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Abstract

General solutions of nonlinear ordinary differential equations (ODEs) are in general difficult to

find although powerful integrability techniques exist in the literature for this purpose. It has been

shown that in some scalar cases particular solutions may be found with little effort if it is possible

to factorize the equation in terms of first order differential operators. In our present study we use

this factorization technique to address the problem of finding solutions of a system of general two-

coupled Liénard type nonlinear differential equations. We describe a generic algorithm to identify

specific classes of Liénard type systems for which solutions may be found. We demonstrate this

method by identifying a class of two-coupled equations for which the particular solution can be

found by solving a Bernoulli equation. This class of equations include coupled generalization of the

modified Emden equation. We further deduce the general solution of a class of coupled ordinary

differential equations using the factorization procedure discussed in this manuscript.
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I. INTRODUCTION

The modified Emden equation (MEE)

ü+ αuu̇+ βu3 = 0, (1)

where overdot denotes differentiation with respect to time, has been studied by Painlevé [1]

more than a century ago. He and his coworkers found that (1) is integrable for two specific

parametric choices, namely (i) β = −α2 and (ii) β = α2

9
. Recently Chandrasekar et al [2]

have shown that this equation is integrable for any choice of arbitrary parameters α and

β. The same authors have also underlined its immense applicability through its intimate

connections with other well-known systems like the force-free Duffing-type oscillator and the

two-dimensional Lotka-Volterra system. It also has substantial importance in physics itself

as it rears its head in a plethora of varied contexts such as the equilibrium configurations

of a spherical gas cloud acting under the mutual attraction of its molecules and subject to

the laws of thermodynamics [3–6], and in the modeling of fusion of pellets [7]. It is also the

governing equation for the spherically symmetric expansion or collapse of a relativistically

gravitating mass [8–10]. Equation (1) can also be seen as a one-dimensional analog of the

boson ‘gauge-theory’ equations introduced by Yang and Mills [11, 12]. This equation also

comes up in a variety of mathematical problems such as univalued functions defined by

second-order differential equations [13] and the Riccati equation [11].

Equation (1) is a particular case of a more general family of equations of the Liénard

type,

ü+ f(u)u̇+ g(u) = 0. (2)

The Liénard family of equations is in general not integrable, and only for some specific choices

of the arbitrary functions f(u) and g(u) complete solutions can be found. Its applications and

properties have been discussed in [14, 15]. However, in general, the task of finding general

solutions of such nonlinear second order systems requires the use of complicated, albeit

powerful, procedures like the Painlevé analysis, modified Prelle-Singer procedure, use of Lax

pairs and the associated inverse scattering transforms. Recently Rosu and Cornejo-Pérez

[16, 16] have suggested that at least in the case of some polynomial nonlinearities particular

solutions may be found rather simply by an elegant method of factorizing the system (2) into
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two first order differential operators. Berkovich [18] has explored the factorization technique

for solving scalar ODEs in substantial detail. The factorizing procedure is also used to

obtain the travelling wave solutions of certain nonlinear partial differential equations such as

the Korteweg-de Vries-Burgers equation, Camassa-Holm equation, Kolmogorov-Petrovskii-

Piskunov equation [16, 19]. However this approach has not yet been applied to the study

of coupled systems. Our motivation in this present study is to extend this approach to the

study of coupled systems and identify which systems allow solutions to be found by such

means.

In our present paper we study a system of two-coupled Liénard type equations,

ü+ f1(u, v)u̇+ f2(u, v)v̇ + g1(u, v) = 0, (3a)

v̈ + f3(u, v)u̇+ f4(u, v)v̇ + g2(u, v) = 0, (3b)

and investigate whether specific forms of this generic equation allow solutions to be found by

the factorization technique. Here we show that this can be done by factorizing the system

(3) in terms of first-order differential operators by generalizing the procedure of Reyes and

Rosu [20] for scalar second-order ODEs. We find that for the following general class of

equations finding a solution is as simple as solving a Bernoulli equation in one variable:

ü− b2ηψ̇1 + b1ξψ̇2 + (b1ψ2 − b2ψ1)
˙̄h + (b1ψ̇2 − b2ψ̇1)h̄+ δ[b2(η − d1)(h̄+ d1)ψ1

− b1(ξ − d2)(h̄ + d2)ψ2] = 0, (4a)

v̈ + a2ηψ̇1 − a1ξψ̇2 − (a1ψ2 − a2ψ1)
˙̄h−(a1ψ̇2 − a2ψ̇1)h̄− δ[a2(η − d1)(h̄+ d1)ψ1

− a1(ξ − d2)(h̄+ d2)ψ2] = 0, (4b)

where ψ1,2 = a1,2u + b1,2v + c1,2, η, ξ are arbitrary functions of u and v, h̄ is an arbitrary

homogeneous function in ψ1 and ψ2, δ = a1b2 − a2b1 and d1,2, a1,2, b1,2, c1,2 are all constants.

