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Optimization Problems in Elementary Geometry

A K Mallik

Optimization, a principle of nature and engineer-
ing design, in real life problems is normally achi-
eved by using numerical methods. In this article
we concentrate on some optimization problems
in elementary geometry and Newtonian mechan-
ics. These include Heron’s problem, Fermat’s
principle, Brachistochrone problems, Fagano’s

problem, geodesics on the surface of a parallele-

R . A K Mallik is a Professor
piped, Fermat/Steiner problem, Kakeya problem

at IIT, Kanpur. His

and the isoperimetric problem. Some of these are research interests are
very old and historically famous problems, a few mechanical vibration,
of which are still unresolved. Close connection vibration control,

. . nonlinear vibration and
between Euclidean geometry and Newtonian me- . .
. . chaos in mechanical

chanics is revealed by the methods used to solve systems, kinematics and
some of these problems. Examples are included dynamics of machinery.
to show how some problems of analysis or alge-
bra can be solved by using the results of these

geometrical optimization problems.

Introduction

Optimization is a way of life. We always try to minimize

the effort (cost) and/or maximize the benefit (profit).

Nature too, through its strategy of random mutation

and survival of the fittest, is optimizing the biological

functions. Of late, genetic algorithm (GA), is trying to

mimic this natural evolutionary process to solve some
optimization problems. Optimization has become an
important tool for engineering design. But much earlier,
optimization was thought to be the guiding principle of
formulation of natural physical processes. Pierre Louis

Moreau de Maupertius (1698 — 1759), in his speech in ~ Keywords
1746 as the President of The Academy of Sciences in Brachistochrone problem, Fer-

] A o ) ) mat, Steiner problem, Kakeya
Berlin, alluded to this principle in a metaphysical way  proplem, geodesic.
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Box 1.

“The description of right
lines and circles, upon
which geometry is based,
belongs to mechanics.
Geometry does not teach
us how to draw these lines,
but requires them to be

drawn.”’
— Isaac Newton

It may be worthwhile to
remember that when we
draw a straight line using
a straight edge, we merely
copy an exact straight line

and do not generate one.

— he talked of ‘God’s intention to regulate physical phe-
nomena by a principle of perfection’. He was ridiculed
by Voltaire, but finally in the hands of great geniuses,
like Euler, Lagrange and Hamilton, ‘The Principle of
Least Action’ was established. In the process, a new
branch of Mathematics, known as Calculus of Variations
was born. This powerful mathematical tool has been ap-
plied successfully in optics, electrodynamics, mechanics
and other branches of physics. In this article we will re-
strict ourselves to optimization problems in elementary
(Euclidean) geometry only. Due to close connections be-
tween geometry and Newtonian mechanics, occasionally
we will digress to some problems in mechanics (see
Box 1).

A large number of interesting and useful optimization
problems have been posed and solved in the area of
Euclidean geometry. If the existence of a unique so-
lution is assumed, then a direct solution can often be
found. But the risk of such a method, in case no such
solution exists, is that by following perfectly valid math-
ematical arguments one can land in nonsense. The only
mistake is the assumption of the existence of the solu-
tion. This was first pointed out by Weierstrass, one of
the most rigorous mathematicians.

Let us start with a trivial problem. What is the maxi-
mum possible area of a triangle with two sides of given
length, say a and b7 By denoting the angle between the
two sides as 0, we can write the area as (1/2)absind.
Therefore, the answer is (1/2)ab and the two given sides
are at 90° to each other. For any other angle, the area
will be less than (1/2)ab.

