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Abstract: The main result of the paper is a determinantal formula for the
restriction to a torus fixed point of the equivariant class of a Schubert subva-
riety in the torus equivariant integral cohomology ring of the Grassmannian.
As a corollary, we obtain an equivariant version of the Giambelli formula.

The (torus) equivariant cohomology rings of flag varieties in general and of
the Grassmannian in particular have recently attracted much interest. Here we
consider the equivariant integral cohomology ring of the Grassmannian. Just as
the ordinary Schubert classes form a module basis over the ordinary cohomology
ring of a point (namely the ring of integers) for the ordinary integral cohomology
ring of the Grassmannian, so do the equivariant Schubert classes form a basis over
the equivariant cohomology of a point (namely the ordinary cohomology ring of
the classifying space of the torus) for the equivariant cohomology ring (this is true
for any generalized flag variety of any type, not just the Grassmannian). Again
as in the ordinary case, computing the structure constants of the multiplication
with respect to this basis is an interesting problem that goes by the name of
Schubert calculus. There is a forgetful functor from equivariant cohomology to
ordinary cohomology so that results about the former specialize to those about
the latter.

Knutson-Tao-Woodward [5] and Knutson-Tao [6] show that the structure con-
stants, both ordinary and equivariant, count solutions to certain jigsaw puzzles,
thereby showing that they are “manifestly” positive. In the present paper we take
a very different route to computing the equivariant structure constants. Namely,
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we try to extend to the equivariant case the classical approach by means of the
Pieri and Giambelli formulas. Recall, from [3, Eq.(10), p.146] for example, that
the Giambelli formula expresses an arbitrary Schubert class as a polynomial with
integral coefficients in certain “special” Schubert classes—the Chern classes of
the tautological quotient bundle—and that the Pieri formula expresses as a lin-
ear combination of the Schubert classes the product of a special Schubert class
with an arbitrary Schubert class. Together they can be used to compute the
structure constants.

We only partially succeed in our attempt: the first of the three theorems of
this paper—see §2 below—is an equivariant Giambelli formula that specializes to
the ordinary Giambelli formula as in [3, Eq.(10), p.146], but we still do not have
a satisfactory equivariant Pieri formula—see, however, §7 below. The derivation
in Fulton [2, §14.3] of the Giambelli formula can perhaps be extended to the
equivariant case, but this is not what we do. Instead, we deduce the Giambelli
formula from our second theorem which gives a certain closed-form determinantal
formula for the restriction to a torus fixed point of an equivariant Schubert class.

This “restriction formula” (Theorem 2 in §3 below) is the point of this paper—
more so than the Giambelli, for among other things it might also hold the key to
the Pieri. It in turn is deduced from Theorem 3 which can be paraphrased thus:
a Gröbner degeneration of an open piece around a torus fixed point of a torus
stable subvariety computes the restriction to the fixed point of the equivariant
cohomology class of the subvariety. Recall that a Gröbner degeneration comes
from a Gröbner basis. It is a 1-parameter flat degeneration. See §6 for the precise
meaning. Such Gröbner degenerations at torus fixed points of Schubert subvari-
eties in the Grassmannian have recently been obtained [9, 7, 8, 10]. Combining
this result about degenerations with Theorem 3 yields a proof of Theorem 2.

As pointed out to us by the referee, Theorem 3 is well known. The precise ref-
erences (as indicated by the referee) are given in §6. The passage from Theorem 3
plus the result about degenerations to the restriction formula involves only an
elementary combinatorial inductive argument. (Is there an elegant Lindstrom-
Gessel-Viennot type argument for this passage? We do not know.) The passage
from the restriction formula to the Giambelli again involves only elementary ma-
trix manipulations.

Acknowledgments: Parts of this work were done during visits of the first
named author to Chennai Mathematical Institute and of the other two au-
thors to The Abdus Salam International Centre for Theoretical Physics.
The hospitality of the two institutions is gratefully acknowledged. It is with great
pleasure that we thank the referee for a quick and thorough reading of the man-
uscript and for the insightful comments; thanks in particular for indicating how
Theorem 3 follows from results available in the literature.
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1. The set up

Fix once and for all two positive integers d and n with d ≤ n. Let V be an n-
dimensional complex vector space, and Gd,n the Grassmannian of d-dimensional
linear subspaces of V . The defining action of the general linear group GL(V )
on V induces an action on Gd,n. We are interested in the T -equivariant integral
cohomology ring H of Gd,n, where T is a fixed maximal torus of GL(V ).

We refer to [6, §2] and the references in that paper for the details that we leave
out in this section.

The natural map from Gd,n to Spec(C) induces an S-algebra structure on
H, where S := H∗

T (Spec(C)) is the T -equivariant integral cohomology ring of
Spec(C) (namely the ordinary integral cohomology ring of the classifying space
of T ). The S-algebra H is independent of the choice of T because any two
maximal tori in GL(V ) are conjugate.

The choice of a maximal torus T amounts to the choice of an unordered vec-
tor space basis B of V : the elements of T are precisely those invertible linear
transformations for which each element of B is an eigenvector. Each element b
of B thus defines a character εb of T that sends elements of T to their respective
eigenvalues with respect to b. The collection {εb | b ∈ B} forms an integral basis
for the group X(T ) of characters of T . The ring S is graded isomorphic to the
symmetric algebra of the abelian group X(T ) with X(T ) living in degree 2. We
may therefore identify S with the polynomial ring Z[εb | b ∈ B], where the εb are
variables in degree 2.

