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1. Introduction

During the past two decades or so there has been increased interest to find the nonlocal

symmetries of ordinary differential equations [1H4]. Consider an n'* order ordinary

differential equation (ODE)

n k

A= C;Tf+F(t,x,x(1),x(2),...,z("_l)) =0, z®) = %, (1)

to be invariant under the infinitesimal transformations X = x+en(t, x), T = t+€£(t, x),

where ¢ and 7 are the infinitesimal point symmetries associated with the given

equations. The vector field associated with the Lie point symmetry [5,[6] is then
V= S(t,x)% + n(t,x)a%.

The Lie point symmetries £(¢, ) and n(t,z) are obtained by solving the invariant

condition, that is

Vi (A) 4= =0, (2)
where
0 0
vy ¢ 9 o 9 o 9 3
Gt T gpm T T g (3a)
dn(k_l) d€
(k) _ _ S (0) b

is the n'" prolongation. Thus the point symmetries £(¢, ) and 7(¢, x) can be calculated
in an algorithmic way for a differential equation of any order. However, there exist more
generalized symmetries such as contact symmetries, involving derivatives of z in 7 and
¢, and nonlocal symmetries, involving nonlocal terms in 7 and &.

The vector field of the nonlocal symmetries is of the form V = £(t, z, [u(t, z)dt) 2+
n(t,x, [u(t,z)dt)Z. Unlike the case of point symmetries these nonlocal symmetries
cannot be determined completely in an algorithmic way because of the presence of
nonlocal terms. The role of such nonlocal symmetries in the integration of differential
equations was illustrated by Abraham-Shrauner et al. and later on by others [IH4].
Conventionally such nonlocal symmetries are explored either by reducing or increasing
the order of the equation [I,3]. Methods to identify nonlocal symmetries of partial
differential equations were also developed alongside [7H9]. In a recent paper, the nonlocal
symmetries of two higher dimensional generalizations of the modified Emden equations
were studied [10]. The first system is made up of two uncoupled modified Emden
equations. The second system is obtained by assuming the variable of the scalar modified
Emden equation to be complex and separating the real and imaginary parts [11].

In this paper we devise a procedure to identify the nonlocal symmetries of a class of
ODEs which includes the Riccati and Abel chains [12]. In this procedure we nonlocally
map the symmetries of the given n'* order nonlinear ODE to the point symmetries
of the associated n'" order linear ODE, thereby preserving the order of the equation.
We also show with the aid of specific examples (second order, third order and coupled
second order ODEs), one can obtain the known general solution of a given equation
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using the associated nonlocal symmetries identified by this procedure. In developing
this procedure we make a judicious use of our earlier work on the nonlocal connection
between nonlinear and linear ODEs [13] to construct the nonlocal symmetries for a
given nonlinear ODE. We show that the same procedure is applicable to any order
starting from 2 to arbitrary N. Further, we extend the procedure to deduce the nonlocal
symmetries of a class of coupled second order ODEs, which includes the coupled modified
Emden equation [14].

The plan of the paper is as follows. In Sec. 2l we describe the general procedure
to obtain the nonlocal symmetries associated with a class of second order nonlinear
ODEs. Using the nonlocal symmetries we deduce the general solution for two interesting
equations belonging to this class of equations. Further, we extend the procedure to a
more general class of second order ODEs. In Sec. B we extend the applicability of
the procedure to a class of third order ODEs. In Sec. [, we apply this procedure to a
class of n'" order ODEs and deduce the associated nonlocal symmetries. In Sec. Bl we
extend the procedure to a class of coupled second order ODEs and obtain their nonlocal
symmetries. Further, we deduce the general solution of the coupled modified Emden
type equation using its nonlocal symmetries. In Sec. [0l we summarize our results. In
the appendix we demonstrate briefly how the nonlocal symmetries identified through
the developed procedure indeed satisfies the symmetry invariant condition ().

