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1. Introduction

The total cross-section σtot(s) for two particles to go
to anything at c.m. energy

√
s must obey the Froissart-

Martin bound,

σtot(s) ≤s→∞ C [ln(s/s0)]
2 (1)

proved at first from the Mandelstam representation by
Froissart [1] and later from the basic principles of ax-
iomatic field theory by Martin [2]. Of the two unknown
constants the constant C was fixed by [3] to obtain,

σtot(s) ≤s→∞ 4π/t0 [ln(s/s0)]
2, (2)

where, t = t0 is the lowest singularity in the t-
channel. For many physically interesting cases such as
ππ,KK,KK, πK, πN, πΛ scattering t0 = 4m2

π − ǫ, ǫ be-
ing an arbitrary small positive constant, and mπ the
pion-mass [4]. In some cases we can take ǫ = 0 , e.g.
for pion-pion scattering if the D-wave scattering length
is finite [5].It will be convenient to denote the right-hand
side of the bound on σtot(s) as

σmax(s) = 4π/t0 [ln(s/s0)]
2. (3)

The Froissart-Martin bound has been seminal both to
the development of the field of high energy theorems in
axiomatic field theory (see e.g. the review [6])and to that
of phenomenological models leading to accurate predic-
tions of total and elastic cross sections before their ex-
perimental measurem ents [7]. Remarkably, one of us (A.
M.) has recently obtained a bound on the total inelastic
cross section at high energy [8],

σinel(s) ≤s→∞ π/t0 [ln(s/s0)]
2, (4)
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which is one-fourth of the bound σmax(s) on the total
cross-section, thus improving the simple bound σinel ≤
σtot.
The present paper is inspired by Martin’s bound on

the inelastic cross-section. In fact T. T. Wu [9] by ex-
tending Martin’s variational calculation to incorporate a
given total cross-section and independently S.M .Roy and
Virendra Singh [10], by exploiting their previous upper
bound on the differential cross section in terms of elas-
tic cross-section, [11],[12] realized that one could solve
a more general problem: find a bound on the inelas-
tic cross-section as a function of the value of the total
cross-section. It is obvious that if the total cross section
vanishes the inelastic cross section also vanishes. but it
is also extremely plausible that if one maximizes the to-
tal cross section, the important partial wave amplitudes
will be imaginary and maximal so that, from the unitar-
ity condition, there is no room left for the inelastic cross
section which will receive only negligible contributions
from the tail of the partial wave distribution.
The net result exhibiting both these features is the

bound we present in this paper,

Σinel(s) ≤s→∞ Σtot(s)
(

1− Σtot(s)
)

, (5)

where,

Σtot(s) ≡ σtot(s)/σmax(s), (6)

and

Σinel(s) ≡ σinel(s)/σmax(s). (7)

Maximizing wth respect to σtot we get the factor 1/4
announced at the beginning of this paper,i.e.

σinel(s) ≤s→∞ σmax(s)/4. (8)

In Sec. 2 we summarise our notations and recall the ba-
sic results from axiomatic field theory. We then present
two possible derivations of the bound on the inelastic
cross-section in terms of total cross-section, the direct
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variational approach in Sec. 3, and the approach using
the 1970 bound on the differential cross section in terms
of the elastic cross-section [11], [12] in Sec. 4. Sec. 5 con-
tains concluding remarks including directions for future
work on high energy phenomenology.

