View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Publications of the IAS Fellows

Explicit Deterministic Constructions for
Membership in the Bitprobe Model

Jaikumar Radhakrishnan', Venkatesh Raman?, S. Srinivasa Rao?
! Tata Institute of Fundamental Research, Mumbai.
jaikumar@tcs.tifr.res.in
2 Institute of Mathematical Sciences, Chennai, India 600 113.
{vraman,ssrao}@imsc.ernet. in

Abstract. We look at time-space tradeoffs for the static membership
problem in the bit-probe model. The problem is to represent a set of
size up to n from a universe of size m using a small number of bits so
that given an element of the universe, its membership in the set can be
determined with as few bit probes to the representation as possible.

We show several deterministic upper bounds for the case when the num-
ber of bit probes, is small, by explicit constructions, culminating in one
that uses o(m) bits of space where membership can be determined with
[lglg n] + 2 adaptive bit probes. We also show two tight lower bounds
on space for a restricted two probe adaptive scheme.

1 Introduction

We look at the static membership problem: Given a subset S of up to n keys
drawn from a universe of size m, store it so that queries of the form “Is « in S7”
can be answered quickly. We study this problem in the bit-probe model where
space 1s counted as the number of bits used to store the data structure and time
as the number of bits of the data structure looked at in answering a query.

A simple characteristic bit vector gives a solution to the problem using m
bits of space in which membership queries can be answered using one bit probe.
On the other hand, the structures given by Fredman et al.[4], Brodnik and
Munro [1] and Pagh [5] can be used to get a scheme that uses O(nlgm) bits of
space in which membership queries can be answered using O(lgm) bit probes.
Recently Pagh [6] has given a structure that requires O(sp,) bits of space
and supports membership queries using O(lg(m/n)) bit probes to the structure,
where s, , = @(nlg(m/n)) is the information theoretic lower bound on space
for any structure storing an n element subset of an m element universe.

Buhrman et al.[2] have shown that both the above schemes are optimal. In
particular they have shown that any deterministic scheme that answers mem-
bership queries using one bit probe requires at least m bits of space and any
deterministic scheme using O(sy, ») bits of space requires at least £2(lg(m/n))
probes to answer membership queries. They have considered the intermediate
ranges and have given some upper and lower bounds for randomized as well as
deterministic versions. Their main result is that the optimal O(nlgm) bits (for

https://core.ac.uk/display/291582682?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

n < ml_n(l)) and one bit probe per query are sufficient, if the query algorithm

is allowed to make errors (both sided) with a small probability. For the determin-
istic case, however, they have given some non-constructive upper bounds. They
have also given some explicit structures for the case when ¢ is large (¢ > lgn).

Our main contribution in this paper, is some improved deterministic upper
bounds for the problem using explicit constructions, particularly for small values
of t. For sets of size at most 2, we give a scheme that uses O(m2/3) bits of space
and answers queries using 2 probes. This improves the O(m3/4) bit scheme in
[2] shown using probabilistic arguments. We also show that the space bound is
optimal for a restricted two probe scheme. We then generalize this to a [lglgn]+
2 probe scheme for storing sets of size at most n, which uses o(m) bits of space.
This is the best known constructive scheme (in terms of the number of bit probes
used) for general n that uses o(m) bits of space, though it is known [2] (using
probabilistic arguments) that there exists a scheme using o(m) bits of space
where queries can be answered using a constant number of bit probes.

The next section introduces some definitions. The following section gives
improved upper bounds for deterministic schemes. In section 4, we give some
space lower bounds for a restricted class of two probe schemes, matching our
upper bound. Finally, Section 5 concludes with some remarks and open problems.

2 Definitions

We reproduce the definition of a storing scheme, introduced in [2]. An (n,m, s)-
storing scheme, is a method for representing any subset of size at most n over a
universe of size m as an s-bit string. Formally, an (n, m, s)-storing scheme is a
map ¢ from the subsets of size at most n of {1,2,...,m} to {0, 1}*. A determinis-
tic (m, s, t)-query scheme is a family of m boolean decision trees {71, 75, ..., Ty},
of depth at most ¢. Each internal node in a decision tree is marked with an index
between 1 and s, indicating an address of a bit in an s-bit data structure. All
the edges are labeled by “0” or “1” indicating the bit stored in the parent node.
The leaf nodes are marked “Yes” or “No”. Each tree T; induces a map from
{0,1}* — {Yes, No}. An (n,m, s)-storing scheme and an (m, s,?)-query scheme
T; together form an (n, m, s,t)-scheme which solves the (n, m)-membership prob-
lem if VS z s.t. |S| < n,z € U : Ty (¢(S)) = Yes if and only if z € S. A non-
adaptive query scheme 1s a deterministic scheme where in each decision tree, all
nodes on a particular level are marked with the same index.