2. Nonlocal symmetries

Let us consider the following class of nonlinear second order ODE,

(= D)E + (@20 Saf)i+ (P raf ) =0 =2 @)
T n—1)— c —ZTJz)T + — c C2) =V, Jx = 75
x ! n n ! 2 Ox

where ( = %), which is related to the second order linear ODE,

. ) d

U+ cU+cU =0, (‘: %) (5)
through the nonlocal transformation

U = ghel @t (6)
Here ¢1, co and n are real constants and f = f(x) is an arbitrary given function.

Equation () includes many physically and mathematically interesting equations such
as the modified Emden equation [I5[16], Ermakov-Pinney equation [I7] and generalized
Duffing-van der Pol equation. Equation (4]) reduces to the Liénard class of equations
for the parametric choice n = 1. Classification of the forms of f(z) for this Liénard
class of equations admitting Lie point symmetries has been carried out in Refs. [I8[19].
We note that for arbitrary forms of f(z), Eq. (@) admits only the time translation
symmetry. In addition to the Lie point symmetries admitted by Eq. (@), there exists
other generalized symmetries such as contact symmetries, nonlocal symmetries and so

on. In order to explore the nonlocal symmetries associated with (@), we use the identity
U ni

)] @
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which can be directly deduced from ([]).

2.1. General Theory

The above nonlocal connection between Eqs. (@) and (B) allows us to deduce the
nonlocal symmetries of Eq. (@). To verify this we proceed as follows. Let £ and 75
be the infinitesimal point transformations, that is U' = U + en(t,U), T =t + €£(t,U),
associated with the linear ODE (B)). Then the symmetry vector field associated with
the infinitesimal transformations read as

0
A= 5 5 e (8)
and the first extens1on is
)
— & g+ (- V) Q

Let us designate the symmetry vector field and its first prolongation of the nonlinear
ODE (@) to be of the form

0= )\2 + ug, (10)
ox

and
A=+ —+('—:’c)\)2 (11)
ot Hor TV i’

respectively, where A and p are the infinitesimals associated with the variables ¢ and =z,

0 =

respectively.

Theorem 1 Given the set of Lie point symmetries & and n of the linear ODE ([4), a
set of nonlocal symmetries X\ and p of the nonlinear ODE ({j]) follows therefrom.

Proof : From the identity ({l) we define

U  ni
ﬁ:?—Ff(CL‘):X. (12)

The above relation is a contact type transformation using which one can rewrite Eq.
(@) and Eq. (B) as the Riccati equation
i d
X+ X2+ X +c=0. (‘:£) (13)
The symmetry vector field of this equation can be obtained by using the relation X = =
and rewriting Eq. ([QI) as
N U
= ——=-X ] — =X 14
5 [U U? ¢ 0X (14)
We note that Eq. (EII{I), being a first order ODE, admits infinite number of Lie point
symmetries. These Lie point symmetries of Eq. (I3]) become contact symmetries of the
linear second order ODE (@) through the relation X = %
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Similarly one can rewrite Eq. (II)) using the relation X =nZ + f(z) as

9 B af

Q! A8t+[(——x+fx)u+( — it L?X 5 L

As the symmetry vector fields ¥ and Z are for the same equation ([[3]), their infinitesimal

(15)

symmetries must be equal. Therefore, comparing equations (I4)) and (I3]) one obtains

i 77U : n . .n
£=A [5 T (35)5] = [(—E:c + fo)u+ Mﬂ (16)
Rewriting the second equation in (I6]) we arrive at the relation

Rk (~ S £ = [0~ @] (17)

Since the infinitesimal symmetries £ and 7, of the linear ODE are known and U in
(I7) is taken in the form (@), the right hand side now becomes an explicit function of ¢
and x. Solving the resultant first order linear ODE one can obtain the function p which
is nothing but the symmetry associated with the nonlinear ODE, see Appendix. Since
U is given by the nonlocal form (@) the resultant symmetries in general turn out to be
a nonlocal ones. O

