoB and the AS. This consistency

of features deduced from ICARB observations with aver-

age model results indicates that ICARB shipcruise was fairly

well representative of the BoB and the AS during the pre-

monsoon season.

In addition, we assess the model performance over the land

by comparing WRF-Chem predicted BC values with average

observed values reported for March to May at 12 stations

in the model domain (Table 1). Average observed and mod-

eled values at these sites range from 0.065 to 12 and 0.32 to

6.7 µg m−3, respectively. Note that the differences between

the model and observations in this study are much smaller

than those found in previous studies. Moorthy et al. (2013)

reported that the ratio of measured to modeled (GOCART

and CHIMERE) at Delhi, Kharagpur, Trivandrum, Minicoy,

Port-Blair and Nainital ranged between 0.7 and 6 while the

corresponding ratios in our study vary from 0.7 to 2.6. Sim-

ilarly, Nair et al. (2012) reported a ratio of 2 : 5 for differ-

ent sites in India using the RegCM4 model. The largest dif-

ference between model and observations in our study was

found at Lhasa (3.5), which could be related to the limited

ability of the model to resolve the subgrid-scale variations in

the topography and location of emission sources (roadways,

power plants, industries, residential burning, etc.) at the res-

olution of 36 km2. Seungkyu et al. (2015, personal commu-

nication) showed that differences between the modeled and

observed BC mass concentration in Kathmandu valley (an

environment similar to Lhasa) can be reduced by a factor of

about 4 if the emission sources are appropriately distributed

according to their location as compared to the emissions av-

eraged over grids of 5 km2. The differences between our and

previous studies could be related to use of both a different

emission inventory and a different chemical transport model.

The results presented above demonstrate the model’s abil-

ity to simulate the BC distribution in this region with, how-

ever, differences in the modeled and observed BC mass con-

centrations. The ability of the model to capture differences in

the BC loadings over the BoB and the AS with better agree-

ment between the model and observations compared to pre-

vious studies provides confidence in using the model to un-

derstand why BC loading over the BoB is higher compared

to the AS and identifying the most important sources of BC

in South Asia.

4 Results and discussion

4.1 Differences in BC loading over the BoB and the AS

We first identify the sources affecting the ICARB ship track

by analyzing the time series of BC source tracers along the

ship track (Fig. 3b) to gain insight into the differences in BC

loading over the BoB and the AS. Model results suggest that

anthropogenic emissions within the model domain were the

main source of BC observed over both the BoB and the AS

during ICARB. Biomass burning emission sources did not

contribute more than 10 % except during 5–8 April 2006,

when the contribution of biomass burning exceeded 50 %.

The contribution of BC transported from the domain bound-

aries to the total BC mass concentration was less than 10 % in

the BoB but was up to 40 % in the AS. The BC mass concen-

tration due to anthropogenic, biomass burning and bound-

ary sources along the ship track in the BoB are estimated

to be 761± 668, 113± 129 and 33± 5 ng m−3, respectively,

while the corresponding values in the AS are estimated to

be 149± 389, 7± 6 and 22± 12 ng m−3, respectively. These

numbers clearly show that higher BC loading in the BoB is

Atmos. Chem. Phys., 15, 5415–5428, 2015 www.atmos-chem-phys.net/15/5415/2015/
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Table 3. Near-surface mass concentration (ng m−3) of total anthropogenic BC (BC-ANT) and different anthropogenic regional BC tracers

during the ICARB period along the ship track in the AS and BoB and over seven geographical regions. Percentage contribution of each tracer

to BC-ANT is also given in parenthesis. All numbers are rounded off to the nearest whole number value. Numbers in bold font represent

the contribution of local sources to the anthropogenic BC mass concentration of that region. BR and OT represent Burma and other regions,

respectively.