Since Gd,n is a smooth variety on which T acts algebraically with finitely many
fixed points, it follows that H is a free S-module with basis the (equivariant)
classes of the Schubert subvarieties. These subvarieties are defined with respect
to a fixed Borel subgroup B containing T : they are the closures of the B-orbits
in Gd,n. The formulas of this paper are independent of the choice of B because
any two such Borel subgroups are conjugate by an element in the normalizer of
T in GL(V ).

The choice of a Borel subgroup B containing T amounts to the choice of an
ordering on the elements of the basis B. Let b1, . . . , bn be the elements of B thus
ordered. We have S = Z[ε1, . . . , εn], where εj := εbj

.

There is a one-to-one correspondence between the B-orbits and the T -fixed
points in Gd,n: each B-orbit contains one and only one T -fixed point. The T -
fixed points are indexed by the subsets of cardinality d of B.

Denote by I(d, n) the set of subsets of cardinality d of {1, . . . , n}. We use
u, v, w, . . . to denote elements of I(d, n). For u in I(d, n), we write u = (u1, . . . , ud)
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where u1, . . . , ud are the elements of u arranged in increasing order: 1 ≤ u1 <
. . . < ud ≤ n.

Given u = (u1, . . . , ud) in I(d, n), denote by eu the T -fixed point of Gd,n that
is the span of {bu1 , . . . , bud

}, by X(u) the closure of the B-orbit containing eu,
by [X(u)] the T -equivariant class in H of the Schubert subvariety X(u), and by
[X(u)]cl the ordinary cohomology class of X(u).

For each T -fixed point ev, v in I(d, n), we have a natural “restriction” map
Resv : H := H∗

T (Gd,n) → S := H∗
T (ev) induced by the inclusion of {ev} in Gd,n.

The direct product of these is an injection of rings:

(1)
∏

Resv : H ↪→
∏

v∈I(d,n)

H∗
T (ev)

For u and v in I(d, n), denote by [X(u)]|v the image in S under Resv of the
equivariant class [X(u)]. The image of H under

∏
Resv has a neat description

but we will have no use for this here: a tuple (αv)v∈I(d,n) in
∏

I(d,n) S belongs to
the image of H under

∏
Resv if and only if, whenever w and x in I(d, n) are so

related that there exist integers i and j, 1 ≤ i, j ≤ n, with x = (w ∪ {j}) \ {i}, it
holds that εj − εi divides αx − αw.

2. An equivariant Giambelli formula

Given u = (u1, . . . , ud) in I(d, n), set

λ1 := n− d + 1− u1, . . . λi := n− d + i− ui, . . . λd := n− ud.

Then n− d ≥ λ1 ≥ λ2 ≥ . . . ≥ λd ≥ 0.

If u is such that λ2 = . . . = λd = 0, we call the Schubert variety X(u) and its
cohomology class special; furthermore the equivariant and ordinary cohomology
classes [X(u)] and [X(u)]cl are denoted instead by [λ1] and [λ1]cl. We extend the
terminology and notation to all integers by setting [p] := 0 if p is outside the
range 0, 1, . . . , n− d.

Observe that [p] belongs to H2p
T (Gd,n), which explains the notation.

The classical Giambelli formula gives an expression for an arbitrary Schubert
class in the ordinary cohomology ring of the Grassmannian Gd,n as the determi-
nant of a d × d matrix whose entries are special classes. For u = (u1, . . . , ud) in
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I(d, n), we have, from [3, Eq.(10), page146] for example, [X(u)]cl =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[λ1]cl [λ1 + 1]cl . . . [λ1 + j − 1]cl . . . [λ1 + d− 1]cl

[λ2 − 1]cl [λ2]cl . . . [λ2 + j − 2]cl . . . [λ2 + d− 2]cl
...

...
...

...
...

...

[λi + 1− i]cl [λi + 2− i]cl . . . [λi + j − i]cl . . . [λi + d− i]cl
...

...
...

...
...

...

[λd + 1− d]cl [λd + 2− d]cl . . . [λd + j − d]cl . . . [λd]cl

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The ith entry on the main diagonal is [λi] and the index increases by 1 per column
as we move rightwards in the same row. The subscript “cl” is to remind us that
the classes are in ordinary cohomology. The theorem below gives an equivariant
version of the above formula.

The proof of the equivariant version does not use the ordinary version of the
formula. In fact, it gives another proof of the ordinary version by specialization.

Let u = (u1, . . . , ud) in I(d, n). For i, j integers such that 1 ≤ i, j ≤ d, set

(2) u[i, j] =
j−1∑

k=0

c(ui, j, k) [λi + j − i− k]

where c(ui, j, k) := (−1)k hk(εui−j+1+k, . . . , εui)—here hk is the “complete sym-
metric polynomial,” the sum of all monomials of degree k in the elements εui−j+1+k,
. . . , εui of H∗

T (pt) = S. If ui− j +1+ k ≤ 0, then c(ui, j, k) does not make sense,
but this does not matter since λi + j− i−k ≥ n−d+1 and so [λi + j− i−k] = 0
by definition.