2. Basic Results from Axiomatic Field
Theory

Let F (s, t) be the elastic scattering amplitude for ab →
ab at c.m. energy

√
s and momentum transfer squared t

and be normalized such that the differential cross-section
is given by

dσ

dΩ
(s, t) =

∣

∣

F (s, t)√
s

∣

∣

2
(9)

with t being given in terms of the c.m. momentum k and
the scattering angle θ by the relation,

t = −2k2(1− cos θ). (10)

Then, for fixed s larger than the physical s−channel
threshold, F (s; cos θ) ≡ F (s, t) is analytic in the com-
plex cos θ -plane inside the Lehmann-Martin ellipse [13],
[2], with foci -1 and +1 and semi-major axis cos θ0 =
1 + t0/(2k

2), where t0 is independent of s. In fact, as
mentioned already, t0 = 4m2

π − ǫ for many interesting
cases. Within the ellipse F (s, t) has the partial wave ex-
pansion,

F (s, t) =

√
s

k

∞
∑

l=0

(2l + 1)al(s)Pl(1 + t/(2k2)), (11)

which converges absolutely and uniformly in t for |t| < t0
; hence F (s, t) is analytic in t for |t| < t0 . Unitarity
implies that,

Imal(s) ≥ |al(s)|2 (12)

in the physical region. Further, [14] for fixed t in the
region |t| < t0 , F (s, t) satisfies dispersion relations in s
with two subtractions. This implies, in particular, that
the s-channel absorptive part for 0 ≤ t < t0 has the
convergent partial wave expansion,

A(s, t) ≡ ImF (s, t)

=

√
s

k

∞
∑

l=0

(2l + 1)Imal(s)Pl(1 + t/(2k2)), (13)

and obeys
∫ ∞

C

dsA(s, t)/s3 < ∞, 0 ≤ t < t0. (14)

Hence, if we assume that A(s, t) is continuous in s, there
exist sequences of s → ∞ such that

A(s, t) < Const.
s2

ln(s/s0)
, 0 ≤ t < t0. (15)

For simplicity, in this paper, we deduce asymptotic
bounds on σinel(s) only for such sequences. Bounds on
energy averages will be considered later to avoid this re-
striction.

3. Variational Bound on Inelastic
Cross-section in terms of Total

Cross-section

Since σinel = σtot − σel, this problem is equivalent to
finding a lower bound on σel. Further,

σel(s) =
4π

k2

∞
∑

l=0

(2l + 1)|al(s)|2

≥ 4π

k2

∞
∑

l=0

(2l+ 1)(Imal(s))
2 ≡ σel,im(s). (16)

So, it suffices to find a variational lower bound on σel,im.
We vary the Imal(s) subject to the unitarity constraints

Imal(s) ≥ 0 , (17)

to a given value of,

σtot(s) =
4π

k2

∞
∑

l=0

(2l + 1)Imal(s) , (18)

and to the constraint

A(s, t0) ≡
√
s

k

∞
∑

l=0

(2l + 1)Imal(s)Pl(1 + t0/(2k
2))

< Const.
s2

ln(s/s0)
. (19)

For simplicity, since we work at a fixed-s , we suppress
the s-dependence of Imal(s), σel,im(s) and σtot(s) . De-
noting ,

z0 = 1 + t0/(2k
2), (20)

the lower bound on σel,im is obtained by choosing,

Imal = α
(

1− Pl(z0)/PL+r(z0)
)

, for 0 ≤ l ≤ L , (21)

and,

Imal = 0, for l > L , (22)

with the constants 0 ≤ r < 1, α > 0 and the posi-
tive integer L being fixed from the given value of σtot

and the given upper bound on A(s, t0). We omit the
straight forward proof which is by direct subtraction of
a σel,im with arbitrary partial waves obeying the given
constraints from the variational result. After carrying
out the summations over l, the constraint equations be-
come,

σtot k
2/(4πα) =

(L+ 1)2 − (P
′

L+1(z0) + P
′

L(z0))/PL+r(z0) , (23)
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and

A(s, t0)
k

α
√
s
= P

′

L+1(z0) + P
′

L(z0)−

(L+ 1)2P 2
L(z0)− (z20 − 1)(P

′

L(z0))
2

PL+r(z0)
, (24)

and the bound on σel becomes,

k2/(4πα2) σel ≥ k2/(4πα2) σel,im ≥
(L+ 1)2 − 2(P

′

L+1(z0) + P
′

L(z0))/PL+r(z0) +

(L + 1)2P 2
L(z0)− (z20 − 1)(P

′

L(z0))
2

(PL+r(z0))2
. (25)