Let us now consider some classical optimization prob-
lems in geometry and physics.
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Heron’s Problem: Extremum Properties of Light
Rays — The Law of Reflection

Referring to Figure 1, say a ray of light starting from the
point A has to reach the point B via a reflecting surface
(the mirror M), then where should it meet M? According
to Heron, it should meet the mirror at a point P such
that the distance AP + PB is minimum, because light
travels along the shortest path. The point P is obtained
as follows: Join the point A with the mirror image of
the point B, i.e., B’ and P is the point of intersection of
AB’ with the mirror M. It is quite trivial to prove that
AP + PB = AB’. For any other point P’ on the mirror,
AP’ + P'B = AP’+ P'B’, which is the broken path from
A to B’ and consequently greater than the straight path
AB’. From Figure 1, it is simple to see that all the
angles indicated by 6 are equal and this proves the law
of reflection which states that the angle of incidence is
equal to the angle of reflection, both being defined by

((/2) = 9).

Snell’s Law of Refraction and Fermat’s Principle

When a light ray meets an interface separating two dif-
ferent media 1 and 2, it is seen that the ray bends (see
Figure 2). Thus starting from the point A, the light
ray reaches the point B along the broken path which is
obviously not the shortest path from A to B. Fermat
conjectured that the light travels along the path of least
time.

Fermat
conjectured that
the light travels
along the path of
least time.

Figure 1.
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Figure 2.

Let the ray from A meet the interface I at the point P in
order to reach the point B in least time. The distances
of the interface from the points A and B are indicated
respectively, by hy and hy. Let the speed of light in
media 1 and 2 be vy and vq, respectively. Referring to
Figure 2, the total time of travel can be written as

h? + 22 h2 4 (d — z)?
R R L RN
U1 V2

For T' to be minimum, setting % = 0 one gets after

simplification
sin 61 sin 65

- 1)

U1 %]

or,
sin 04 v

_ = — = n(constant). (2)

sin 0 Vg
Equation (2) is known as Snell’s law (obtained exper-
imentally). It may be pointed out that without any
change of medium (during reflection), the shortest path
and the path of least time are identical. It is now known
that Fermat’s principle of shortest time path should ac-
tually be modified as the stationary-time path. This
means the path where a little change in it leaves the
time of travel unaltered (implying both maximum and
minimum).
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Brachistochrone of (Johann) Bernoulli

In the last decade of the seventeenth century, Bernoulli
posed the following problem. Consider two points A and
B at different levels (see Figure 3). A smooth particle
slides down a curve in the vertical plane containing A
and B under the action of gravity starting from rest at
A. Obtain the shape of the curve for which the time of
descent is minimum. He solved the problem just using
Fermat’s principle discussed above (see Box 2). At a
depth y below the point, the speed of the particle is
v = v/2gy, where g is the acceleration due to gravity.
Considering the depth from A to B as consisting of a
large number of layers, where the speed of the particle
is different in each layer, to minimize the time of travel
this bending should follow (1). In other words,

sin 0
= constant
v
Cos
or ¢ _ constant, say ci, (3)
v

where ¢ is the angle made by the velocity vector (tan-
gent to the path) with the z—axis. So, the differential
equation of the required curve is easily obtained, using
(3) and substituting for v, as

d —
- tan ¢ = u, (4)
dx Yy

where ¢ = 1/(2¢% g).

A

Y‘!

Box 2.

Bernoulli was so proud of
solving the brachisto
(minimum) chrone (time)
problem that he chal-
lenged Newton to solve it
within six months. New-
ton said “I do not want to
be dunned and teased by
foreigners about math-
ematical things’’ and
solved the problem in a
few days. He published
the result anonymously.
Bernoulli, a follower and
admirer of Leibniz, did
not like Newton. For
once, even Bernoulli paid
his tribute to Newton by
saying “Lion is known by
his paws.”’

Figure 3.
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Figure 4.

Figure 5.
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The nonlinear differential equation can be solved by sub-
stituting
y = csin® a, (5)

when (4) yields
dz = ¢(1 — cos 2a)da. (6)

For the point A, x = 0 and y = 0 (which implies a = 0).
Integrating (6) and using this fact, finally one gets

r = a(f — sin §),
y=a(l—cosp),
a=c/2, f=2a. (7)

Equation (7) represents a cycloid which is generated by
a point on the rim of a circular disc of radius a rolling
on a flat surface (see Figure 4). The name cycloid was
coined by Galileo (see Box 3).

