
 

1 

KL-Divergence Guided Two-Beam 
Viterbi Algorithm on Factorial HMMs 

 

 

 

By 

RAYMOND YEH 

 

 

 

 

Urbana, Illinois 

 

Adviser: 

Professor Mark Hasegawa-Johnson 

 

UNDERGRADUATE THESIS 

Submitted in partial fulfillment of the requirements 

for ECE496/499 in Electrical and Computer Engineering at the 

University of Illinois at Urbana-Champaign, 2014 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/29157910?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 i 

Abstract 

This thesis addresses the problem of the high computation complexity issue that arises 

when decoding hidden Markov models (HMMs) with a large number of states. A novel 

approach, the two-beam Viterbi, with an extra forward beam, for decoding HMMs is 

implemented on a system that uses factorial HMM to simultaneously recognize a pair of 

isolated digits on one audio channel. The two-beam Viterbi algorithm uses KL-divergence 

and hierarchical clustering to reduce the overall decoding complexity. This novel approach 

achieves 60% less computation compared to the baseline algorithm, the Viterbi beam 

search, while maintaining 82.5% recognition accuracy.  

Subject Keywords: factorial hidden Markov model, Viterbi beam, digit recognition. 
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1. Introduction 

Hidden Markov models, HMMs, have been used in a broad range of applications from 

automatic speech and handwriting recognition to financial economics. This model is 

particularly useful in modeling and capturing the temporal behavior of each application. 

This thesis will particularly focus on the Viterbi algorithm use to determine the most likely 

sequence of hidden states, the Viterbi path, of the HMMs in the context of automatic speech 

recognition.  

The automatic speech recognition problem has been commonly solved with HHMs and the 

Viterbi algorithm [1]. By finding the most likely sequence of hidden states and mapping the 

sequence back into words, speech can be recognized. However, this method depends on the 

size and complexity of the HMMs. For example, in the context of large vocabulary speech 

recognition, traversing the entire HMM using the Viterbi algorithm may not be feasible due 

to long computation time [2]. A variety of decoding methods have been proposed to solve 

this running-time problem [2, 3, 4]. One common method used to solve this issue is the 

Viterbi beam search, or variations of Viterbi beam Search, which prunes paths that have low 

probability. This leads to more efficient running time but with a tradeoff between 

recognition accuracy and computing time/power [5, 6, 7]. 

 This thesis explores a novel approach, which we call the “two-beam” Viterbi algorithm, to 

solve this running time issue in the context of a large-state trellis resulting from 

simultaneous recognition of a pair of isolated digits on one audio channel. The “two-beam” 

Viterbi utilizes pre-computed acoustic information, through clustering, to determine the 

more probable next states and prune the ones that are less probable.  

The experiment of simultaneous digit pair recognition on one audio channel uses the 

factorial hidden Markov model (FHMM) and the MIXMAX approximation following the 

setup used in [8]. 

A FHMM mixes independent HMMs, causing the number of states to grow from O(n) to 

O(n2). This fact is illustrated in Fig. 1.1 and Fig. 1.2, which show the resulting FHMM from 

mixing two left-to-right HMMs, each containing five states. 
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Fig. 1.1: Five states left-to-right HMM Fig. 1.2: FHMM form by mixing two left-to-
right five-state HMMs 
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2. Background 

2.1 Factorial Hidden Markov Model & MIXMAX Approximation 

The factorial hidden Markov model (FHMM) and MIXMAX approximation are used to model 

and recognition of simultaneous isolated digit utterance on one audio channel as done in 

[8].  

2.1.1 MIXMAX Approximation 

The MIXMAX approximation is formed on the observation that the Mel frequency spectral 

coefficient (MFSC) of a signal, consists of two additive signals in the time domain, can be 

approximate by the element-wise-maximum of the two signals’ log magnitude spectra [8]. 