We follow the convention that whenever the universe {1,...,m} is divided
into blocks of size b (or m/b blocks), the elements {(i — 1)b 4+ 1,...,ib} from
the universe belong to the ith block, for 1 < i < |m/b| and the remaining
(at most b) elements belong to the last block. For integers # and a we define,
div(x,a) = |x/a] and mod(z,a) = ¥ — a div(x, a). To simplify the notation, we
ignore integer rounding ups and downs at some places where they do not affect
the asymptotic analysis.

3 Upper bounds for deterministic schemes

As observed in [2], the static dictionary structure given by Fredman, Komlos
and Szemeredi [4] can be modified to give an adaptive (n,m, s, t)-scheme with
s = O(nkm!/*) and t = O(lgn + lglgm) + k, for any parameter k > 1. This
gives a scheme when the number of probes is larger than lgn. In this section,
we look at schemes which require fewer number of probes albeit requiring more
space.

For two element sets, Buhrman et al.[2] have given a non-adaptive scheme
that uses O(y/m) bits of space and answers queries using 3 probes. If the query
scheme 1s adaptive, there is even a simpler structure. Our starting point is a
generalization of this scheme for larger n.

Theorem 1. There is an explicit adaptive (n,m, s,t)-scheme with t = [lg(n +
D]+ 1 and s = (n 4+ [lg(n + 1)])m*/2.

Proof. The structure consists of two parts. We divide the universe into blocks
of size m'/2. The first part consists of a table 7' of size m/2, each entry cor-
responding to a block. We call a block non-empty if at least one element from
the given set falls into that block and empty otherwise. For each non-empty
block, we store its rank (the number of non-empty blocks appearing before and
including it) in the table entry of that block and store a string of zeroes for each
empty block. Since the rank can be any number in the range [1,...,n] (and we
store a zero for the empty blocks), we need [lg(n+1)] bits for storing each entry
of the table T'.

In the second part, we store the bit vectors corresponding to each non-empty
block in the order in which they appear in the first part. For convenience, we call
the jth bit vector as table T};. Thus the total space required for the structure is
at most (n + [lg(n 4+ 1)])m'/? bits.

Every element @ € [m] is associated with {41 locations, where [is the number
of non-empty blocks: t(z) = div(x, m'/?) in table T and t;(x) = mod(z, m'/?)
in table T for 1 < j <. Given an element z, the query scheme first reads the
entry j at location #(z) in table T. If j = 0, the scheme answers ‘No’. Otherwise
it looks at the bit Tj(¢;(x)) in the second part and answers ‘Yes’ if and only if
it 18 a one. a

If only two probes are allowed, Buhrman et al.[2] have shown that, any non-
adaptive scheme must use m bits of space. For sets of size at most 2, they have
also proved the existence of an adaptive scheme using 2 probes and O(m3/4) bits
of space. We improve it to the following:

Theorem 2. There is an explicit adaptive scheme that stores sets of size at
most 2 from a unwverse of size m using O(m2/3) bits and answers queries using
2 bit-probes.

Proof. Divide the universe into blocks of size m!/? each. There are m?/3 blocks.
Group m!/? consecutive blocks into a superblock. There are m!/3 superblocks
of size m?/? each.

The storage scheme consists of three tables 7', Ty and T}, each of size m?/3

bits. Each element # € [m] is associated with three locations, #(z), to(x) and
t1(x), one in each of the three tables, as defined below. Let b = m2/3 and
by = m'/3. Then, t(x) = div(zx,b1), to(x) = mod(x,b) and t;(x) = div(x,b) by +
mod(x,by). Given an element # € [m], the query scheme first looks at T'(¢(x)).
If T(t(z)) = j, it looks at T;(¢;(x)) and answers ‘Yes’ if and only if it is 1, for
j€{0,1}.