2.2. Examples

(a) Example 1:
In order to illustrate the above theory we consider the simple parametric choice
¢1 = ¢ = 0 for which Eq. @) and Eq. (§) reduce to the forms

+2
it -0 424w =0, f=9

(18)
and
U=o0, (19)

respectively. It is well known that the free particle equation (I9) admits the following
eight Lie point symmetries, see for example [5,6}22],

0 0 0 0 0
VT A VL W s SN W dod
1=5p le=om A=ty M U@U’ 5 U@t’
0 0 0 0 0
Ng=t—, A;=t"— Ag 2 2
6 tat, 7 tat—l-tUaU tU8t+U8U (20)
Substituting the above symmetry generators A;’s, i = 1,2,....,8, and U = ze/ /@4t ip
Eq. (I7), we get & = A and the following seven first order ODEs for p,
g,u + (fo — ﬁ:)’s)u + (zf 4 nd)z~ e [I@d — 21
n

+ (e = xﬂt (z — taf — nti)z~ e [T@d —
n.
€

)

Bt (o — i)t (af + i) fan e 1@ = g,
l’
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it (e = i+ @) =0, (25)
it (fo = S+ 2f =10, (26)
g/l + (fe — %x),u + 2(xf + ni)x? L e[ @A _ 1 — g, (27)

Integrating each one of the above first order linear ODEs we get the corresponding
infinitesimal symmetry p. Substituting the infinitesimal symmetries A and g in ([I0) we
get following nonlocal symmetries of equation (IS)),

0
0 =2 2
= (28)
Q2 _ (l’n f(nf’” f)d _/ 1— nf 6f( fa— dtdt) re nf(xfx)dtai’ (29)
O = (“ gl Gromnae _ L [y aong fGr-nary Sern
3 = el \n 2 X fxfi n t)xe n a 3 (30)
n n v
0
Q — f fac dt 1
4 = XE a.ﬁ(: (3 )
Qs = Ineffdt% N (% /a:"_lf(n:i? + xf)ef(ifac-i-f)dtdt) xe—if(xfx)dt%’ (32)
0 1 1 0
_ Y nf(wfz - ;f(mfz)dt _
Qs = tat xe (n /fe dt) e (33)
20 1 ! 9
0, = a + pe—J Riedt (g /(1 —2tf)e™n f:vfzdtdt) oL (34)
Qs = tamel 500 4 gomrana (L / ot f? 4 n(tf — Dajel G D) 2 (s5)

One can verify that each one of the above nonlocal symmetries indeed satisfies the
invariance condition (2]) and is the nonlocal symmetry vector field of (I8). This is
demonstrated in the Appendix for a particular symmetry vector, namely {25, as an
example.

We note here that there is also a possibility to find the nonlocal symmetries of
Eq. (I8) by introducing suitable auxiliary/covering equation and deducing the point
symmetries associated with the combined system giving rise to a one parameter group
as studied in Refs. [8/[9]. However, we have not explored such a possibility here.
Proposition 1: The nonlocal symmetry Q4 reduces Eq. (18) to the Riccati equation
dz/dt = —nz?* through the reduction transformation z = % + %
Proof : Let us consider the Lagrange’s system associated with the nonlocal symmetry
Q4 given by Eq. (310,

dt  dx dzx

o2 36

0 T T — fw (36)
The characteristics are ¢ and

oS (37)

T n
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We find the reduced equation of (I8) is the following Riccati equation,

d
Lo (39)
whose general solution is given as
1
_ 39
N 1 1+ nt’ ( )
where [; is the integration constant. 0
Substituting the above solution in (37]) and rearranging we get
x S
P — L= 40

Solving the above equation one can find the general solution of (I8]). However, one finds
that Eq. (40) can be integrated only for certain specific forms of f. One such form of
f for which Eq. (40) is integrable is f = kz™. For this choice of f and n = 1, Eq. (I8)
reduces to the generalized Emden equation [13]20}21]

i+ (m 4 2)ka™d + E22®mt =0, (41)
whose general solution is obtained by integrating (40) as

2(t) = htt (42)

[[2+7s_ﬁ(]1+t)m+l}%

where [; and I, are the integration constants, which agrees with the known result [13].