Theorem 1. With notation as above, given u = (u1, . . . , ud) in I(d, n), the
equivariant cohomology class [X(u)] is the determinant of the d×d matrix whose
(i, j)th entry is u[i, j].

This theorem will be deduced in §4 from the restriction formula (Theorem 2) and
the injection (1).

3. A determinantal formula for the restriction

For integers p, k, r, set

µk
r (p) :=

∏

j=k, k+1, ..., r

ε(j, p)

where ε(j, p) := εj − εp. This is well-defined as an element of the polynomial ring
S only when p, k, and r belong to the range 1, 2, . . . , n and k ≤ r, but it is
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convenient to extend the notation somewhat: if k = n + 1, the product, being
over an empty index set, is taken to be 1.

Theorem 2. Given u = (u1, . . . , ud) and v = (v1, . . . , vd) belonging to I(d, n), the
restriction [X(u)]|v of the T -equivariant cohomology class [X(u)] of the Schubert
variety X(u) in the Grassmannian Gd,n to the T -fixed point ev determined by v
equals

(3)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µu1+1
n (v1) µu1+1

n (v2) . . . µu1+1
n (vj) . . . µu1+1

n (vd)

µu2+1
n (v1) µu2+1

n (v2) . . . µu2+1
n (vj) . . . µu2+1

n (vd)

...
...

...
...

...
...

µui+1
n (v1) µui+1

n (v2) . . . µui+1
n (vj) . . . µui+1

n (vd)

...
...

...
...

...
...

µud+1
n (v1) µud+1

n (v2) . . . µud+1
n (vj) . . . µud+1

n (vd)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1 . . . 1

εv1 εv2 . . . εvj . . . εvd

ε2v1
ε2v2

. . . ε2vj
. . . ε2vd

...
...

...
...

...
...

εi
v1

εi
v2

. . . εi
vj

. . . εi
vd

...
...

...
...

...
...

εd−1
v1

εd−1
v2

. . . εd−1
vj

. . . εd−1
vd

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

The denominator in the above expression for [X(u)]|v is the Vandermonde deter-
minant which equals

ε(v2, v1) · (ε(v3, v1)ε(v3, v2)) · . . . · (ε(vd, v1) . . . ε(vd, vd−1))

The proof of this theorem occupies sections 5 and 6.

4. Proof of the equivariant Giambelli

In this section, Theorem 1 is deduced from Theorem 2. Because of the injection
(1), it is enough to show that, for an arbitrary v = (v1, . . . , vd) in I(d, n), the
restriction [X(u)]|v is the determinant of the d× d matrix whose (i, j)th entry is
u[i, j]|v. We first obtain a determinantal formula for u[i, j]|v:
(4) u[i, j]|v = det(N)/V(v),



Equivariant Giambelli and Restriction Formulas 705

where

V(v) := (εv2 − εv1) · (εv3 − εv1)(εv3 − εv2) · . . . · (εvd
− εv1) · · · (εvd

− εvd−1
)

(V stands for Vandermonde) and N denotes the following matrix (see §2 for
definition of µk

r (p))


µui+1
n (v1) (−εv1)

j−1 . . . µui+1
n (vs) (−εvs)j−1 . . . µui+1

n (vd) (−εvd
)j−1

µn−d+3
n (v1) . . . µn−d+3

n (vs) . . . µn−d+3
n (vd)

...
...

...
...

...

µn−d+r+1
n (v1) . . . µn−d+r+1

n (vs) . . . µn−d+r+1
n (vd)

...
...

...
...

...

µn
n(v1) . . . µn

n(vs) . . . µn
n(vd)

1 . . . 1 . . . 1




To prove (4), we substitute for the restrictions of the special classes on the right
side of (2) the determinantal expressions given by Theorem 2:

u[i, j]|v =
j−1∑

k=0

c(ui, j, k)[λi + j − i− k]|v

=
j−1∑

k=0

c(ui, j, k)
det(Num(λi + j − i− k))

V(v)

where we have written Num(λi +j−i−k) for the d×d matrix whose determinant
is the numerator of the expression for [λi+j−i−k]|v given by Theorem 2. Rows 2
through d of Num(λi+j−i−k) do not change as k varies: they are the same as the
corresponding ones of the matrix N in (4). And the first row of Num(λi+j−i−k)
is (

µui−j+k+2
n (v1), . . . , µui−j+k+2

n (vd)
)

.