For suitable choice of arbitrary functions and parameters, namely η = h̄, ξ = h̄, ψ1 =

u, ψ2 = v and h̄ = −(k1u+ k2v), where k1 and k2 are constants, this reduces to the form

ü+ 2(k1u+ k2v)u̇+ (k1u̇+ k2v̇)u+ (k1u+ k2v)
2u+ ω2

1u = 0, (5a)

v̈ + 2(k1u+ k2v)v̇ + (k1u̇+ k2v̇)v + (k1u+ k2v)
2v + ω2

2v = 0, (5b)

where ω1,2 = d1,2. This system has been studied in the literature [21] and shown to be

completely integrable by Chandrasekar et al [22]. Also (5) is a two-coupled version of the
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special modified Emden type equation with additional linear forcing,

ü+ 3kuu̇+ k2u3 + ω2u = 0. (6)

This equation exhibits the isochronous property [23].

The plan of the paper is as follows. In Section II we investigate the factorization technique

for the two-coupled system (3) in terms of first order differential operators. In section III

we introduce a generic algorithm to identify classes of coupled Liénard type equations (3)

whose solutions can be found by simple methods and chalk out the procedure to identify

a class whose solution may be found in terms of the Bernoulli equation. In section IV

we discuss the procedure to deduce the general solution of a class of coupled ODEs using

the factorization procedure. We illustrate the procedure by considering a specific equation.

Finally in section V we conclude by summarizing our main results. In appendix A we prove

that the functions ψ1,2 in Eqs. (4) should be linear in u and v. In appendix B, we discuss

the factorization procedure for the equations (23) in which h1 is a function of ψ1 alone and

h2 is a function of ψ2 only. In appendix C, we show that the procedure to obtain the general

solution for coupled ODEs discussed in this paper can also be straightforwardly used to

obtain the general solutions of the scalar equations discussed in Ref. [16].

II. FACTORIZATION OF THE GENERAL CASE

If the coupled Liénard system (3a-3b) can be factorized in the form:

[D − φ1(u, v)][D − φ2(u, v)]ψ1(u, v) = 0, (7a)

[D − φ3(u, v)][D − φ4(u, v)]ψ2(u, v) = 0, (7b)

where D = d
dt
, ψ1,2 are arbitrary functions of u and v, and φi are functions of u and v to

be determined, then the problem of finding the general solution of (3) may be addressed by

simultaneously solving the following set of first order differential equations:

[D − φ1(u, v)]P1(u, v) = 0, (8a)

[D − φ3(u, v)]P2(u, v) = 0, (8b)

[D − φ2(u, v)]ψ1(u, v) = P1(u, v), (8c)

[D − φ4(u, v)]ψ2(u, v) = P2(u, v). (8d)
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Also, as pointed out by Rosu and Cornejo-Pérez [16] for the scalar case, the problem of

finding particular solutions to Eq. (3) can be addressed by solving the reduced equations,

[D − φ2(u, v)]ψ1(u, v) = 0, (9a)

[D − φ4(u, v)]ψ2(u, v) = 0, (9b)

which may in some cases be relatively simple.

We are thus motivated to explore the question: For what forms of fi and gi in (3) can the

system of coupled equations be explicitly factorized in the form (7)?. To answer this question

we proceed as follows.

By expanding (7) and manipulating the resulting equations appropriately, we get the

equivalent of (3) as

ü+
1

δ
[(ψ1uuψ2v − ψ2uuψ1v)u̇

2 + (ψ1uvψ2v − ψ2uvψ1v)u̇v̇ + (ψ1vvψ2v − ψ2vvψ1v)v̇
2]

+ f̃1u̇+ f̃2v̇ + g̃1 = 0, (10a)

v̈+
1

δ
[(ψ1uuψ2u − ψ2uuψ1u)u̇

2 + (ψ1uvψ2u − ψ2uvψ1u)u̇v̇ + (ψ1vvψ2u − ψ2vvψ1u)v̇
2]

