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Abstract

We consider a scenario where large data frames are broken into a few packets and transmitted

over the network. Our focus is on a bottleneck router: the model assumes that in each time step, a

set of packets (a burst) arrives, from which only one packet can be served, and all other packets are

lost. A data frame is considered useful only if none of its constituent packets is lost, and otherwise

it is worthless. We abstract the problem as a new type of online set packing, present a randomized

distributed algorithm and a matching lower bound on the competitive ratio for any randomized

online algorithm. Our bounds are expressed in terms of the maximal burst size and the maximal

number of packets per frame. We also present refined bounds that depend on the uniformity of

these parameters.
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1 Introduction

In video transmission over the Internet, the situation is typically as follows. Data is produced in

large units at the source (a video frame may be hundreds of kilobytes long), while networks use small

transfer units (e.g., packets sent over Ethernet are limited to 1.5 kilobytes), and therefore in many

cases, video frames are broken into a number of small packets. However, a video frame is useful at the

receiving end only if all its constituent packets arrive. Now consider an outgoing link in a network

switch (router): the capacity of the link is bounded, so when a large burst of packets headed to that

link arrives, some packets will be dropped (let us ignore buffering for simplicity). The router, in case

of an overflow, needs to decide online which packets to drop, so as to maximize the number of complete

frames delivered.

We abstract the above scenario as an instance of the following optimization problem, which we

call on-line set packing (osp). There is a collection of sets whose elements are initially unknown. The

elements arrive in an online fashion: When an element arrives, it announces which sets it belongs to,

and the algorithm needs to assign the element to one of the sets containing it (before the next element

arrives). Each set has a value, and the algorithm gets paid only for sets that are assigned all their

elements: there is no reward for unfinished sets. The goal is to maximize the value of completed sets.

The video transmission scenario described above reduces to osp a follows: elements represent time

steps (not packets!), and sets represent data frames. Time step j is included in data frame i if a packet

of frame i arrives at time j.

Another common scenario in packet-switching networks is the case of packets that need to traverse

multiple hops: a packet is delivered only if it is not dropped by any of the switches along its route.

Simplifying, this too can be viewed as a special case of as osp using the following mapping. Let each

pair (t, h) of time t and location h be modeled by an element of the osp formulation, and let each

packet be modeled by a set, whose elements are all time-location pairs which the packet is supposed

to visit. In the simplified set packing model, we ignore buffers and assume that only one packet can

be delivered at each (t, h) pair.

In general, sets may represent compound tasks that have mutiple parts that need to be served

in possibly different locations in the system, in bounded-capacity servers. In this general case, the

algorithm must be distributed: the algorithm designer needs also to worry about the availability of

remote information.

Our contributions. In this paper, we introduce the problem of online set packing, present random-

ized distributed algorithms for it, and prove lower bounds on the competitive ratio of any (randomized,

centralized) online algorithm for it. The problem appears to be a new fundamental online problem

that, to the best of our knowledge, was not studied explicitly in the past. Regarding our bounds on

the competitive ratio, we note that they are expressed as a function of the size of the sets, and the

load of elements, where the load of an element is defined as the number of sets containing it. Specif-

ically, let kmax denote the maximal set size (in video transmission, maximal number of packets per

video frame) and σmax denote the maximal element load (in video transmission, the maximal burst

size, i.e., the maximal number of packets that may arrive simultaneously). Our first main result is

a randomized distributed algorithm that guarantees to complete sets of total expected value at least
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opt/(kmax
√

σmax), where opt is the maximal value of any feasible solution. The result extends to

the case of general capacity case: assume that each element j arrives with mutiplicity bj , which allows

it to be assigned to bj sets. (In the video transmission scenario, bj is the number of packets that can

be served at time j.) In the case, our upper bound generalizes using adjusted load, defined as the load

of element j divided by bj .

We also derive more refined bounds on the competitive ratio which are sensitive to the variability

of set sizes and element loads: the more uniform they are, the better bounds we get. For example, if

all elements have the same load (in every time step σ packets arrive), then the competitive ratio drops

to kmax.

Our second main result is a lower bound that shows that no randomized online algorithm (in-

cluding centralized algorithms) can have competitive ratio much better than kmax
√

σmax, even in the

unweighted case, and also show a simple lower bound of (σmax)
kmax−1 for deterministic algorithms.

Our construction for the randomized case is a bit involved, and our technique uses combinatorial

designs similar to projective planes.

Related work. The offline version of Set Packing is as hard as Maximum Independent Set (MIS)

even when all elements have load 2, and therefore cannot be approximated to within O(m1−ε)-factor,

for any ε > 0 [6] (m denotes the number of sets). Set Packing is O(
√

n)-approximable, and hard to

approximate within n1/2−ε [8] (n denotes the number of elements). When set size is at most k, it is

approximable within k/2 + ε, for any ε > 0 [10] and within (k + 1)/2 in the weighted case [4], but

known to be hard to approximate to within Ω(k/ log k)-factor [9].

Buchbinder and Naor have studied online primal-dual algorithms for covering and packing in the

centralized setting (see, e.g., [5]). In their model, constraints of the primal (covering) program arrive

one by one, and the variables can only be increased by the algorithm. This approach was applied to

online set cover [1], and to the following variant of packing: In each step, a new set is introduced by

listing all its elements; the algorithm may accept the set only if it is disjoint to previously accepted

sets, but it may also reject it. If a set is accepted, the algorithm collects the set value immediately.

In our setting, elements arrive one by one, and the benefit is earned only after a set is complete.