Huygens had earlier shown that a particle rolling down a
cycloid (starting from rest) has another curious feature:
the time of descent up to the lowest point (B in Figure
5) is independent of the starting point, i.e. the time of
descent to B is the same from A; or Ay or Az and so
on. So he named it tauto(same)chrone. By noting that
the involute of a cycloid is another cycloid, he designed
a pendulum whose bob was constrained to move along
a cycloid (by providing cycloidal cheeks — see Figure 6)
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Box 3.

Galileo, in his last book, reported the quadrant of a circle passing through A and B
as the path having the shortest time of descent (see Figure A) among all the series of
chords along the circle passing through A and B. Towards this end, he first showed that
a particle, starting from rest, takes the same time (T') to reach the point B along the
inclined planes AB and A’B for all values of #. This can be easily established as the

length A'B = 2R sin (% — %) and the acceleration along A'B is gsin (% — %) . Therefore,

T = 24/R/g is independent of 6. Then he showed that the time taken by the particle,
starting from A, following two inclined planes AA’ and then A’B (i.e., the broken path
AA'B) is less than 7. Thereafter, with some fallacious arguments he reached the con-
clusion that if the path is continuously broken along the circle, the time of descent will
be least. It can be shown that the time of descent along the quadrant of the circle comes
out approximately 1.85414/R/g, where R is the radius of the circle. If the points A and
B are really joined by a cycloid (the correct brachistochrone of Bernoulli), then the time
of descent turns out as 1.8257,/R/g. So, the quadrant of a circle as argued by Galileo

has only 1.56% error!

(n/4-0/2)

Figure A.

(m/4-6/2)

and consequently its time period was independent of the
amplitude of oscillation (unlike in a simple pendulum,
where the bob moves along a circle).

Fagano’s Problem

To inscribe, in a given acute-angled triangle, the trian-
gle of minimum perimeter. First we discuss the direct
solution assuming its unique existence. The solution is
in two steps.

First Step: Let ABC be the given acute-angled triangle
(Figure 7). We consider a specified point D on the side
BC. We would like to determine the points E (on AC)
and F (on AB), such that for the given point D, the
perimeter of the triangle DEF is minimum. Towards

B

Figure 6. (top).
Figure 7. (bottom).
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Figure 8.

this end, we draw perpendiculars from the point D on
to the sides AB and AC and extend these perpendicu-
lars up to D” and D', respectively, so that AB and AC
become bisectors of DD and DD’ (see Figure 8). Join
D'D” and let this line intersect AC at the required point
E and AB at F. It is easy to see that the perimeter of
the triangle DEF is equal to D’'D”.

For any other choice, like E; (on AC) and F; (on AB),
the perimeter of the triangle DE;F; is given by the bro-
ken distance D'E;F; D” and is obviously more than that
of the triangle DEF.

Second Step: In this step, the point D is so chosen
that the distance D'D” is minimized. Towards this end,
we first note that /ZD”AD’ = 2 /A = a given quantity,
and AD’ = AD = AD”. So for the base of the isosceles
triangle AD'D” (= D”D’) with a given vertex ZD"AD’,
to be minimum, the sides AD”= AD’(= AD) should be
minimum. Now, for AD to be minimum, D must be the
foot of the altitude from the vertex A.

In the first step, we could have taken an arbitrary point
E (on AC) or F (on AB) and in the second step, these
would have turned out to be the feet of the altitudes
drawn from B and C, respectively. If the solution is
unique, then the inscribed triangle (DEF) of minimum
perimeter is obviously obtained by joining the feet of the
three altitudes.
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Schwarz’s Proof

Schwarz posed the problem as to prove that for an acute-
angled triangle ABC, the altitude triangle PQR has the
minimum perimeter amongst all the inscribed triangles
(see Figure 9).