+ f̃3u̇+ f̃4v̇ + g̃2 = 0, (10b)

where the functions

f̃1 =
1

δ
[(φ3 + φ4)ψ2uψ1v − (φ1 + φ2)ψ1uψ2v − φ2uψ1ψ2v + φ4uψ2ψ1v], (11a)

f̃2 =
1

δ
[(φ3 + φ4 − φ1 − φ2)ψ1vψ2v − φ2vψ1ψ2v + φ4vψ2ψ1v], (11b)

f̃3 =
1

δ
[φ2uψ1ψ2u − (φ3 + φ4 − φ1 − φ2)ψ1uψ2u − φ4uψ2ψ1u], (11c)

f̃4 =
1

δ
[(φ1 + φ2)ψ2uψ1v − (φ3 + φ4)ψ1uψ2v + φ2vψ1ψ2u − φ4vψ2ψ1u], (11d)

g̃1 =
1

δ
[φ1φ2ψ2vψ1 − φ3φ4ψ1vψ2] , (12a)

g̃2 =
1

δ
[φ3φ4ψ1uψ2 − φ1φ2ψ2uψ1] , (12b)

and the quantity

δ = ψ1uψ2v − ψ2uψ1v 6= 0. (12c)
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Comparing Eq. (3) with Eq. (10), we find ψ1,2uu = ψ1,2uv = ψ1,2vv = 0. This implies that

one can assume

ψ1,2 = a1,2u+ b1,2v + c1,2, (13)

without loss of generality. Here ai, bi, and , ci are arbitrary constants. Using (13) in (12c), we

infer that δ = a1b2 − a2b1 = constant. Further, defining the variables fi = δf̃i, i = 1, 2, 3, 4

and gj = δg̃j, j = 1, 2, we obtain the relations

a1g1 + b1g2 = φ1φ2ψ1, a2g1 + b2g2 = φ3φ4ψ2. (14)

From the above two equations in (14) one can solve for φ1 and φ3 as

φ1 =
1

φ2

[

a1g1 + b1g2

ψ1

]

, φ3 =
1

φ4

[

a2g1 + b2g2

ψ2

]

. (15)

Using (15) to eliminate φ1 and φ3 in (11) one can, after some manipulations, get a set of

PDEs which determine φ2 and φ4:

∂

∂u

[

φ2
2ψ

2
1

2

]

= −a1(a1g1 + b1g2)− (a1f1 + b1f3)φ2ψ1, (16)

∂

∂v

[

φ2
2ψ

2
1

2

]

= −b1(a1g1 + b1g2)− (a1f2 + b1f4)φ2ψ1, (17)

∂

∂u

[

φ2
4ψ

2
2

2

]

= −a2(a2g1 + b2g2)− (a2f1 + b2f3)φ2ψ1, (18)

∂

∂v

[

φ2
4ψ

2
2

2

]

= −b2(a2g1 + b2g2)− (a2f2 + b2f4)φ2ψ1. (19)

Compatibility of (16) with (17) and of (18) with (19) requires that

∂

∂v
[a1(a1g1 + b1g2) + (a1f1 + b1f3)φ2ψ1] =

∂

∂u
[b1(a1g1 + b1g2) + (a1f2 + b1f4)φ2ψ1] ,

∂

∂v
[a2(a2g1 + b2g2) + (a2f1 + b2f3)φ2ψ1] =

∂

∂u
[b2(a2g1 + b2g2) + (a2f2 + b2f4)φ2ψ1] ,

which implies

ψ1f̂2
∂φ2

∂u
− ψ1f̂1

∂φ2

∂v
+ (a1f̂2 − b1f̂1 + [f̂2u − f̂1v]ψ1)φ2 + b1ĝ1u − a1ĝ1v = 0, (20a)

ψ2f̂4
∂φ4

∂u
− ψ2f̂3

∂φ4

∂v
+ (a2f̂4 − b2f̂3 + [f̂4u − f̂3v]ψ2)φ4 + b2ĝ2u − a2ĝ2v = 0, (20b)

where

ĝ1 = a1g1 + b1g2, ĝ2 = a2g1 + b2g2, (21a)

f̂1 = a1f1 + b1f3, f̂2 = a1f2 + b1f4, (21b)

f̂3 = a2f1 + b2f3, f̂4 = a2f2 + b2f4. (21c)
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Note that in Eq. (21), the various functions fis, i = 1, 2, 3, 4 and gis, i = 1, 2, are just the

coefficients occurring in the coupled ODE (3).

We thus have two first order linear PDEs (20a) and (20b) for φ2 and φ4, respectively,

which may be solved to find the explicit forms of φ2 and φ4. When this is found one can find

the explicit forms of φ1 and φ3 from (15), which imply that the factorization (7) is complete.

Thus we have answered the question posed at the beginning of this section. The system of

coupled Liénard type equations (3) can be factorized in the form (7) if and only if the pair of

first order PDEs(20) can be solved explicitly for φ2 and φ4 in terms of u and v. Conversely,

for every solution φ2 and φ4 for (20), there exists a factorization (7)) corresponding to a

system of coupled second order nonlinear ODEs of the form (3).