Intuitively, both osp and the packing framework of [5] share the same linear programming matrix of

(given in Eq. (1) in Section 2 below), but in [5] columns arrive online, while in our formulation rows

arrive online.

In fact, all previous online algorithms for packing (partially) disjoint structures, whether it be

sets, vertices, or paths, assume that decisions are made on already completed structures. A factor k-

approximation is trivial by a greedy algorithm for unweighted set packing in this case. When k = 2, we

obtain an online matching problem, for which numerous results are known, starting with an e/(e− 1)-

competitive randomized algorithm of [11], that works for a weighted bipartite version with a certain

restriction on arrival order. For online independent set problems, that relate to packing paths in

graphs, very strong lower bounds generally hold [2, 7].

Throughput maximization of multi-packet frames was introduced in [12], with the additional com-

plication of having a finite buffer. However, no bound on element load is assumed in [12] (i.e., arbitrarily

many packets may arrive simultaneously at the server), and competitive algorithms were presented
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only under the assumption that the arrival process is “well ordered.”1 An upper bound of O(k2) and

a lower bound of Ω(k) on the competitive factor for deterministic online algorithms in this model was

given in [12]. These results are not directly comparable to ours, because of the difference in model:

[12] considers only well-ordered instances and allows for bounded buffering.

Distributed models for solving linear programs (fractionally) are considered in [16, 14], where the

complete matrix is input to the system at the start of execution, but it is distributed among the

different agents. In [3] new variables and constraints can be introduced over time, and the system will

stabilize to an approximately optimal solution, but the variables may be both increased and decreased

by the algorithm, so it is not online in our sense.

Paper organization. The remainder of this paper is organized as follows. In Section 2 we formalize

the problem and state our main results. In Section 3 we describe and analyze our algorithm. In

Section 4 we prove our lower bounds. We conclude in Section 5 with some open problems.

2 Problem Statement and Results

Problem statement. A weighted set system consists of a set U of n elements, a family C =

{S1, S2, . . . , Sm} of m subsets of U , and a weight function assigning a non-negative weight w(S)

to each set S ∈ C. We also assume that some capacity b(u) ∈ N is associated with each element u ∈ U .

Formally, the offline version of the problem we consider is expressed by the following integer program:

maximize
m∑

i=1

wixi (1)

s.t.
∑

i:Si3uj

xi ≤ bj for j = 1, . . . , n

xi ∈ {0, 1} .

The value of xi says whether set Si is taken or not, wi is the benefit obtained by completing set

Si, and bj is the number of sets element uj can be assigned to. We concentrate on the online set

packing problem, defined as follows. Initially, for each set we know only its weight and size (but

not its members). In each step i, a new element ui arrives along with its capacity b(ui) and with

C(ui)
def
= {S ∈ C : ui ∈ S}, i.e., the names of all sets containing ui. The algorithm must output in step

i a collection of set names A(i) ⊆ C(ui) such that |A(i)| ≤ b(ui). The algorithm is said to complete

a set S if S ∈ A(i) for each of its elements ui ∈ S. The output of an algorithm for an instance I,

denoted alg(I) (or simply alg), is the collection of sets completed by the algorithm, and the benefit

of the algorithm is in that case w(alg(I)), where the weight of a collection of sets is the sum of the

set weights. If the algorithm is randomized, the benefit for a given instance is a random variable, and

we shall use its expected value. We measure the performance of algorithms using competitive analysis:

The competitive ratio of an algorithm is the supremum, over all instances I, of w(opt(I))/w(alg(I)),

where opt(I) denotes the collection of subsets of C that maximizes the target function in (1).

1An arrival process is said to be well ordered in this context if for any 1 ≤ i, j ≤ k, the ith element of set A arrives

before the ith element of set B if and only if the jth element of set A arrives before the jth element of set B.
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Special interesting classes of instances are the unweighted instances where w(S) = 1 for all S ∈ C,

and the unit capacity instances where b(u) = 1 for all u ∈ U .

Main results. To state our results, we need to define some additional notation. Define, for each

element u ∈ U , the load of u to be the number of sets containing it, and denote it by σ(u), i.e.,

σ(u)
def
= |C(u)|. The weighted load of u is defined by σ$(u)

def
=

∑

S3u w(S) = w(C(u)). We denote

kmax
def
= max {|S| : S ∈ C} and k

def
=

∑

S∈C |S|/|C|, i.e., the maximal and average set size in C,

respectively. Throughout this paper we adopt the notational convention that for a multiset of numbers

X, X
def
=

∑

x∈X x/|X| and Xmax
def
= max(X). The average applies also to the product of two values,

in particular σ · σ$
def
= 1

n

∑

u∈U σ(u)σ$(u).

We can now state our upper bound for the unit capacity case.

Theorem 1 There exists a randomized algorithm for osp whose competitive ratio is at most kmax

√
σ·σ$

σ$

for unit-capacity instances.

For the variable capacity case, the same bound holds, up to a constant factor, after replacing the load

with adjusted load : the adjusted load of element uj is ν(uj)
def
= σ(uj)/b(uj).

Note that the competitive ratio promised by Theorem 1 is never larger than kmax
√

σmax, but can

be much better: for example, if all sets have the same size k and all elements have the same load, then

the competitive ratio improves to k in the unweighted case. We discuss some of these special cases in

Section 3.3.

No algorithm can make a baseline improvement over our algorithm, or, more precisely:

Theorem 2 For any online randomized algorithm there exists an infinite family of unweighted, unit-

capacity instances of osp for which the competitive ratio is Ω

(

kmax

(
log log kmax

log kmax

)2 √
σmax

)

.