It is easy to see that the quadrilaterals OQAR, OPCQ
and ORBP are all cyclic quadrilaterals. Therefore,

L(RQA =90°—ZLOQR = 90°— LOAR = /B and similarly
(PQC = /B,

or, ZRQA = /PQC.
Similarly, /ZRPB = ZQPC and ZQRA = /PRB.

Thus a light ray starting from P returns to P after being
reflected successively at Q and R with the sides of the
triangle ABC acting as mirrors.

Consider two inscribed triangles one of which is the alti-
tude triangle PQR (see Figure 10) and five successive re-
flections explained in the figure. After all the reflections
the side BC becomes parallel to its original orientation.
Therefore, the straight lines PP’ and UU’ are of equal
length. It is readily seen that the distance PP’ is equal
to twice the perimeter of the altitude triangle, whereas
twice the perimeter of the other triangle is given by the
zigzag length UU’. Hence the perimeter of the altitude
triangle is minimum.

It can be shown that the perimeter of the altitude trian-
gle is less than twice the shortest altitude. One may ask
what happens to this minimum property of the altitude
triangle if the original triangle ABC is an obtuse-angled
triangle (see Figure 11). In this case, the perimeter of
the altitude triangle is more than twice of the shortest
altitude (BQ in the figure).

It can be shown that, in this case, for the altitude trian-

-
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Figure 11.

Figure 12.

Y,

gle the expression p + ¢ — r attains a stationary value,
where p, ¢ and r represent the sides of the triangle PQR
(P, Q and R are three points on the sides (if necessary
extended)) with  opposite to the obtuse angle.

Minimum Path within a Quadrilateral

Consider a quadrilateral ABCD (Figure 12) and a given
point p on one of the sides AB. We have to determine the
shortest path starting from p and returning to p, touch-
ing all the sides of the quadrilateral once. In words,
one can pose the problem as if there is a common lawn
ABCD and a house at p. Where should the other three
houses ¢, » and s on the other three sides be located so
that the brick path joining the houses will be of mini-
mum length?

The solution can be obtained by reflecting the quadrilat-
eral successively on sides AD, DC and CB as explained
in Figure 13. Join p with its final reflected position (p3)
and obtain ¢, » and s by noting the points of intersection
of pps with the different (reflected) sides.

Depending on the shape of the original quadrilateral, it
may happen that the line pps may not intersect the line
BC (see Figure 14). In that case the path is via the
corner C as shown in the figure.

Geodesics on the Surface of a Parallelepiped

The shortest path between two points on a surface (along
the surface) is known as geodesic. Obviously, for a plane

570
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surface the geodesic is the line joining the two points. A
rectangular parallelepiped consists of six different plane
surfaces. Here the geodesic between two points lying
on two different surfaces can be counter-intuitive. Geo-
desics, of course, will be a combination of a number of
straight lines lying on different surfaces. Here we discuss
three popular problems.

Problem 1: Referring to Figure 15, we consider a room
of dimensions shown. On the centerlines of the two op-
posite vertical faces L indicates a lizard and I indicates
an insect. The lizard is 1m below the ceiling and the
insect is 1m above the floor. What is the length of the
minimum path that the lizard has to cover to reach the
insect? The lizard can travel on all faces.

Figure 13 (top).
Figure 14 (bottom).

-
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Figure 15 (top-left).
Figure 16 (top-right).
Figure 17 (bottom-left).

The most common (and wrong) answer is 40m. To get
the correct answer we have to unfold different surfaces
along edges to obtain a flat picture. This unfolding (in
the parlance of engineering drawing — development) can
be done in various ways. The geodesic is obtained by the
unfolding shown in Figure 16. The path of the lizard is
obtained by folding as shown in Figure 17. One should
note that the lizard has to use five of the six faces. Ob-
viously there is another symmetric path using the back
vertical face instead of the front one. The length of the
geodesic is easily seen to be v322 + 202 = 37.736 m.

By using four surfaces the lizard can find a path which is
longer than 37.736 m but shorter than 40 m (using only
three surfaces). Here we leave two similar problems for
the readers to try.