III. OUTLINE OF THE PROCEDURE

We next turn to the problem of finding solutions by using the factorized form(7). If the

lower order forms (8) and (9) can be associated with some known system of equations for

which the solution is known, then the solution of the original coupled second order system (3)

can be found. With this motivation we explore the inverse problem: Given some particular

forms of φi, i = 1, 2, 3, 4, satisfying Eqs. (15) and (20), what is the subclass of two-coupled

Liénard type systems (10) that can be factorized to the form (8) and (9), for some choice of

arbitrary constants ai, bi, ci?

We start off by identifying such an interesting choice of φi.

Rewriting (9) we have

ψ̇1 = φ2ψ1, ψ̇2 = φ4ψ2 (22)

We consider the case that the reduced equations are of the form

ψ̇1 = (ω1 + h1(ψ1, ψ2))ψ1, (23a)

ψ̇2 = (ω2 + h2(ψ1, ψ2))ψ2, (23b)

where ω1 and ω2 are constants, so that φ2 = ω1 + h1(ψ1, ψ2), φ4 = ω2 + h2(ψ1, ψ2). If h1 is

independent of ψ2 and h2 is independent of ψ1, then the reduced equations are uncoupled

and the problem of finding particular solutions reduces to the much simpler problem of

solving a pair of scalar first order ODEs. An example of this is dealt with in Appendix B.
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Otherwise if h1 = αh2 where α is a constant then one integral can be found by eliminating

h1 from (23a) and (23b) as

αψ̇1ψ2 − ψ̇2ψ1 = (αω1 − ω2)ψ1ψ2. (24)

Eq.(24) can be rearranged to

α
ψ̇1

ψ1
−
ψ̇2

ψ2
= (αω1 − ω2). (25)

Integrating Eq.(25) one gets

ψα
1 = C1e

(αω1−ω2)tψ2 ≡ c(t)ψ2, (26)

where C1 is the integration constant, c(t) = C1e
(αω1−ω2)t.

Let us now consider the specific case h1 = αh2 = h(ψ1, ψ2), where h(ψ1, ψ2) is a polyno-

mial containing N terms and is of the form

h(ψ1, ψ2) =
N
∑

i=1

kiψ
pi
1 ψ

qi
2 , (27)

where pi and qi are real constants. Using the relation (26) and rewriting the above equation

we get

h =

N
∑

i=1

ki (c(t)ψ2)
pi
α ψ

qi
2 . (28)

The above polynomial becomes homogeneous for the condition pi
α
+ qi = m, where m is a

constant,

h = ψm
2

N
∑

i=1

kic(t)
pi
α . (29)

Next, substituting (13) in (10) and simplifying we get

ü+
1

δ

[

(a2b1φ3 + ω2 + h)− a1b2(φ1 + ω1 + h) + (b1ψ2 − b2ψ1)hu

]

u̇

+
1

δ

[

b1b2(φ3 − φ1 + ω2 − ω1) + (b1ψ2 − b2ψ1)hv

]

v̇

+
1

δ

[

b2φ1(ω1 + h)ψ1 − b1φ3(ω2 + h)ψ2

]

= 0, (30a)

v̈ −
1

δ

[

a1b2(φ3 + ω2 + h)− a2b1(φ1 + ω1 + h) + (a1ψ2 − a2ψ1)hv

]

v̇

−
1

δ

[

a1a2(φ3 − φ1 + ω2 − ω1) + (a1ψ2 − a2ψ1)hu

]

u̇

−
1

δ

[

a2ḡ1(ω1 + h)ψ1 − a1ḡ2(ω2 + h)ψ2

]

= 0, (30b)
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where h is given by (29) and φ1 and φ3 are given by

φ1 =
a1g1 + b1g2

ψ1φ2
, φ3 =

a2g1 + b2g2

ψ2φ4
. (31)

Redefining now the constants and functions as ω1 = δd1, ω2 = δd2, φ1 = δ(η −

d1), φ3 = δ(ξ − d2), h = δh̄, where δ = a1b2 − a2b1 =constant, we find that (30)

reduces to the coupled Eq. (4). A particular solution of (30) can be obtained by solving the

following Bernoulli type equation

ψ̇2 = ω2ψ2 + d(t)ψm+1
2 , (32)

where d(t) =
∑N

i=1 kic(t)
pi
α , which is obtained by substituting (29) in Eq. (23b). Equation

(32) admits the following explicit solution

ψ2(u, v) =
eω2t

[

C2 −m
∫

emω2td(t)dt
]

−

1
m

, (33)

where C2 is an integration constant. and, since ψ1 = ψ2c(t), we have

ψ1(u, v) =
c(t)eω2t

[

C2 −m
∫

emω2td(t)dt
]

−

1
m

. (34)

