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Optical Hanle effect in fields of arbitrary strength and bandwidth
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A quantum-statistical theory of optical Hanle effect is developed for arbitrary intensities and bandrvidths of the

pump field. The excited- and ground-state level shifts, caused by another light field with appropriate polarization,

are directly included in the theory by using the method of time averaging. The laser fluctuations are taken into

account exactly by using the phase-diffusion model of the pump laser. The analytical and numerical results for the

fluorescence signals are presented for a variety of excitations. Our results in the limiting case reduce to those of
Kaftandjian, IGein, and Hanle. Finally, the case of a very broadband excitation under saturation conditions is

analyzed and the results for signals in various directions and the polarizations are obtained.

I. INTRODUCTION

The Hanle effect has been extensively used in the

study of the lifetimes of the excited states and the
measurement of various relaxation and collision
parameters. ~ 9 In the normal Hanle effect, one
studies the properties of the magnetic sublevels by
preparing the system in a coherent superposition
of the Zeeman sublevels and by observing the flu-
orescence from such a coherent superposition as
a function of the magnetic field. The coherent su-
perposition ' can be achieved either by using a
broadband source or by using a monochromatic
pump. The linewidth of the observed signal has
been seen to be critically dependent on the nature
of the exciting source. ' Several variations'
of the Hanle effect have been proposed and used in
the high-resolution work. For instance, it has
been shown that a modulated pump field leads to
fluorescence variation that immediately yields not
only the relaxation parameters but also the ex-
cited-state splittings. ~ A novel variation of
the Hanle experiment involves the use of a suitably
polarized radiation to lift the degeneracy of the ex-
cited states, i. e. , each energy level is shifted by
a different amount due to light shifts. ~ Thus the
properties of the magnetic sublevels could be stud-
ied by using another strong off-resonance laser,
in addition to the pump laser, whose frequency and
intensity could be easily varied. ' ' The fluores-
cence is now observed as a function of the intensity
or the frequency of the strong off-resonant laser
field. In this ease it has been found by Kaftandjian
et al. '5 that the zero-field level crossings occur in
the same manner as in the normal Hanle effect
(using the magnetic fields).

In this paper we develop a general theory of the
optical Hanle effect. The theory is valid for ar-
bitrary values of the strength and bandwidth of the
pump field. In the limiting case of a weak mono-
chromatic pump, our results go over to the stand-
ard results. Our theory is also applicable to

cases when a broadband source is used in place of
the monochromatic pump. For simplicity, we re-
strict our considerations only to the case when the
levels involved in the Hanle transitions correspond
to the levels with total. angular momentum J= 0
and 1, respectively. In See. II we present the
general formulation and show how the bandwidth
effects2' of the pump field could be included in the
equations of motion of the density matrix. We al-
so show how the off-resonant strong field leads to
the light-shift terms in the equa, tions of motion.
Such equations are solved in the steady state in
Sec. IG, and we present expressions for the flu-
orescence signals in different directions. A num-
ber of special cases of our results are also dis-
cussed in Sec. III. Finally, we present a numeri-
cal study of the fluorescence signals and discuss
how the signals change by varying the strength and

the bandwidth of the exciting laser. In Sec. IV op-
tical Hanle effect in intense broadband fields is
treated rigorously.

II. DENSITY MATRIX FORMULATION
OF OPTICAL HANLE EFFECT

In this section we present the density matrix for-
mulation of the optical Hanle effect. We obtain the
most general equations valid for arbitrary values
of the field strengths and arbitrary values of its
bandwidth. For simplicity and in view of the re-
cent experimental work" on optical Hanle effect,
we restrict our considerations only to the ease
when the two levels involved in the transition pos-
sess angular momenta 0 and 1, respectively. The
energy-level diagram is schematically shown in .
Fig. 1.