Problem 2: Note that the geodesic is defined for two
given end points on the surfaces of the room. Suppose
one of these is given as the corner D (Figure 15). The
length of the geodesic then depends on the choice of
the other point. Determine this other point so that the
length of the geodesic is maximum. What is this maxi-
mum value? (The other end is not the point F and the
maximum length is more than v/1300m.)
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Problem 3: If one is free to choose both the end points,
then what is the maximum possible length of the geo-
desic? (It is more than 40 m.)

Fermat/Steiner Problem

Within an acute-angled triangle ABC!, determine the
point P such that PA+PB+PC is minimum. In the
seventeenth century Fermat posed this problem to Tor-
ricelli, who solved it in more than one ways. The same
problem was again discussed by Steiner in the nineteenth
century.

First we assume that a unique solution exists. Referring
to Figure 18, we consider an inside point P. Now rotate
the triangle APC about the point A as a rigid body
through 60° in the counter-clockwise direction as shown,
when the point C goes to C’ and P goes to P’. The zigzag
path from B to C’ is

BP + PP’ + P'C' = BP + PA 4+ PC
(since the triangle APP’ is equilateral).

Thus the required sum is minimum when the zigzag path
becomes straight. Note that the location of the point C’
is independent of the choice of the point P. For the path
BPP'C to be straight, the angle ZAPB = 120° (since
/APP’ = 60°). Instead of rotating the triangle APC
about A, we could have rotated the triangle BPA about
B or the triangle

CPB about C. Then in the same way, one would reach
the conclusion that, at the required point P the sides BC
and AC also subtend an angle 120°. Thus, the point P is
located so that all the sides of the triangle ABC subtend
an angle 120° at P. Though we started with an acute-
angled triangle, the method explained above clearly tells
that the solution is valid so long as all the angles of the
triangle are less than 120°. If the angle at A is more
than 120°, then the point C' comes below the line AB.

"In fact, it is enough if each
angle of the triangle is less than

1200.
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Figure 18 (top-left).
Figure 19 (top-right).
Figure 20 (bottom-left).

If any of the angle of the triangle is equal to or more
than 120°, then the point P is identical with the vertex
containing this obtuse angle. Figures 19 and 20 show
two easy ways of locating the point P geometrically. In
Figure 19, ABD and ACE are equilateral triangles and P
is at the intersection of BE and CD. In Figure 21, ACX
is an equilateral triangle and P is at the intersection of
BX and the circumcircle of ACX.

An alternative proof and solution to the above problem
is based on Viviani’s theorem, which states that in an
equilateral triangle, the sum of the distances of an inside
point from the three sides is the same for all the points.
This theorem can be proved as follows. Referring to
Figure 22, for the equilateral triangle PQR of side s, its
area A can be written as

A = AQOR + AROP + APOQ
1
_ (§> s (OA + OB + 0C).

Therefore, OA + OB + OC = (2A/s), a constant inde-
pendent of the location of O.
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Now for the Fermat /Steiner problem, consider the acute- c P
angled triangle ABC (Figure 21). The point O, for OA
+ OB + OC to be minimum, should be chosen such that
perpendiculars drawn to OA, OB and OC constitutes an
equilateral triangle (PQR). This implies that the sides
AB, AC and BC subtend 120° at O. The last statement
is obvious if one notices the cyclic quadrilaterals OAQC,
OBPC and OARB. The minimum property of the point
O can be proved as follows. Figure 21.

If O1 be another point inside the triangle ABC, then let
01 Ay, O1 By and Oy Cj be the three perpendiculars on
the sides of the equilateral triangle from O;, then

A0, < A0, B0, B0y, C0;, < COy

or A;0;+B10O;+Ci0; < AO; 4+ BO; + COy

since all equalities cannot be valid simultaneously. Now,
from Viviani’s theorem

OA + OB+ 0OC = 01A1 -+ 01B1 + 0101 <
O01A+0,B+0,C.
Solution with a Mechanics Flavour (Leibniz)

Place the triangle ABC on a horizontal table (see Figure
22). Drill holes on the table at the three vertices A, B

Figure 22.
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B

Figure 23.