So (4) follows once we prove
j−1∑

k=0

c(ui, j, k) µui−j+k+2
n (vs) = (−εvs)

j−1µui+1
n (vs).(5)

The above identity is the special case m = j − 1 of the following more general
identity: for 0 ≤ m ≤ j − 1,

m∑

k=0

(−1)k hk(εui−j+1+k, . . . , εui) µui−j+k+2
n (vs) =

(−1)m hm(εvs , εui−j+2+m, . . . , εui) µui−j+m+2
n (vs)

(6)
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The proof of (6) is by induction on m. First note that it holds for m = 0. Now
for the induction step: assuming that it is true for m, we show it holds for m+1.
Taking (−1)m+1µui−j+m+3

n (vs) common out of the two terms in the following

(−1)m hm(εvs , εui−j+2+m, . . . , εui) µui−j+m+2
n (vs) +

(−1)m+1 hm+1(εui−j+2+m, . . . , εui) µui−j+m+3
n (vs)

we need only show that

−hm(εvs , εui−j+2+m, . . . , εui) · (εui−j+m+2 − εvs)

+ hm+1(εui−j+2+m, . . . , εui)

= hm+1(εvs , εui−j+3+m, . . . , εui)

but this is just the sum of the following two elementary equalities:

hm+1(εvs , εui−j+3+m, . . . , εui) = hm+1(εvs , εui−j+2+m, . . . , εui)

− εui−j+2+m hm(εvs , εui−j+2+m, . . . , εui)

hm+1(εvs , εui−j+2+m, . . . , εui) = hm+1(εui−j+2+m, . . . , εui)

+ εvs hm(εvs , εui−j+2+m, . . . , εui).

Now that (4) is proved, we proceed with the proof of the theorem. If we delete
the 1st row and sth column of N , the determinant of the resulting sub-matrix is

V(v1, . . . , v̂s, . . . , vd) :=
V(v)

ε(vs, v1) . . . ε(vs, vs−1) · ε(vs+1, vs) . . . ε(vd, vs)
.

This follows since the determinant has degree 0 + 1 + . . . + d− 2 in the epsilons
and is divisible by ε(vj , vi) for 1 ≤ i, j ≤ n, i, j 6= s. For the determinant of N ,
expanding by the first row, we thus obtain

det(N) =
d∑

s=1

µui+1
n (vs) εj−1

vs
V(v1, . . . , v̂s, . . . , vd)

Observe that the right side is the product of the row matrix(
µui+1

n (v1), . . . , µui+1
n (vd)

)

with the column matrix whose transpose is(
εj−1
v1

V(v̂1, v2, . . . , vd), . . . , εj−1
vs

V(v1, . . . , vd−1, v̂d)
)
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This means the following for the matrix—let us call it M—whose (i, j)th entry
is u[i, j]|v: V(v) M equals




µu1+1
n (v1) . . . µu1+1

n (vd)

...
...

...

µud+1
n (v1) . . . µud+1

n (vd)







ε0v1
V(v̂1, . . . , vd) . . . εd−1

v1
V(v̂1, . . . , vd)

...
...

...

ε0vs
V(v1, . . . , v̂d) . . . εd−1

vs
V(v1, . . . , v̂d)




Since
∏d

s=1 V(v1, . . . , v̂s, . . . , vd) = V(v)d−2, the determinant of the matrix on the
right above is V(v)d−1. The matrix on the left—let us call it P—is the numerator
in the formula for [X(u)]|v of Theorem 2. Taking determinants, we get

V(v)d det(M) = det(P ) V(v)d−1

and so by Theorem 2

det(M) = det(P )/V(v) = [X(u)]|v. 2

5. Proof of the restriction formula

In this section, Theorem 2 is proved. Theorem 3, which is stated and proved
in §6, allows us to reduce the proof to combinatorics. More precisely, Theorem 3
tells us that if we have a Gröbner degeneration of an open piece of the Schubert
variety X(u) around the T -fixed point ev, then we can compute the desired
restriction [X(u)]|v. Such a Gröbner degeneration is described in [7]—indeed it
was the goal of that paper to describe such a degeneration. We now recall this
description.

We identify Gd,n as the orbit space for the action on n× d matrices of rank d
by the group of invertible d × d matrices by multiplication on the right. The
subset consisting of those matrices in which the submatrix determined by the rows
v1, . . . , vd is the identity matrix gives us an affine T -stable patch of Gd,n around
the point ev. This patch is an affine space which we denote Av. The coordinate
function X(r, j) on Av determined by the entry of the matrix in position (r, j),
r 6∈ v, is an eigenvector for T with character −(εr − εvj ). Thus a natural way to
index these coordinates on Av is by the pairs (r, c), 1 ≤ r, c ≤ n, such that c ∈ v
and r ∈ {1, . . . , n} \ v—instead of X(r, j) we write X(r, vj). Denote by Rv the
set of all such pairs.

The intersection Y (u) of X(u) with the affine patch Av of Gd,n around ev is of
course a closed subvariety in Av. As proved in [7, §5], there exist term orders on
the monomials in the variables X(r, c) with respect to which the initial ideal of
the ideal of functions vanishing on Y (u) is the face ideal of a certain simplicial
complex Cv

u with vertex set Rv. We want to describe the maximal faces of this
complex and thereby the complex itself.
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But before we do that, a digression is necessary. In order that specializations to
degenerate situations work smoothly, the correct definition of simplicial complex
needs to be adopted. We do not insist, unlike in [12, Chapter II] and like in [11,
Definition 1.4], on the axiom that singleton subsets are faces. More precisely,
here are our definitions: A simplicial complex is a pair (V, F ) of a set V and a
set F of subsets of V ; the elements of V are called vertices and those of F faces;
the following axioms hold: (1) the empty subset of V is a face, and (2) a subset
of a face is a face. Because of (2) we may replace (1) by (1’): F is non-empty.

