CHARACTERISTIC PROPERTIES OF SERIES DISTRIBUTIONS.
By D. D. Kosamsi.,
(Received August 6 ; read October 1, 1948.)

In what follows, I use the notation p = E(x) = expectation (mean value) of a
random variable  ; 02 = E(x—pn)2, its variance ; the letter p will be generally used
to indicate probablhtles

1. In certain theoretical work on cosmic rays, it was found directly from
unsolved differential equations that a distribution function (d.f.) should have the
property p =02 It is known that the Poisson distribution satisfies this; the
question then arose: does p = o2 suffice to exclude any other one-parameter d.f. ?
The general answer is negative; in the normal or the chi-square distribution, for
example, it is immediately possible to specialise the two parameters so as to get
p == o2, both being then functions of a single parameter; the remark is valid in
general for multiparametric d.f.’s. However, the problem required a discrete, not
a continuously distributed stochastic variable. But even here, one can get p = o2
without the Poisson distribution. For example, let the variable x take on the
values A and O with probabilities p and ¢ =1—p. Then p=Ap, a2 = A2pq,
whence—excluding the trivial cases p =0 and A = 0—we still have p = 02 when
Ag =1. The physical problem required integral values 0, 1, 2, ... for x», while
Ag =1 means A>1. This can be overcome by adding a unit to the values of z,
which is now to take on the wvalues A4-1, 1, with probabilities p, g. Then
w = Ap+1, o2 = A%pq, whence Ap(Ag—1) =1 gives the required result. Finally, u
and o2 are additive when a number of independent random variables are added
together, so that we can build up much more complex sets of integral values for z,
with a d.f. that still has the property p = o2.

One general theorem, nevertheless, may be easily proved for the d.f.’s in
question :

If a random variable takes on dzscrete values X, with probabilities proportional to
powers zA, of a single parameter z and p = o2, then the d.f. must be Potssonian.

2. First of all, consider only random variables that take on discrete integral
values 0, 1, 2, ... »n ... with probabilities proportional to 1, 2, 22, ... 2" ..., 2>0
being a real parameter of the distribution. The total probability must sum to
unity, so that the most general such distributions are necessarily represented by an
analytic function of z with real non-negative coefficients :

f(2) = agFayztas22+ ... +a,,z’+ ...} 6,20 for all n.

plx=n)= f(z) - . o .o (20)

The convenience of such a distribution for our purposes, and for probability theory
in general, derives from a property that can be proved mthout difficulty :

The kith moment of the d.f. is given by (1/f )(2 d)dz)® - f, the kth factorial moment
by zrdrf(fdz*, and the kth semi-variant by d* log f{d (log 2)*.

The kth moment is the expectation of %, i.e.,

@ )(alz+2 Fage2+ « -+ Fazmtend - +),
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Differentiating f(z) gives @,42agz+ - so that zf'(z) gives the mean, and it is
seen at once that 2 d/dz is the proper moment-building operator. For the
semi-invariants, the quickest proof is by regarding the characteristic function,
i.e. E(e*®), which is

1 . . }
7@ (ag+ayzett 4 20522624+ - ) = f(ze®)[ f(2). .. o (22)

As the semi-invariants are generated by derivatives to i of the log of the ¢.f.,
our final statement above follows immediately.

From the function-theoretic point of view, these distributions in series may be
classified into two distinet types. The first consists of those with a finite radius of
convergence, as for example in the ordinary geometric progression, f(z) = 1/(1—2)
which represents so many regular absorption phenomena, or R. A. Fisher’s species 1
(and genes) distribution, f(2) = — log (1—2). The second class is of those f(z) that
have an infinite radius of convergence, being either rational integral functions as
for the binomial (Bernoulli) distribution f(z) = (1+4=2)?, where the parameter z is
related to the usual probability p for success in a single trial by p =z/(14-2),
¢ = 1/(14%). The other class is of entire functions, of which the Poisson distribu-
tion f(2) = e* is most commonly used because of its limiting position and stability,
which make it the analogue, for discrete integral-valued distributions, of the normal
distribution for continuous variables.

From the point of view of probability theory, we make a different distinction :

In order to obtaif a normal distribution in the limit (by shifting the origin to the
mean value and taking o as a new scale-unit), it is necessary that f(z) be an entire
Sfunction of finite order.