Thus, consider the signal  (  )   (  )   (  ), then the following approximation can be 

made  

      (  )      (     (  )       (  ) )                                   (   ) 

2.1.2 Factorial Hidden Markov Model  

A FHMM can be interpreted as two 

separate HMMs evolving independently, 

each generating a cepstrum per frame, 

whose exponentiated transforms, are 

added together [8, 9, 10]. The observation 

pdf of the FHMM can be approximated 

using the MIXMAX approximation, [11] 

where the additive combination of two 

sound signals can be approximated with 

the element-wise-maximum of their log-

magnitude spectra as explained in the 

previous section. The visualization of 

FHMM is shown in Fig. 2.1. Additionally, what is makes FHMM useful is that because the 

HMMs are independent, thus the training of a FHMM can be done independently, using the 

training method of a regular HMM. Furthermore, the FHMM can be converted into a single 

equivalent HMM using the following definition of the transition matrix. 

Fig. 2.1: FHMM illustration 
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Given two HMM 1 with |P| states and HMM2 with |Q| states, the FHMM transition matrix of 

    states the FHMM transition matrix is defined as: 

     
(   )(   )    

       
              

       
       

                                     (2.2) 

Where,   
   corresponds to the ith, jth element in the transition matrix of the mth HMM. As 

can be seen, each state in this equivalent HMM is indexed by a pair of state indices from the 

mixed HMMs. 

2.1.3 Output Probability Distribution 

Once we have this HMM topology, the output probability density, as derived in [8, 11], can 

be described as  

    (  )    
 (  ) ∫   

 (  )   
  

  
   

 (  ) ∫   
 (  )   

  

  
                        (2.3) 

where,   
 corresponds to the pdf of the kth  HMM at ith state, which in our case is a single 

Gaussian distribution. 

2.2 Viterbi Algorithm & Viterbi Beam 

2.2.1 Viterbi Algorithm 

The Viterbi algorithm is used to find the most likely sequence of hidden states sequences 

given a HMM and a sequence of observation vectors. Lets, denote the sequence of 

observation as  , and the sequence of states as  , and the model parameters as  . Then the 

most likely sequence can be denote as              (     ). The most naïve solution is 

simply iterated through all the possible   . However, this isn’t a feasible method for any 

reasonable length of observation, and size of HMM. This is because; the number possible of 

   is (               )                    . Next, denote the state space as  , and the 

number of time steps as  , the running complexity of this approach is  (    ). Thus, instead 

the Viterbi algorithm utilizes dynamic programming to reduce the running complexity to 

 (      ) [12]. However, as the number of states gets larger, the Viterbi algorithm again 

gets impractical to compute; For example in the context of large vocabulary speech 

recognition [2]. 
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2.2.2 Viterbi Beam Search 

The Viterbi beam search is a hill-climbing algorithm that attempts to find the most likely 

sequence of hidden states given a sequence of observations without traversing through all 

paths in the Viterbi lattice. This is done with pruning some of the paths during the search; 

by setting a minimum threshold on the likelihood at each time step during the Viterbi 

algorithm, or by keeping only certain percentage of nodes with the highest likelihood at 

each time step; this percentage is known as the “beam width”. Note that this method doesn’t 

guarantee finding the optimal path as the most promising sub-path isn’t necessary contain 

in the final optimal path.  

2.3 Hierarchical Clustering 

Clustering is the task that partitions a set of object into groups such that the more similar 

objects are grouped together based on some distance metric. And hierarchical clustering 

merges of splits groups of objects using a greedy approach. The Agglomerative type of 

hierarchical clustering is the “bottom up” approach. The clustering starts with each object in 

an individual group, then the pair of groups that are most similar will now be union 

together to form a larger group then repeat the procedure [13]. The following is a pseudo 

code for the algorithm.  

begin 
    initialize c = n; n*; Gi = {oi};  // i from 1 to n.  oi = objects, Gi = groups, n* = ideal cluster # 
        while(c != n*) 
             c = c-1; 
             Find the most similar Gi, and Gj pair; 
             Union Gi, and Gj  
    return G //G = the set of {Gi} 
end 

2.4 Kullback-Leibler Divergence (KL-Divergence) 

As previously mentioned, when implementing a clustering algorithm the measure of 

“similarity” is necessary. This “similarity” has to be expressed as a distance metric for the 

objects. In this paper, we are clustering on distributions, and thus a distance metric that 

captures the similarity between distributions is the KL Divergence. 

For distributions P and Q of continuous random variable, KL divergence is defined as the 

following  
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   (    )  ∫   (
 ( )

 ( )
) ( )   

 

  
                                           (2.4) 

KL divergence measures the difference between two probability distributions. This 

measurement is non-symmetric, and captures the information lost when one distribution is 

used to approximate the other [14]. 