Region BC-ANT∗ BC-NI∗ BC-WI∗ BC-EI∗ BC-SI∗ BC-BR∗ BC-OT∗

Along the ICARB ship track

AS 149± 389 7± 6 20± 18 4± 3 107± 377 – 10± 9

(4 %) (14 %) (3 %) (72 %) (7 %)

BoB 761± 668 159± 148 98± 61 305± 410 182± 23 1± 1 18± 21

(21 %) (13 %) (40 %) (24 %) (–) (3 %)

Geographical regions

North India 1245± 612 1145 ± 592 22± 18 54± 48 5± 6 – 20± 5

(92 %) (2 %) (4 %) (–) (2 %)

West India 1679± 863 256± 191 1261 ± 706 89± 81 50± 37 – 22± 7

(15 %) (75 %) (5 %) (3 %) – (1 %)

East India 2411± 898 262± 120 99± 40 1853 ± 868 148± 75 31± 18 19± 6

(11 %) (4 %) (77 %) (6 %) (1 %) (1 %)

South India 1657± 678 75± 57 195± 98 80± 100 1282 ± 580 – 25± 7

(5 %) (12 %) (5 %) (77 %) (1 %)

Burma 945± 224 142± 66 76± 31 328± 123 97± 40 276 ± 121 26± 20

(15 %) (8 %) (35 %) (10 %) (29 %) (3 %)

AS 102± 62 12± 13 33± 40 3± 3 36± 22 – 18± 9

(11 %) (32 %) (2 %) (35 %) (18 %)

BoB 563± 508 112± 102 74± 36 234± 369 114± 58 9± 16 19± 6

(20 %) (13 %) (42 %) (20 %) (2 %) (3 %)

∗ Mean± sigma (standard deviation).

a result of a much stronger influence of anthropogenic emis-

sion sources on the BoB compared to the AS. BC emitted

from the biomass burning sources also make a significant

contribution in the BoB but not in the AS.

To understand the differences in the influence of anthro-

pogenic emissions over the BoB and the AS, we identify

the regions where anthropogenic emission sources affecting

the ICARB ship track are located. Therefore, we analyze the

contribution of anthropogenic sources located in different re-

gions of the domain to the total anthropogenic BC loading

along the ICARB ship track in the BoB and the AS (Table 3).

The ICARB ship track in the BoB was affected by all parts of

India but the highest contribution is from east India (40 %),

which is the region of strongest BC emission in the domain

(Fig. 1). In contrast, the ICARB ship track in the AS was

affected mostly by south India (∼ 72 %), where average an-

thropogenic BC emission rate is about 38 % lower than east

India.

To examine whether the results derived along the ICARB

ship track are true for the whole BoB and the AS, we analyze

the contribution of different regional emission sources to an-

thropogenic BC loading in the whole BoB and the AS (last

two rows of Table 3). For the whole BoB, we find source

contributions very similar to what we found along the ship

track, i.e., a significant contribution (> 10 %) from all parts

of India with highest contribution from east India. In con-

trast, the source contributions over the whole AS deviate

from what we found along the ICARB ship track. South India

remains the most important source region for the whole AS

but the contribution reduces to 35 % compared to 72 % es-

timated along the ship track. The contribution of west India

(32 %) is similar to south India for the whole AS and those of

north India and other source regions are more than 10 %. The

above analysis shows that higher BC loading observed over

the BoB compared to the AS during ICARB is a large-scale

feature and results from a much stronger (about 5 times) in-

fluence of anthropogenic and biomass burning sources over

the BoB.

4.2 Source contribution analysis for South Asia

To identify the most important sources of BC in South Asia,

we analyze the spatial distributions of percentage contribu-

tions of anthropogenic, biomass burning and boundary in-

flow to total BC loadings in the model domain (Fig. 5b–d).