Given a simplicial complex (V, F ), its (Stanley-Reisner) face ring R is defined
as follows: consider the polynomial ring, over some implicit base, in a set of
variables indexed by V —we abuse notation and let V itself denote the set of
variables; the linear span of monomials whose support is not contained in any
face forms an ideal—let us call it the face ideal (or should it be the non-face
ideal?); the quotient of the polynomial ring by the face ideal is R. It is readily
seen that the face ideal is the intersection, over all maximal faces, of the ideal
generated by the variables in the complement of that face.

The digression being over, we now start on the description of the simplicial
complex Cv

u. Denote by Nv the subset of Rv consisting of those pairs (r, c) for
which r > c. The element u of I(d, n) determines as follows a subset Sv

u of
Nv with the following property: writing Sv

u = {(r1, c1), . . . , (rk, ck)}, we have
u = (v \ {c1, . . . , ck}) ∪ {r1, . . . , rk}. To define Sv

u, proceed by induction on d.
Let i, 1 ≤ i ≤ d, be the largest such that vi ≤ u1. Set v′ = v \ {vi} and
u′ = u \ {u1}. Then v′ ≤ u′ and Sv′

u′ is defined by induction. Set

Sv
u =

{
Sv′

u′ ∪ {(u1, vi)} if u1 6= vi

Sv′
u′ if u1 = vi

We draw—see Example 1 and Figure 1 below—a grid with the elements of
Nv being the lattice points—in the notation (r, c), the r is suggestive of row
index and c of column index. The solid dots in the figure denote the points of
Sv

u. From each solid dot β we draw a vertical line and a horizontal line. Let
β(start) and β(finish) denote respectively the points where the vertical and the
horizontal lines meet the boundary. In Figure 1 for example β(start) = (14, 11)
and β(finish) = (16, 13) for β = (16, 11).

A lattice path between a pair of such points β(start) and β(finish) is a sequence
α1, . . . , αq of elements of Nv with α1 = β(start), αq = β(finish), and for j, 1 ≤ j ≤
q− 1, writing αj = (r, c), αj+1 is either (r′, c) or (r, c′), where r′ (respectively c′)
is the smallest integer not in v (respectively in v) and greater than r (respectively
c). If β(start) = (r, c) and β(finish) = (R, C), then q = (R− r) + (C − c) + 1.

Let us write Sv
u = {β1, . . . , βp}. Consider the set of all p-tuples of paths

Λ = (Λ1, . . . ,Λp), where Λj is a lattice path between βj(start) and βj(finish), and
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Figure 1. A tuple of non-intersecting lattice paths as in Example 1

no two Λj intersect. A particular such p-tuple is shown in Figure 1. Such p-tuples
form an indexing set for the maximal faces of the simplicial complex Cv

u: to the
p-tuple Λ = (Λ1, . . . ,Λp) corresponds the maximal face Λ1 ∪ · · · ∪Λp ∪ (Rv \Nv):
in the degenerate case when Sv

u is empty (which happens only if u = v), there is
a unique maximal face, namely Rv \Nv.

Example 1. Let d = 14, n = 27,

v = (1, 2, 3, 4, 5, 10, 11, 12, 13, 18, 19, 20, 21, 22), and
u = (1, 4, 5, 9, 12, 13, 16, 17, 19, 22, 24, 25, 26, 27), so that

Sv
u = {(9, 3), (16, 11), (17, 10), (24, 21), (25, 20), (26, 18), (27, 2)} .

Figure 1 shows a particular tuple of non-intersecting lattice paths. 2

Consider now the subvariety of Av defined by the face ideal of the complex Cv
u.

It is a union of coordinate planes. There is one plane for each maximal face and
it is defined by the vanishing of the coordinates corresponding to the vertices in
the complement of that face. For a maximal face f corresponding to (Λ1, . . . ,Λp),
denote by mf the product, over all (r, c) in Nv\(Λ1 ∪ · · · ∪ Λp), of ε(r, c) := εr−εc.
It follows from Theorem 3 that the restriction [Xu]|v is the sum

∑
mf as f varies

over all maximal faces. The last assertion holds also in the degenerate case u = v:
then Sv

u is empty; Cv
u has only one maximal face, namely Rv \Nv; and

∑
mf is

the product over (r, c) in Nv of (εr − εc). In particular,

• If u = v = (1, 2, . . . , d), then Cv
u has only the empty face, and

∑
mf is

the product over (r, c) in Nv = Rv of (εr − εc).
• If u = v = (n−d+1, . . . , n), then the unique maximal face of Cv

u is f = Rv

and mf , being the product over an empty index set, equals 1.
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Example 2. This example is simple enough so we can easily draw all possible
tuples of non-intersecting lattice paths. Let d = 6, n = 13,

v = (1, 2, 3, 8, 9, 10), and u = (4, 6, 7, 10, 11, 13).
Then Sv

u = {(4, 3), (6, 2), (7, 1), (11, 9), (13, 8)}.
Figure 2 shows all the 5-tuples of non-intersecting lattice paths—there are 9 of
them. Writing ε(r, c) for εr − εc,

[Xu]|v = ε(11, 1)ε(11, 2)ε(11, 3)ε(12, 1)ε(12, 2)ε(12, 3)ε(13, 1)ε(13, 2)ε(13, 3)·
[ε(12, 9)ε(12, 10) + ε(13, 8)ε(12, 10) + ε(13, 8)ε(13, 9)] ·
[ε(5, 3) + ε(6, 2) + ε(7, 1)] .2

Figure 2. All the tuples of non-intersecting lattice paths as in Example 2

Thus the proof of the restriction formula is reduced to the combinatorial prob-
lem of establishing

(7)
∑

mf = E(u, v)

where E(u, v) stands for the expression (3). Whether this problem admits of an
elegant solution by means of a Lindstrom-Gessel-Viennot type argument we do
not know. What follows is an elementary argument based on induction.