At high energies, using s/σtot → ∞, the two constraint
equations yield easily that L = O(

√
s ln(s/s0)) ; we may

therefore set r = 0 and use the following approximations
for the Legendre polynomials,

PL(z0) = I0(ξ)(1 +O(L/s)), ξ ≡ (2L+ 1)
√

(z0 − 1)/2

P
′

L(z0) = (1/2)L
√

s/t0I1(ξ)(1 +O(L/s)),

Iν(ξ) =
exp ξ√
2πξ

(1− (4ν2 − 1)/(8ξ) + ...), ξ → ∞,

for s → ∞, L/
√
s → ∞, L/s → 0 , (26)

where the Iν(ξ) denote the modified Bessel functions. We
then have,

σtot k
2/(4πα) ≈ L2 − I1(ξ)

I0(ξ)
L
√

s/t0 (27)

≈ L2(1 +O(
√
s/L)), (28)

A(s, t0)
k

α
√
s
≈ I1(ξ)L

√

s/t0 + L2 I1(ξ)
2 − I0(ξ)

2

I0(ξ)
(29)

≈ I0(ξ)
L
√
s

2
√
t0
(1 + O(

√
s/L)). (30)

The asymptotic bounds on elastic and inelastic cross-
sections become, with these approximations,

k2/(4πα2) σel ≥ L2 − 2L
√

s/t0
I1(ξ)

I0(ξ)
+L2(1− (

I1(ξ)

I0(ξ)
)2),

(31)
and

k2/(4πα) σinel ≤ (1− 2α))(L2 − L
√

s/t0
I1(ξ)

I0(ξ)
) +

αL2(
I1(ξ)

I0(ξ)
)2.(32)

We now use the assumed upper bound on A(s, t0) to eval-
uate L, α for high energies. We have,

Const.s/(σtot ln(s/s0)) = I0(ξ)

√
s

2L
√
t0
(1 +O(

√
s/L)),

(33)

which yields ,

L√
s
= (1/(2

√
t0)) ln(

s

s20σtot

)(1 +O(ln(s/s0))
−1) (34)

α =
σtot(s)

σ̂tot(s)
(1 +O(ln(s/s0))

−1) (35)

where,

σ̂tot(s) ≡ 4π/t0 [ln(
s

s20σtot

)]2. (36)

Hence, we have the lower bound on elastic cross-sections,

σel(s) ≥
(σtot(s))

2

σ̂tot(s)
(1 +O(ln(s/s0))

−1). (37)

Note that σ̂tot(s) can be replaced by σmax(s) for s →
∞, except in the unrealistic case σtot → 0, fors → ∞
which leads to a small inelastic cross-section σinel(s) →
0. Hence, using equation (37), the upper bound on the
inelastic cross-section valid in all cases is ,

σinel(s) ≤s→∞ σtot(s)
(

1− Σtot(s)
)

, (38)

which leads to the announced bound on σinel(s)/σmax(s),
given by equation (5).

4. Upper Bound on Inelastic
Cross-section from an Upper Bound on
Differential Cross-section in terms of

Elastic Cross-section

We show here that the inelastic cross-section bound
can also be derived as a corollary of an upper bound on
the differential cross section in terms of the elastic cross-
section, established by two of us [11] many years ago,

dσ

dt
(s, t = 0) ≤s→∞

σel(s)

4t0
[ln(

s

s20σel

)]2. (39)

This bound can also be written as [12],

σtot[1 +
(ReF (s, t = 0)

ImF (s, t = 0)

)2
]

≤s→∞

4πσel

t0σtot

[ln(
s

s20σel

)]2. (40)

If the real part ReF (s, t = 0) is unknown we have the
weaker bound,

σtot ≤s→∞

√

4π

t0

[√
σel

(

ln(
s

s20σtot

)− ln(
σel

σtot

)
)]