Figure 24.

A

0

and C. Through these holes hang three equal weights
(W) by tying to strings. The free ends of the strings
are tied in a knot. Place the knot on the table. When
the system comes to equilibrium, the knot occupies the
desired location P. The gravitational potential energy
(PE) of the system (with the table as the datum) is

where Ly, Ly and L3 are the lengths of the strings pass-
ing, respectively, through A, B and C. Since at equi-
librium the potential energy is minimum, (PA + PB +
PC) will be minimum. Now as three equal forces (W),
acting at the point P, are in equilibrium, they must be
at 120° to one another. Thus all the sides of the triangle
subtend 120° at the point P.

Steiner Points for Three Locations

We have just seen that for three locations (forming a
triangle with no angle greater than 120°) to be inter-
connected by road or cable network, maximum saving
can be achieved by creating a virtual hub at the point P
(see Figure 23). Such virtual hub locations where three
lines meet at lines 120° are called Steiner points. If the
three locations are interconnected directly (e.g., AB +
BC in Figure 24), then the total minimum of all such
direct connections is called the spanning length. The
total length of interconnections when minimized using
Steiner points (e.g., PA + PB + PC in Figure 23) is
called the Steiner length. For three locations at the ver-
tices of an equilateral triangle, it is easily seen that the
Steiner ratio, defined as,

3
- = £ ~ 0.866
Spanning length 2

Steiner length

(see Box 4) (8)

576
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Steiner Points, Soap Films and Steiner Conjec-
ture

Figure 24 shows that for four locations at the vertices of
a square, one needs two Steiner points and the Steiner
ratio comes out as Hg—‘/?: Note that at all Steiner points,
three lines meet at 120°. In this case, the shortening
of the Steiner length from the spanning length is by
approximately 8.9%.

For six locations at the vertices of two adjacent squares
(see Figure 25a), one may think that the Steiner solution
can be obtained by the combination of a square and a
triangle. But that is not correct. The correct solution
is shown in Figure 25b. It may be mentioned that for n
given locations, there will be at most n-2 Steiner points.

These solutions can also be obtained by simple exper-
iments. One can connect two transparent (perspex)
sheets (of about 3 mm thickness) with a gap (say 3 mm)
by a number of metal pins (representing the site loca-
tions to be interconnected). This assembly is dipped in a
soap (home detergent) solution and taken out. By drain-
ing out the extra solution, a soap film (a little glycerin
may be added to the soap solution for enhancing the sta-
bility of the film) connecting all the pins is formed. To
minimize the surface energy, the surface area and hence
the total length (since the other dimension of the film
is equal to the gap) is minimized. Formation of Steiner
points where three film surfaces meet at 120° can be
readily seen for three and four locations (like Figures 23
and 24). However, Figure 25b can be obtained, only by
taking extreme care that all the pins are connected by a
single film. Otherwise, Figure 25a or some other figure
is obtained. Figure 25a is obtained when two films are
formed, one connecting the vertices of a square and the
other, the three vertices of a triangle. Even Figure 24
can be repeated side by side when each of the two films
connects the vertices of one square each. (See Box 5).

Box 4.

Delta Airlines in USA had
their hubs in New York,
Chicago and Atlanta.
They asked Bell Tele-
phone Company to inter-
connect these three hubs
by telephone cables. Bell
Telephone charged on the
basis of the length of the
cables connecting New
York — Chicago — Atlanta
(spanning length). Some-
onein Delta Airlines knew
that Steiner length will be
shorter (cheaper), if a vir-
tual hub is created at the
required Steiner point.
The three hubs formed
approximately an equilat-
eral triangle (for which the
saving would have been
approximately 13.4% as
given by eqn. (8)) and Bell
Telephone Company re-
turned 15% of the fees.

Figure 25.

-
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Box 5.