To represent a set {,y}, if both the elements belong to the same superblock
(i.e. if div(z,b) = div(y, b)), then we set the bits T'(¢(z)) and T(¢(y)) to 0, all
other bits in T to 1; Ty(to(x)) and Tp(to(y)) to 1 and all other bits in Ty and
T1 to 0. In other words, we represent the characteristic vector of the superblock
containing both the elements, in 7p, in this case.

Otherwise, if both the elements belong to different superblocks, we set T'(¢(x)),
T(t(y)), Ti(t1(x)) and T1(¢1(y)) to 1 and all other bits in T, Ty and Ty to 0.
In this case, each superblock has at most one non-empty block containing one
element. So in 77, for each superblock, we store the characteristic vector of the
only non-empty block in it (if it exists) or any one block in it (which is a sequence
of zeroes) otherwise. One can easily verify that the storage scheme is valid and
that the query scheme answers membership queries correctly. a

One can immediately generalize this scheme for larger n to prove the fol-
lowing. Notice that the number of probes is slightly smaller than that used in
Theorem 1, though the space used is larger.

Theorem 3. There is an explicit adaptive (n,m,s,t)-scheme with t = 1 +

Mg(|n/2] +2)] and s = O(m*/3(n/2 +lg(n/2 + 2) + 1)).

Proof Sketch: The idea i1s to distinguish superblocks containing at least 2
elements from those containing at most one element.

In the first level, if a superblock contains at least 2 elements, we store its
rank among all superblocks containing at least 2 elements, with all its blocks.
Since there can be at most |n/2] superblocks containing at least 2 elements, the
rank can be any number in the range {1,...,|n/2]}. For blocks which fall into
superblocks containing at most one element, we store the number |n/2] + 1, if
the block is non-empty and a sequence of [lg(|n/2]| + 2)] zeroes, otherwise.

The second level consists of [n/2] + 1 bit vectors of size m?*/® each. We will
store the characteristic vector of the jth superblock in the jth bit vector for
1 < j <, where [is the number of superblocks containing at least 2 elements.
We will store all zeroes in the bit vectors numbered [+ 1 to [n/2]. In the
([n/2] 4+ 1)st bit vector, for each superblock we store the characteristic vector
of the only non-empty block in it, if it has exactly one non-empty block or a
sequence of zeroes otherwise.

On query z, we look at the first level entry of the block corresponding to
z. We answer that the element is not present, if the entry is a sequence of
zeroes. Otherwise, if it is a number k in the range [1,...,|n/2]], we look at the
corresponding location of # in the kth bit vector in the second level (which stores
the bit vector corresponding to the superblock containing). Otherwise (if the

number is [n/2] 4+ 1), we look at the corresponding location of x in the last bit
vector and answer accordingly. ad

This can be further generalized as follows. In the first level, we will distinguish
the superblocks having at least k elements (for some integer k) from those with
at most k — 1 elements in them. For superblocks having at least & elements, we
store the rank of that superblock among all such superblocks, in all the blocks
of that superblock. For the other superblocks, we store the rank of the block
among all non-empty blocks in that superblock, if the block is non-empty and
a sequence of zeroes otherwise. The second level will have [n/k] + k — 1 bit
vectors of length m?/3 each where in the first |n/k| bit vectors, we store the
characteristic vectors of the at most |n/k] superblocks containing at least k&
elements in them (in the order of increasing rank) and pad the rest of them
with zeroes. Each of the (|n/k] + j)th bit vectors, for 1 < j < k — 1, stores
one block for every superblock. This block is the jth non-empty block in that
superblock, if that superblock contains at least j non-empty blocks and at most
k — 1 elements; we store a sequence of zeroes otherwise. The query scheme 1s
straightforward. This results in the following.

Corollary 1. There is an explicit adaptive (n,m,s,t)-scheme with t = 1 +
Mg(|n/k| + k)] and s = O(m*/3(n/k +1g(n/k + k) + k)).

Choosing k = [/n], we get an explicit adaptive (n,m,s,t)-scheme with
t=2+[Llgn] and s = O(m?*3/n).
Actually, by choosing the block sizes to be W

2/3 1/3 . R
superblocks to be % we get the following improved scheme:

and the sizes of the

Corollary 2. There is an explicit adaptive (n,m,s,t)-scheme with t = 2 +
[1lgn] and s = O(m?*/3(nlgn)'/3).

We generalize this to the following:

Theorem 4. There is an explicit adaptive (n,m, s, t)-scheme with t = [lgk] +
[Ltlgn] +1 and s = m"/E+D) (Igk + Llgn + knt/*), for k > 1.

