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ABSTRACT 

The severe and hostile operating conditions of fast breeder reactors demand the development of new austenitic 
stainless steels that possess higher resistance to void swelling and irradiation embrittlement. This paper discusses 
the efforts made in the laboratory and industrial scale development of a 15Cr-15Ni-2.2Mo-Ti modified austenitic 
stainless steel and the evaluation of tensile properties. Melting and casting were carried out in a vacuum 
induction furnace and the data on recovery of various alloying elements was obtained for charge calculations. 
Based on the recovery data and decarburisation behavicur under different vacuum levels, a series of alloys with 
close chemistry variations were prepared. Heat treatment was optimised for these special steels to control the 
grain size at required level. The ingots were thermo-mechanically processed and tensile properties were 
evaluated. This experimental data has been used to train and test an artificial neural network. The input 
parameters of the neural network are chemical compositions and test temperature while the yield strength, 
ultimate tensile strength and uniform elongation were obtained as output. A multilayer perceptron (MLP) based 
feed-forward network with back-propagation learning algorithm has been employed. A very good performance 
of the developed network is obtained. The model can be used as a guideline for new alloy development. 

1. INTRODUCTION 

The selection of materials for clad and wrapper 
depends on the design criteria. For the Fast Breeder 
Reactor project (PFBR) of Indian nuclear programme, 
the design criteria included operating temperatures in 
the range of 673-973 K and 673-873 K for clad and 
wrapper respectively, under steady state operating 
conditions. Under transient conditions, the 
temperatures can rise upto 1273 K and 1073 K for 
clad and wrapper respectively. Major loads on the 
fuel clad are the internal pressure due to accumulated 
fission gases released from fuel matrix (-5 MPa) 
and moderate fuel-clad interaction. Major loads on 
the hexcan are the internal pressure due to sodium 

coolant ( -  0.6 MPa) and the interaction loads at the 
contact pads due to bowing of the subassemblies under 
temperature and swelling gradients. Slight thermal 
stresses due to transients are also present because of 
the higher thickness of the wrapper. The main 
mechanical properties that govern the choice of clad 
and wrapper materials are tensile properties in the 
case of wrapper, and both tensile and creep properties 
in the case of clad. Besides high temperatures and 
stresses, materials in fast reactor core are also 
subjected to very demanding environment of high 
fast neutron flux ( -  1015 n ~ m - ~  s-I). One major 
consequence of the high flux of fast neutrons is the 
occurrence of very high levels of radiation damage 
in the core structural materials. 
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The main factor that currently limits fast reactor fuel 
life, and thus the burn-up, is void swelling. The 
void swelling produces dimensional changes in the 
wrapper and thus makes the loading and unloading 
operations difficult. Therefore the main challenge in 
fast reactors materials technology today is the 
development of low swelling materials for in-core 
applications. Austenitic stainless steels have been 
chosen worldwide as materials for in-core applications 
owing to their excellent elevated temperature 
mechanical properties, compatibility with liquid 
sodium and adequate resistance to void swelling '. 
AISI type 316 and its modifications have been used 
as materials for fuel subassemblies seeing a dose of 
= 65 dpa (displacements per atom). However, a 
commercial fast breeder power reactor would demand 
development of materials with improved swelling 
resistance at damage levels greater than 125 dpa. 

In order to meet the requirements for the core 
components of PFBR, a programme was undertaken 
for the indigenous development of alloy D9 (15Cr- 
15Ni-2.2Mo-Ti modified austenitic stainless steel). 
The paper discusses the indigenous development of 
alloy D9, optimisation of melting, casting, forging 
and solution annealing treatments. Further, an attempt 
is made to correlate the tensile properties to chemical 
composition. Basically there are two ways to 
understand such correlations. Firstly, one can construct 
a physical model that describe the relation between 
parameters, and subsequently validate this mode! with 
experimental findings 2,3. However an explicit 
physical model that quantitatively describes all the 
correlations between alloy composition, processing 
parameters and tensile properties of austenitic stainless 
steel does not exist. Alternatively, a model can be 
developed applying statistical techniques like multi- 
linear regression methods. However, in austenitic 
stainless steel, the effects of alloying elements on 
mechanical properties are complex and the synergistic 
interactions of the effects of individual alloying 
elements play a major role than the influence of 
individual element. Another limitation of multi-linear 
regression is the time required to evaluate the constants 
is high and its accuracy of prediction is low. 

In this perspective, artificial neural network (ANN) 
can be considered as an efficient modeling tool. 
Though artificial neural network modeling is a 
relatively new technique, in past few years there has 

been a rapidly increasing interest in neural network 
modeling in different fields of material science 5-8. 