In the nineteenth century,
Belgian physicist Plateau
conducted extensive ex-
periments with soap
bubbles and came up with
two laws of their forma-
tion. One of which states
that three soap films can
meet along an edge with
the surfaces at an angle
120° to one another. This
is seen in the experiment
described here. The sec-
ond law says that six films
can meet at a point with
four edges at an angle
cos !(-1/3) to one an-
other. One can see this by
dipping a wire frame in
the form of a cube in the
soap solution. This sec-
ond law was proved math-
ematically in 1976. Inci-
dentally, Plateau blinded
himself by looking at the
Sun while doing his doc-
toral thesis on physiologi-
cal optics! The soap
bubble experiments were
conducted with the help
of his assistants.

2 Obviously not Steiner who lived
during the nineteenth century —
it has been said that Steiner’s
only contribution to this problem

is his name!

Figure 26.

In 1960’s mathematicians? conjectured that for any num-

ber of locations placed arbitrarily in a plane, the Steiner
ratio is > v/3/2 (= 0.866) (see (8)). This came to be
known as Steiner ratio conjecture. In 1985, two mathe-
maticians obtained the limit as 0.824. But their method
was so cumbersome, that they themselves declared that
their result can be improved and announced a prize for
one who could prove this conjecture. In 1991, two math-
ematicians proved it using the concept of game theory.

Turning a Transparent Square Opaque

Now let us consider a square of unit side with trans-
parent sides. So light entering (along the plane of the
square) through any side at any angle will pass through.
The problem is to find the minimum length of black-
body obstacle that needs to be put inside the square
so that the square becomes opaque. In other words,
any light entering the square will not come out of it.
One possible solution is shown in Figure 26a, where
black-body obstacles are put along the diagonals of to-
tal length 2v/2(~ 2.828). But this is not the mini-
mum. Figure 26b shows a solution with the two Steiner
points of a square, and the total length of the obstacle
is 1+ v/3(~ 2.732). No one knows what the minimum
solution is. The best achieved so far is shown in Figure
26¢, where three lines meet at 120° (the Steiner point
of a triangle) and a fourth one covers half of a diagonal.
Here the total length is approximately 2.6309.

Kakeya Problem

What is the least area within which a line segment of
unit length can be rotated through 360°7 The line seg-
ment can be translated and rotated.

@) ; (b) 1 ORz=
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An obvious area (not minimum) within which this can
be accomplished is a circle of unit diameter with area
of m/4(~ 0.7854) units. One can do it in a smaller area
by considering an equilateral triangle of unit altitude
(Figure 27) with an area of 1/v/3(~ 0.577) units. The
line segment AB is rotated about the point A until it
coincides with one of the sides of the triangle. Then it
is translated so that the end B coincides with another
vertex of the triangle. Then it is rotated through 60°
about the end B. This process continues until the rod is
rotated through 360°, while always remaining within the
triangle. It has been proved that this is the minimum
area of a conver figure within which the task can be
accomplished. If a concave figure is permitted, then one
can further reduce the area by considering a deltoid big
enough to permit turning of a unit line (Figure 28). The
deltoid is generated by a point on the rim of a wheel
rotating inside a pipe of diameter three times that of
the wheel (Figure 29). The area of this deltoid is 7 /8(~
0.3927) units.

Another figure of same area is shown in Figure 30. This
figure is bounded by two semicircles, where the unit line
segment OP can rotate in the counterclockwise direction
through some angle. At the end of the turning, the
line is translated along BA and then rotated to coincide
with AC. Thereafter the rod is translated along AC to
be placed within the annulus again and in the process
the rod rotates through 180° (watch the arrowhead).
The process is repeated once more to make a complete
rotation. The area needed is that of the semicircular
annulus and that of the sector ABC. The area of the
sector ABC can be made negligibly small by making R
as large as we want. It is easy to see that R? = 7%+ (1/4)
and the area of the annulus is (7/2)(R? — r?) = (7/8).

Since both Figures 29 and 30 have the same area, for
a long time it was thought that the area cannot be re-
duced any further. But extending the idea of Figure

A
27.
B
28. A
29,
30.