In our system clustering is done on multivariate Gaussians. The closed form of the KL 

divergence between multivariate Gaussian distributions of k dimension, with mean   ,   , 

and their corresponding covariance matrix   ,    is as follows 

   (    )   
 

 
(  (  

    )  (     )
 
  

  (     )      (
      

     
))        (2.5) 

Additionally, the symmetric KL divergence can be express as  

             (    )     (    )     (    )                                   (   ) 

Symmetrized KL divergence is commonly used to cluster triphone states, e.g., [15]. 
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3. Two-beam Viterbi Algorithm 

The following sections introduce the two-beam Viterbi algorithm and its mathematical 

implementations. 

3.1 Motivation and Main Ideas 

The main motivation behind this two-beam Viterbi algorithm is to use a low complexity 

algorithm that prunes away, in advance, search paths expected to have a very low 

observation likelihood, which results in a lower overall time complexity during decoding. 

First, the HMM states are clustered, based on acoustic similarly. Each cluster is summarized 

by a representative pdf, which is computed in advance for every frame of the utterance. 

Finally, pruning at each time-step, leaving only the paths within the beam-width at each 

time step. The motivation behind this is the by introducing a time complexity of  (  ), , we 

can reduce the quadric complexity of      , where   standfs for number clusters,   for 

number of time steps and   for the state space. For a fixed width of the forward beam, on 

average we retain clusters containing n states retained per frame. The total complexity is 

reduced from       to       , which is an improvement in complexity provided that 

     (    )                                                            (3.1) 

3.2 Clustering HMM states 

Using the agglomerative hierarchical clustering and symmetric KL-divergence as the 

distance metric, each state is assigned to a cluster. We used was the mean linkage as the 

linkage criteria, where each cluster is averaged into a single normal distribution; Each 

cluster is averaged into one normal distribution with the mean  ̅  
and covariance    

 where 

 ̅  
  

 

    
∑  ̅  

               
                                               (3.2) 

   
  

 

    
 
∑    (   

)               
                                      (3.3) 

where Eq. (3.3) generates a concentrated distribution centered on the cluster mean, for the 

purpose of improved trellis pruning. 

All the clusters information was saved during the clustering process, in order to empirically 

determine the optimal number of cluster to be used during decoding.  
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3.3 Pre-compute during decoding 

To use the cluster information during decoding, first we have to pre-compute the output 

probability for each cluster, using its cluster mean and variance, for each time step. Thus 

output will be a matrix              , where      corresponds to the     cluster’s output 

probability given     observation. Then sorting the cluster in order of descending output 

probability, the decoding will only keep certain percentage, beam width, of the cluster with 

the highest probability. The rest of the clusters are pruned prior to the decoding process.  

3.4 Variations of Viterbi Algorithm  

3.4.1 Viterbi Algorithm 

Given a HMM with state space  , initial probabilities   , and the transition matrix  , where 

 (   ) is the transition probability from state   to state  . Also given an observation 

sequence         . Then the Viterbi algorithm can be written recursively as follows  

For each      compute 

      (     )                                                              (3.4) 

              ( (     )   (   )        )                                 (3.5) 

where      is the probability given the most likely state sequence at observation    and state 

  . Fig. 3.1 illustrates the computation of the algorithm.  

3.4.2 Viterbi Beam Algorithm 

Similarly, the Viterbi Beam algorithm can be written recursively as follows  

For each      compute 

      (     )                                                            (3.6) 

                    ( (     )   (   )        )                               (3.7) 

where      is the probability given the most likely state sequence at observation    and state 

  . And                                              Fig. 3.2 illustrates the computation 

of the algorithm. 
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3.4.3 Two-Beam Viterbi Algorithm  

Finally, The two-beam Viterbi algorithm can be written recursively as  

For each              compute 

      (     )                                                                (3.8) 

                    ( (     )   (   )        )                              (3.9) 

where,  

        {  |                           }                                (3.10) 

         {                                    }                         (3.11) 

where      is defined to be the     cluster’s output probability given the     observation. 