Proceed by induction on d. The case d = 1 being easily verified, let d ≥ 2.
The strategy of the proof is this. In the first part, we work with

∑
mf and

express it in terms of “smaller”
∑

mf—those attached to simplicial complexes
Cv′

u′ for elements u′ ≥ v′ in I(d − 1, n). By the induction hypothesis, equality
(7) applies to these smaller

∑
mf , so that we get an expression for

∑
mf in

terms of E(u′, v′)—the precise expression is in (10) below. In the second part,
we will algebraically manipulate the expression (3) for E(u, v) to express it in
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Figure 3. Partitioning the maximal faces of Cv
u into S`

terms of E(u′, v′). The resulting expression will turn out to be the same as that
for

∑
mf obtained in the first part. This will finish the proof.

So first consider
∑

mf . Let r be the integer, 1 ≤ r ≤ d, such that ur−1 < vd ≤
ur. Write as before Sv

u = {β1, . . . , βp}. It is easy to see that

βp(finish) = (ud, vd), βp−1(finish) = (ud−1, vd), . . . ,

βp−d+r+1(finish) = (ur+1, vd);

furthermore, βp−d+r(finish) = (ur, vd) unless ur = vd.

Figure 3 depicts the situation.

Partition the set S of the p-tuples of paths (Λ1, . . . ,Λp) (those indexing the
maximal faces of Cv

u) into subsets S` indexed by sequences ` = (`r+1, . . . , `d) of
integers such that ur < `r+1 ≤ ur+1, ur+1 < `r+2 ≤ ur+2, . . . , ud−1 < `d ≤ ud:
the subset S` consists of all those in which the segment joining (`j , vd−1) and
(`j , vd) is part of the path Λp−d+j for every j, r + 1 ≤ j ≤ d. That the S` form a
partition of S is readily seen. Letting S` also denote the corresponding partition
of the maximal faces of Cv

u, we obtain

(8)
∑

mf =
∑

`

∑

f∈S`

mf
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For the moment, let us fix a certain `. Set u′ := (u1, . . . , ur−1, lr+1, . . . , ld)
and v′ := (v1, . . . , vd−1) (although u′ depends on `, we still write only u′ and
not u′(`)). Then u′ ≥ v′. We want to use the induction hypothesis to express∑

f∈S`
mf in terms of E(u′, v′). Towards this, we make two observations. First,

the factor
µud+1

n (vd) ·
∏

r≤i<d

µui+1
`i+1−1(vd)

is common to all the terms in
∑

f∈S`
mf . Second, the integer vd does not occur

as a row or column index if we restrict attention to the first d − 1 columns of
Figure 3 (which tells us that E(u′, v′) needs to be adjusted to take care of this).

Consider E(u′, v′)—this is the expression (3) with u and v replaced respectively
by u′ and v′. In the matrix whose determinant is the numerator of E(u′, v′), the
entry in position (i, j) where i ≤ r − 1 has ε(vd, vj) occurring as a factor—this
factor does not occur if i ≥ r. Denote by E(u′, v′; vd) the modified expression
where the factors ε(vd, vj) are taken out—more precisely, E(u′, v′; vd) :=

(9)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µu1+1
n (v1)
ε(vd, v1)

. . .
µu1+1

n (vj)
ε(vd, vj)

. . .
µu1+1

n (vd−1)
ε(vd, vd−1)

...
...

...
...

...

µ
ur−1+1
n (v1)
ε(vd, v1)

. . .
µ

ur−1+1
n (vj)
ε(vd, vj)

. . .
µ

ur−1+1
n (vd−1)
ε(vd, vd−1)

µ
lr+1+1
n (v1) . . . µ

lr+1+1
n (vj) . . . µ

lr+1+1
n (vd−1)

...
...

...
...

...

µld+1
n (v1) . . . µld+1

n (vj) . . . µld+1
n (vd−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ε(v2, v1) · (ε(v3, v1)ε(v3, v2)) · . . . · (ε(vd−1, v1) . . . ε(vd−1, vd−2))

Looking at Figure 3 and using the induction hypothesis, we get

(10)
∑

f∈S`

mf = E(u′, v′; vd) · µud+1
n (vd) ·

∏

r≤i<d

µui+1
`i+1−1(vd).

We are done with the first half of the proof. Namely, we are finished with
the “combinatorial side”

∑
mf of Equation (7). Next we turn to the “algebraic

side” E(u, v) and show that it too is a sum of terms indexed by the sequences `.
We show that the term corresponding to a sequence ` equals the right hand side
of (10). This clearly suffices to complete the proof.