Proof. We divide the universe into blocks of size b (to be determined later) and
construct a complete b-ary tree with these blocks at the leaves. Let the height
of this tree be k. Thus, we have m = b**! or b = m* D Given a set S of n
elements from the universe, we store it using a three level structure. We call a
block non-empty if at least one element of the given set .S belongs to that block
and call it empty otherwise. We define the height of a node in the tree to be the
length of the path (the number of nodes in the path) from that node to any leaf
in the subtree rooted at that node. Note that the height of the root is £+ 1 and
that of any leaf is one.

In the first level we store an index in the range [0, ..., k — 1] corresponding
to each block. Thus the first level consists of a table B of size b* where each
entry is a [lgk] bit number. The index stored for an empty block is 0. For a

non-empty block, we store the height A < k — 1 of its ancestor (excluding the
root and the first level nodes of the tree) x of maximum height such that the
total number of elements falling into all the blocks in the subtree rooted at node
x is more than |n®/*|. This will be a number in the range [0, ..., k — 1].

In the second level we store a number in the range [1, ..., {nl/k] — 1] cor-
responding to each block. Thus this level consists of a table T' of size b, each
entry of which is a ﬂg nl/k] bit number. The number stored for an empty block
i1s 0. For a non-empty block, we store the following:

Observe that given any node x at height 2 which has at most th/kJ ele-
ments from the set, the number of its children which have more than Ln(h_l)/kJ
elements from the set is less than {nl/k] . Suppose the index stored for a block is
. Tt means that the ancestor = of that block at height [has more than Lnl/kJ el-
ements and the ancestor y at height {41 has at most Ln“"’l)/kJ elements. Hence
y can have less than {nl/k] children which have more than Lnl/kJ elements. Call
these the ‘large’ children. With all the leaves rooted at each large child of y, we
store the rank of that child among all large children (from left to right) in the
second level.

In the third level, we have k tables, each of size {nl/k] m/b bits. The ith
table stores the representations of all blocks whose first level entry (in table B)
is 7. We think of the ¢th table as a set of {nl/k] bit vectors, each of length m/b.
Each of these bit vectors in the ith level stores the characteristic vector of a
particular child for each node at height i of the tree, in the left to right order.
For each block (of size b) with first level entry ¢ and second level entry j, we
store the characteristic vector of that block in the jth bit vector of the ith table
at the location corresponding to its block of size b*~%. We store zeroes (i.e. the
characteristic vector of an empty block of appropriate size) at all other locations
not specified above.

Every element # € [m] is associated with k + 2 locations b(x), t(x) and
ti(z) for 0 < @ < k — 1, as defined below: b(x) = t(z) = div(z,b), t;(x) =
mod(div(z, b*)b + mod(x, b?), b*).

Given an element z, the query scheme first reads ¢ = B(b(z)) and j = T'(¢(z))
from the first two levels of the structure. If j = 0, it answers ‘No’. Otherwise,
it reads the jth bit in the table entry at location ¢;(z) in table T; and answers
“Yes’ if and only if it 1s 1.

The space required for the structure is s = b*([lgk] + [¢ lgn] + 2k Lnl/kJ)
bits. Substituting b = m*/*+1) makes the space complexity to be m*/(#+1([1g k]+
{%lg n] + knl/k). The number of probes required to answer a query is ¢ =
gkl + [+1lgn] + 1. i

One can slightly improve the space complexity of the above structure by
choosing non-uniform block sizes and making the block sizes (branching factors
at each level, in the above tree structure) to be a function of n. More precisely,
by choosing the branching factor of all the nodes at level ¢ in the above tree

, i i (k+1)
structure to be b;, where b; = m!~ % (M) , we get

Ea

Corollary 3. There is an explicit adaptive (n, m, s,t)-scheme with t = [lgk] +
[Hlgn] + 1 and s = (k+ Dm*/ 6+ (n(Tlg k] + Ngn' 4D for k> 1.