Next, Fig 3.3 demonstrates the two-beam Viterbi algorithm.  It is a standard Viterbi trellis, 

where each node corresponds to a state at a particular time, and each link represents the 

transition from a state to the next instant of time. For a Viterbi beam algorithm, Fig 3.2, at 

every time instant, each state should have a link to its previous more probable state. 

However, this is not the case with the two-beam Viterbi. This is because using the clustering 

information, at each time instant only the more probable next states within beamF are 

considered. From Fig. 3.1 - 3.3, it can observe that there is a reduction in the amount of 

computation between the full Viterbi, Viterbi Beam, and the two-beam Viterbi algorithm. 

 

 

 

 

 

 

 

 

 

Fig. 3.1: Viterbi trellis illustration of full 
Viterbi algorithm 
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Fig. 3.2: Viterbi trellis illustration of 
Viterbi beam algorithm 

Fig. 3.3: Viterbi trellis illustration of 
two- beam Viterbi algorithm 
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4. Experiments and Results 

4.1 Experiment System 

 

Figure 4.1 is the overall experiment system block diagram from training to testing. Overall, 

the system is mainly written in Matlab. The HTK Toolbox was used to extract features and 

to train the isolated digit HMMs [16]. Then the trained HMMs were imported into Matlab 

and used as the bases of the FHMM. 

4.1.1 Isolated Digit HMMs  

The isolated digits system consists of 12 individual HMMs from zero to nine, including “oh” 

and a silence model. Each isolated digit HMM was trained on 50 boy and 50 girl speakers, 

each with two utterances, from the children’s speech portion of the TIDIGITS speech corpus. 

The system was trained using HTK; the individual HMMs were initialized using a standard 

12 states left-to-right model, each with a single Gaussian per state [16]. For the feature 

extraction, the observation sequence was a time series of 12 MFCCs, delta1 and delta2 

Fig. 4.1 Experiment system block diagram 
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concatenated vectors, with window size of 25 ms, frame period of 10 ms, and Hamming 

window. 

The isolated digit HMMs were tested over 25 boy and 25 girl speakers different from the 

training speakers, using two utterances of each digit per test speaker. The isolated digit 

HMMs achieved 100% recognition accuracy when tested on this small isolated digit test 

corpus. And also achieved 93.59% on continuous digit recognition, again using the children 

test data set from TIDIGITS corpus. 

4.1.2 Simultaneous Digit Pair Recognition Baseline System 

As described in the background, FHMM for double digit recognition can be constructed by 

mixing two single digits HMMs. Using the isolated digit HMMs described above, the FHMM is 

mixed, and then converted to an equivalent HMM, where the traditional Viterbi algorithm 

on a regular HMM can be used, following the configuration of [8]. This is used as the 

baseline system when evaluating the performance of the Viterbi Beam algorithm, and our 

novel approach of the guided two-beam Viterbi algorithm, and the Viterbi beam algorithm.  

Next, we follow the same evaluation method as in [8], where a “complete success” (CS) is 

successfully recognizing digits, and a ‘partial success, partial failure’ (PSPF) is recognition of 

one digit of the pair. 

The recognition rate was computed by 

                     ( )  
           

 
                                    (4.1) 

where N is the number of test cases.  

The baseline system was decoded using a full Viterbi Search algorithm; the recognition 

accuracy was 83% and “Complete success” was achieved on 70% of 200 test cases mixed 

from the test speakers.  

4.2 Simultaneous Digit Pair Recognition with Viterbi Beam Result 

Table 1. Viterbi Beam Recognition Result 

% of computation 1% 1.5% 2% 3% 

CS/N 35% 55% 70% 70% 

Recognition 

Accuracy 

67.5% 75% 82.5% 82.5% 
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Percent of computation is the percentage of the state transition computed of a full Viterbi 

search; in this case it is equal to the beam width.  

4.3 Simultaneous Digit Pair Recognition with Guided Viterbi Beam Search 

Table 2. Two-Beam Viterbi Recognition Result 

% of 

computation 

0.4% 0.8% 1.2% 1.6% 2% 

CS/N 55% 60% 60% 65% 70% 

Recognition 

Accuracy 

75% 77.5% 77.5% 80% 82.5% 

The percent of computation is the percentage of the state transition computed of a full 

Viterbi search; this includes the pre-compute transitions. In this case it is approximately 

equal to the product of beam width and forward beam width, as the pre-compute 

computations were always averaged into the percentage. The number of cluster was 

empirically determined to be 40 by sweeping different number of clusters for the 

experiment. 