The geometry used in optical Hanle effect is
shown in Fig. 2. The physical situation in optical
Hanle effect corresponds to a circularly polarized
light propagating along the z axis intersecting the
atomic beam directed along the x axis. A second
linearly polarized laser beam (which will hereafter
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FIG. 1. Schematic representation of the energy levels
involved in optical Hanle effect.

be referred to as the pump} propagating along the
z axis, with its electric vector making an angle ~

with the x direction, interacts with the laser beam,
The linearly polarized light creates the atomic co-
herences, i.e. , it prepares the atomic system in
a coherent superposition of the excited states. The
atomic coherences are monitored by observing the
fluorescence signals in different directions. Two
common situations used for observing fluorescence
correspond to the detection of the radiation in the
directions (i}x with polarization along the y axis,
(ii) y with its polarization along the x axis. The
circularly polarized off-resonant radiation lif ts the
degeneracy of the excited states and also shifts the
ground state. The role of the circularly polarized
radiation is similar to the role of the magnetic
field used in the usual Hanl&e experiments, with the
difference that the magnetic field does not shift the
ground state. It is well known that when a two-lev-
el atom is subjected to an off-resonant light field,
its ground and excited states are shifted by equal
amounts, but in opposite directions. The magni-
tude of the light shift is P /a„where P is the Rabi
frequency of the transition arid &, is the difference
between the frequency of the atom and the light
field. For our system, we expect that the levels
I+) (corresponding to the magnetic quantum num-
ber + 1}and Ig) will be shifted in opposite direc-
tions if the circularly polarized light is left-handed;
this will be shown explicitly later. In Fig. 1 the
positions of the shifted levels are shown.

The total Hamiltonian for the system interacting
with the pump field E(t) and the circularly polar-
ized field E,(t) can be written as:

H = f&u)&&(A„+A )

—[d,» 'E(t)A,»+d~ E(f)A~+H. c. ]
—[d,» E,(t)A,» + H. c.], (2. 1)

where A&& are the operators li) (j I, d&& are the di-
pole-moment matrix elements, and &uo = (E —E»)L
The pump field is written in the form

E(t) = 80(f)(xcos&&+ysin9)e '"»' '""'+c.c.
= 8 (t)e &"&'+ c.c. , (2 2)

where, as shown in Fig. 2, the angle 6) gives the
direction of polarization of the pump. The func-
tions 80(t) and y(t) are taken to be slowly varying
functions of time. For a strictly monochromatic
field 80(t} and y(f) are independent of time t and

are not random variables. For a fluctuating field,
80(t) and cp(t) are stochastic functions. The fre-
quency of the pump is either at resonance or close
to resonance with the frequency of the J=O to J=1
transition. The terms in the last brackets in (2. 1)
represent the interaction of the system with the
circularly polarized radiation

E,(t) =8,e '"»'+8, e'"»'. (2.3)

The density matrix p of the system satisfies the
equation

(2. 4)

where the effect of spontaneous emission, as well
as that of the decay mechanisms and pumping pro-
cess, is contained in I.-„„which has the structure

(2. 5}

x atomic beam

y
'Lx

where 2y,&
represents the transition probability

per unit time, from the level j to the level i, due

to spontaneous, collisiona, l and all other incoherent
processes. On transforming (2. 4) to a frame ro-
tating with the angular frequency of the pump field
co&, and on making a rotating wave approximation,
(2. 4) reduces to

FIG. 2. Schematic diagram showing the directions
and polarizations of the various beams.

(2. 6)

where all the slow time dependence is contained in
H&" &(f) and the fast time dependence in the p'"'
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equation is explicitly displayed. H '(t) and 6 are
given by

H '(t) =[-d,, 8(t)A„—d 8(t)A +H. c. ]

+h((uo —(u~)(A„+A ),
G = (d,~ '8, /h) .

(2. 7)

(2. 8)

The matrix elements of p' ' are related to p by

PP~'(t) = 6,p„(t)+ (1 —&0)p,.~(t)e'"v"',

{d+&= (d &
= (dl, . (d+ = 0 . (2. 9}

As a first step in the calculation we show how the
rapidly oscillating terms in (2. 6) lead to light
shifts. For this purpose, we use Bogoliubov-Mit-
ropolsky's method of time averaging. This method
when applied to the density matrix equation 3

ap/at =I.,p+I., (t)p (2. 10)

shows that the effect of rapidly oscillating terms
in Lq(t) in leading order could be taken into account
by replacing (2. 10) by

Pp t
= I-op+ Li(t) f $(T)p(t)dT.

Rt
(2. 11)

On using (2. 11), we find that (2. 6) reduces to

=
@

[H'(t), p"'1+Ii..p'"',

6 =
I G I '/(~& - ~,) . (2. 14)

The effective Hamiltonian (2. 13) now explicitly has
light shift terms &(A„-A«).