By definition, E(u, v) is the expression (3). The entries in the last column of
the numerator vanish in rows i for 1 ≤ i ≤ r − 1 because ui + 1 ≤ ur−1 + 1 ≤ vd

and 0 = εvd
− εvd

occurs as a factor in µui+1
n (vd). We would like to kill also the
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entries in rows r through d− 1. To this end, subtract from row i, r ≤ i ≤ d− 1,
the multiple of row d by µui+1

ud
(vd). The entry in position (i, j) then becomes

µui+1
n (vj)− µui+1

ud
(vd)µud+1

n (vj) = µud+1
n (vj)

(
µui+1

ud
(vj)− µui+1

ud
(vd)

)
.

In particular, all the entries in the last column except the one on row d are 0.

The factor µud+1
n (vj) being now common to all the entries in column j, let us

take these factors out of every column. The resulting entries in the last column
are all zero except the one on row d which is 1. The numerator therefore reduces
to the determinant of the submatrix of the first d− 1 rows and columns.

Let us take the factors (εvd
− εv1), . . . , (εvd

− εvd−1
) out of the denominator

and distribute them thus: divide by (εvd
− εvj ) every entry in column j of the

determinant in the numerator. After these manipulations, expression (3) looks
like this:

(11)
d∏

j=1

µud+1
n (vj)

det(A)
ε(v2, v1) (ε(v3, v1)ε(v3, v2)) · · · (ε(vd−1, v1) . . . ε(vd−1, vd−2))

where A := (Aij) is the d− 1× d− 1 matrix whose entry at position (i, j) is

(12) Aij =
µui+1

ud
(vj)− µui+1

ud
(vd)

εvd
− εvj

.

Now apply the following row operations to the matrix A: subtract row r + 1
from row r, . . . , row d − 1 from row d − 2. To get a handle on the resulting
matrix—let us call it B—we use the following equation which is proved readily
by induction: for positive integers a ≤ e ≤ b, c, and f , we have

µa
b (c)− µa

b (f)
εf − εc

= µa+1
b (c) + µa+2

b (c)µa
a(f) + · · ·+ µe

b(c)µ
a
e−2(f)+

µe
b(c)− µe

b(f)
εf − εc

=

(
∑

a−1<`≤e−1

µ`+1
b (c) · µa

`−1(f)

)
+

µe
b(c)− µe

b(f)
εf − εc

Applying this to (12) for i such that r ≤ i ≤ d− 1 and e = ui+1 + 1, we get

µui+1
ud

(vj)− µui+1
ud

(vd)
εvd

− εvj

=

(
∑

ui<`i+1≤ui+1

µ
`i+1+1
ud (vj) · µui+1

`i+1−1(vd)

)
+

µ
ui+1+1
ud (vj)− µ

ui+1+1
ud (vd)

εvd
− εvj

where we have written `i+1 rather than just ` for the running index in the sum.
Note that the second term on the right is precisely the entry at position (i+1, j)
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of A for r ≤ i ≤ d− 2 and vanishes for i = d− 1. Thus the entry at position (i, j)
of the matrix B looks like this:

Bij =





µui+1
ud

(vj)
ε(vd, vj)

if i < r

∑
ui<`i+1≤ui+1

µ
li+1+1
ud (vj) · µui+1

`i+1−1(vd) if i ≥ r.

By the multilinearity of the determinant, we see that det(B) (which equals det(A),
since B was obtained from A by elementary row operations) equals the sum over
` = (`r+1, . . . , `d) of

(13)
∏

r≤i<d

µui+1
`i+1−1(vd) ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µu1+1
ud

(v1)
ε(vd, v1)

. . .
µu1+1

ud
(vj)

ε(vd, vj)
. . .

µu1+1
ud

(vd−1)
ε(vd, vd−1)

...
...

...
...

...

µ
ur−1+1
ud (v1)
ε(vd, v1)

. . .
µ

ur−1+1
ud (vj)
ε(vd, vj)

. . .
µ

ur−1+1
ud (vd−1)
ε(vd, vd−1)

µ
lr+1+1
ud (v1) . . . µ

lr+1+1
ud (vj) . . . µ

lr+1+1
ud (vd−1)

...
...

...
...

...

µld+1
ud

(v1) . . . µld+1
ud

(vj) . . . µld+1
ud

(vd−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Substitute this into equation (11). Multiplying the factor µud+1
n (vj), for 1 ≤ j ≤

d− 1, in equation (11) into all the entries in column j of the determinant in (13)
yields the determinant in the numerator of E(u′, v′; vd) in (9). It should now be
clear that E(u, v) is the sum over ` of the right side of (10), and the proof of the
restriction formula (Theorem 2) is finally over.

6. Gröbner degeneration computes restriction

The goal of this section is to state and prove Theorem 3 below, which was used
in the proof in §5 of the restriction formula (Theorem 2). As pointed out to us
by the referee, Theorem 3 is well known and can be deduced from results in the
literature.