We note that our lower bound is based on Yao’s principle: we build a distribution of the inputs

for which the expected value for all deterministic algorithms is small. Also note that kmax and σmax

are linearly related in our construction.

The situation is much worse for deterministic algorithms:

Theorem 3 The competitive ratio of any deterministic osp algorithm is at least σmax
kmax−1, even for

unweighted unit-capacity instances.

3 Randomized Upper Bounds

In this section we describe our algorithm for osp and analyze it. In Section 3.2 we analyze the

algorithm in the unit-capacity model. In Section 3.3 we state the extension to the general capacity

model, and a few sharper results for some special cases. Due to lack of space, the proofs of results

from Section 3.3 are presented only in the appendix.
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3.1 The Algorithm

The algorithm we use is inspired by the Maximal Independent Set algorithm of Luby [15]. First, for

any w > 0, we define a probability distribution Rw such that if a random variable X is distributed

according to Rw, then

Pr Rw [X < x] = xw (2)

for 0 ≤ x ≤ 1. Note that R1 is the uniform distribution over the unit interval, and in general, Rn for a

natural n, is the distribution of the maximum of n i.i.d. random variables distributed uniformly over

the unit interval. Using the definition of Rw, we specify the algorithm as follows.

Algorithm randPr

For each set S ∈ C, pick a random priority r(S) according to the distribution Rw(S).

Upon arrival of element u listing parent sets C(u) and capacity b(u):

Assign an arriving element u to the b(u) sets with the highest priority in C(u).

It is important to observe that Algorithm randPr can be implemented distributively. The idea

is that when an element u arrives, the sets C(u) that contain it can be listed explicitly (in the video

transmission scenario, this means that each packet identifies the frame that contains it; in the multiple-

hop route, this would just be the packet identifier). Therefore, all we need is a system-wide hash

function h: applying h to the identifier of each set S ∈ C(u), we can use h(S) as the random priority

of S. Practically, any off-the-shelf hash function would do. And even theoretically, it suffices for the

hash function to have kmax · σmax-wise independence, say using universal hashing.

3.2 Analysis for Unit Capacity Instances

We now prove Theorem 1. We shall use the following additional notation.

Notation 1 Let S ∈ C. Then N [S]
def
= {S′ : S′ ∈ C and S ∩ S′ 6= ∅}, and N(S)

def
= N [S] \ {S}.

The key property of randPr is that the probability that a set S has the highest priority among any

collection of sets is always proportional to w(S), as stated in the following lemma.

Lemma 1 Pr[S ∈ alg] =
w(S)

w(N [S])
for every set S ∈ C.

Proof: Let S ∈ C. Clearly, Pr[S ∈ alg] = Pr[r(S) > maxS′∈N(S) r(S′)]. Denote by rmax the

maximum priority among the priorities of sets in N(S), i.e., rmax = maxS′∈N(S) r(S′). By independence

of r(S′) for different sets in N(S) we have, for x ∈ [0, 1], that

Pr[rmax < x] =
∏

S′∈N(S)

Pr[r(S′) < x] =
∏

S′∈N(S)

xw(S′) = x
∑

S′∈N(S) w(S′) = xw(N(S)) ,

i.e., rmax is distributed according to Rw(N(S)). Letting fX denote the probability density function of

random variable X, we conclude that

Pr[S ∈ alg] = Pr[r(S) > rmax] =

∫ 1

0

∫ x

0
fr(S)(x)frmax(y)dy dx =

∫ 1

0
w(S)xw(S)−1· xw(N(S))dx =

w(S)

w(N [S])
,
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and we are done.

We note that Lemma 1 immediately implies that the competitive ratio of randPr is at most

kmaxσmax in the unweighted case, because in that case we have w(N [S]) = |N [S]| ≤ kmaxσmax for any

S ∈ C, and therefore

E[w(alg)] =
∑

S∈C
Pr[S ∈ alg] =

∑

S∈C

1

w(N [S])
≥ n

kmaxσmax
≥ opt

kmaxσmax
.

However, we shall prove a stronger bound. We first state the following technical lemma.

Lemma 2 For any positive reals a1, a2, . . . , an and b1, b2, . . . , bn, it holds that
∑

i

a2
i

bi
≥ (

∑

i ai)
2

∑

i bi
.

Proof: Let ci =
√

bi and di = ai/
√

bi, for i = 1, 2, . . . , n. Using the Cauchy-Schwarz inequality, we

obtain (
∑

i ai)
2 = (

∑

i cidi)
2 ≤ ∑

i c2
i

∑

i d
2
i =

∑

i
a2

i

bi

∑

i bi, and the lemma follows.

Lemma 1 and Lemma 2 imply the following.

Lemma 3 For any collection of sets C′ ⊆ C, E[w(alg)] ≥ w(C′)2
∑

Si∈C′ w(N [Si])
.

Proof: E[w(alg)] ≥
∑

S∈C′

w(S) · w(S)

w(N [S])
≥ (

∑

S∈C′ w(S))2
∑

S∈C′ w(N [S])
=

w(C′)2
∑

S∈C′ w(N [S])
. The first inequality

is by Lemma 1 and the second is by Lemma 2 with ai = w(S) and bi = w(N [S]).

We now apply Lemma 3 to two collections of sets. First, to the sets in an optimal solution.

Lemma 4 E[w(alg)] ≥ w(opt)2

kmax · w(C)
.