Model results show large spatial variability in average to-

tal BC mass concentrations in South Asia with the highest

values (> 5000 ng m−3) in the Indo–Gangetic Plain region,
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Table 4. Average± standard deviation in mass concentration (ng m−3) of total BC, BC from anthropogenic sources (BC-ANT), from biomass

burning (BC-BB), from model domain boundaries (BC-BDY) and from residential (BC-RES), industrial (BC-IND), transportation (BC-TRA)

and power generation (BC-POW) emissions averaged over South Asia (60–100◦ E, 5–37◦ N) during the ICARB period (18 March–11 May).

The standard deviation was calculated from all the BC values in South Asia and thus represents the spatial variability of modeled average

BC values in South Asia.

Total BC BC-ANT BC-BB BC-BDY BC-RES BC-IND BC-TRA BC-POW

1341± 2353 810± 1179 497± 1919 34± 6 497± 687 187± 629 120± 134 5± 11

Mumbai–Pune region and Burma (93–100◦ E, 15–30◦ N).

The BC-ANT distribution shows that anthropogenic emis-

sions account for 60–95 % of the total surface BC over India

and in the cleaner regions of the Himalayas, the BoB and the

AS. Elevated BC levels over Burma are mainly (> 70 %) due

to biomass burning as evident from distribution of BC-BB.

Biomass burning also contributes 20–50 % of BC loadings in

Nepal, east India and eastern BoB. The distribution of BC-

BDY shows that emission sources located outside the domain

contribute less than 5 % to the BC loading over most parts of

India, BoB and Burma but make a moderate contribution (up

to 25 %) in the AS and the Himalayas.

The spatial distributions of BC source tracers also help

us to understand why latitudinal gradients of opposite sense

were observed in the BoB and AS and why BC showed an

eastward increase north of 13◦ N in the BoB (Nair et al.,

2008). The latitudinal gradients of the opposite sense were

observed in the BoB and the AS because influence of anthro-

pogenic emissions in the BoB decreased southwards while

it increased southwards in the AS (Fig. 5b). BC showed

an eastward increase north of 13◦ N because eastern BoB

was affected by both the anthropogenic and biomass burn-

ing sources while western BoB was affected mostly by the

anthropogenic sources (Fig. 5b and c).

The average mass concentrations of BC, BC-ANT, BC-

BB and BC-BDY in South Asia (60–100◦ E, 5–37◦ N) during

the ICARB period are given in Table 4. The contributions of

BC-ANT, BC-BB and BC-BDY to the average total BC mass

concentrations are estimated at about 60, 37 and 3 %, respec-

tively. The high standard deviation of the average values re-

flects high spatial heterogeneity of BC mass concentrations.

While it is seen that anthropogenic emissions stand out as

the major source of BC in the study domain in general, we

identify the contribution of different sectors (such as residen-

tial, industrial, transportation and power generation) to total

anthropogenic BC loading (Fig. 5e–h). Among the different

sectors, residential emissions account for more than 60 % of

the anthropogenic BC loading in Nepal, Bangladesh, Burma,

Sri Lanka, Pakistan and central India, while emissions from

industrial sector dominate in some localized regions of north,

west and east India. The dominance of residential biofuel

burning sources is consistent with conclusions from previous

studies in this region (e.g., Gustafsson et al., 2009). In the Hi-

malayan regions, the transport sector (vehicular emissions)

contributes 60–90 % to the anthropogenic BC. BC emissions

from shipping are included in the transport sector and thus

we see higher contribution of transport sector in the AS com-

pared to the BoB. The contribution of BC emissions from

power plants is estimated to be less than 1 % (not shown).

The average mass concentrations of BC-RES, BC-IND, BC-

TRA and BC-POW in South Asia (60–100◦ E, 5—37◦ N)

during 18 March–11 May 2006 are given in Table 4. The

emissions from residential, industrial, transport and power

plant sectors contribute about 61, 23, 15 and 1 %, respec-

tively, to average BC-ANT mass concentrations. These con-

tributions are very similar to the contributions of residential

(62 %), industrial (21 %), transport (16 %) and power plant

(1 %) sectors to total anthropogenic emissions in South Asia,

indicating that surface BC mass concentrations are closely

related to the emissions. However, we will show in the next

section that such a close relation between surface BC con-

centrations and emissions does not exist in different regions

of South Asia, because regional transport of BC makes an

important contribution in different South Asian regions.