Inverting the relation (13) one can obtain u and v as

u =
b2

δ
(ψ1 − c1)−

b1

δ
(ψ2 − c2), (35a)

v =
a1

δ
(ψ2 − c2)−

a2

δ
(ψ1 − c1), (35b)

Using the explicit forms of ψ1 and ψ2 as given by Eqs. (33) and (34), we can then write

u =
b2

δ





c(t)eω2t

[

C2 −m
∫

emω2td(t)dt
]

−

1
m

− c1



−
b1

δ





eω2t

[

C2 −m
∫

emω2td(t)dt
]

−

1
m

− c2



 , (36)

v =
a1

δ





eω2t

[

C2 −m
∫

emω2td(t)dt
]

−

1
m

− c2



−
a2

δ





c(t)eω2t

[

C2 −m
∫

emω2td(t)dt
]

−

1
m

− c1



 ,(37)

where C1 in c(t) (vide Eq. (26)) and C2 are arbitrary integration constants.

A. An example : Case ψ1 = u, ψ2 = v

We now consider a specific equation belonging to the class of coupled ODEs (30) and

obtain a particular solution using the above factorization procedure. For illustrative purpose,
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let us consider the simple case ψ1 = u and ψ2 = v for which Eq. (30b) reduces to the form

ü− uḣ+ [h+ ω1 + φ1]u̇− hvuv̇+φ1u(h+ ω1) = 0, (38a)

v̈ − huvu̇+ vḣ+ [h+ ω2 + φ3]v̇+φ3v(h+ ω2) = 0. (38b)

Choosing the arbitrary functions

φ1 =− (k1u+ k2v)− ω1, φ3 = −(k1u+ k2v)− ω2,

we find (38) reduces to the two-coupled version of the modified Emden equation (5), studied

in the literature [21, 22]. Substituting these forms of ψ1, ψ2 and h in (35) we get the following

particular solution of (5)

u =
C1ω1ω2e

ω1t

C2ω1ω2 + k2ω1eω2t + C1k1ω2eω1t
, (39a)

v =
ω1ω2e

ω2t

C2ω1ω2 + k2ω1eω2t + C1k1ω2eω1t
, (39b)

where C1 and C2 are arbitrary constants. One can check that this particular solution can be

obtained from the general solution (13) given in Ref. [21] after fixing two of the integration

constants.

We are also exploring further how the forms (23) can be generalized so that more general

system belonging to the class (3) can be brought into the above formalism. The results will

be presented in future.

IV. METHOD OF CONSTRUCTING GENERAL SOLUTION

In the previous section we have obtained the particular solutions for a class of coupled

second order ODEs by factorizing them. In this section we obtain the general solution of

a subset of these coupled nonlinear ODEs (10) by factorizing them for suitable parametric

choices. For this purpose we assume φi = φ + χi, i = 1, 2, 3, 4, where χi, i = 1, 2, 3, 4,

are arbitrary constants and φ is some arbitrary function of u and v. Then the equation (8)

becomes

[D − φ(u, v)− χ1]P1(u, v) = 0, (40a)

[D − φ(u, v)− χ3]P2(u, v) = 0, (40b)

[D − φ(u, v)− χ2]ψ1(u, v) = P1(u, v), (40c)

[D − φ(u, v)− χ4]ψ2(u, v) = P2(u, v). (40d)
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This implies that the following relation holds good :

D

(

ψj

Pj

)

= χ̄j

ψj

Pj

+ 1, j = 1, 2 (41)

where χ̄1 = (χ2−χ1) and χ̄2 = (χ4−χ3). Upon integrating equation (41) we find a solution

of the form

ψj

Pj

= eχ̄jt

(

Ij −
1

χ̄j

e−χ̄jt

)

, j = 1, 2 (42)

where I1 and I2 are two integration constants. Using (42), one can rewrite Eqs. (40c) and

(40d) as

Pj

ψj

=
D[ψj(u, v)]

ψj

− φ(u, v)− χ̂j =
e−χ̄jt

(

Ij −
1
χ̄j
e−χ̄jt

) , j = 1, 2 (43)

where χ̂1 = χ2 and χ̂2 = χ4. From (43) we get

D[ψ1]

ψ1

−
D[ψ2]

ψ2

− (χ̂1 − χ̂2) =
d

dt

(

log

[

I2 −
1
χ̄2
e−χ̄2t

I1 −
1
χ̄1
e−χ̄1t

])

. (44)

Integrating equation (44) we obtain

ψ2 =

[

I1 −
1
χ̄1
e−χ̄1t

I2 −
1
χ̄2
e−χ̄2t

]

e(χ̂2−χ̂1)t+I3ψ1 = a(t)ψ1, (45)

where

a(t) =

[

I1 −
1
χ̄1
e−χ̄1t

I2 −
1
χ̄2
e−χ̄2t

]

e(χ̂2−χ̂1)t+I3 .