Proof: By Lemma 3 with C′ := opt, we have that

E[w(alg)] ≥ w(opt)2
∑

S∈opt
w(N [S])

. (3)

Now, observe that since the sets in opt are disjoint, each set S ∈ C intersects at most |S| ≤ kmax sets

in opt, and hence
∑

S∈opt
w(N [S]) ≤ kmax · w(C). Plugging this observation into Eq. (3) we obtain

the lemma.

Next, we apply Lemma 3 with the collection of all sets in the instance.

Lemma 5 E[w(alg)] ≥ w(C)2

n · σ · σ$
.

Proof: By Lemma 3 we have that E[w(alg)] ≥ w(C)2
∑

S∈C w(N [S]) . By summing over elements we obtain

∑

S∈C
w(N [S]) ≤

∑

S∈C

∑

u∈S

w(C(u)) =
∑

u∈U

σ(u) · w(C(u)) = n · σ · σ$ ,

and therefore E(w(alg)] ≥ w(C)2

n·σ·σ$
as required.
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Proof of Theorem 1: Lemma 4 and Lemma 5 give us two lower bounds on w(alg). The maximum

of these bounds is minimized when w(opt) =
√

w(C)3·kmax

n·σ·σ$
, and therefore, for any instance

E[w(alg)] ≥ w(opt) ·
√

w(C)

kmaxn · σ · σ$
.

Finally, since

n · σ$ =
∑

u∈U

σ$(u) =
∑

S∈C
|S| · w(S) ≤ kmax · w(C) , (4)

it follows that

E[w(alg)] ≥ w(opt) ·
√

σ$

k2
maxσ · σ$

= w(opt) · 1

kmax

√

σ$

σ · σ$
,

and we are done.

Corollary 6 For any instance, E[w(alg)] ≥ w(opt)/(kmax
√

σmax).

Proof: Follows from the fact that

√

σ$

σ · σ$
=

√
∑

u σ$(u)/n
∑

u σ(u)σ$(u)/n
≥

√
∑

u σ$(u)

σmax
∑

u σ$(u)
=

1√
σmax

.

3.3 A Generalization and A Few Specializations

In this section we state results for one generalized case and a few special cases. Due to lack of space,

no proofs are given here (they are presented in the appendix). We emphasize, however, that some new

non-trivial ideas are needed to prove the results.

Our generalization concerns servers with variable capacities: the case where each element u may

be assigned to b(u) sets. In this case, we generalize the notion of load of an element as follows.

Definition 1 The adjusted load of an element u is ν(u)
def
= σ(u)/b(u).

Intuitively, the adjusted load of an element u is the ratio of demand to supply: u is needed by σ(u)

sets, but only b(u) sets can be provided for.

Using additional arguments on top of the arguments used in the unit-capacity case, we show the

following.

Theorem 4 The competitive ratio of randPr is at most 16e · kmax

√
ν·σ$

σ$
.

Next, we state a few sharper bounds for the unweighted case. Specifically, we have the following

results.

Theorem 5 If all sets have the same size k, then E[|alg|] ≥ |opt| · σ2/(k · σ2).

The following corollary of Theorem 5 is our only upper bound that is independent of σ.

Corollary 7 If all sets have the same size k and all elements have the same load, then E[|alg|] ≥ |opt|
k .

Theorem 6 If all elements have the same load σ then, E[|alg|] ≥ |opt|
k·√σ

.
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4 Lower Bounds

In this section we prove lower bounds on the competitive ratio of any online algorithm for osp. The

bad examples in our online lower bounds are all unweighted, and further, all sets have a common size

k and all elements have unit capacity. In view of Corollary 7, however, element loads necessarily vary.

The deterministic lower bound is rather simple; the randomized lower bound is more involved, and

uses a construction based on combinatorial designs.

4.1 Deterministic Online Algorithms

In this section we establish a lower bound on the competitive ratio of any deterministic osp algorithm.

Proof of Theorem 3: Fix a deterministic osp algorithm. We construct an unweighted osp instance C
containing σk sets, each of size exactly k. The construction ensures that |alg| ≤ 1 while |opt| ≥ σk−1.

We describe the construction by building the sets incrementally, as a function of the algorithm at

hand. Call a set active at a given time if the algorithm assigned to it all its elements up to that point.

Initially, all σk sets are active. After each phase i = 1, . . . , k there will be at most σk−i active sets.

This is ensured by partitioning the sets that are active before phase i into σk−i collections of σ sets

each; for each such collection of σ sets we introduce a new element, which is a member of these σ

sets. Clearly, at most one set from each collection remains active when the phase ends, and therefore

|alg| ≤ 1 after k phases.

Note that at this point most sets have less than k elements defined. We now introduce new elements

to complete all sets to size k. All these elements have load one (i.e., each belongs to a single set).

Observe that in an optimal solution, it is possible to complete σk−1 sets by assigning the first

phase elements to sets that were not chosen by the algorithm. These sets survive, since they do not

participate in the following k − 1 phases. The theorem follows.

4.2 Randomized Algorithms

We now turn to the main technical contribution of this section: developing lower bounds for the

competitive ratio of randomized osp algorithms and establishing Theorem:2. At the outset, we use

Yao’s principle: we build a distribution of the inputs for which the expected value for all deterministic

algorithms is small.