≤s→∞

√

σelσ̂tot + (2/e)

√

4πσtot

t0
, (41)

where, in the last line we have used the elementary
inequality,

√
x lnx ≥ −2/e, for 0 < x < 1. This equa-

tion yields a lower bound on σel(s) for any asymptotic
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behaviour of σtot(s). As noted in the last section,for de-
ducing an upper bound on σinel(s), it suffices to assume
that σtot does not vanish for s → ∞. In particular, if
σtot(s) > 16π/(e2t0), we have

σtot(
√
σtot − (2/e)

√

4π

t0
)2 ≤s→∞ σelσ̂tot

≈s→∞ σelσmax (42)

and hence the upper bound on the inelastic cross-section,

σinel ≤s→∞ σtot

[

1− Σtot(1− (2/e)

√

4π

t0σtot

)2
]

, (43)

which yields the desired bound (5) on the inelastic cross-
section if σtot(s) → ∞, for s → ∞.

5. Conclusion

We have derived an asymptotic upper bound on the
inelastic cross-section in terms of the total cross-section
which improves Martin’s recent bound [8] when σtot(s) ∼
C(ln(s/s0))

2. Varying σtot(s) over its allowed range we

recover Martin’s result σinel < σmax/4 for some se-
quences of s → ∞ mentioned before.For applications to
high energy phenomenology, it is desirable to remove the
unknown scale factor s0 in these bounds, as well as the
restriction to special sequences of s → ∞. One way for-
ward is to derive bounds on energy averages of σinel(s)
given energy averages of σtot(s) and A(s, t0). One of us
now has definitive results on the analogous problem of
finding bounds on energy averages of the inelastic cross-
section, as well as of the total cross-section [15].
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1. Introduction

The total cross-section σtot(s) for two particles to go
to anything at c.m. energy

√
s must obey the Froissart-

Martin bound,

σtot(s) ≤s→∞ C [ln(s/s0)]
2 (1)

proved at first from the Mandelstam representation by
Froissart [1] and later from the basic principles of ax-
iomatic field theory by Martin [2]. Of the two unknown
constants the constant C was fixed by [3] to obtain,

σtot(s) ≤s→∞ 4π/t0 [ln(s/s0)]
2, (2)

where, t = t0 is the lowest singularity in the t-
channel. For many physically interesting cases such as
ππ,KK,KK, πK, πN, πΛ scattering t0 = 4m2

π − ǫ, ǫ be-
ing an arbitrary small positive constant, and mπ the
pion-mass [4]. In some cases we can take ǫ = 0 , e.g.
for pion-pion scattering if the D-wave scattering length
is finite [5]. It will be convenient to denote the right-hand
side of the bound on σtot(s) as

σmax(s) = 4π/t0 [ln(s/s0)]
2. (3)

In equation (3) s0 is unknown. However, if one assumes
that the total and elastic cross-sections are increasing be-
yond a certain energy, or if one works with cross-sections
averaged over a certain energy interval, one can, using
fixed t dispersion relations, fix the scale [6]. A reason-
able guess is that s0 lies between the square of the pion
mass and the square of the nucleon mass. This means an
uncertainty of ± 10% at the present energy of the LHC.
The Froissart-Martin bound has been seminal both to
the development of the field of high energy theorems in
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axiomatic field theory (see e.g. the review [7])and to that
of phenomenological models leading to accurate predic-
tions of total and elastic cross sections before their ex-
perimental measurements [8]. Remarkably, one of us (A.
M.) has recently obtained a bound on the total inelastic
cross section at high energy [9],