Let us assume that the function φ(u, v) = h(ψ1, ψ2) = h(u, v), where h(ψ1, ψ2) is given in

(27). Now the equation for ψ1 (see Eq. (43)) becomes

ψ̇1 =

(

χ̂1 −
d

dt

(

log

[

I1 −
1

χ̄1
e−χ̄1t

]))

ψ1 + s(t)ψm+1
1 , (46)

where

s(t) =
N
∑

i=1

kia(t)
qi, m = pi + qi,

k0, k1, . . . , kN are arbitrary parameters.

Equation (46) has the explicit solution

ψ1(u, v) =

[

I1 −
1
χ̄1
e−χ̄1t

]

e−mχ̂1t

[

I4 −m
∫

[

I1 −
1
χ̄1
e−χ̄1t

]

emχ̂1ts(t)dt

]
1
m

, (47a)
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ψ2(u, v) =

a(t)

[

I1 −
1
χ̄1
e−χ̄1t

]

e−mχ̂1t

[

I4 −m
∫

[

I1 −
1
χ̄1
e−χ̄1t

]

emχ̂1ts(t)dt

]
1
m

. (47b)

From the relations (13) we find

u =
b2

δ
(ψ1 − c1)−

b1

δ
(ψ2 − c2), (48)

v =
a1

δ
(ψ2 − c2)−

a2

δ
(ψ1 − c1), (49)

where ψ1 and ψ2 are given by Eq. (47), δ = a1b2 − a2b1. Note that the above solution

contains four arbitrary constants I1, I2, I3, and I4, (with I2, I3 appearing in the function

a(t), see Eq. (45)) so that (47a)-(47b) constitute the general solution.

A. Example

We illustrate the above procedure by considering the following equation belonging to the

class of equations given by (30),

ü+ k2uv̇ + (3k1u+ 2k2v − χ1 − χ2)u̇+ k2uv(k2v − χ1 − χ2)− k1u
2(χ1 + χ2 − 2k2v)

+k21u
3 + χ1χ2u = 0, (50a)

v̈ + k1vu̇+ (3k2v + 2k1u− χ3 − χ4)v̇ + k1uv(k1u− χ3 − χ4)− k2v
2(χ3 + χ4 − 2k1u)

+k22v
3 + χ3χ4v = 0, (50b)

which can be factorized as

[D + (k1u+ k2v)− χ1]P1(u, v) = 0, (51a)

[D + (k1u+ k2v)− χ3]P2(u, v) = 0, (51b)

[D + (k1u+ k2v)− χ2] u = P1(u, v), (51c)

[D + (k1u+ k2v)− χ4] v = P2(u, v). (51d)

We obtain the following relations from the above equations,

D

(

u

P1

)

= χ̄1
u

P1

+ 1, (52a)

D

(

v

P2

)

= χ̄2
v

P2
+ 1, (52b)

12



where χ̄1 = χ2 − χ1 and χ̄2 = χ4 − χ3. Integrating we get

u

P1
= eχ̄1t

(

I1 −
1

χ̄1
e−χ̄1t

)

,
v

P2
= eχ̄2t

(

I2 −
1

χ̄2
e−χ̄2t

)

. (53)

Using these relations in (51c) and (51d) we get

u̇

u
+ (k1u+ k2v)− χ̄1 =

e−χ̄1t

(

I1 −
1
χ̄j
e−χ̄1t

) , (54a)

v̇

v
+ (k1u+ k2v)− χ̄2 =

e−χ̄2t

(

I2 −
1
χ̄2
e−χ̄2t

) . (54b)

Integrating the above system of equations we get

v =

[

I1 −
1
χ̄1
e−χ̄1t

I2 −
1
χ̄2
e−χ̄2t

]

e(χ̂2−χ̂1)t+I3u = a(t)u (55)

Substituting for v in (54a) we get

u̇ = χ̂1u−
d

dt

(

log

[

I1 −
1

χ̄1
e−χ̄1t

])

u+ (k1 + k2a(t))u
2. (56)

We wish to note that the above equation falls under the Riccati equation which upon inte-

gration leads to the following general solution,

u =

(

I1 −
1
χ̄1
e−χ̄1t

)

eχ̄1t

[

I4 +
∫

(

I1 −
1
χ̄1
e−χ̄1t

)

eχ̄1t(k1 + k2a(t))dt

] . (57)

Substituting for u in (55) we get

v =
a(t)

(

I1 −
1
χ̄1
e−χ̄1t

)

eχ̄1t

[

I4 +
∫

(

I1 −
1
χ̄1
e−χ̄1t

)

eχ̄1t(k1 + k2a(t))dt

] . (58)

We note here that the above solution contains four integration constants I1, I2, I3 and I4

and this solution can also be obtained by following the procedure discussed in Ref. [24].