We first give an intuitive explanation of a weaker lower bound. The input consists of a collection

of t2 sets denoted Sij, i, j ∈ {1, . . . , t}. All elements will be contained in exactly t sets. The adversary

first presents to the algorithm t elements u1, . . . , ut such that ui ∈ Sij, for every j. Then, it presents

t2 random elements v1, . . . , vt2 that satisfy the following condition: if v` ∈ Sij , Si′j′ , then i 6= i′ and

j 6= j′. This completes the construction. Let X be the solution computed by a given online algorithm

after presented with u1, . . . , ut. Any two sets from X contain some common element v` with constant

probability. By standard arguments then, only O(log t) sets from X survive after the presentation of

v1, . . . , vt2 . On the other hand, an optimal solution may complete S1j , . . . , Stj for some j. Hence, the

performance ratio of the algorithm is Ω(t/ log t). Observe that σ = t, k = t and kmax = Õ(t) (with
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high probability). Thus, we obtain Ω(σ/ log σ) and Ω(k/ log k) lower bounds for osp.

The stronger lower bound that we claim is achieved using similar ideas, but in several steps. The

presentation of our construction is divided into two parts. In the first we describe a gadget that is

based on combinatorial designs. Afterwards we use this gadget to obtain the required distribution.

4.2.1 The Gadget

Our basic building block in the construction is a combinatorial object we call (M,N)-gadget, reminis-

cent of affine planes. An (M,N)-gadget defines a way in which M · N sets intersect: in a full gadget,

any two sets intersect; we use slightly defective gadgets, in which relatively many sets (that will be

chosen by an optimal solution) do not intersect, but any deterministic algorithm will have only few

complete sets in expectation.

Specifically, let N be a prime power and M ≤ N be a positive integer. Let F be a finite field of

cardinality |F| = N and let FM ⊆ F be some subset of F of cardinality |FM | = M . An (M,N)-

gadget is a combinatorial structure that consists of M · N items identified with pairs in FM × F .

A line in this gadget is a subset of the items. Specifically, for every a, b ∈ F we define the line

La,b = {(i, j) ∈ FM ×F : j = ai+b}, where the arithmetic is performed over F , and for every c ∈ FM ,

we define the line L∞,c = {c} × F . It is easy to verify that the (M,N)-gadget satisfies the following

properties.

Proposition 1 Let (i, j), (i′ , j′) ∈ FM × F . If i 6= i′, then there exists exactly one line L ∈ {La,b :

a, b ∈ F} such that (i, j), (i′ , j′) ∈ L. If i = i′ and j 6= j′, then there exists exactly one line L ∈ {L∞,c :

c ∈ FM} such that (i, j), (i′ , j′) ∈ L.

Proposition 2 Let (i, j) ∈ FM × F . For every a ∈ F , there exists exactly one b ∈ F such that

(i, j) ∈ La,b. Also, there exists exactly one c ∈ FM such that (i, j) ∈ L∞,c.

Subsequently, it will be convenient to identify the elements of F with the integers in [N ] and

the elements of FM with the integers in [M ]. Resolving ambiguities will be clear from the context,

especially when arithmetic operations are involved. In the context of osp, the items of an (M,N)-

gadget will represent sets, and its lines will represent elements. We will usually describe how the

sets are mapped to the items of the (M,N)-gadget and identify each set with the corresponding pair

(i, j) ∈ [M ] × [N ], and each element with some line in {La,b : a, b ∈ [N ]} ∪ {L∞,c : c ∈ [M ]}. A set is

said to belong to row i ∈ [M ] under the (M,N)-gadget if it is mapped to item (i, j) for some j ∈ [N ].

Let C′ denote the sets corresponding to a given gadget. Proposition 1 guarantees that every two

sets in C′ that do not belong to the same row intersect in exactly one element La,b, a, b ∈ [N ]. It also

guarantees that every two sets in C′ that do belong to the same row intersect in exactly one element

L∞,c, c ∈ [M ]. Moreover, by Proposition 2, for every a ∈ [N ], each set in C′ contains exactly one

element in {La,b : b ∈ [N ]} and exactly one element in {L∞,c : c ∈ [M ]}. Therefore, throughout the

arrival of all elements in {La,b : a, b ∈ [N ]} ∪ {L∞,c : c ∈ [M ]}, each set in C′ appears exactly N + 1

times and any two sets intersect exactly once.

Consider a collection C′ of M · N sets and a bijection µ : C′ → [M ] × [N ]. The bijection µ can be

viewed as placing the M ·N sets in an M ×N matrix. By saying that line L is applied to C′ under µ,

9



Stage I:
` × `

· · ·
︸ ︷︷ ︸

`

· · ·
︸ ︷︷ ︸

`

· · · · · ·
︸ ︷︷ ︸

`

Stage II: ` × `2 · · ·
︸ ︷︷ ︸

`

Stage III: (`2 − `) × `2

Figure 1: Stages I, II and III.

we refer to the arrival of an element which is contained in every set S ∈ C′ such that µ(S) ∈ L. By

saying that an (M,N)-gadget is applied to C′ under µ, we refer to the following procedure:

(i) For a = 1, . . . , N , for b = 1, . . . , N , apply the line La,b to C′ under µ.

(ii) For c = 1, . . . ,M , apply the line L∞,c to C′ under µ.

If step (ii) is omitted, then we say that an (M,N)-gadget is applied to C′ under µ without the rows.

We can now summarize the properties of an (M,N)-gadget we use later.

Lemma 8 An application of an (M,N)-gadget to the set collection C′ under the bijection µ consists

of N2 elements of load M and M elements of load N ; each set in C′ contains exactly N + 1 elements.

Upon completion of the application, |A∩C′| ≤ 1 in any feasible solution A. If the application is without

the rows, then it consists of N2 elements of load M ; each set in C′ contains exactly N elements. Upon

completion of the application, all sets in |A ∩ C′| belong to the same row (with respect to µ) for any

feasible solution A.

4.2.2 The Distribution

We are now ready to establish the main lemma of this section.