σinel(s) ≤s→∞ π/t0 [ln(s/s0)]
2, (4)

which is one-fourth of the bound σmax(s) on the total
cross-section, thus improving the simple bound σinel ≤
σtot.
The present paper is inspired by Martin’s bound on

the inelastic cross-section. In fact T. T. Wu [10] by ex-
tending Martin’s variational calculation to incorporate a
given total cross-section and independently S.M .Roy and
Virendra Singh [11], by exploiting their previous upper
bound on the differential cross section in terms of elas-
tic cross-section, [12],[13] realized that one could solve
a more general problem: find a bound on the inelas-
tic cross-section as a function of the value of the total
cross-section. It is obvious that if the total cross section
vanishes the inelastic cross section also vanishes. but it
is also extremely plausible that if one maximizes the to-
tal cross section, the important partial wave amplitudes
will be imaginary and maximal so that, from the unitar-
ity condition, there is no room left for the inelastic cross
section which will receive only negligible contributions
from the tail of the partial wave distribution.
The net result exhibiting both these features is the

bound we present in this paper,

Σinel(s) ≤s→∞ Σtot(s)
(

1− Σtot(s)
)

, (5)

where,

Σtot(s) ≡ σtot(s)/σmax(s), (6)

and

Σinel(s) ≡ σinel(s)/σmax(s). (7)
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Maximizing wth respect to σtot we get the factor 1/4
announced at the beginning of this paper,i.e.

σinel(s) ≤s→∞ σmax(s)/4. (8)

In Sec. 2 we summarise our notations and recall the ba-
sic results from axiomatic field theory. We then present
two possible derivations of the bound on the inelastic
cross-section in terms of total cross-section, the direct
variational approach in Sec. 3, and the approach using
the 1970 bound on the differential cross section in terms
of the elastic cross-section [12], [13] in Sec. 4. Sec. 5 con-
tains concluding remarks including directions for future
work on high energy phenomenology.

2. Basic Results from Axiomatic Field
Theory

Let F (s, t) be the elastic scattering amplitude for ab →
ab at c.m. energy

√
s and momentum transfer squared t

and be normalized such that the differential cross-section
is given by

dσ

dΩ
(s, t) =

∣

∣

F (s, t)√
s

∣

∣

2
(9)

with t being given in terms of the c.m. momentum k and
the scattering angle θ by the relation,

t = −2k2(1− cos θ). (10)

Then, for fixed s larger than the physical s−channel
threshold, F (s; cos θ) ≡ F (s, t) is analytic in the com-
plex cos θ -plane inside the Lehmann-Martin ellipse [14],
[2], with foci -1 and +1 and semi-major axis cos θ0 =
1 + t0/(2k

2), where t0 is independent of s. In fact, as
mentioned already, t0 = 4m2

π − ǫ for many interesting
cases. Within the ellipse F (s, t) has the partial wave ex-
pansion,

F (s, t) =

√
s

k

∞
∑

l=0

(2l + 1)al(s)Pl(1 + t/(2k2)), (11)

which converges absolutely and uniformly in t for |t| < t0
; hence F (s, t) is analytic in t for |t| < t0 . Unitarity
implies that,

Imal(s) ≥ |al(s)|2 (12)

in the physical region. Further, [15] for fixed t in the
region |t| < t0 , F (s, t) satisfies dispersion relations in s
with two subtractions. This implies, in particular, that
the s-channel absorptive part for 0 ≤ t < t0 has the
convergent partial wave expansion,

A(s, t) ≡ ImF (s, t)

=

√
s

k

∞
∑

l=0

(2l + 1)Imal(s)Pl(1 + t/(2k2)), (13)

and obeys

∫ ∞

C

dsA(s, t)/s3 < ∞, 0 ≤ t < t0. (14)

Hence, if we assume that A(s, t) is continuous in s, there
exist sequences of s → ∞ such that

A(s, t) < Const.
s2

ln(s/s0)
, 0 ≤ t < t0. (15)

For simplicity, in this paper, we deduce asymptotic
bounds on σinel(s) only for such sequences. Bounds on
energy averages will be considered later to avoid this re-
striction.