We next eliminate the explicit ~ dependence and
the phase dependence from the Hamiltonian by
making use of the relations among the dipole ma-
trix elements

where

H'(t) =- [d„8(t)A„+d„8(t)A„+H. c. ]
+ h((oo —(u~ + 6)A„+h(&uq —(ul, )A —6A«,

(2. 13)

where

p++ = &o'pg+ —&o-'p+g —2yp++ p

p = zap —zo. ~p™ —2yp
0

p„=-i~(p,. +p, }+-i~ (p;+p )

+ 2&(p-+ p ),
(2y+ia)p+ +io'p, —in*p...
[2t&+y+zp(t)]p„+tn(p„- p„p, -),

[i6+r+ ip (t)]p„+i& (P„—P--- p },-
where

j (t)= p, (t) and a =R80(t). (2. 16)

(P(t)P (t')) =2r,~(t- t'), (P (t)) =0. (2. 19a)

This is the familiar phase-diffusion model of the
laser light in which the amplitude remains con-
stant. In this model the amplitude correlations
are given by

( 8 (t}8(t'}&
= exp-y. l

t —t'I] (8(t)8(t') ) = 0

(2. 19b}

i. e. , the spectrum is Lorentzian. Higher-order
correlations of the field have more complicated
structure, though these can be evaluated in a
closed form. 25 The method of calculation for the
above model is similar to that given in Ref. 21.
Let us denote the ensemble-averaged values of p;&
over the distribution of P, (t) by e,&

——(p,.&). Using
the general theory of Ref. 21, we then find the
equations of motion for +,.&.

0 +=i&(4 —0 ) —2&%

The above equations could be solved if p, (t) and

80(t) were constants, as in the case of a monochro-
matic pump. For a fluctuating pump, we have to
specify the nature of the pump, i. e. , we have to
specify the stochastic processes p(t) and .8o(t).
The model, for which exact solutions could be ob-
tained, corresponds to (i) 80(t) being a time-inde-
yendent constant, and (ii) p. (t) being a Gaussian
delta correlated process, i. e. ,

d,,=R(-~+ iy), d„=R(l+ ty)

and by making the transformations

p+- = —p+-e 2 i~'

p+ = —p+ expt[a+ p(t)+&I.tl (2. 16)

=in(e, —e~) —2yy

c«=t&(s+~+ @~—+~+ —+~-)+2'Y(4+++ + -), (2. 20)

0+ ——i&(%~ —4+~) —(2y+ ia)%+,

@+g= i0 (4« —4~ —0 p ) —(2i6 + p + p~) 0 ~~,

=to'(e„-e -+.)- (i~+r+r, )e, .
p, =p, expi[p(t) —&+(u~t].

We further assume only the radiative decay from
the level Ia) to the ground level Ig) at the rate 2y
and include no other decays. In such a ease, the
density matrix elements p™,

&
satisfy the equations

The above equations no longer involve any expli-
cit time dependence and could be solved in a
straightforward manner. The solutions of these
equations ean then be used to obtain the detection
signals. The fluorescence signals detected along
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y and x directions, denoted respectively by L,„and
L„, with polarizations along x and y, respectively,
are given by [cf. Ref. 10]

I.„~p, +p„+2 Rep, ,

L, o- p„+p —2 Bep, . (2. 21)

Substituting for the density matrix elements p,&'s

in terms of p,.&'s we obtain

L„42- p,++ p —2(Rep, cos29+Imp, sin29),
(2. 22)

L„~p„+p + 2(Rep+ cos29+ Imp+ 'sin29),

and hence the ensemble-averaged signals will be

(L„)~ y,„+q —2(Req, cos29+Ime, sin29),

(L„)~@++++ +2(Re@,.cos29+Ime, sin29).

(2. 23)

In the following section, the set of equations

(2. 20) is solved analytically under steady-state
conditions and the analytical expressions for the

fluorescence signals are obtained. The signals
are studied as a function of ~ for various values of

the parameters, such as field strengths and band-

widths. Hereaf ter, the ensemble-averaged signals
will be denoted by l,„and L„with the angular
brackets omitted for simplicity.