Lemma 9 Let ` be a positive power of some prime. There exists a collection J of unweighted osp

instances with `4 sets and a probability distribution D over J such that (1) all sets are of size k = Θ(`2);

(2) σmax = Θ(`2), σ = Θ(`), and σ2 = Θ(`3); (3) opt(J) ≥ `3 for every instance J ∈ J ; and

(4) ED[alg(J)] = O(( log `
log log `)

2) for every deterministic osp algorithm alg.

Proof: Let C be a collection of `4 sets. We construct a random instance J ∈D J in four stages as

follows (see depiction in Figure 1).

Stage I. The collection C is partitioned (arbitrarily) into `2 subcollections CI
1 , . . . , CI

`2 , each containing

`2 sets. For t = 1, . . . , `2, we choose a bijection µI
t : CI

t → [`]× [`] uniformly at random. We then

apply an (`, `)-gadget to CI
t under µI

t without the rows.
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Stage II. The collection C is partitioned into ` subcollections CII
1 , . . . , CII

` , where

CII
t =

{
S : S ∈ CI

z for ` + 1 ≤ z ≤ t`
}

,

for every 1 ≤ t ≤ `. Let πz : [`] → [`] be a permutation chosen uniformly at random for every

1 ≤ z ≤ `2. For t = 1, . . . , `, we construct the bijection µII
t : DII

t → [`] × [`2] by mapping

each set S ∈ CI
z , (t − 1)` + 1 ≤ z ≤ t`, to the pair (πz(i), j + (` − 1)(z − (t − 1)`)) such that

µI
z(S) = (i, j). In other words, the ` × `2 matrix induced by µII

t is obtained from concatenating

the ` × ` matrices induced by µI
(t−1)`+1, . . . , µ

I
t` after their rows were randomly permuted. We

then apply an (`, `2)-gadget to CII
t under µII

t without the rows.

Stage III. Choose ut ∈ [`] uniformly at random for every t ∈ [`] and let S be the set subcollection

consisting of the sets in row ut for all t ∈ [`], namely,

S =
⋃

1≤t≤`

{
S ∈ CII

t : µII
t (S) ∈ {ut} × [`2]

}
.

Let µIII : C \ S → [`2 − `] × [`2] be an arbitrary bijection. We apply an (`2 − `, `2)-gadget to

C \ S under µIII .

Stage IV. The remaining `2 elements of each set in S have load 1 and they arrive in arbitrary order.

We now turn to analyzing the construction of the random instance J . Lemma 8 guarantees that

each set appears (i.e., have elements arriving) ` times in Stage I; each set appears `2 times in Stage II;

the sets in C \ S appear `2 times in step III; and the sets in S appear `2 times in step IV. Therefore

k = Θ(`2). From the perspective of the elements, we have the following situation. In Stage I there

are `4 elements, each with load ` (i.e., each element is contained in ` sets); there are `5 elements in

Stage II, with load ` each; Stage III consists of Θ(`4) elements with load Θ(`2) each; and Stage IV

consists of `5 elements of load 1 each. Therefore σmax = Θ(`2), σ = Θ(`), and σ2 = Θ(`3).

Next, we show that opt(J) ≥ `3 for every instance J ∈ J . This is done by proving that an

optimal algorithm can complete all sets in S. Indeed, every two sets S, S′ ∈ S either belong to disjoint

subcollections in Stages I and II or they belong to the same row in some subcollection. In either cases,

S and S′ do not intersect. Therefore all sets in S can be kept opt-active throughout the execution.

It remains to prove that ED[alg(J)] = O(( log `
log log `)

2) for every deterministic osp algorithm alg.

Consider some bijection µI
t in Stage I and recall that this bijection partitions the sets in CI

t to ` rows

with ` sets in each row. By definition, the first ` elements in the corresponding (`, `)-gadget are the

lines L1,1, . . . , L1,`. After the arrival of these ` elements, there is at most one alg-active set in each

such line. The random choice of the bijection µI
t implies that this alg-active set “falls” into some

designated row with probability 1/`, hence with high probability, every row in the gadget contains

O( log `
log log `) alg-active sets. This is implied by the classical balls into bins result [13, 17]. When

the application of the gadget is terminated, there exists at most one row with alg-active sets (this

holds with probability 1). Let A denote the event that upon termination of Stage I, each one of the

subcollections CI
1 , . . . , CI

`2 admits O( log `
log log `) alg-active sets, all of which belong to the same row in

the corresponding bijection. By union bound, we conclude that event A occurs with high probability.
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Consider some bijection µII
t in Stage II and recall that this bijection partitions the sets in CII

t

to ` rows with `2 sets in each row. The random choice of the permutations πz can be interpreted

as assigning each row of some Stage I bijection to one of the rows of µII
t with equal probability. In

particular, a row with alg-active sets in some Stage I bijection “falls” into some designated row in µII
t

with probability 1/`, hence conditioned on event A, with high probability, every row in µII
t contains

O(( log `
log log `)

2) alg-active sets. When the application of the corresponding (`, `2)-gadget terminates, at

most one of these rows still contain alg-active sets (this holds with probability 1). Let B denote the

event that upon termination of Stage II, each one of the subcollections CII
1 , . . . , CII

` admits O(( log `
log log `)

2)

alg-active sets, all of which belong to the same row in the corresponding bijection. By union bound,

we conclude that event B occurs with high probability.