3. Variational Bound on Inelastic
Cross-section in terms of Total

Cross-section

Since σinel = σtot − σel, this problem is equivalent to
finding a lower bound on σel. Further,

σel(s) =
4π

k2

∞
∑

l=0

(2l + 1)|al(s)|2

≥ 4π

k2

∞
∑

l=0

(2l+ 1)(Imal(s))
2 ≡ σel,im(s). (16)

So, it suffices to find a variational lower bound on σel,im.
We vary the Imal(s) subject to the unitarity constraints

Imal(s) ≥ 0 , (17)

to a given value of,

σtot(s) =
4π

k2

∞
∑

l=0

(2l + 1)Imal(s) , (18)

and to the constraint

A(s, t0) ≡
√
s

k

∞
∑

l=0

(2l + 1)Imal(s)Pl(1 + t0/(2k
2))

< Const.
s2

ln(s/s0)
. (19)

For simplicity, since we work at a fixed-s , we suppress
the s-dependence of Imal(s), σel,im(s) and σtot(s) . De-
noting ,

z0 = 1 + t0/(2k
2), (20)

the lower bound on σel,im is obtained by choosing,

Imal = α
(

1− Pl(z0)/PL+r(z0)
)

, for 0 ≤ l ≤ L , (21)

and,

Imal = 0, for l > L , (22)
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with the constants 0 ≤ r < 1, α > 0 and the posi-
tive integer L being fixed from the given value of σtot

and the given upper bound on A(s, t0). We omit the
straight forward proof which is by direct subtraction of
a σel,im with arbitrary partial waves obeying the given
constraints from the variational result. After carrying
out the summations over l, the constraint equations be-
come,

σtot k
2/(4πα) =

(L + 1)2 − (P
′

L+1(z0) + P
′

L(z0))/PL+r(z0) , (23)

and

A(s, t0)
k

α
√
s
= P

′

L+1(z0) + P
′

L(z0)−

(L+ 1)2P 2
L(z0)− (z20 − 1)(P

′

L(z0))
2

PL+r(z0)
, (24)

and the bound on σel becomes,

k2/(4πα2) σel ≥ k2/(4πα2) σel,im ≥
(L+ 1)2 − 2(P

′

L+1(z0) + P
′

L(z0))/PL+r(z0) +

(L + 1)2P 2
L(z0)− (z20 − 1)(P

′

L(z0))
2

(PL+r(z0))2
. (25)

At high energies, using s/σtot → ∞, the two constraint
equations yield easily that L = O(

√
s ln(s/s0)) ; we may

therefore set r = 0 and use the following approximations
for the Legendre polynomials,

PL(z0) = I0(ξ)(1 +O(L/s)), ξ ≡ (2L+ 1)
√

(z0 − 1)/2

P
′

L(z0) = (1/2)L
√

s/t0I1(ξ)(1 +O(L/s)),

Iν(ξ) =
exp ξ√
2πξ

(1− (4ν2 − 1)/(8ξ) + ...), ξ → ∞,

for s → ∞, L/
√
s → ∞, L/s → 0 , (26)

where the Iν(ξ) denote the modified Bessel functions. We
then have,

σtot k
2/(4πα) ≈ L2 − I1(ξ)

I0(ξ)
L
√

s/t0 (27)

≈ L2(1 +O(
√
s/L)), (28)

A(s, t0)
k

α
√
s
≈ I1(ξ)L

√

s/t0 + L2 I1(ξ)
2 − I0(ξ)

2

I0(ξ)
(29)

≈ I0(ξ)
L
√
s

2
√
t0
(1 + O(

√
s/L)). (30)

The asymptotic bounds on elastic and inelastic cross-
sections become, with these approximations,

k2/(4πα2) σel ≥ L2 − 2L
√

s/t0
I1(ξ)

I0(ξ)
+L2(1− (

I1(ξ)

I0(ξ)
)2),

(31)

and

k2/(4πα) σinel ≤ (1− 2α))(L2 − L
√

s/t0
I1(ξ)