In essence, ANN is an advanced statistical technique 
that links input to output data using a particular set 
of non-linear functions and has the potential to solve 
problems that can not be efficiently solved by other 
conventional statistical models such as regression 
analysis 9. The basic advantage of employing ANN 
approach lies in the fact that they do not require any 
external manifestation of parametric relationships. An 
ANN learns from examples and recognizes patterns 
in a series of input and output values without any 
prior assumptions about their nature and interrelations. 
Therefore, it can automatically and efficiently map 
the complicated inter-rel'ationships between various 
parameters lo. Provision of model free solutions, data 
error tolerance and built in dynamism makes the 
network attractive. Therefore, an ANN model has 
been developed for the prediction of tensile properties 
of alloy D9 as a function of alloy composition and 
test temperature. 

2. EXPERIMENTAL 

Alloys of different compositions with varying carbon 
levels in the range 0.026-0.13 acd Ti/C ratios in the 
range 3 - 8 were prepared in Balzer's VSG30 vacuum 
induction melting (VIM) and casting unit. A vacuum 
level of torr was maintained during melting. 
The laboratory ingots were subjected to non- 
destructive evaluation of defects using X-ray 
radiography and ultrasonic testing to identify and 
locate casting defects. The ingots were and then cold 
swaged to 11 mm diameter rounds for mechanical 
property evaluation in solution annealed as well as 
cold worked condition. Metallographic investigation 
of the material in the as-cast, hot-forged and the 
final solution annealed conditions were carried out to 
characterize the material. Tensile tests were carried 
out on 20% cold worked samples in a universal testing 
machine, at a strain rate of 3.14 x lo4 s-' at room 
temperature as well as at 923 K. Button head type 
specimens of 26 mm gauge length and 4 mm gauge 
diameter were employed for tensile testing. The load- 
elongation data was analyzed for evaluating tensile 
properties such as yield stress, ultimate tensile stress 
and uniform elongation using standard equations. 

The melting and processing variables for commercial 
production were optimized based on the experience 
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obtained on laboratory heats. Commercial scale 
melting of three heats with TiIC ratios of 4, 6 and 
8 have been made at MIDHANI, Hyderabad, from 
virgin raw materials through VIM with ladle 
adjustment to achieve desired Ti/C ratio. This was 
followed by vacuum arc remelting. Rounds of 30 
mm diameter were produced through hot forging and 
hot rolling. These rounds were reduced to 11 mm 
diameter by cold swaging. Tensile tests were carried 
out on 20% cold worked samples for this commercial 
scale melting. Studies on the recrystallization 
behaviour and microstructural stability under different 
ageing conditions have also been carried out on 
samples cold worked to different levels. Commercial 
alloy rods of 30 rnrn diameter were annealed at 1343K 
for 30 minutes and then cold worked from 2.5% to 
30% in a universal testing machine. Specimens were 
cut from these cold worked rods and hardness 
measurements were carried out. 

3. RESULTS AND DISCUSSION 

The melting trials established that selection of the 
right quality of raw materials and close control of 
melting parameters a re  important to ensure 
elimination of oxidation and nitridation of alloying 
elements and resultant non-metallic inclusions. So, 
the raw materials used for melting were analyzed for 
both desirable and trace elements. The chemistry of 
the alloys produced in the laboratory was controlled 
effectively by charge calculations, taking into account 
the decarburization and vaporization losses of alloying 
elements as  a function of melt hold time. 
Standardization of charge calculations and melting 
parameters were achieved after extensive experimental 
studies on melting under different conditions. The 
percentage recovery of vsrious alloying elements, 
particularly C,  Mn, Ti, were computed based on the 
experimental heats and found to be -80%. On the 
other hand, the recovery of Cr, Mo and Ni were 
found to be higher than 95 %. This recovery data has 
been employed for initial charge calculations to obtain 
various alloys with the required chemical composition. 
The following melting procedures were found to be 
effective in controlling the chemistry ~f the different 
alloys melted in 5 and 10 kg batches using magnesia 
crucibles and cast iron moulds: 

i. Initial evacuation of the melting chamber to high 
vacuum levels torr). 

ii. Reducing the melting down time to thirty 
minutes, by avoiding bridging using suitable 
charge placement. 

iii. Adding C,  Mn and Ti towards the end of the 
melting operation. 

iv. Careful control of melt temperature to avoid 
high vaporization losses and improve both life 
of crucible and mould. 

v. Pouring the melt in a thin stream under high 
vacuum to ensure effective degassing. 

vi. Selection of raw materials for alloy additions in 
the elemental form. (This was found to be more 
reliable because of the macro inhomogeneities 
in the composition of the ferro-alloys in different 
lumps). 