4.3 Local vs. regional anthropogenic sources

In this section, we examine whether surface BC mass con-

centration can also be related directly to the local BC emis-

sions in different regions of South Asia as we saw for the

whole South Asia in the previous section. To understand

this, we first analyze the importance of regional transport

by investigating the spatial distributions of surface BC emit-

ted from anthropogenic sources located in north, west, east

and south India, Burma and other regions averaged over

18 March–11 May 2006 at the surface (Fig. 6). Anthro-

pogenic sources in northern India contribute significantly

(more than 100 ng m−3) to the surface anthropogenic BC

loadings in western and eastern parts of India, Burma and

the BoB, and slightly influence parts of the AS along west-

ern Indian coastline. Northern Indian sources also contribute

up to 50 ng m−3 in the Himalayan–Tibetan plateau region,

but this contribution is smaller than that from other regions

(50–200 ng m−3). Analysis of diurnal variations of BC emit-

ted from northern India and vertical wind component over

the Tibetan region (81–90◦ E, 30–35◦ N) showed that trans-

port of BC from north India to the Tibetan region likely

occurs through upslope winds. However, more observations
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Figure 6. Spatial distributions of anthropogenic BC emitted from north, west, east and south India, Burma and other regions during the

ICARB period. White solid lines mark the geographical boundaries of different regions.

and fine-scale modeling studies are required to lend further

confidence in this process.

BC emitted by anthropogenic sources in western India

contributes significantly to eastern and southern parts of In-

dia but the influence (> 50 ng m−3) also reaches to the BoB

and parts of AS along western Indian coastline. Anthro-

pogenic sources in east India significantly affect BC loadings

in Burma, Bay of Bengal and south India but the influence

does not reach the AS. South Indian anthropogenic sources

affect both the BoB and the AS but the influence is higher

in the BoB. Anthropogenic sources located in Burma do not

make a significant impact in the BoB and the AS, while those

located in other regions affect the southern parts of the BoB

near Sri Lanka.

The contributions of BC emitted from different regions of

South Asia to the total anthropogenic BC loadings in the five

defined regions of South Asia, the AS and the BoB are sum-

marized in Table 3. Here, we also quantify the contribution

of local and regional sources to the anthropogenic BC load-

ing in the different regions. The amount of BC due to sources

located in a given region itself (e.g., BC-NI for northern In-

dia) is defined as a contribution from local sources, and BC

coming from sources outside this region (e.g., BC-WI+BC-

EI+BC-SI+BC-BR+BC-OT for northern India) is de-

fined as contribution from the regional sources. The contri-

bution of local sources is marked in bold font in Table 3.

Local sources account for about 90 % of the anthropogenic

BC loading in north and south India, but regional sources

contribute up to 30 % in west and 21 % in east India. Re-

gional sources make a large contribution of 75 % to the an-

thropogenic BC loading in Burma. However, it should also be

noted that total anthropogenic BC loading in Burma is much

smaller than the BC loading due to local biomass burning

(Fig. 5b, c).

The above analyses clearly highlight the importance of re-

gional transport in controlling the distribution of BC over

South Asia. To examine whether regional transport affects

the relation between local emissions and surface BC mass

concentrations, we compare the contributions of anthro-

pogenic and biomass burning emissions to the total BC emis-

sions as well as to the surface BC mass concentrations in dif-

ferent regions of South Asia. We estimate that anthropogenic

emissions contribute about 90, 90, 45, 75 and 3 % to the to-

tal BC emissions in north, west, east and south India and in

Burma, respectively, while their contributions to surface BC

mass concentrations are 93, 95, 69, 90 and 18 %, respectively.