Let X denote the random variable that counts the number of sets in S that were alg-active

upon termination of Stage II. The random choices of u1, . . . , u` in Stage III (which determine the

subcollection S) imply that E[X | B] = O(( log `
log log `)

2). On the other hand, the application of the

(`2 − `, `2)-gadget in Stage III guarantees that at most one set in C \ S can be completed by alg. It

follows that ED[alg(J)] ≤ O(( log `
log log `)

2) + 1. The assertion follows.

Proof of Theorem 2: By Lemma 9, for any given number m there exists a collection of instances

of osp, each with Θ(m) sets of size k = Θ(
√

m) each, with average element load σ = Θ(m1/4)

and σ2 = Θ(m3/4), such that the optimal value obtained from each of these instances is Ω(m3/4),

and the expected benefit of any deterministic algorithm from a random instance in the collection

is O(( log m
log log m)2). It follows from Yao’s Lemma [19] that the competitive ratio of any randomized

algorithm is Ω(m3/4( log log m
log m )2) which is both Ω

(

k
√

σmax · ( log log k
log k )2

)

and Ω

(

k

√

σ2

σ ( log log k
log k )2

)

.

5 Conclusions and Open Problems

We have introduced the online set packing problem and presented a competitive algorithm that solves

it. Many questions remain open in this area. We mention a few major ones.

• It seems interesting to generalize the problem to arbitrary packing problems, where the entries

in the matrix are arbitrary non-negative integers.

• Recalling the networking motivation, it is interesting to understand the effect of buffers on the

problem.

• A set is gained in osp only if all its elements were assigned to it. What about the case where

the set can be gained even if a few elements are missing?

Acknowledgments. We thank Geir Agnarsson and Bjarni V. Halldórsson for independently proving

Lemma 2.
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APPENDIX: Additional Proofs

Proofs from Section 3.3: The Variable capacity case

Given a set S and an element u ∈ S, we say that S survives u if the priority chosen for S in randPr

is one of the b(u) highest among the sets competing for u. S is said to survive if S survives u for all

u ∈ S.

We start the proof by showing that the worst scenario, from the viewpoint of a set S0, is when

S0 never meets another set more than once, namely C(u) ∩ C(v) = {S0} for every u, v ∈ S0 such that

u 6= v.

Let S0, S1 ∈ C be two sets such that u, v ∈ S0 ∩ S1. Define the following new collection of sets

C′ = C \ {S1} ∪ {S′
1, S

′
2} where S′

1 = S1 \ {v} and S′
2 = {v}. We also define w′(S) = w(S) for every

S ∈ C′ \ {S′
1, S

′
2} and w′(S′

1) = w′(S′
2) = w(S1). Notice that we simply divided S1 into two sets both

having the same weight as S1. Also notice that w′(C′(x)) = w(C(x)) for every element x.

Lemma 10 Pr[S0 ∈ alg(C)] ≥ Pr[S0 ∈ alg(C′)].

Proof: Suppose that we first choose the priorities of the sets in C \ {S1}. Given these random choices

we define the following events: A< occurs if there are less than b(u) − 1 sets in C(u) \ {S1} whose

priority is larger than r(S0); A= occurs if there are exactly b(u)− 1 sets in C(u) \ {S1} whose priority

is larger than r(S0); and A> occurs if there are at least b(u) sets in C(u)\{S1} whose priority is larger

than r(S0). We define B<, B= and B> similarly with respect to v.

To prove the lemma we show that

Pr[S0 ∈ alg(C) | Ai ∩ Bj ] ≥ Pr[S0 ∈ alg(C′) | Ai ∩ Bj ] ,

for every i, j ∈ {<,=, >}.
There are several cases. If A> or B> occur, then S0 survives with respect to neither C nor C′

regardless of the random choices involving S1, S′
1 and S′

2. Namely

Pr[S0 ∈ alg(C) | A> ∩ Bj] = Pr[S0 ∈ alg(C′) | A> ∩ Bj] = 0 ,

for every j ∈ {<,=, >}, and

Pr[S0 ∈ alg(C) | Ai ∩ B>] = Pr[S0 ∈ alg(C′) | Ai ∩ B>] = 0 ,

for every i ∈ {<,=, >}. If both A< and B< occur, then S0 survives u and v with respect to both C
and C′ regardless of the random choices of S1, S′

1 and S′
2, i.e.

Pr[S0 ∈ alg(C) | A< ∩ B<] = Pr[S0 ∈ alg(C′) | A< ∩ B<] = 1 .

If A< and B= occur, then

Pr[S0 ∈ alg(C) | A< ∩ B=] = Pr[r(S1) < r(S0)] = Pr[r(S′
1) < r(S0)] = Pr[S0 ∈ alg(C′) | A< ∩ B=] .

i



Similarly, If A= and B< occur, then Pr[S0 ∈ alg(C) | A= ∩B<] = Pr[S0 ∈ alg(C′) | A= ∩B<]. Last,

if both A= and B= occur, then we have

Pr[S0 ∈ alg(C) | A= ∩ B=] = Pr[r(S1) < r(S0)]

> Pr[r(S′
1), r(S

′
2) < r(S0)]

= Pr[S0 ∈ alg(C′) | A= ∩ B=] ,

as required.

Below, we bound a probability of survival of a set S under the condition that all weights are

integral. Define QS =
∑

u∈S w(C(u))/b(u) and qS = 1 − 1/(2QS). Notice that since all weights are

integral, we have QS ≥ ∑

u∈S |C(u)|/b(u) ≥ |S| and qS ≥ 1
2 .

Lemma 11 Pr[r(S) ≥ qS] ≥ min
{
w(S)/(4QS ), 1 − e−1

}
.