I0(ξ)
) +

αL2(
I1(ξ)

I0(ξ)
)2.(32)

We now use the assumed upper bound on A(s, t0) to eval-
uate L, α for high energies. We have,

Const.s/(σtot ln(s/s0)) = I0(ξ)

√
s

2L
√
t0
(1 +O(

√
s/L)),

(33)
which yields ,

L√
s
= (1/(2

√
t0)) ln(

s

s20σtot

)(1 +O(ln(s/s0))
−1) (34)

α =
σtot(s)

σ̂tot(s)
(1 +O(ln(s/s0))

−1) (35)

where,

σ̂tot(s) ≡ 4π/t0 [ln(
s

s20σtot

)]2. (36)

Hence, we have the lower bound on elastic cross-sections,

σel(s) ≥
(σtot(s))

2

σ̂tot(s)
(1 +O(ln(s/s0))

−1). (37)

Note that σ̂tot(s) can be replaced by σmax(s) for s →
∞, except in the unrealistic case σtot → 0, fors → ∞
which leads to a small inelastic cross-section σinel(s) →
0. Hence, using equation (37), the upper bound on the
inelastic cross-section valid in all cases is ,

σinel(s) ≤s→∞ σtot(s)
(

1− Σtot(s)
)

, (38)

which leads to the announced bound on σinel(s)/σmax(s),
given by equation (5).

4. Upper Bound on Inelastic
Cross-section from an Upper Bound on
Differential Cross-section in terms of

Elastic Cross-section

We show here that the inelastic cross-section bound
can also be derived as a corollary of an upper bound on
the differential cross section in terms of the elastic cross-
section, established by two of us [12] many years ago,

dσ

dt
(s, t = 0) ≤s→∞

σel(s)

4t0
[ln(

s

s20σel

)]2. (39)

This bound can also be written as [13],

σtot[1 +
(ReF (s, t = 0)

ImF (s, t = 0)

)2
]

≤s→∞

4πσel

t0σtot

[ln(
s

s20σel

)]2. (40)
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If the real part ReF (s, t = 0) is unknown we have the
weaker bound,

σtot ≤s→∞

√

4π

t0

[√
σel

(

ln(
s

s20σtot

)− ln(
σel

σtot

)
)]

≤s→∞

√

σelσ̂tot + (2/e)

√

4πσtot

t0
, (41)

where, in the last line we have used the elementary
inequality,

√
x lnx ≥ −2/e, for 0 < x < 1. This equa-

tion yields a lower bound on σel(s) for any asymptotic
behaviour of σtot(s). As noted in the last section,for de-
ducing an upper bound on σinel(s), it suffices to assume
that σtot does not vanish for s → ∞. In particular, if
σtot(s) > 16π/(e2t0), we have

σtot(
√
σtot − (2/e)

√

4π

t0
)2 ≤s→∞ σelσ̂tot

≈s→∞ σelσmax (42)

and hence the upper bound on the inelastic cross-section,

σinel ≤s→∞ σtot

[

1− Σtot(1− (2/e)

√

4π

t0σtot

)2
]

, (43)

which yields the desired bound (5) on the inelastic cross-
section if σtot(s) → ∞, for s → ∞.

5. Conclusion

We have derived an asymptotic upper bound on the
inelastic cross-section in terms of the total cross-section

which improves Martin’s recent bound [9] when σtot(s) ∼
C(ln(s/s0))

2. Varying σtot(s) over its allowed range we
recover Martin’s result σinel < σmax/4 for some se-
quences of s → ∞ mentioned before.For applications to
high energy phenomenology, it is desirable to remove the
unknown scale factor s0 in these bounds, as well as the
restriction to special sequences of s → ∞. One way for-
ward is to derive bounds on energy averages of σinel(s)
given energy averages of σtot(s) and A(s, t0). One of us
now has definitive results on the analogous problem of
finding bounds on energy averages of the inelastic cross-
section, as well as of the total cross-section [16].
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