III. ANALYTICAL AND NUMERICAL RESULTS FOR THE FLUORESCENCE SIGNALS

The fluorescence signals I-„and L, defined in the previous section are determined by the steady-state
solutions of the density matrix elements e++, +, and +, . Under steady-state conditions, the left-hand

side of the set of equations (2. 20) becomes zero. Therefore, these nine algebraic equations can be solved

analytically. A long but straightforward calculation yields the results

e +e =2n p, [(4y p, +4n'p, +5~)(62p+4y~p+4n~)+962(52+4y2)p, ]D ' (3. 1)

which for p- 0 goes over to 2n'/(4n'+y'p, ), which in the limit of strong and weak fields further reduces to

for n»y p, , /=0
p~+p, =

2n'/y'p for &' «y'p, ,

In Eq. (3. 1), p, and D are given by

p =1+ (y,/y),

(3.2)

D=(y'll'44a'll+2II'+, , )[(4y'll'+4a'ii+4')(4y'll+li'll+4a)+94'(4'+4y')ll]

4n2 4 2 $2
+ (~'/2)j»'+ (4y'p'+ 4n'p + ~')

2 &
—[2n'(p —I) —p(4y'+ ~') l. (3.3}

The atomic coherences are given by

Re@+ ——n p[(5 +4y p, +4n'p, )(4y p, +4n & )+952(5 +4y )p, ]D '

w hich for 5- 0 goes over to n'/(4n'+y'p), which in the limiting cases further reduces to

for o. »y p. ,

n'/y'p, for n'«y'p,

Similarly we have the results

Ime+ ——2n'pf)y[952(I —P) —(4y2P. 2+ 4n2P. + 52)(1+P)]D ', .

Im@, -0 as 5-0.

(3.4)

(3.5)

(3.6)

(3.7}

Now, let us examine the symmetry properties of the above expressions when we change & to —&. We

see that (e,,+e ) and Re+, are even functions of 5, and 1m', is an odd function of 5. The symmetry

properties of the fluorescence signals depend on the direction of polarization of the incident pump field.
We note that

(3.9)

for 9=0, v/2 etc. , i. e. , L,(5) and L,(5) are symmetric about &=0 for these values of 9. Moreover, for
9 =v/4, —,')7 etc. we have the relations
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L„(5)=L„(-5).
L„(5)=L.(- 5).

(s.g)

Let us now consider some special cases under which the expressions for signals have a simplified form.

A. Monochromatic pump

Let us first examine the results for the case of narrow-band excitation, i.e. , in the limit y, -0, for an
arbitrary strength of the linearly polarized pump laser. In this limit, the results are given by

(@ + g ) 2&2[g52(52+ 4y2) + (4y2+ 52 p 4&2)2]D-1

Ree+ ——n~[(52+ 4yt + 4n~)(4y2+ 4n2 —5~) + 95~(52+ 4y )]Dq

(s. io)

(3.11)

Ime+ ———4y5n'(4y'+ 4o2 + 5')D, ',
where

(y2 + 4&2 ~ 3 52)[g 52 (g + 4y2) + (52 + 4' ~ 4&2 )2] + 52[(4y2 + 4&2 + 52) (52 + 4y2)]

(3.12)

(3.13)

(3. 14)

o2( 1 2

3 I(52~ 2 452+ t )I t (s. is)

I =2 26 1 4' '-=s "y 5+y -45+;). (3. 16)

The positions and widths of peaks in (4„+e ),
etc., could be ascertained from the roots of D&,
which are rather complicated as D& is cubic in & .

Now, if we assume, as usual, that the pump is
weak, i. e. , 0' «y, then in this limit the results of
(3.10) to (3. 13) simplify considerably to

I

In this limit, it can be seen that each of the func-
tions (e„+e ) and Re@, can be expressed as the
sumof two Lorentzians, one with a width y and the
other with a width y/2. Ime, is dispersive in na-
ture, which results from its dependence on ~.
Therefore, the signal for the case & = 0, v/2 etc.
could be written as the sum of two Lorentzians
(the weight factor associated with one of them may
be negative) of widths y and y/2, respectively, and
for the case when & = v/4, 3m/4 there are two dis-
persion terms in the signal which come from the
term Im++, in addition to the absorption type of
terms. The results (3. 14) to (3.16) are in agree-
ment with a recent work of Delsart et al. ~'

B. Broadband pump

As Hanle experiments have been performed with both monochromatic and broadband sources, it is
worthwhile to examine the effect of the source bandwidth on the nature of the spectra. We first consider
the weak field spectra n «y, y, . In this case, expressions (3. 1) to (3.6) simplify to

1 1'
( '+ ' )'('+ ' ') '