 

 

 

 

 

4.4 Beam and Two-Beam Viterbi Results 

Figure 4.2, 4.3 and table 1, 2 contrasts the experiment results decoded with the Viterbi 

beam and the two-beam Viterbi algorithm; Fig. 4.2 shows recognition accuracy, while Fig. 

4.3 shows complete success rate. For the Viterbi beam, percent of computation is the 

Figure 4.3: Complete Success Rate for 
two-beam vs. Viterbi Beam 

Figure 4.2: Recognition Accuracy for Two-
Beam Viterbi vs. Viterbi Beam 
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computed percentage of the state transitions of a full Viterbi search; in this case it is equal 

to the beam width.  

For the two-beam Viterbi, the percent of computation is again the computed percentage of 

the state transitions of a full Viterbi search, therefore the percentage is approximately equal 

to the product of beam width and forward beam width. The number of clusters was set to 

40 based on the results of preliminary experiments.  

As can be seen in Fig. 4.2 and 4.3, the accuracies of both algorithms converge to the accuracy 

of the full Viterbi search at 2% of computation. Also, as the percent of computation 

decreases, both 
  

 
, and recognition accuracy fall for both algorithms, while the Viterbi beam 

has a steeper decay than the two-beam Viterbi. 
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5. Discussion 

From the results, we can observe that the Viterbi beam and the two-beam Viterbi converge 

to the result of full Viterbi at 2% of computation. There is a trade-off between accuracy and 

the percentage of computation, as expected.  

The recognition accuracy and 
  

 
 results from the Viterbi and two-beam Viterbi are plotted 

in Fig. 4.2 and 4.3, where we can observe that the drop in accuracy from the decrease in the 

percentage of computation is less for the two-beam Viterbi than that of the Viterbi beam. 

The two-beam Viterbi still obtained 75% accuracy with 0.4% of computation; the Viterbi 

beam’s recognition accuracy already drops to 67.5% at 1% of computation.  

These results demonstrate the success and potential of the two-beam Viterbi algorithm for 

faster computation, compared to the Viterbi beam search, during the HMM decoding 

process. Furthermore, the two-beam Viterbi algorithm breaks the structure limitation of the 

Viterbi beam search on the lowest percentage of computation. For example, even if the 

beam width is chosen so that at each time step only the “most probable” state is extended 

and the rest are pruned, nevertheless the Viterbi beam Search will still have to perform 

      computations overall. However, with the two-beam Viterbi, it is possible to have the 

beam widths chosen so the minimum computation is as low as (   )   , where   is the 

number of clusters, and          . Thus the two-beam Viterbi by the structure of the 

algorithm has the potential to prune more paths and lead to faster computation.  
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6. Future Work and Conclusion 

In this thesis we present a novel approach, the two-beam Viterbi algorithm, to decode 

HMMs. The two-beam Viterbi was able to maintain the same recognition rate as the Viterbi 

beam-search baseline, with only 40% of the computation cost. The significance of this 

algorithm is that the structure of the two-beam Viterbi allows the possibility of lower 

computation complexity than with the Viterbi beam. We have demonstrated the potential of 

the two-beam Viterbi algorithm on the single channel simultaneous digit pair recognition 

task, and expect to expand this algorithm to other tasks, including large vocabulary 

automatic speech recognition.  

  



 

 17 

References  

[1] L. Rabiner, "A tutorial on hidden Markov models and selected applications in speech 

recognition," Proceedings of the IEEE, vol. 77, no. 2, pp. 257, 286, Feb, 1989. 

[2] J. J. Odell, V. Valtchev, P. C. Woodland , S. J. Young, “A one pass decoder design for large 

vocabulary recognition,” Proceedings of the workshop on Human Language Technology, 

March 08-11, 1994. 

[3] Dan Klein, Christopher D. Manning, “A* parsing: fast exact Viterbi parse selection,” 

Proceedings of the 2003 Conference of the North American Chapter of the Association 

for Computational Linguistics on Human Language Technology, pp. 40-47, May 27-June 

01, 2003. 