That the condition is necessary may be seen by the following considerations.
For a finite radius of convergence we get a comparatively steady falling off in the
values of consecutive terms. What is needed for a limiting value of the type
desired is a term of high value which accounts for the greater part of f(z) with rapid
falling off in both directions. This excludes all except entire functions. But for
our change of scale to be possible, o2 and p as defined by the preceding theorem
must be of comparable order of magnitude. Now it is well known that when the
limit o2/p exists, it is the order of the entire function f(z), whence the restriction to
a finite order. Finally, we should discuss the question of sufficiency of the condi-
tion, but this leads to the consideration of certain restrictions as to gaps in the
coefficients a,, and of possible restrictions in the way they approach zero, which
remove the discussion to a level beyond that to which this note is restricted.

It is much easjer to indicate one purely mathematical application of these
parametric distributions in passing :

Every series distribution derived from a f(2) gives a method of summability.

That is, to each member of a sequence { 8.1, We assign a probability of occur-
rence, and look for the expectation :

2 a8
fy

The sum is the limit of this generalised mean value when z tends to the criti-
cal value o0, or the finite positive real point on the circle of convergence which is
necessarily a singularity of f(z) as all the coefficients are non-negative. In either
case, the individual probabilities tend to extinction.

There is no difficulty in generalising the Stieltjes integral of (2.3) to other
types of probability distributions, For distributions with a parametric density
function, we get a kernel K(z, 2)

E(s) = f 8,dxF(z, 2) = (2.3)
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(i) K(z, 2)=>0; (ii) f K(z, z)dx =1 for all z;
(2.4)

(i) K (x, 2)—0 as z—>a, for all .

The limits for integration may be finite or infinite, as also the critical value z = «.
The sum of an integrable function F(x) is then defined by lim. ¢(z) as z—»o where

d(2) =J F(x)K(x, 2)dx. .. . .. .. (2.8)

1t is curious that the ordinary limit of {s,} or F(x) appears as a singular method
of summation, for it is known that no such kernel K(z, z) exists which represents
the identity, i.e. transforms {s,} or F(z) into itself. The Dirac 8-function of the
physicist or some limiting process regularised by the introduction of another para-
meter is necessary.2 In certain cases, a transformation is possible which simplifies
the integral equations, as for example, in the rth Cesaro mean for continuous func-
tions :

qs,(z):z_’;J F(t)e—t)-1dt .. .. .. (26
0
taking x = t/z transforms this into
1 .
¢,.(z)=j F(zz)d(1—2)", . e (29
0

so that we are using the kernel F(z2) and fixed limits to evaluate the sum.
3. We now come to the proof of our original theorem, on the nature of the
d.f. when p = o2 Before dealing with this, it is necessary to point out two corol-

laries to the foregoing section.
The function f(z} may be put into the canonical form ag = 1:

F(2) =140y 24as224 ... .. . .. (3.1
In the first place, if @y20, we can cancel it out from each individual pro-
bability @,27(f(z). Secondly, suppose the first non-vanishing coefficient is a®. This
means that = does not take on the values 0,1, 2,.:.k—1 at all. We then take
the new random variable ¥’ = z—k and the f(z) that describes its distribution has
the coefficient ay'720. TFinally, if a,520 we may take o new parameler ayz and the
canonical form becomes

F(z) = 1424bs224 ... .. .. o (32

The second remark is that .
The entire discussion for series distributions may be carried over to the case

where x takes on discrete real values Ay, Ag, ... A, ..., the function f(z) being then
represented by a Dirichlet series with real mon-negative coefficients and exponents

{An}'
flz) = ao+a1e7‘18+426"28+. coy ap=>0. .. .. (3.3)

The formal transformation s = log 2 is fully justified under the circumstances and
shows the equivalence of the two cases, without further argument.
We have, from section 2,

B =¢'(s); o = ¢(s), where ¢ =log f, s = log z. o (34
S o= 02g"(s) —¢'(8) = 0> = ae’+B~>f = ac®.
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In the canonical form, we have f = ¢* which is the Poisson distribution. More-
over, as 3.4 is valid for an f(z) defined by a Dirichlet series, we see that the random
variable ¥ must necessarily take on the discrete values 0, 1,2, ... 7 ... inasmuch
as the solution f = ae®* is unique.

4. In actual practice, the most important problems are the estimation of 2, for
a given distribution, from an observed random sample. A second problem is the
choice of a proper f(z) to fit given data, but this can obviously not be solved with-
out further argument of some sort. To the former question, a simple theorem gives
the answer. We restrict ourselves to the case of integral-valued distributions,
which represents the general facts as well, as has been pointed out before. Let the
sample frequencies in categories of value 0,1, 2, .. n .. be by, by, ... b, .. ; further,
indicate by N = 2, the total number, and by m = Zkb; the observed sample
mean. Then:

The maximal likelihood estimate of z from an observed sample is given for all
distributions in series by equating the observed and theoretical means, m = p = 2f’[f;
the sampling variance of this estimate in large samples is given by V(z) = 22/No2.