We find that the general solution of a restricted class of equations, a subset of the class of

equations (30) , which can be factorized in the form (40) can be obtained using the above

procedure. For the case of scalar second order ODEs discussed in Ref. [16], obviously we

can apply the above procedure straightforwardly. The details are given in Appendix C. It

should be possible to generalize the above procedure to more general cases than (40), though

we do not attempt this in this paper.
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V. CONCLUSION

In this paper we have identified a system of coupled Liénard type equations which can be

factorized in terms of first order differential operators. We have shown that a particular so-

lution of equations belonging to this class of coupled Liénard type equations can be obtained

by solving a Bernoulli type equation. This generic class of ODEs contains the a coupled

version of the modified Emden equation which has been recently studied in the literature.

We have also shown that the general solution of a restricted class of equations can also be

obtained using this procedure of factorization. Several generalizations of our study can be

proceeded with, by relaxing the various restrictions mentioned in the present work. These

are being pursued currently.

In addition to this, one can extend this procedure to higher order scalar/coupled ODEs

and obtain their corresponding particular/general solutions for suitable choice of the pa-

rameters. One can also straightforwardly extend this procedure of factorization to a system

of N coupled second order ODEs. The factorization of N coupled second order ODEs will

result in a system of 2N coupled first order ODEs similar to (40). From these 2N first order

ODEs one can obtain a relation similar to Eq. (41) with j = 1, 2, . . . , N . Integrating this

system of equations one can obtain the general solution of the underlying N coupled second

order ODEs.
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Appendix A: Proof of ψ1,2uu = ψ1,2uv = ψ1,2vv = 0

Requiring that the coefficients of the higher powers of the derivatives contained in the

bracketed terms in (10b) be zero we get

(ψ1uuψ2v − ψ2uuψ1v)u̇
2 + (ψ1uvψ2v − ψ2uvψ1v)u̇v̇ + (ψ1vvψ2v − ψ2vvψ1v)v̇

2 = 0 (A1)

(ψ1uuψ2u − ψ2uuψ1u)u̇
2 + (ψ1uvψ2u − ψ2uvψ1u)u̇v̇ + (ψ1vvψ2u − ψ2vvψ1u)v̇

2 = 0 (A2)

Since u and v are independent the coefficients of u̇2, u̇v̇, v̇2 in each equation must individually

be zero.

⇒ ψ1uuψ2v = ψ2uuψ1v, ψ1uuψ2u = ψ2uuψ1u,

ψ1uvψ2v = ψ2uvψ1v, ψ1uvψ2u = ψ2uvψ1u,

ψ1vvψ2v = ψ2vvψ1v, ψ1vvψ2u = ψ2vvψ1u, (A3)

If ψ2uu, ψ2uv, ψ2vv 6= 0 then (A3) implies

ψ1uu

ψ2uu
=
ψ1uv

ψ2uv
=
ψ1vv

ψ2vv
=
ψ1u

ψ2u
=
ψ1v

ψ2v
(A4)

The last equality in (A4) implies δ = ψ1uψ2v −ψ2uψ1v = 0 which is not permissible in (10b)

as in that case the leading order terms ü, v̈ vanish and the resulting equation is first order.

Thus ψ2uu, ψ2uv, ψ2vv = 0.

If ψ2uu, ψ2uv, ψ2vv = 0 but one of ψ1uu, ψ1uv, ψ1vv 6= 0 then from Eq (A4) ψ2u = ψ2v = 0

which again implies δ = 0 which is inadmissible. Thus ψ1,2uu = ψ1,2uv = ψ1,2vv = 0.

Appendix B: Separable reduced equations

We consider the case where h1 and h2 in (23a-23b) are of the form

h1 = k1ψ
p
1 , h2 = k2ψ

q
2. (B1)

The reduced equations are then a pair of Bernoulli equations in ψ1 and ψ2

ψ̇1 = ω1ψ1 + k1ψ
p+1
1 ,

ψ̇2 = ω2ψ2 + k2ψ
q+1
2 . (B2)
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For the class of systems for which (22) is equivalent to (23a-23b) with h1 and h2 given by

(B1) explicit solutions can be found relatively simply by solving (B2). Using the condition

φ2 = ω1 + k1ψ
p
1 and φ4 = ω2 + k2ψ

q
2 and (15) in (10b), we identify this class of systems to

be

ü+
1

δ

[

(a2b1ḡ2 + ω2 + k2(q + 1)ψq
2)− a1b2(ḡ1 + ω1 + k1(p+ 1)ψp

1)