[4] F. Alleva, Xuedong Huang, M.-Y. Hwang, "An improved search algorithm using 

incremental knowledge for continuous speech recognition," Acoustics, Speech, and 

Signal Processing, 1993. ICASSP-93., 1993 IEEE International Conference on, vol. 2, pp. 

307, 310 vol. 2, 27-30 April 1993. 

[5] S. Abdou, M.S. Scordilis, "Beam search pruning in speech recognition using a posterior-

based confidence measure", Speech Communication, vol. 42, pp. 409-428, 2004. 

[6] R. Haeb-Umbach, H. Ney, "Improvements in beam search for 10000-word continuous-

speech recognition," Speech and Audio Processing, IEEE Transactions on, vol. 2, no. 2, 

pp. 353, 356, Apr 1994. 

[7] B. Lowerre “The HARPY speech recognition system” PhD thesis, Carnegie-Mellon, 1976. 

[8] Ameya Deoras and Mark Hasegawa-Johnson, “A Factorial HMM Approach to 

Simultaneous Recognition of Isolated Digits Spoken by Multiple Talkers on One Audio 

Channel”, ICASSP 2004 (NSF 0132900). 

[9] Z. Ghahramani and M.I. Jordan, “Factorial hidden Markov models,” Machine Learning, 

29, pp. 245-275, 1997. 

[10] S.T. Roweis, “One microphone source separation,” Neural Information Processing 

Systems 13, pp. 793-799, 2000. 

[11] A. Nadas, D. Nahamoo and M.A. Picheny, “Speech recognition using noise-adaptive 

prototypes,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 37, no. 

10, October 1999. 

[12] G.D. Forney, Jr., "The Viterbi algorithm," Proceedings of the IEEE, vol. 61, no. 3, pp. 268, 

278, March 1973. 



 

 18 

[13] Trevor Hastie, Robert Tibshirani, Jerome Friedman, "14.3.12 Hierarchical clustering," 

The Elements of Statistical Learning (2nd ed.). New York: Springer. pp. 520–528, 2009. 

[14] Solomon Kullback, and Richard A. Leibler "On information and sufficiency,” The Annals 

of Mathematical Statistics. pp. 79-86, 1951. 

[15] J. J. Odell, P.C. Woodland, S.J. Young, "Tree-based state clustering for large vocabulary 

speech recognition," Speech, Image Processing and Neural Networks, 1994. 

Proceedings, ISSIPNN '94., 1994 International Symposium on, pp. 690, 693 vol. 2, 13-16 

Apr 1994 

[16] S.J. Young G. Evermann, M.J.F Gales, T.Hain, D. Kershaw, G. Moore, J. Odell, D. Ollason, D. 

Povey, V. Valtchev, P. C. Woodland, “The HTK book (for HTK version 3.4)” Cambridge 

University, 2006. 

 


	Abstract
	1. Introduction
	2. Background
	2.1 Factorial Hidden Markov Model & MIXMAX Approximation
	2.1.1 MIXMAX Approximation
	2.1.2 Factorial Hidden Markov Model
	2.1.3 Output Probability Distribution

	2.2 Viterbi Algorithm & Viterbi Beam
	2.2.1 Viterbi Algorithm
	2.2.2 Viterbi Beam Search

	2.3 Hierarchical Clustering
	2.4 Kullback-Leibler Divergence (KL-Divergence)

	3. Two-beam Viterbi Algorithm
	3.1 Motivation and Main Ideas
	3.2 Clustering HMM states
	3.3 Pre-compute during decoding
	3.4 Variations of Viterbi Algorithm
	3.4.1 Viterbi Algorithm
	3.4.2 Viterbi Beam Algorithm
	3.4.3 Two-Beam Viterbi Algorithm


	4. Experiments and Results
	4.1 Experiment System
	4.1.1 Isolated Digit HMMs
	4.1.2 Simultaneous Digit Pair Recognition Baseline System

	4.2 Simultaneous Digit Pair Recognition with Viterbi Beam Result
	4.3 Simultaneous Digit Pair Recognition with Guided Viterbi Beam Search
	4.4 Beam and Two-Beam Viterbi Results

	5. Discussion
	6. Future Work and Conclusion
	References