We wish to point out here that in additon to the above nonlocal symmetries, Eq. (41) has
the following Lie point symmetries which can be deduced using the standard procedure,
for example using MULIE [5[6,22],

9 g d_r9
ot YTt mox
Obviously the symmetries )y is outside the scope of the above nonlocal connection
(Theorem 1).
(b) Example 2:
Next we consider another interesting nonlinear ODE of the form
2
i+czx+%:0, (44)

0, = (43)

which arises in different areas of physics and has been studied in Ref. [13]17,23-25].
This equation arises in a wide variety of fields such as the study of cosmological
field [26], quantum field theory in curved space [27], quantum cosmology [28], molecular
structures [29,[30] and Bose-Einstein condensation [31]. Equation (44]) is found to be
connected to the harmonic oscillator equation

U+ U =0, (45)

by the nonlocal transformation U = zel 2% The nonlocal symmetries associated with
Eq. (@) can be found by following the procedure discussed in Sec. 2l Substituting the
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following known Lie point symmetries of the harmonic oscillator (45]) in (I7) [5622],

0 . 0 0 0 0
A= % Ay = sin 2wt§ + wU cos 2wt@, Az = cos 2wt§ — wU sin 2wt@
: 0 0 0 0 0
Ay = U(smwta +wU coswt%), As = U@, Ag = U(cos wta —wU smwt@)
: 0
A7 = sin wt@, Ag = cos wt@, (46)

where w = /¢y, we get a set of first order ODEs. Solving these first order ODEs, with
the substitution U = ze/ x%dt, we get the following nonlocal symmetries of Eq. (@4):
0

Ql = Ea (47)
2y = sin 2wt2 — Qe S /ale_%f?lfdtdt)g, (48)
ot 0
Q3 = cos thﬁ + 2wae S /a e 2 32 gy 0 (49)
ot ox’
|0 s e Hmd\ g
N e L v k[ —dt -~
Q= xe sin wtat +e /Oé3 ( . ) dtat] ) (50)
5 — et/ F0 (51)
o
Qg = ze" ) =% | cos wt% — et Ilfdt/ <k2 cos(wt) + z'w? cos(wt)
_ . 3. . kf z a
+x& cos(wt) + wa’s sm(wt)) Tdt% (52)
QO = gl = /(f cos(wt) — & sin(wt) — k sin(wt))e 3k [ Szt gy 0 (53)
! x x? a3 ox’
_ o2k [ dt —J %t : ﬁ f 3
Qg = ze [/ ¢ (w sin(wt) + (172 + :E) cos(wt)) dt} 5 (54)

where

k
o = wsin 2wt + — COs 2wt,
T

Qg = — sin 2wt — w cos 2wt,
x

- 2
a3 = wrd cos(wt) — T sin(wt) — w?z? sin(wt) — — sin(wt),
T x

We also wish to point out here that in addition to the above nonlocal symmetries, Eq.
(@) has the following three Lie point symmetries

Qo = (2sin® (\/715)—1) +2\/7xcos(\/_t)sm(\/7t) (55)
910—2008(\/_15)8111(\/_)8— (2y/caz sin®(V/eat) — \/7)((%, (56)

O = - (sn? () = 1) 5 = L sinl ) con( /3t 67)