Non-destructive testing of the ingots revealed a small 
amount of centre line porosity and a few shrinkage 
cavities. The ingots were sectioned along these defects 
and shaped before hot working. One hundred percent 
visual inspection was found necessary during all the 
intermediate stages of forming like hot forging and 
hot rolling, since lower working temperatures resulted 
in cracking. Homogenization treatment of the ingots 
at 1323 K for two hours produced best results during 
hot forging. The optimum conditions for achieving 
the required grain size were obtained on the basis of 
vacuum annealing experiments and grain size 
measurement and a typical heat treatment cycle is 
illustrated in Fig. 1. All the cold swaged rods and the 
cold rolled sheets were annealed, following this 
procedure to achieve a uniform optimum grain size 
in all the test specimens, in a programmable vacuum 
furnace. 

The nuclear specification demands that the inclusion 
content determined as per ASTM E-45 ~ h o u l d  
conform to the following: 

(a) 1 for thin and Vi for heavy for individual type 
A,B,C,D 

(b) Total of A,B,C and D (thin + heavy) 4 

Inclusion counting was carried out on the laboratory- 
melted samples in both longitudinal and transverse 
sections of the (a) as-cast, (b) cast and forged and (c) 
cast, forged and rolled materials. In the case of cast 
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Fig. 1 : Heat treatment schedule for achieving the required grain size and microstructure 

material, samples were taken from top, middle and 
300 - 

bottom portion of the ingot. In all the samples, the 
inclusions were found to be mostly of oxide type in 280 - 
the thin series range. The inclusion rating of these 
samples varied from 2 to 4 in the ingot stage which zco - 
got refined with hot working. On the other hand, in 
the commercial samples, A, B and C type inclusions 
were absent and only D type inclusions with a value 
of 0.5 were observed. This improvement achieved 
through double meltinglrefining in commercial 
production. 

Production of cold worked microstructures stable at 
service temperatures is one of the important 
metallurgical variables controlling void swelling, other 15001 

0 5 10 IS 20  25 30 35 
than the composition of the alloy. It is also shown %CW - 
that stability of microstructure on elevated temperature 
irradiation could be related to stability on thermal Fig. 2 :  The effect of cold worked on the hardness of 

commercial heat with Ti/C ratio 4. 
exposure. Fig.2 shows the effect of cold work on 
hardness. The hardness at different cold-worked and 
ageing conditions is shown in Fig.3. During this 
study some interesting microstructural features were 
observed and these are shown in Fig.4. Cuboidal 
TiCN second phases are seen in these alloys under all 
conditions. The annealed samples exhibit bimodal 
grain size distribution at a certain combination of 
cold worked and ageing conditions, where incipient 
recrystallization starts. 

The value of yield strength of the commercially 
melted alloy D9 at various test temperature is shown 
in Fig.S(a). It can be seen that yield strength value 
of the 20% cold worked sample with TiIC of 6 are 
well within the acceptable limits of PFBR 
specifications. Similar trend has also been obtained 

140 , .  . , I I 

to-' lo0 10' . 102 10' 
Agelng time Ih 

Fig. 3 : Recrystallization kinetics of 20% cold worked 
commercial with TiIC ratio 4 
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Fig. 4 :  Optical micrograph of cold worked alloy D9 aged at 1073K for 2 hour. The cold worked levels are (a) 5% (b) 
10% 

for ultimate tensile strength and uniform elongation 
and thereby not shown here. The complex dependence 
of strength with respect to the TiIC ratio in these 
alloys can be seen in Fig.S(b) where properties of 
the annealed conditions are shown. One can discern 
a reversal of trend in the strength as function of the 
TiIC ratio. This could be due to the fact that 
dependence of strength is related to the amount of 
carbon present in solution. However, fine T i c  
precipitates, when present could also lead to 
strengthening. This would be balanced against the 
decrease in strength due to loss of carbon in solution. 
The yield strength vs. test temperature plot shows a 
hump in the solution annealed condition (Fig.5b) 
and a plateau in the cold worked condition (Fig.5a). 
This behaviour is attributed to dynamic strain ageing. 

20% cold worked condition 
800 

700 T 

Further, the associated embrittlement observed in this 
temperature regime is also reflected in the ductility 
values. 