~ (~+2) (~-I)~l 2~ (~ 16} (~+4)+4(~ 4}
(5'+ 4y') &(V'-16) (V'-4) & (45'+ y'V') (5'+ y'u ')

',~(tO-~)(~'-4V' —(~+ &)(t '-&6) '1 40+~)(~'- &&)
' L2-~)(~'-4) ')

y & (5'+ 4y') (45'+ y'u ') (5'+ y'u ')

(s. iv)

(s. is)

(s. ig}

We can see from the above that the fluorescence
signal for 9=0,v/2 etc. is a sum of three Lorent-
zians, with the possibility of the weight factors as-
sociated with so.ne of them being negative, of

' widths 2y, yp, , and yp, /2, respectively. For the
case 0 = w/4, the signal has, in addition to the
above, a dispersive contribution which comes from
the term Ime+ . Although the signal has a disper-
sive contribution, it always remains positive. For

I

arbitrary values of the strength of the broadband
field, the signals are examined in the next section.

From the analytical expressions given above, it
is difficult to get an insight into the actual behavior
of the fluorescence signals L„(5}and L„(5). There-
fore, we now proceed to present some of the nu-
merical results for the line shapes of the fluores-
cence signals L„(5) and L (5), for various values
of the field strengths and the fluctuation parameter
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Fig. 6. The normalized fluorescence signal L„as a
function of 6 for a= w/2, a=lo, y=1, and for the follow-
ing values of p~: (a) /~=0; @) —---- /~=2; (c)
~+~a~ o» ~ v = ]0

FIG. 8. The fluorescence signal L„as a function of 6
for e= r/4, n =10, @=1, and for values of the bandwidth
parameter y, as: (a)- 'y =0; (b)»———y =1 (c)
-~--- -.y =2 (d) —.—.y =&0.c C

Figs. 6 and 7 with those of Avan and Cohen Tan-
noudji for the case of the usual magnetic-field
Hanle effect. We see that the qualitative effect of
bandwidth on the optical Hanle signals is similar
to that in the case of magnetic-. field Hanle effect.
We also note that the optical Hanle signals do not
show very pronounced narrowing due to laser line-
width, as is typical of the magnetic-field Hanle ef-
fect. The differences may be due to the fact that
the pumping laser is always asymmetrically off the
two atomic transitions, due to Stark shifts induced
by the nonresonant laser. ~

05

~0 20 30

FIG. 7. The normalized fluorescence signal L„as a
function of (5 for the same values of parameters as in
Fig. 6.

In Fig. 8, a plot of the fluorescence signal L„(5),
for 9 =m/4, for the strong-field case is shown.
For the narrow-band excitation, the line has a sin-
gle peaked structure with slight asymmetry about
6=0. As the fluctuations are increased, the
asymmetry becomes more pronounced and the line
attains a dispersive shape. However, it is to be
noted that the signal always remains positive.

IV. OPTICAL HANLE EFFECT UNDER STRONG
BROADBAND EXCITATION

In this section, we outline an alternate approach
to the Hanle effect in strong broadband fields, al-
though in the literature several treatments" of the
broadband fields already exist. We will use some
general results from the theory of multiplicative
stochastic processes. We assume that the broadband
field could be represented by a delta correlated Gaus-
sian random process. Both these assumptions are
justified in view of the central-limit theorem,
since a broadband field, in principle, can be rep-
resented by a superposition of an infinitely large
number of modes. Therefore, the electric field
8(t) in (2. 12) is now regarded as a Gaussian sto-
chastic process with correlation function

(h'(f)&'*(~')
&
= 2D~(&- f'), &&'(&)&'(f') ) = o (4 1)

where

h(t) =g'(t)(x cose+y sin&) .
On using (2. 15) and (4. 2), the Hamiltonian 0'(f)
simplifies to
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H'(f) = h((op —(o~+ 5)A„+h((op —(uz —5)Ag~+ [A,gh'(t) ' —A,S'(f)' + H. c.). (4. 2)

On using the theory of multiplicative stochastic processes, 2~ the ensemble average of p
' can be written as

f&P'"'& = I;&P '& —'[(
p
— +5)A+ +( — —5)A {P ')1

—(R /k)D[A+~e ' -A~e' [A~+e' A—~ e ' {p'"')]]
—(R /h )D[A,e' A—e ', [A, e ' A-~e'', {o'"')]], (4. 4)