The assumptions and notations of the previous sections are annulled now. Fix
a torus T := (C∗)m. Let Z be a non-singular complex projective variety of
dimension d on which there is an algebraic action of T with finitely many fixed
points. Then, by Bialynicki-Birula [1], Z admits an equivariant algebraic cell
decomposition, and around each T -fixed point there is a T -stable open subset U
of Z that is isomorphic to a T -module (the fixed point of course corresponds to
0 in the module).
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Let Y be a T -stable irreducible subvariety of Z, y a T -fixed point on Y , and
U ' Cd a T -stable open subset of Z containing y as above. Let X1, . . . , Xd be
coordinates on U that are eigenvectors for T—since y is an isolated fixed point, no
coordinate has trivial character. Choose some term order on the set of monomials
in the coordinates, and suppose that J is the initial ideal, with respect to this
order, of the ideal of functions on U vanishing on Y ∩ U .

Since J is a monomial ideal, it has a primary decomposition consisting of mono-
mial ideals. Let ∩p

i=1Ji be the intersection of the minimal primary components
(we are throwing away the embedded components). The radical pi of Ji is of the
form (Xa1i

1 , . . . , Xadi
d ) where each aji is either 0 or 1 (exactly dim Y of the aji

equal 0 for each i). The scheme M defined by ∩p
i=1Ji is the union ∪p

i=1Mi of the
schemes Mi defined by Ji. Let `i be the length of Rpi/JRpi = Rpi/JiRpi where
R := C[X1, . . . , Xd].

Theorem 3. With hypothesis and notation as above, the restriction to the fixed
point y of the equivariant cohomology class [Y ] of the subvariety Y in the equi-
variant integral cohomology ring of Z is given by

(14) [Y ]|y =
p∑

i=1

`i

d∏

j=1

χ
aji

j

where −χ1, . . . , −χd are respectively the characters of X1,. . . , Xd.

Proof : We thank the referee for indicating how the theorem can be deduced
as follows from known results. The restriction of the equivariant Chow class of
Y to the fixed point y factors through the restriction to the open set U . The
fact that the class of Y ∩ U and of M in the equivariant Chow ring of U are the
same and equal to the right hand side of (14) can be found in any number of
references under the heading of “equivariant Chow”, or “multidegree”, or “equi-
variant Hilbert polynomials”, or “equivariant multiplicity.” See, for example,
[11, Notes to Chapter 8]; the fact that the “multidegrees” in the above reference
are equivariant cohomology classes is asserted in Proposition 1.19 of [4], where
multidegrees are identified as being equivariant Chow classes. 2

7. Towards an equivariant Pieri formula

Recall, from [3, Eq. (9), p.146] for example, that the classical Pieri formula
gives a beautiful expression, as an integral linear combination of general Schubert
classes, for the product of a special Schubert class with a general Schubert class
in the ordinary cohomology ring of the Grassmannian. It seems like there ought
to be a similarly beautiful closed-form equivariant version that specializes to the
ordinary one. Unfortunately, this we do not yet have.
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All we want to do in this section is record an observation (see Proposition
below) that is a formal consequence of the following basic and well-known facts:
the injection of Equation (1); the restriction to a T -fixed point of an (equivariant)
Schubert class vanishes if the fixed point is not contained in the Schubert variety;
and the degree of a Schubert class equals the codimension of the Schubert variety.
Being a formal consequence, the observation holds for any generalized flag variety,
not just the Grassmannian. The point to note is that the right hand side of (15)
is in terms of restrictions, which, thanks to Theorem 2, we know how to compute
in the case of Grassmannians.

Let G be a complex semisimple algebraic group and Q a parabolic subgroup.
Let T be a maximal torus and B a Borel subgroup of G such that T ⊆ B ⊆ Q.
Let W denote the Weyl group of G with respect to T , and WQ the Weyl group
of (the Levi part of) Q with respect to T . The Schubert varieties in G/Q are by
definition the B-orbit closures for the action of B on G/Q by left multiplication.
They are naturally indexed by W/WQ. We use u, v, w, . . . to denote elements
of W/WQ; X(u), X(v), X(w), . . . denote the corresponding Schubert varieties;
[X(u)], [X(v)], [X(w)], . . . denote the corresponding equivariant Schubert classes.

The partial order on Schubert varieties by inclusion induces a partial order,
denoted ≤ , on W/WQ. Let cw

uv be the structure constants of the multiplication
of the equivariant integral cohomology ring of G/Q with the respect to the basis
of Schubert classes:

[X(u)] · [X(v)] =
∑
w

cw
uv[X(w)].

The proof of the following proposition is a straightforward induction argument
and so we omit it.

Proposition 4. (1) cw
uv = 0 unless w ≤ u, w ≤ v, and the codimensions are

such that codim X(u) + codim X(v) ≥ codim X(w).
(2) If w ≤ u and w ≤ v, then

(15) cw
uv =

∑
w=y0<...<yk

(−1)k · [X(u)]|yk
[X(v)]|yk

[X(yk)]|yk

· [X(yk)]|yk−1

[X(yk−1)]|yk−1

· · · · · [X(y1)]|y0

[X(y0)]|y0

where the sum is over all chains w = y0 < . . . < yk with yk ≤ u and
yk ≤ v; [X(u)]|yk

denotes the restriction of the Schubert class [X(u)] to
the T -fixed point indexed by yk. 2
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