300 

3.1 ANN Model overview 

(a) 
. , . , . , . , . , . , . , . , . 

In this study, a multilayer perceptron (MLP) based 
feed-forward network has been trained by standard 
back propagation (BP) learning algorithm. MLP based 
network is used since it has greater representational 
power for dealing with highly non-linear, strongly 
coupled and multivariable system ll. Although 
multilayer neural network does not ensure a global 
minimum solution for any given problem, it is a 
reasonable approximation that if the network is 
trained with a comprehensive database, the resulting 

200 300 400 500 600 700 800 900 10M) 1100 

Test TemperatureJK 

Annealed Condition 

(b) A 

120 . , . , . , . , . , . , 
300 450 600 750 900 1050 

Test TemperatureK 

Fig. 5 : Temperature dependence of yield strength of alloy D9 in (a) 20% cold worked and (b) solution annealed condition 
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model will approximate all of the laws of 
mechanics that the actual material or process 
obeys 12.  A logistic sigmoidal function expressed as 
Output = (1 + e-it'p"')-' was employed as  the 
activation function; the learning is based on gradient 
descent algorithm and hence requires the activation 
function to be differentiable. More details on the 
neural network modelling could be found 
elsewhere 13,14.  

included since this material will be used in the elevated 
temperature (the design criteria of this material 
includes operating temperatures in the range of 673- 
973K and 673-873K for  clad and wrapper 
respectively, under steady state operating conditions). 
The outputs of the neural network are the three 
important tensile properties namely yield strength 
(YS), ultimate tensile strength (UTS) and uniform 
elongation (UE). The database obtained from the 
tensile tests of the lab melt ingot has been employed 

A general scheme the present is given in to develop the model. Out of this database, 75% data 
Fig.6. The parameters the are has been used for training while remaining 25% has 
composition and test twork) temperature. The been employed for testing. The statistical features of 
compositions included are the five important alloying the input compositions and ourputs are depicted in 
elements in alloy D9: C, Ni, Mn, Cr and Mo. Other Table I and Table respectively. 
alloying elements and grain size are not considered 

~ ~ 

since they don't have significant variation in the data j.2 
set. Omitting the parameter which is almost constant 
in data set benefits the development of the model and The ANN model with one hidden layer has been 
simplifies further application 15. Test temperature is found sufficient for this study. This observation 

Test Temperature - Uniform Elongation + 
Yield Strength * 

Ultimate Tensile Strength 
b 

Fig. 6 :  Schematic model of the artificial neural network for prediction of tensile properties in alloy D9 

Neural 
Network 

C * 

Table 1 
STATISTICAL ANALYSIS O F  THE INPUT COMPOSITIONS 

Alloy Composition 

Inputs (wt%) Maximum Minimum Std. Devn Mean 

Ni 

cr 
Mn * 
Mo . 
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Table 2 
STATISTICAL ANALYSIS OF THE OUTPUT DATA 

Outputs Maximum Minimum Std. Devn Mean 

YS (MPa) 

UTS (MPa) 

UE (%) 

reaffirms the universal approximation theorem that a 
single layer of non-linear hidden units is sufficient to 
approximate any continuous function. Hornik et a1. l6 

have also shown that a three layer ANN with sigmoid 
transfer function can map any function of practical 
interest. We determined the optimal number of 
neurons in the hidden layer by comparing the 
performance of the network, with 1-20 hidden 
neurons, and choose the number that produced the 
greatest network performance. For example, the 
performance of the network for yield strength 
prediction at different hidden unit level is shown in 
Fig.7. From the plot it is easily understood that 
optimum training with minimum average root mean 
square (RMS) training and test error is obtained when 
number of hidden neurons is 14 (shown by arrow in 
Fig.7). So, ANN with one hidden layer and 14 hidden 
neurons is the optimum model for yield strength 
prediction. 

The performance of the model for yield strength 
(YS) prediction has been demonstrated in Fig.8. The 
figure indicates the network reliability in form of 

Number of hidden neurons 

Fig. 7 : RMS error as a function of number of hidden neuron 
for yield strength (YS) prediction 

linear regression analysis between the networks outputs 
i.e. predicted data and the corresponding experimental 
findings. It could be observed that a very good 
agreement exists between the experimental and 
predicted data. Almost similar performance has been 
obtained from the model for ultimate tensile strength 
(UTS) prediction. 