Nonlocal symmetries 9

Proposition 2: The nonlocal symmetry Qs reduces Eq. (44) to the Riccati equation
dz/dt = —2z% + ¢y through the reduction transformation z = i/x + k/z*.
Proof : Let us consider the Lagrange’s system associated with the nonlocal symmetry
Q5 given by Eq. (51,

dt dx di

_ 58
0 x T+ i—’g (58)
The characteristics of this system are ¢ and
A
24 59
2=t (59)
The reduced equation of ([@4)) is found to be
dz
o —2% + . (60)

The general solution of the above Riccati equation is

2= —yatan(ya(t - I). (61)

Substituting the expression for z in (B9) and rearranging we get

k
¢+¢&MMQﬁﬁ+h»+E:O. (62)
Integrating (62) we find the general solution of (44) as
cos(y/cat + 1)

(Iz — 2 tan(, /Gt + 11)>

where [; and I, are the integration constants, which agrees with the known solution [13].

x(t) = : (63)

(NI

2.3. Extension to more general class of second order ODFEs

The procedure described to deduce the nonlocal symmetries of Eq. () can be further
extended to deduce the nonlocal symmetries of more general nonlinear ODEs of the
form

(D} 4 c1(t) Dy + ea(t)) g(z,t) = 0, (64)

where D; = (4 4 f(z,t)). The above equation (G4) is related to the following
nonautonomous linear ODE

U+ (U + co(t)U = 0, (65)
through the nonlocal transformation

U = g(x,t)el f@d (66)

Theorem 2 FEquation (64) admits a set of nonlocal symmetries which can be obtained
directly from the Lie point symmetries & and n of Eq. (G3).
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Proof : From the above nonlocal transformation we define

X = % _ % + o t). (67)

The above relation is a contact type transformation using which one can rewrite Eq.
(64) and Eq. (63]) as the Riccati equation

. d
=
The symmetry vector field of this equation can be again obtained by using the relation
X = % and rewriting Eq. (@) and Eq. () we get

o o a0 .o _
R Xg]—zz

X4+ X2+ c1(H)X + eo(t) =0, (68)

Al =¢

and

0 Y P d (gt 0 _
1_,9 _ = 9 (9 B L Y =
Q _Aat+{(u :cA)g +u_fx+ax <g)]+Adt<g)+Aﬁ}a =(69)
respectively. Comparing (I4) and (69) we get
OV N VR ST O (N, 4 (L
e=n gt swni=i en{ne o (O 4 () venao

Rewriting the second equation in (70) we arrive at the relation

9a . 9 (g d (n) :d (&g

= s+ == =—|=) - BE—— 2= ) =&f. (T1

L {ft g (D) =5 (3) - s 5 (52) —en
Substituting U = g(z,t)e/ /@ and the point symmetries of Eq. (67) in the above first
order linear ODE and solving for u, we can obtain a set of nonlocal symmetries of Eq.

@2). O

3. Nonlocal symmetries : Third order ODEs

The procedure to deduce nonlocal symmetries discussed in Sec. can be
straightforwardly extended to third order ODEs. In this section we use this procedure

to deduce the nonlocal symmetries of the following class of third order nonlinear ODEs,
| i @3
~((3 L+ 3n(n — 1)=)i —1)(n—2)=
o (30 + e 30(n — 1)) + (- 10— 2
i? T T .
+(@0Bnfo + 2feo) +30(n =1 f)—+30nf +afe)f+ =0 (72)

Theorem 3 A class of nonlocal symmetries of the nonlinear ODE (72) can be obtained
directly from the Lie point symmetries of the second order linear ODE

7 =0, (73)
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Proof : It is straightforward to check that Eqs. (72) are (73)) and connected through
the nonlocal transformation

U = g"el T@t, (74)

From the above relation we find U £+ f, which is same as Eq. (I2). Therefore, we find
that the procedure discussed in Sec. l can be straightforwardly applied to Eq. (72) as
well and the nonlocal symmetries are obtained by substituting the Lie point symmetries
of ({3) in ([I7) and solving the resultant equations. U