Similarly, the biomass burning emissions contribute about

10, 10, 55, 25 and 97 % of the total BC emission in north,

west, east and south India and in Burma, respectively, while

the contributions of biomass burning emissions to the surface

BC mass concentrations in these regions are 4, 3, 30, 8 and

81 %, respectively. The sources located outside the model do-

main are the remaining contribution (less than 3 %) in these

regions. These results show that surface BC concentrations

cannot be inferred directly from the emission inventories in

different regions of South Asia.

We further examine the contributions of residential, indus-

trial, transport and power generation sectors to total anthro-

pogenic emissions as well as to the surface anthropogenic

BC mass concentrations in north, west, east and south In-
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Table 5. Percent contributions of residential (RES), industrial (IND), transport (TRA) and power generation (POW) sectors to the total

anthropogenic emissions and to the surface anthropogenic BC mass concentrations in north (NI), west (WI), east (EI) and south India (SI)

and in Burma (BR).

Region Percent contribution to Percent contribution to surface

anthropogenic BC emissions anthropogenic BC mass concentration

RES IND TRA POW RES IND TRA POW

NI 62 23 14 1 62 22 15 1

WI 56 33 11 1 55 33 12 1

EI 70 19 10 1 68 20 11 1

SI 64 23 12 1 61 26 12 1

BR 79 3 18 1 69 17 14 1

dia and in Burma (Table 5). It is interesting to note that

the contribution of BC emissions from different sectors to

the total anthropogenic BC emissions as well as to the sur-

face anthropogenic BC mass concentration are very similar

in north, west, east and south India despite a significant con-

tribution (up to 25 %) of regional transport to surface total an-

thropogenic BC mass concentration in these regions (see Ta-

ble 3). This is likely because of the fact that these geograph-

ical regions do not differ significantly in terms of the relative

contribution of different sectors to total anthropogenic BC

emissions, and these relative contributions are maintained

during transport of BC from one region to the other.

In contrast, Burma is different from the Indian regions as

contributions of different sectors to total anthropogenic BC

emissions and to the surface anthropogenic BC mass concen-

trations are not similar. The percent contributions of different

sectors to the surface anthropogenic BC mass concentrations

in Burma are more similar to the Indian regions, i.e., the high-

est contribution is from the residential sector followed by the

industrial and transport sectors. This is likely because of the

fact that regional transport of BC from the Indian regions

is the main source (71 %) of surface anthropogenic BC mass

concentrations in Burma (see Table 5) and anthropogenic BC

emissions in India are much stronger compared to Burma

(see Fig. 1). These results show that it is important to ac-

count for the contribution of regional transport while relating

surface BC concentrations to emissions, but the relationship

between surface BC concentrations and local emissions may

be preserved if emissions in the source region are weaker

compared to the receptor region and relative contributions of

different sectors to total emissions are similar in the source

and receptor regions.

5 Summary

This study implemented source-, sector- and region-specific

BC tracers in the WRF-Chem model to understand the dif-

ferences in BC loadings between the Bay of Bengal and

the Arabian Sea and assess the relative importance of dif-

ferent BC sources in South Asia during March–May 2006.

The model reproduced the temporal and spatial variability of

BC distribution observed during the ICARB ship cruise. The

average and standard deviation (representing the spatial and

temporal variability) in observed and modeled BC mass con-

centrations along the ship track are estimated as 755± 734

and 561± 667 ng m−3, respectively. Average modeled con-

centrations at most of the inland stations were also found to

fall within the range of observed values. The model under-

estimates the observed BC mass concentrations, but model

observation discrepancy in this study is found to be smaller

compared to previous studies (Nair et al., 2012; Moorthy et

al., 2013).