By setting k = lgn, we get

Corollary 4. There is an explicit adaptive (n, m, s,t)-scheme witht = [lglgn]+
2 and s = o(m) when n is O(m'/1816™m),

In the above adaptive scheme we first read [lgk] + [4 lgn] bits from the
structure, and depending on these bits we look at one more bit in the next level
to determine whether the query element is present. An obvious way to make this
scheme non-adaptive is to read the [lgk]+ [Ign] bits and all possible & {nl/k]
bits (in the next level) and determine the membership accordingly. Thus we get
an explicit non-adaptive (n, m, s,t)-scheme with ¢t = [lgk] + [% lgn] + k[n'/*]
and s = tm*/++1) By setting k = [lgn] in this, we get a non-adaptive scheme
with t = O(lgn) and s = o(m).

These schemes give the best known explicit adaptive and non-adaptive schemes
respectively for general n using o(m) bits.

4 Lower Bounds

Buhrman et al.[2] have shown that for any (n, m, s,t) scheme s is 2(ntm!/?). One
can achieve this bound easily for n = 1. They have also shown that for n > 2 any
two probe non-adaptive scheme must use at least m bits of space. In this section,
we show a space lower bound of Q(mz/?’) bits for a restricted class of adaptive
schemes using two probes, for n > 2. Combining this with the upper bound of
Theorem 2, this gives a tight lower bound for this class of restricted schemes. We
conjecture that the lower bound applies even for unrestricted schemes. We also
show a lower bound of £2(m) bits for this restricted class of schemes for n > 3.

Any two-probe O(s) bit adaptive scheme to represent sets of size at most 2
from a universe U of size m, can be assumed to satisfy the following conditions
(without loss of generality):

1. Tt has three tables A, B and C' each of size s bits.

2. Bach # € U is associated with three locations a(z), b(x) and c(z).

3. On query z, the query scheme first looks at A(a(z)). If A(a(x)) = 0 then it
answers ‘Yes’ if and only if B(b(x)) = 1 else if A(a(x)) = 1 then it answers
“Yes” if and only if C'(e(z)) = 1.

4. Let Ay ={x €[m]:a(x) =i}, By = {b(x) : x € A;} and C; = {c(x) : z €
At for 1 <i<s. Forall 1 <i<s, |B;| = |4 or |A;| = |Cy]. T.e. the set of
elements looking at a particular location in table A will all look at a distinct
locations in one of the tables, B and C'. (Otherwise, let z,y, ',y € A;,
z £y and &' # y' be such that b(z) = b(y) and e(2’) = ¢(y'). Then we can
not represent the set {z,2'}.)

5. Each location of A, B and C' is looked at by at least two elements of the
universe, unless s > m. (If a location is looked at by only one element, then
set that location to 1 or 0 depending on whether the corresponding element
1s present or not; we can remove that location and the element out of our
scheme.)

6. There are at most two ones in B and C' put together.

Define the following restrictions:

— Rl. For z,y € [m],z £y, a(z) = a(y) = b(x) # b(y) and c(z) # c(y).
~ R2.Fori,j€lsli#j, BiNB; £ 6= C;NC;j = o.
— R3. Either B or C' is all zeroes.

We show that if an adaptive (2, m, s, 2) scheme satisfies R3 (or equivalently
R1 and R2, as we will show), then s is £2(m?/3). Note that the scheme given in
Theorem 2 satisfies all these three conditions. We then show that if an adaptive
(n,m,s,2) scheme for n > 3 satisfies R3, then s > m.

Theorem 5. If an adaptive (2,m,s,2) scheme satisfies condition R3, then s is

Q(mz/?’).

Proof. We first show that (R3 = R1 and R2) and then show that (R1 and R2
= s is 2(m*/3)).

Let a(z) = a(y) and b(x) = b(y) for z,y € [m],x # y. Consider an element
z # x such that e(z) = ¢(z) (such an element exists by condition 5 above). Now,
the set {y, z} cannot be represented satisfying R3. Thus we have, R3 = R1.

Again, let a(z1) = a(z2) = ¢, a(yr) = a(y2) = J, b(z1) = b(y1) and c(z2) =
c(y2) (so that R2 is violated). Then, the set {x2,y1} cannot be represented
satisfying R3. Thus we have, R3 = R2.

Observe that R1 implies

Hence

DB =)A= m. (2)
i=1 i=1

By R2, the sets B; x C; are disjoint (no pair occurs in two of these Carte-
sian products). Thus, by Equation (1), >.I_, |B;|* < s*. By Cauchy-Schwarz,
s3I |Bil/s)? < Yoi_,|Bi|* < s By Equation (2), >, |B;| = m. Thus,
m?/s < s* or s > m?*/3. O

Remark: We observe that, in fact the condition R3 is equivalent to R1 and R2.
To show this, it is enough to prove that R1 and R2 = R3. We argue that any
scheme that satisfies R1 and R2 can be converted into a scheme that satisfies

R3 also.

