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Examining theories with an extended strong interaction sector such as axigluons or flavour universal colorons, we find

that the constraints obtained from the current data on tt̄ production at the Tevatron are in the range of ∼ O TeV

and thus competitive with those obtained from the dijet data. We point out that for large axigluon/coloron masses,

the limits on the coloron mass may be different than those for the axigluon even for cot ξ = 1. We also compute the

expected forward-backward asymmetry for the case of the axigluons which would allow it to be discriminated against

the SM as also the colorons. We further find that at the LHC, the signal should be visible in the tt̄ invariant mass

spectrum for a wide range of axigluon and coloron masses that are still allowed. We point out how top polarisation

may be used to further discriminate the axigluon and coloron case from the SM as well as from each other.

1. INTRODUCTION

The importance of the study of top quark physics at the current stage in Particle Physics can hardly be overem-

phasized. Apart from its crucial role in the test of the Standard Model (SM) at the loop level, the closeness of the

top mass to the Electroweak Symmetry Breaking (EWSB) scale accord it a special role in virtually any alternative

to the Higgs mechanism. Thus, the production of top quarks at the colliders can be a low energy probe of the high

scale physics that might be triggering the EWSB. Already at the Tevatron, this is a topic of much attention [1, 2]

and a top factory such as the LHC would provide valuable information on the SM as well as physics beyond it [3].

In our work [4], we revisit the issue of strongly interacting spin one gauge bosons and their contribution to tt̄

production at hadronic colliders. We consider two classes of models : 1) Flavour universal colorons which are present

in theories of extended color gauge theories and 2) Axigluons which exist in theories of chiral colour. Although neither

of these have preferentially larger couplings to the tt̄ pair, unlike Kaluza Klein gluons [5] or extended technicolour

models, we demonstrate that even the current data on tt̄ production yield very competitive constraints on the masses

and coupling of these gauge bosons.

2. Axigluon and Flavour Universal Coloron Models

Arising in unifiable models of chiral colour [6, 7], Axigluons are massive, strongly interacting gauge bosons with

an axial vector coupling 1

2
gsγµγ5λ

a, where λa are the usual Gell-Mann matrices. In the simplest models, a high

scale strong interaction gauge group of SU(3)L × SU(3)R is broken to the familiar SU(3)c ≡ SU(3)L+R, resulting

in massive states with the aforementioned coupling. This carries through for all generalisations of chiral color.

Embedding this in a unified group implies mA ∼ 250 GeV and hence was searched for very actively at the Tevatron.

Flavour universal Colorons [8] arise in models with an extended colour gauge group. The latter were part of the

general effort to understand the mechanism of EW symmetry breaking and the large mass of the top in the same

framework. With a top quark condensate enhancing mt as well as driving EWSB, specific examples of this idea are

topcolor [9, 10] and topcolor assisted technicolor [11]. The colour group at the high scale is SU(3)I ×SU(3)II—both

being vector-like— which then breaks to SU(3)c giving rise to the massive ‘colorons’. Variants of the model essentially

differ in the way generations couple to the colorons. The one we consider is the simplest and is characeterised by

a universal coupling (1

2
gs cot ξγµλa) to all the quarks. These models can be be grafted into a single Higgs doublet

model and has a naturally heavy top. Understandably, EW precision measurements restrict the model in the

mass-coupling (MC–cot ξ) plane.
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3. PHENOMENOLOGY AT THE TEVATRON

The broad, strongly interacting axigluon and coloron resonances, A, C, can be copiously produced at a hadronic

collider and thus could show up as an additional, resonant contribution to the dijet production cross-section (qq̄ →
A∗(C∗) → q′q̄′). At the Tevatron, the dominance of the qq̄ flux implies that these contributions can be quite large.

At the time of writing the paper [4], the best available limits on the axigluon and coloron masses came from the dijet

sample [12, 13, 14] which rules out an axigluon of mass less1 than 980 GeV. The same limit is quoted for coloron

for cot ξ = 1 for the flavour universal case. In the approximation of neglecting the width and interference with

background, the limit on coloron masses can get only stricter with increasing cot ξ.

Note, though, that the axigluon and coloron cases differ in a crucial manner: while the s-channel coloron exchange

amplitude can interfere with a similar QCD amplitude (for simplicity, let us consider q 6= q′), this is nonexistent for

the axigluon. For small masses, the resonance is narrow; with the difference being negligible, the limits for axigluon

and coloron with cot ξ = 1 would be nearly identical. However, as we will see shortly, the approximation may not

be justified for higher mass resonances and it would be interesting to examine how the limits obtained from dijet

analysis are affected.

In this work, we are interested in tt̄ production. At the tree level, the presence of either A or C can affect tt̄

production only as far as the qq̄-initiated subprocess is concerned, leaving the gg-initiated subprocess unaltered. We

refrain from reproducing the expressions for differential cross-sections which are available in Ref. [4].
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Figure 1: (a) A comparison of the deviation of the total tt̄ cross section caused by the presence of an axigluon (solid line) with

the resonant production followed by decay. (b) σ(tt̄) at the Tevatron as a function of the axigluon (coloron) mass. The solid

(green) line corresponds to the axigluon case. The short- (blue) and long-dashed (red) lines correspond to the flavour universal

coloron for cot ξ = 1 (2) respectively. The horizontal lines correspond to the CDF central value and the 95% confidence level

band [1]. CTEQ-6L1 parton distributions evaluated at Q = mt were used alongwith the appropriate K–factor [15].