Analysis of BC tracers shows that the ICARB ship track in

the BoB was affected by anthropogenic sources located in all

parts of India with highest contributions from east (40 %) and

south (24 %) India. In contrast, the AS was affected mostly

by sources in south India. We find that elevated levels of BC

in the BoB were due to a much stronger anthropogenic influ-

ence (5 times greater) in the BoB than the AS. Biomass burn-

ing in Burma also affects the BoB much more strongly than

the AS. The features of the BC distribution deduced from

ICARB ship observations were found to be consistent with

model results averaged over larger spatial area and time pe-

riod (18 March–11 May 2006) indicating that ICARB mea-

surements were fairly well representative of the BoB and the

AS during the pre-monsoon season.

Average modeled BC mass concentration in South Asia

is estimated as 1341± 2353 ng m−3 where the high standard

deviation reflects the large spatial and temporal variability.

Analysis of BC source tracers showed that anthropogenic

emissions provided 60–95 % of the total BC loading in South

Asia, except in Burma where biomass burning played a ma-

jor role during this period. Biomass burning also contributed

more than 20 % to the BC in Nepal, east India and eastern

BoB. BC emissions from residential (61 %) and industrial

(23 %) sectors are identified as major anthropogenic sources

in South Asia, except in the Himalayas where vehicular emis-

sions dominated. The transport emissions contribute up to

25 % to surface BC mass concentrations in west and east In-

dia. We showed that it is important to account for the con-
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tribution of regional transport while relating surface BC con-

centrations to emissions in different regions of South Asia

but the relationship between surface BC concentrations and

local emissions may be preserved if emissions in the source

region are weaker compared to the receptor region and/or rel-

ative contributions of different sectors to total emissions are

similar in the source and receptor regions.

This study was conducted for March–May 2006 limiting

our ability to extrapolate the results to other seasons or years.

Kumar et al. (2015) simulated and analyzed BC seasonality

for the year 2011. By comparing the March–May time pe-

riod from the 2011 simulation with this current study, we can

get an idea whether source attribution varies substantially be-

tween these two simulations. It should be noted that anthro-

pogenic emissions in these two simulations are taken from

two different emission inventories: SEAC4RS+MACCity

emissions, the 2006 (MACCity shipping emissions and emis-

sions due west of India) to 2012 (SEAC4RS emissions over

rest of the domain) time period, for the 2006 simulation

and EDGAR-HTAP emissions, which are appropriate for the

2010 time period, for the 2011 simulation. (The EDGAR-

HTAP inventory was released after we conducted the 2006

simulation.) Therefore, differences in anthropogenic emis-

sions between the simulations do not represent temporal

changes in anthropogenic emissions appropriate for the 2

modeled years. However, the biomass burning emissions are

based on the Fire Inventory from NCAR (FINN) in both

the simulations and thus difference between the two simula-

tions represents actual changes in the biomass burning emis-

sions over this region between 2006 and 2011. In comparing

the emissions from the 2006 simulation to the 2011 simula-

tion, the anthropogenic emissions changed from about 203 to

about 201 Gg, while the biomass burning emissions changed

from about 327 to 285 Gg for the ICARB period (18 March–

11 May). The contribution of BC-ANT, BC-BB and BC-

BDY to the total surface BC concentrations in the 2011 sim-

ulation are estimated as 65, 28 and 7 %, respectively, while

the corresponding contributions in the 2006 simulations are

60, 37 and 3 %, respectively.

This comparison shows that changes in the strength of

emission sources can potentially affect the source contribu-

tion analysis, but differences in meteorology between the 2

years can also play a role. Thus, multi-year simulations ac-

counting for temporal variability in the strength of differ-

ent emission sources and variability in meteorology must be

conducted before these results can be applied to design BC

mitigation strategies in South Asia. The effects of seasonal

change in the strength of anthropogenic and biomass burning

sources the source contribution analysis of BC in South Asia

are discussed in a follow-up paper (Kumar et al., 2015). Nev-

ertheless, this study illustrates the potential of integrating in

situ observations with chemical transport modeling to under-

stand processes controlling the distribution and variability of

BC and infer the most important sources of BC aerosol in a

region.
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