The ‘likelihood’ is the compound probability 3 of getting just the sample
observed, its logarithm being

Zbk{log ap+klog z—log f(z)} = Zbk log ag+N{mlog z—log f(z)}. (4.1)

Differentiation gives N(m/z2— f'/f) which, equated to zero, gives our first result at
once. It is known that by a second differentiation to z and substitution of the
expected values for b, we get -—1/V(2). Here, we have to differentiate
N{m—zf'[f)/z, and then replace m by u. This gives the second result of the
theorem.

In some cases, however, the distribution is truncated by the very nature of the
experiment, and the above method of estimation leads to rather tedious calculations.
To take one important case, that of steady absorption phenomena in discrete steps,
consider the observed frequencies b, as occurring with an expected distribution in
geometric progression p, = 2F/f(z), but breaking off at the class of =, the total

number of terms being n+1. Here, we have
fRy=1+4z4224 ... F2" =
The maximal likelihood estimate of z means solving

o 242224 ... F+nz? _® (rn+41)zr+1
me=p= 1424 ... 420 1—2 1 —zrt1 - (43

1—znt1

T (4.2)

while
2 (n4-1)2zn+2
T—22~ (1—zrtl)2

o2 = (4.4)
Even for moderate values of », the solution of the resulting algebraic equation of
degree n for its single positive root involves a good deal of labour. A much
quicker method, obviously, is to fit a linear regression to the logarithms of the
observations, i.e. to log by, log &;, ... log b,. We are interested only in the slope of
the line, which should, were the sample exactly in accordance with theory, be log 2.
Our estimate (essentially a geometric mean), therefore, is :

log 2 = ;1; Z(lc——-) log b, where v = ﬂ%@ .. (4.5)

The statistic is seen to be consistent, but the question is of its efficiency, that
is the size of its large-sample variance as compared to that of the previous estimate.
As the total number N does not enter explicitly, the sampling variance in question
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is to be obtained by summing p,(92/0b;)2, with the substitution of Np, for b, in the
result. This leads to

2
V(z)=;:—;éf(z)2(lc—g) 2k o (46)

Recalling the specific form of the f(z) to which we have restricted ourselves here, a
little manipulation gives

- 2
V(z)=%@{az+(,,_g)}. ce @)

The method is efficient only when 7 is small as compared with x and ¢2 for 2
being less than unity in absorption phenomena, the factor z~" increases V(2)
enormously in comparison with the maximal likelihood variance. In most
experimental work, the smallest frequencies observed are still large, 5o that the
method of fitting a logarithmic regression gives a reasonable estimate of the
absorption coefficient. For further refinements, it could always be used as a first
approximation in the equation 4.3.

Events of the type discussed in the foregoing are generally regarded as having
been compounded from many small, independent random effects. If a single
elementary even be equated to a variate assuming values 0, 1 with probabilities
g, p, its characteristic function will be g+p .exp. ¢.¢. Following the classical pro-
cedure, we obtain the binomial distribution with c.f. (g+¢™)" for repeated trials
with the same probability. If n—>o0 and we do not change scale, a imit exists if
and only if » . p—sz, which leads to the Poisson distribution with z as a parameter.
For independent events that differ in probability, the c.f. is

H(q,-l-_pre’:t) = Ilg Il (1+§1e‘t> o e .s . (4.8)

This product converges if and only if p,+p,+ ... +p,+ .... converges. There-
fore if the characteristic function of the compound event be expressible as an analytic
Sfunction of a single parameter, the distribution must necessarily be in series. For,
putting 2 = p,4+ .. +p,4 ..., the parameter can only be z exp. i. t, except for a
constant factor.

This justifies to some extent the assumption that the distributions with which
physicists are concerned are in series. Other procedures are also possible. For
example, in analysing the expansion of 4.8 it is seen that f(z) corresponds to the
reciprocal of ITg,, and the coefficients are built up out of symmetric functions of
#,/q,. A single term p/q = p/(1—p) = p+p2+ ... p"+ ... can be interpreted as
made up of probabilities of the event occurring once, twice, thrice, ete., and
summing these implies that no matter how often the event is repeated the value
agsigned to the event is always unity. That is, we have in effect adopted a sort of
Boolean algebra a? = w, equivalence here meaning the value-category to which the
event is to be ascribed. But it would have been as simple to assign p2 to the value
2,1.e, to the coefficient of exp. z i, p3 to 3, ete. In that case, we should have been
led merely to the series distribution in geometric progression. In the general case,
it is easily seen that, taking z = p+ ... +p,+ ..., the sucecessive coefficients are
always closely approximated by as22, ag?8...0,2"... and this provides sufficient .
justification for assuming a series distribution.
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