The widths are substantial for either of A/C capable of decaying into a top-pair. Furthermore, the partial widths

into a top-pair are different even for cot ξ = 1. The large widths imply that the (narrow-width) approximation

of resonant production and subsequent decay is no longer a good one. This is borne out by Fig.1a, wherein we

compare the narrow-width contribution to tt̄ production, viz. σ(A) × BR(A → tt̄) with the exact result, namely

δσ ≡ σA(tt̄)− σSM (tt̄). The effect is indeed substantial. For the dijet case the effect will be smaller, but may still be

non-negligible and hence might affect the limits on axigluon/coloron masses obtained from the dijet data. Further,

1At this conference newer limits have been quoted. These are not included in this report.
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it is to be noted that the axial coupling of the A gives rise to a forward-backward asymmetry for the t quark [16].

For colorons, of course, no such asymmetry can exist.

In Figure 1b, the results of the tt̄ cross-sections expected fot the coloron/axigluons at the Tevatron are shown as

a function of the mass of the boson and for different values of cot ξ. A few facts are to be noted.

• For axigluon case due to the different parity of the SM amplitude and the axigluon amplitude, the interference

term does not contribute to the total rate.

• For coloron the intereference term contributes and also changes sign as qq̄ subprocess energy passes through

MC , depending on cot ξ.

• For masses of massive gluon above 2mt not just the inteference term but the squared contribution of the new

amplitude are different for coloron and axigluon.

The data indicated by the horizontal lines in Figure 1b and taken from [1] corresponds to:

σ(p + p̄ → t + t̄ + X ;
√

s = 1.96 TeV) = 7.3 ± 0.5 (stat) ± 0.6 (syst)± 0.4 (lum) pb.

Using these, we get for the axigluon MA > 910 GeV at 95% C.L., whereas for the coloron, for cot ξ = 1, 800 <

MC < 895 and MC > 1960 are allowed at the same C.L. These limits are quite competitive with those available

from the dijet analysis and are in fact different for the coloron and the axigluon even for cot ξ = 1. Furthermore,

the coloron mass limits depend on cot ξ non-monotonically (a consequence of the interference term), as is evident in

both Figs. 1b&2a, the second displaying the exclusion region for the coloron in the cot ξ–mC plane. Note that the
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Figure 2: Left panel gives the exclusion region in the cot ξ – mC plane using the tt̄ data at Tevatron [1]. The solid curve shows

the constraint imposed by the ρ parameter mC/ cot ξ >
∼ 450. The right panel shows the FB asymmetry in tt̄ production at

the LHC as a function of the axigluon mass

consistency of certain regions in the paramter space with the data cannot be interpreted as evidence for the colorons

as the same data are consistent with the SM as well.

The parity violating axigluon coupling would also lead to a forward-backward asymmetry at the Tevatron as shown

in Figure 2b. Two things are to be noted here. Our calculation corrects a mistake in Ref. [16]. Secondly for the masses

accessible at the Tevatron these are quite sizable and substantially larger than the the one expected due to QCD

radiative corrections [17]. This agrees with the detailed comparisons of the latter with those expected for axigluon

contribution performed in Ref. [18], which appeared soon after our work. In fact the asymmetry caused by the

axigluon resonance will have a different dependence on the phase space variabels from those caused by QCD effects.

With this, one could in fact use these asymmetries (or absence thereof) to obtain constraints on the axigluons.
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4. PHENOMENOLOGY AT THE LHC

With the Tevatron pushing the limits on the axigluon and coloron masses higher, it is natural to investigate the

prospects at the LHC. As gluon fluxes would dominate over qq̄, it is imperative to look at differential distributions,

in particular that in the invariant mass of the tt̄ pair. We see from the right panel of Figure3 that, for the first peak,

assuming even only a 10% efficiency, there will be about ∼ 104 events with 10 fb−1 and thus a good chance of being

able to see them at the LHC. For such masses, the effect of mt on the decay width is negligible and, for cot ξ = 1,

the differential cross sections are virtually the same at the resonance.
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Figure 3: The expected mtt̄ spectrum at the LHC in presence of either axigluons or colorons of a specified mass, along with

the SM expectations.

Unfortunately, LHC being a pp machine, no FB asymmetry can be constructed for the axigluon case. However,

the correlation between helicities of t and t̄ carry the information on the heavy gluon contribution. Instead one

can construct R∆(mtt) ≡
[

∫ mtt+∆

mtt−∆
dmtt

dσ
−

d mtt

] [

∫ mtt+∆

mtt−∆
dmtt

dσ+

d mtt

]−1

, where σ± refer to the cross sections for

the product of the t and t̄ helicities to be ±1 respectively. These are, in essence, like the spin-spin correlation

measurements which have been suggested for the study of CP/spin properties of a resonance which can decay into

a tt̄ [19]. In fact, this can then provide an additional handle to distinguish between the two cases at hand.