Proof: Recall that Pr[r(S) ≥ qS] = 1 − q
w(S)
S (see Eq. (2)). There are two possibilities. First, if

qS ≤ 1 − 1/w(S), then

Pr[r(S) ≥ qS] ≥ 1 − (1 − 1/w(S))w(S) ≥ 1 − e−1 .

On the other hand, if qS > 1− 1/w(S), then since (1− x)y ≤ e−xy ≤ 1 − xy + 1
2x2y2 if 0 < x < 1 < y

and xy < 1, we have

Pr[r(S) ≥ qS ] = 1 − (1 − (1 − qS))w(S) ≥ 1 − e−(1−qS)wS ≥ (1 − qS)w(S)

2
=

w(S)

4QS
,

and the lemma follows.

The following analog of Lemma 1 contains the key idea in the extension to the general capacity

case.

Lemma 12 For every set S ∈ C we have Pr[S ∈ alg] ≥ min
{
w(S)/(4Qs), 1 − e−1

}
· e−1 .

Lemma 12 induces the following partition of C. Denote C′ = {S ∈ C : Pr[S ∈ alg] ≥ (1− e−1)e−1}
and C′′ = C \ C′. Also, denote opt′ = opt ∩ C′ and opt′′ = opt ∩ C′′, where opt denotes an optimal

solution. We have the following result for the first easy cases.

Lemma 13 If either (i) w(opt′) ≥ w(opt)/2 or (ii) w(C′) ≥ w(C)/2, then E[w(alg)] ≥ 1
2e−1(1 −

e−1)w(opt).

Proof: If w(opt′) ≥ w(opt)/2, then

w(alg) ≥
∑

Si∈opt′

e−1(1 − e−1)w(Si) = e−1(1 − e−1)w(opt
′) ≥ 1

2
e−1(1 − e−1)w(opt) .

If w(C′) ≥ w(C)/2, then

w(alg) ≥
∑

Si∈C′

e−1(1−e−1)w(Si) = e−1(1−e−1)w(C ′) ≥ 1

2
e−1(1−e−1)w(C) ≥ 1

2
e−1(1−e−1)w(opt) .

The next two lemmas analyze the case where (i) w(opt′) < w(opt)/2, and (ii) w(C′) < w(C)/2.

They are analogs of Lemmas 4 and 5.
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Lemma 14 E[w(alg)] ≥ w(opt)2

16ekmax · w(C)
.

Proof: Summing over the disjoint sets in the optimal solution we get

E[w(alg)] ≥
∑

Si∈opt′′

w(Si) · e−1 w(Si)

4QSi

=
1

4e

∑

Si∈opt′′

w(Si)
2

QSi

.

Using Lemma 2 with ai = w(Si) and bi = QSi
, we have that

E[w(alg)] ≥ 1

4e
·
(
∑

Si∈opt′′ w(Si))
2

∑

Si∈opt′′ QSi

≥ 1

4e
· w(opt′′)2
∑

Si∈opt′′ QSi

≥ 1

16e
· w(opt)2
∑

Si∈opt′′ QSi

.

Since each element u is assigned to at most b(u) sets from opt′′, we have

∑

Si∈opt′′

QSi
=

∑

Si∈opt′′

∑

u∈Si

w(C(u))

b(u)
≤

∑

u∈U

b(u)
w(C(u))

b(u)
=

∑

u∈U

w(C(u)) ≤ kmax · w(C)

and the lemma is proven.

Lemma 15 E[w(alg)] ≥ w(C)2

16en · νσ$
.

Proof: Using Lemmas 2 and 12 we get that

E[w(alg)] ≥ 1

4e

∑

Si∈C′′

w(Si)
2

QSi

≥ 1

4e
· w(C′′)2
∑

Si∈C′′ QSi

≥ 1

16e
· w(C)2
∑

Si∈C′′ QSi

.

Since each element u belongs to σ(u) sets we have

∑

Si∈C′′

QSi
=

∑

Si∈C′′

∑

u∈Si

w(C(u))

b(u)
≤

∑

u∈U

σ(u)
w(C(u))

b(u)
=

∑

u∈U

ν(u)σ$(u) = n · νσ$ ,

and the lemma follows.

Proof of Theorem 4: Considering the lower bounds provided by Lemma 14 and by Lemma 15,

we conclude that the larger of the two bounds on w(alg) is minimized when w(opt) =
√

w(C)3·kmax

n·ν·σ$
.

Hence, we have

E[w(alg)] ≥ w(opt) · 1

16e

√

w(C)

kmaxn · νσ$
≥ w(opt) · 1

16e

√

σ$

k2
max · νσ$

= w(opt) · 1

16ekmax

√

σ$

νσ$
,

since n · σ$ ≤ kmax · w(C) (see Eq. (4)).

Additional Proofs from Section 3.3

Proof of Theorem 5: It follows from Lemma 5 that

E[|alg|] ≥ m2

nσ2
=

n2σ2

k2nσ2
≥ σ2

kσ2
· |opt| ,
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where the equality is due to the fact that mk = nσ always holds, and the last equality is due to the

fact that |opt| ≤ n/k in the unit capacity, fixed k case.

Proof of Theorem 6: From Eq. (3), we have that

E[|alg|] ≥ |opt|2
∑

S∈opt
|N(S)| + 1

≥ |opt|2
∑

S k(S)
=

|opt|2
mk

,

and from Lemma 5, we also get that

E[|alg|] ≥ m2

σ2n
=

m2

σmk
=

m

σk
,

since nσ = mk.

The larger of the two bounds on |alg| is minimized when |opt| = m/
√

σ, and therefore

E[|alg|] ≥ |opt|
k · √σ

,

as required.
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