On making use of the transformation of type (2. 16) (with y replaced by zero), the equations of motion for
the ensemble-averaged elements of the density matrix are now given by

4++= —2(yg + r)%'++ —Dp(2%'+++ 'e+-+ 4-+ 2%'gg)i

=-2(r~+y)e -Dp(2e +e,+e, -2e„),
4+~=P —2ype~~+ 2y{c+++4 )+ 2Dp(%+++ 4 + e+ + e + —Re~+),

'e+ = (2Y + 2yg + P5) 4'y Dp(2e ++4++ + e' 2k&&)

++, =- (rp+r&+r+2i~)e;-Dp(4 +2@~),

(4.5)

4 =- (rp+r~+r+i5)e -Dp(e;+3+, ),
where RPD/kP =Dp and where we have also included the incoherent decay of the levels J= 0 and J= 1 at the

rates 2&0 and 2&&, respectively, as well as the pumping of the level 4=0 at the rate P. This kind of situa-
tion was considered by Carrington and Corney and Ducloy, "who also assumed that y «yo and yq, in the
context of the usual Hanle effect. The steady-state solutions of Eqs. (4. 5) are given by

+ } &gP 1 4Dprp(y& + r)(r~ + r+ Dp)
A (5'+ r')A

2D(p(y+ rg)'[I +Dp/(r + r()]
(52+ I'~)A

(4. 6)

(4. 7)

(4. 6)

where

4[(y+ yg+ 2Dp)y +p2D r&p1(r+ ri D+)(pry+&)
A

(4. 9a}

A = [(y, +r+Dp)rp+ 2Dpr&].

The fluorescence signals I-„and I.~ for the case when & = n'/2 are given by

~ 8, 2 DIP 1 4(y+y }'[1+Do/(y+y )][(r+ri}rp+2Dpr1] I
A (5'+ I')A j ~

Dy( 4(r+ r&) [I+D /(y+ r&)][(r+r, )rp+»p(rp+ rf)]
(5'+ I '}A ) '

(4. Qb)

(4. 11)

The above results, which are valid to all powers
in Do and for arbitrary values of decay parameters

pf, and y, have been derived rigorously under
the assumption of a delta correlated Gaussian
pump field. Ducloy, in an extensive study2 of the
magnetic-field Hanle effect, has examined the na-
ture of the Hanle signals in the presence of a
broadband field. He considered the broadband
field to be a superposition of a large number of la-
ser modes, with the spacing between the laser

modes taken to be much smaller than say the width
of the excited state. His model of the broadband
laser is very much like our model (4. 1). It is in-
teresting to note that our results for optical Hanle
signals in broadband fields are rather similar to
those for the magnetic-field Hanle signals —the
most important property being the Lorentzian
characteristic of the signals, with intensity-depen-
dent detunings.

The degree of polarization produced by the pump
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radiation for the case when & =w/2 is given by

2) L„+L 4 +O' F02+ 62 '

(4. 12)

—~PDo
Imp+

y

(2rg+r~) 8(r+rg) 6P&~~. . .
ro(r + r&)

where the full width at half-maximum of the degree
of polarization signal is given by

Fo = 2 (r+ r&)[1+Do/(r+ rg) 1"'. (4. 18)

where

X= [6'+ 4(y+ y, )'].

(4. 16)

(4. 17)

It is important to note that the width of the polar-
ization as a function of 5, for the case when & =m/

2, does not depend on the decay rate yp of the
ground state, although the width of the signals L„
and L„does depend on the parameter yp.

A series expansion of (4. 6), (4. 7), and (4. 8) in
powers of the intensity parameter Dp leads to

Pap'-"-'=.
(y .y)

--", —+ —,— + ~ ~ ~, (4. 14)
D'* ro (ra+ 2rg)
ro & (r+rg)'

2P(r+ r~)&~
y

4p[y(X+ 4yo(y+ y()2]D20
( )y2 2

The results of (4. 14) to (4. 16) in the limit when y
«yp and y& are in agreement with the general ob-
servations and remarks made by Ducloy ' in the
context of the usual magnetic-field Hanle effect
studies. Recently, Delsart et al. 2 have reported
the experimental results on optical Hanle signals
both in monochromatic as well as in broadband
fields. They consider the case in which the satur-
ation effects are not important. The experimental
observations, say in the broadband case, can be
explained in terms of the first term in the series
expansions like (4. 15) and (4. 16).
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