]

u̇

+
1

δ

[

b1b2(ḡ2 − ḡ1 + ω2 − ω1 + k2(q + 1)ψq
2 − k1(p+ 1)ψp

1)

]

v̇

+
1

δ

[

b2ḡ1(ω1 + k1ψ
p
1)ψ1 − b1ḡ2(ω2 + k2ψ

q
2)ψ2

]

= 0, (B3a)

v̈ −
1

δ

[

a1b2(ḡ2 + ω2 + k2(q + 1)ψq
2)− a2b1(ḡ1 + ω1 + k1(p+ 1)ψp

2)

]

v̇

−
1

δ

[

a1a2(ḡ2 − ḡ1 + ω2 − ω1 + k2(q + 1)ψq
2 − k1(p+ 1)ψp

1)

]

u̇

−
1

δ

[

a2ḡ1(ω1 + k1ψ
p
1)ψ1 − a1ḡ2(ω2 + k2ψ

q
2)ψ2

]

= 0, (B3b)

where ψ1 and ψ2 are given by (13) and ḡ1 and ḡ2 are given by (31).

The solution to (B2) is found using (33-34) to be

ψ1 =

[

k1(C1e
−pω1t −

p

ω1

)

]

−

1
p

,

ψ2 =

[

k2(C2e
−qω2t −

q

ω2

)

]

−

1
q

.

Using (35b) we get an explicit solution for u and v as

u =
b2

δ

(

[

k1(C1e
−pω1t −

p

ω1
)

]

−

1
p

− c1

)

−
b1

δ

(

[

k2(C2e
−qω2t −

q

ω2
)

]

−

1
q

− c2

)

,

v = −
a2

δ

(

[

k1(C1e
−pω1t −

p

ω1

)

]

−

1
p

− c1

)

+
a1

δ

(

[

k2(C2e
−qω2t −

q

ω2

)

]

−

1
q

− c2

)

,

where C1 and C2 are integration constants.

Appendix C: General solution of scalar ODEs

Using the factorization procedure Cornejo-Pérez et al. in Ref. [16] have obtained par-

ticular solutions of a class of scalar second order ODEs. Now, we show that the procedure

of obtaining general solution discussed in Sec. IV is also applicable to scalar second or-

der ODEs. We demonstrate this by considering a specific equation discussed in Ref. [16]
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and obtain its general solution through factorization for suitable parametric choice. Let us

consider the following equation

ẍ+ (a− αxp)ẋ+ βx(1− xp)(xp − b) = 0, (C1)

which is obtained from the Burgers-Huxley equation [16] using a traveling wave reduction.

We find that for the parametric choice β = α2

(p+2)2
, b = − a

α
(p + 2)− 1, α = −1

2
(p + 2)(a±

(χ2 − χ1), Eq. (C1) can be factorized in the form

(D − φ− χ1)P = 0, (C2a)

(D − φ− χ2)x = P, (C2b)

where D = d
dt
, φ = α

(p+2)
xp − 1

2
(χ1 + χ2 + a), χ1 and χ2 are arbitrary parameters. From Eq.

(C2) and following the procedure discussed in Sec. IV we get

D
( x

P

)

= (χ2 − χ1)
x

P
+ 1. (C3)

Integrating we obtain

x

P
= e(χ2−χ1)t

(

I1 −
1

(χ2 − χ1)
e−(χ2−χ1)t

)

. (C4)

Rewriting Eq. (C2) and substituting for P
x
from the above equation we get

D[x]

x
− φ− χ2 =

e(χ1−χ2)t

(

I1 −
1

(χ2−χ1)
e(χ1−χ2)t

) , (C5)

where φ = α
(p+2)

xp− 1
2
(χ1+χ2+a). Integrating the above Bernoulli type equation we obtain

x(t) =

(

I1 −
e(χ1−χ2)t

χ2−χ1

)

e−
1
2
(χ2−χ1+a)t

(

I2 − p
∫

(

I1 −
e(χ1−χ2)t

χ2−χ1

)p

e−
p

2
(χ2−χ1+a)tdt

)p (C6)

Similarly one can obtain the general solution for all the other equations discussed in Ref.

[16] for suitable choice of parameters using the procedure discussed here.
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[11] J. S. R. Chisholm and A. K. Common, J. Phys. A: Math. Gen. 20, 5459 (1987).

[12] C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).

[13] V. V. Golubev, Lectures on Analytical Theory of Differential Equations (Gostekhizdat,

Moscow, 1950).

[14] B. van der Pol, Philos. Mag. 3, 65 (1927).

[15] H. N. Moreira, Ecological Modelling 60, 139 (1992).

[16] O. Cornejo Pérez and H. C. Rosu, Prog. Theor. Phys. 114, 533 (2005).
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