Consider any scheme which satisfies R1 and R2 but not R3. So, there exists
a set {x,y} such that a(x) # a(y) for which the scheme stores this set as follows
(without loss of generality): A(a(z)) =0, A(a(y)) = 1, B(b(z)) =1, C(e(y)) = 1,
A(a(z)) = 1 for all z for which b(z) = b(x), A(a(z)) = 0 for all z for which
c(z) = ¢(y) and all other locations as zeroes.

Let a(z) = i and a(y) = j. If B; N B; = ¢ then we can store this set as
follows: A(a(z)) = A(a(y)) = 0, B(b(x)) = B(b(y)) = 1 and all other entries in
A as 1s, and all entries in B and C' as zeroes, satisfying R3. Condition R1 (and
the fact that B; N B; = ¢) ensures that this is a valid scheme to represent the
set {z,y}.

If B; N B;j # ¢, then R2 ensures that C; N C; = ¢. In this case, to store the
set {z,y} we can set A(a(x)) = A(a(y)) = 1,C(e(x)) = Cle(y)) = 1 and all
other entries as zeroes, satisfying R3.

We now show the following.

Theorem 6. If an adaptive (n,m,s,2) scheme, for n > 3 satisfies condition
R3, then s > m.

Proof. We first observe that any two probe adaptive scheme satisfies conditions
1 to b of the adaptive schemes for sets of size at most 2. Consider an adaptive
(3,m, s,2) scheme with s < m. One can find five elements z, y, ¥/, z and 2’ from
the universe such that a(y) = a(y), a(z) = a(2’), b(x) = b(y) and e(x) = ¢(2).
(Start by fixing z, y, z and then fix 2’ and ¢'.) Existence of such a situation is
guaranteed by condition 5, as s < m. Then we can not represent the set {z, ¢/, '}
satisfying R3, contradicting the assumption. Hence, s > m. a

5 Conclusions

We have given several deterministic explicit schemes for the membership problem
in the bit probe model for small values of ¢. Our main goal is to achieve o(m)
bit space and answer queries using as few probes as possible. We could achieve
[lglgn] + 2 adaptive probes through an explicit scheme, though it is known
(probabilistically) that one can get a o(m) bit structure which uses only 5 probes
to answer queries. It is a challenging open problem to come up with explicit
scheme achieving this bound. We conjecture that one can not get a three probe
o(m) bit structure.

One can also fix some space bound and ask for the least number of probes
required to answer the queries. For example, if s = O(n+/m), Theorem 1 gives a
lg(n 4+ 1) 4+ 1 probe adaptive scheme. It would be interesting to see if this can be
improved. Also this scheme immediately gives an n+O(lgn) probe non-adaptive
scheme, with the same space bound. Demaine et al.[3] have improved this to an

O(+/nlgn) probe non-adaptive scheme with s = O(v/mnlgn).

Acknowledgment. Part of the work was done while the second author was visiting
the University of Waterloo, Canada. He thanks Tan Munro and Erik Demaine
for useful discussions.

References

1. A. Brodnik and J. I. Munro, “Membership in constant time and almost minimum
space”, SIAM Journal on Computing, 28(5), 1628-1640 (1999).

2. H. Buhrman, P. B. Miltersen, J. Radhakrishnan and S. Venkatesh, “Are Bitvectors
Optimal?”, Proceedings of Symposium on Theory of Computing (2000) 449-458.

3. E. D. Demaine, J. [. Munro, V. Raman and S. S. Rao, “Beating Bitvectors with
Oblivious Bitprobes”, I.M.Sc. Technical Report (2001).

4. M. L. Fredman, J. Komlés and E. Szemerédi, “Storing a sparse table with O(1)
access time”, Journal of the Association for Computing Machinery, 31 (1984) 538-
544.

5. Rasmus Pagh, “Low redundancy in dictionaries with O(1) worst case lookup time”,
Proceedings of the International Colloquium on Automata, Languages and Pro-
gramming, LNCS 1644 (1999) 595-604.

6. Rasmus Pagh, “On the Cell Probe Complexity of Membership and Perfect Hash-
ing”, Proceedings of Symposium on Theory of Computing (2001).