Figures 27-30.
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Figure 31.

31, Besicovitch proved that the area can be reduced to
zero(!), if multiply-connected region is allowed. So far
as a simply-connected region is concerned, the current
minimum is obtained by a five-pointed star (Figure 31)
having an area ~ 0.2945 units. No one knows what the
minimum area is and what the figure is. It is known that
the greatest lower bound of area of a simply-connected
region is less than or equal to ((5—2v/2)/24)7 (~ 0.2843).

Isoperimetric Problems in Two- and Three-
Dimensions

It is a commonly known fact that, of all closed figures
with the same perimeter, the circle encloses the max-
imum area. Similarly, of all closed surfaces with the
same surface area, the sphere encompasses the maxi-
mum volume. The converses of these statements are
also true, i.e., of all closed curves of equal area circle has
the minimum perimeter and of all solids of same volume
sphere has the minimum surface area. These results
were known from the time of Greek geometers and some
non-formal proofs were also available. Steiner, with a set
of clever arguments, improved upon these proofs. But,
for two dimensions, a mathematically formal proof was
first given by Weierstrass around 1880 and published in
1927. In 1884, Schwarz first gave the formal proof for
three dimensions.

The statements given above are used to define the fol-
lowing isoperimetric quotient (IQ) for closed figures and
surfaces:

For 2-D Q=

4 A
P2 S 1’ (9)

where A is the area and P is the perimeter with the
equality sign valid only for a circle.

36712
For 3D 1Q = % <1, (10)

where V is the volume and A is the surface area with the
equality sign valid only for a sphere. The isoperimetric
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quotient has been generalized for n dimensions as

27Tn/2nnflvnfl
<1, (11)

For n-D Q= AT (n)2)

where I' represents the ‘Gamma’ function.

Equations (9) and (10) can be used to solve some ana-
lytical (non-geometrical) problems. Two such problems
are discussed below.

Problem 1: Prove that

21
/ \/azsinzt + b2cos?tdt >
0

\/47r [mab+ (a = b)*].

Solution: We know that the parametric equation of an
ellipse of semi-major axis a and semi-minor axis b (Fig-
ure 32) is given by = = acost, y = bsint

The perimeter of this ellipse P is given by

- fo- f (T

2
/ \/a2s1n2t + b2cos?tdt.
0

Now cut the ellipse into four equal pieces and rearrange
the pieces to obtain the closed figure shown in Figure
33. This non-circular figure has the same perimeter as
the ellipse and the enclosed area A is given by

A =7ab+ (a —b)*.

Substituting the expressions for A and P in (9) proves
the desired result. The equality sign holds only for a = b.

Problem 2: Prove that for n real numbers z;,i = 1,...,n,

(&) = (&)

Figure 32.

Figure 33.

—

(a-b)’

|
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Solution: First let us assume all z;’s to be positive.
Now consider n spheres whose radii are given by x;,i =
1,...,n. Think of the (non-spherical) solid obtained by
gluing these spheres one after another. The total surface
area A of this solid is given by

and the volume V' of this solid is given by

V= <é> WZI‘?
3/ i

Substituting for A and V' in (10), the desired result
is proved. If some of the z;’s are negative, then the
left-hand side is unaltered and the right-hand side di-
minishes, so the inequality becomes even stronger. The
equality sign holds only for the trivial case when all z}s
are equal.

So we have seen that in geometry, different scalar mea-
sures like length, area, etc., can be optimized. Some-
times the optimal shape of a figure or a body may be
of interest. Close connections between Euclidean geom-
etry and Newtonian mechanics is revealed by some of
these optimization problems. Finally, difficult to prove
analytical results can be easily obtained using the con-
cepts of optimization in geometrical problems. It may be
mentioned that solutions can be obtained deductively if
the verbal optimization statements and restrictions are
translated into the language of mathematics (e.g., that
of variational calculus) to define the objective functions
and constraints.
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