1

10

10 2

10 3

1 1.5 2 2.5 3 3.5 4

R
 ∆

 (
m

tt)

mtt [TeV]

√s = 14 TeV

CTEQ-6L1

∆ = mtt / 10

1 1.5 2 2.5 3 3.5 4

mtt [TeV]

∆ = mtt / 5

SM
Axigluon
Coloron : cot ξ = 1
Coloron : cot ξ = 2

Figure 4: The ratio of the partial cross-sections R∆(mtt = mBoson) as a function of the boson mass. The two panels correspond

to different values of ∆ .
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5. CONCLUSIONS

In conclusion, constraints on the axigluons and colorons obtained from tt̄ production at the Tevatron are indeed

competetive with those from dijets. The forward-backward asymmetry at the Tevatron can help constrain the

axigluon further. Nature of interference term with the SM amplitude are different for axigluon and coloron cases.

The limits obtained from tt̄ production on coloron masses depend on cot ξ non monotonically. The zero width

approximation too crude at larger masses and mass limits obtained for dijets for coloron may not be the same as that

of an axigluon, even for cot ξ = 1. At the LHC differential distribution in mtt̄ can show up evidence for colorons and

axigluons. Their effect is measurable. Further, a variable similar to the spin spin correlations can help distinguish

between the two further.

Acknowledgments

This work was in part supported under the Indo French Centre for Promotion of Advanced Research Project

3004-B and project number SR/S2/RFHEP-05/2006 of the Department of Science and Technology (DST), India, as

well as a grant of J.C. Bose Fellowship to R.G. from the DST.

References

[1] S. Cabrera [CDF and D0 Collaboration], FERMILAB-CONF-06-228-E, Jul 2006. 4pp.

[2] K. Lannon [CDF Collaboration], arXiv:hep-ex/0612009.

[3] M. Beneke et al., arXiv:hep-ph/0003033 and references therein.

[4] D. Choudhury, R.M. Godbole, R.K. Singh and K. Wagh, Phys. Lett. 657 (2007) 69.

[5] See for example, M. Guchait, F. Mahmoudi and K. Sridhar, arXiv:hep-ph/0703060.

[6] P. H. Frampton and S. L. Glashow, Phys. Lett. B 190, 157 (1987).

[7] P. H. Frampton and S. L. Glashow, Phys. Rev. Lett. 58, 2168 (1987).

[8] R. S. Chivukula, A. G. Cohen and E. H. Simmons, Phys. Lett. B 380, 92 (1996) [arXiv:hep-ph/9603311].

[9] C. T. Hill, Phys. Lett. B 266, 419 (1991).

[10] C. T. Hill and S. J. Parke, Phys. Rev. D 49, 4454 (1994) [arXiv:hep-ph/9312324].

[11] C. T. Hill, Phys. Lett. B 345 (1995) 483 [arXiv:hep-ph/9411426].

[12] F. Abe et al. [CDF Collaboration], Phys. Rev. D 55, 5263 (1997) [arXiv:hep-ex/9702004].

[13] M. P. Giordani [CDF and D0 Collaborations], Eur. Phys. J. C 33, S785 (2004).

[14] For more details, see, W. M. Yao et al. [Particle Data Group], J. Phys. G 33 (2006) 1.

[15] J. M. Campbell, J. W. Huston and W. J. Stirling, Rept. Prog. Phys. 70 (2007) 89 [arXiv:hep-ph/0611148].

[16] L. M. Sehgal and M. Wanninger, Phys. Lett. B 200 (1988) 211.

[17] J. H. Kuhn and G. Rodrigo, Phys. Rev. Lett. 81, 49 (1998) [arXiv:hep-ph/9802268]. J. H. Kuhn and G. Rodrigo,

Phys. Rev. D 59, 054017 (1999) [arXiv:hep-ph/9807420].

[18] O. Antunano, J. H. Kuhn and G. Rodrigo, Phys. Rev. D bf 77, 014003 (2008).

[19] K. Smolek and V. Simak, Czech. J. Phys. 54 (2004) A451.

5

http://arXiv.org/abs/hep-ex/0612009
http://arXiv.org/abs/hep-ph/0003033
http://arXiv.org/abs/hep-ph/0703060
http://arXiv.org/abs/hep-ph/9603311
http://arXiv.org/abs/hep-ph/9312324
http://arXiv.org/abs/hep-ph/9411426
http://arXiv.org/abs/hep-ex/9702004
http://arXiv.org/abs/hep-ph/0611148
http://arXiv.org/abs/hep-ph/9802268
http://arXiv.org/abs/hep-ph/9807420

	INTRODUCTION
	Axigluon and Flavour Universal Coloron Models
	PHENOMENOLOGY AT THE TEVATRON
	PHENOMENOLOGY AT THE LHC
	CONCLUSIONS
	Acknowledgments
	References