Linear fit of YS 

Experimental YS/MPa 

(b) Test 
R = 0.994 

300 4W 6 k  7M) 860 

Experimental YS/MPa 

Fig. 8 : Performance of the neural network model for prediction 
of yield strength (YS), plotting the experimental vs. 
predicted data points for the (a) training and (b) test 



TRANS. INDIAN INST. MET., VOL. 59, NO. 4, AUGUST 2006 

25 

20 

$ 15 

3 
u 
a, 
4-8 .o 10 
u 
2 
a 

5 

0 
0 5 10 15 20 2! 

Experimental UWh 

25 

20 

$ 15 

5, 
u a 
C 

.Y 10 
u 
E 
a 

5 

0 
0 5 10 15 20 25 

Experimental UW% 

Fig. 9 :  Performance of the neural network for prediction of uniform elongation (UE) for the (a) training and (b) test data 
set 

The quality of the model for uniform elongation 
(UE) prediction on different datasets is demonstrated 
in Fig.9. The prediction accuracy for UE is fairly 
good. However, the level of accuracy for UE is not 
as good as that of YS or UTS. The reason can be 
attributed to the sensitivity of ductility related 
parameter to experimental factors. Ductility related 
parameters like uniform elongation are more easily 
influenced by experimental factors, such as specimen 
condition and dimension, than strength parameters 
like yield strength or ultimate tensile strength. To 
investigate how sensitive the output parameters of 
the developed ANN are to fluctuations (noise) in the 
input data, the following Monte Carlo sensitivity 
analysis was carried out. We select arbitrary nominal 
values of the six input parameters from the training 
range: =0.062 ; N; = 15.16 ; C i  =15.79 ; 
Mii=1.93;  M6=2.11 and ?=923#.  We 
assume C, Ni, Cr, Mn, Mo and T to be Gaussian 
random variables with mean equal t o e ,  N;, 

C; , MI?, M; and? with 5% relative standard 
deviation (noise). The logic behind this assumption 
lies in the fact that the relative error of ANN 
predictions has been found to follow Gaussian 
distribution. C, Ni, Cr, Mn, Mo and T is sampled 
independently and randomly from their respective 
distribution and fed as inputs to the ANN which 
returns yield strength (YS), ultimate tensile strength 
(UTS) and uniform elongation (UE) as output. This 
exercise was carried out 1000 times. It has been 
observed that due to this 5% fluctuation (noise) in 
the input variables, the corresponding fluctuations in 
YS and UTS are mere 7.48% and 6.25% respectively. 
However, a significant fluctuation ( - 25 %) is 
observed for UE which reiterates the fact that ductility 
related parameters like UE are much more sensitive 
to input noise as compared to strength related 
parameters like YS or UTS. Similar exercise was 
carried out with 1% fluctuations in the input 
parameters. In this time also, the fluctuations in YS 

Table 3 
SUMMARY O F  THE RESULTS FOR EACH TENSILE PROPERTY MODEL 

Tensile Property Average RMS Error Correlation Coefficient (R) Number of hidden neurons 

YS Training: - 6.07 Test: 10.38 Training: 0.997 Test: 0.994 

UTS Training: 6.68 Test: 8.14 Training: 0.997 Test: 0.997 

UE Training: 0.44 Test: 0.82 Training: 0.995 Test: 0.982 
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and UTS are only 2.5 % and 1.88 % respectively while 
UE shows a substantial fluctuations of - 10%. This 
analysis, therefore, suggest that lower accuracy level 
for UE prediction could not be attributed to the 
predictive capability of ANN. Rather it should be 
ascribed to the noise in the experimental data arises 
due to inevitable fluctuations in alloy compositions 
along with the unavoidable variations in experimental 
factors, such as specimen condition and dimension. 

The summary of the model for each tensile property 
is given in Table 3. 

4. CONCLUSION 

The following conclusions are drawn from the present 
study: 

i) A 15Cr- 15Ni-2.2Mo-Ti modified austenitic 
stainless steel (alloy D9) has been indigenously 
developed in laboratory. The melting and casting 
procedure is standardised. Based on the recovery 
data of various alloying elements, industrial scale 
alloys were prepared. 

ii) Tensile properties were evaluated for both the 
lab and commercial heats. The tensile properties 
of the commercially melted ingot were found to 
be well within the acceptable limits of PFBR 
specifications. 

iii) The database obtained from the tensile testing of 
the laboratory heats were employed to develop 
an artificial neural network model to correlate 
alloy composition and test temperature to tensile 
properties. 

iv) It has been demonstrated that the developed 
network is capable of predicting tensile properties 
of alloy D9 with sufficient accuracy. The model 
can be used as a guideline for development of 
new austenitic stainless steels with the required 
tensile properties. 
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