The third order linear ODE (73]) is known to admit the following seven Lie point
symmetries [5]6L22],

9D .0 P RN _ 9

Al—aa A2—8U7 A3_t8U7 A4_t8t7 A5_t8U7 A6_U8U7
t2 0 0

M=sa U )

Substituting the above Lie point symmetry vector fields in Eq. (I7) and solving the
resultant first order linear ODEs we find the following symmetry vector fields of Eq.
@,

0

_9 = [ g (n+1) J (e —p)dt ﬁ
=z, Q=-we /(x S + e ) digye (70)
Q3 = xe_f%dt / %ef(%_ )t (2t - tzf - Qtzf) dtﬁ? (77)
T T ox

_ 9 e J o J(EE)dt _

QU tat ze /(ne )dtﬁx’ (78)
T ox
Oy = po- I a9 9 ’ (80)
ox

_ro T _jelg _ J(E2)dt gy 2

Q=S5+ e /(1 tf)e dio_. (81)

Proposition 3: The nonlocal symmetry Q6 reduces Eq. (79) to the modified
Emden equation/second order Riccati equation & dtQ + 3nzz + n?2® through the reduction
transformation z = & /x + f/n.

To check the above assertion let us consider the Lagrange’s system associated with
the symmetry g given by Eq. (80),

dt dx di

T 82

0 T T — x2% (82)
The characteristics of this system are ¢ and

i f
-4 83

=+ (83)
The reduced equation now turns out to be of the form

d2

C 2 4 Bnzs 42 =0, (84)

dt?
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which is the modified Emden equation and also known as the second order Riccati
equation. Note here that eq. (1) reduces to Eq. (84) for the choice m = 1. The
solution of (84)) can be therefore obtained from ([42)) with the substitution m = 1 and is
given as

5= [1—_'_152’ (85)

(I + It + %)
where I and /5 are integration constants. O
Rearranging the reduction transformation with the substitution z = (I} +t)/((Iy +

It + %)), we get
PR U ) R ' (86)
(L+nLt+%5) n
We note that the above equation is integrable only for certain specific forms of f. We
consider one such simple form for f as f = kx. For this form of f Eq. (2) reduces to
a special case of the Chazy equation XII [13,132H35],

T+ dkxi + 3ki® + 6k*2%% + kP2t = 0. (87)
Integrating Eq. (86) with f = kx, we get the general solution of (87) as

— k_éz + Lit+ L1,
]1[3 + ]f]lfgt -+ %ﬂ + %7

where [;, I and I3 are the integration constants. We wish to note that, in addition to

(1) (88)

the above nonlocal symmetries, Eq. (87) possesses the following Lie point symmetries
also,

o o 9 29 o 30
=2 =22 12 =%, 42 29
! S L L N T M T (89)

3.1. More general class of third order ODEs

In addition to Eq. (72)) one finds a more general class of third order ODEs of the
following form

(D} + c1(t) Dy + ea(t) Dy + es(t))g(w,£) = 0, (90)

where D, = (% +f(x,t)) and ¢;(t), i = 1,2,3, are arbitrary functions of ¢, which
admits nonlocal symmetries. This class of third order nonlinear ODEs is related to the
following nonautonomous third order linear ODE of the form

U+ cr(1)U + co(t)U + e3(t)U = 0, (91)

through the nonlocal transformation U = g(z,t)e/ /(®td,

In order to identify the
nonlocal symmetries associated with Eq. (@0), one can straightforwardly apply the
procedure discussed in Sec. 2.3 Substituting the point symmetries £ and 7 of the third

order linear ODE (70) and solving, one can obtain the nonlocal symmetries of (90).
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4. Arbitrary order nonlinear ODEs

Having discussed the applicability of the procedure to obtain the nonlocal symmetries
of certain class of second and third order ODEs we extend the procedure to a class of
arbitrary order nonlinear ODEs. In this context the following theorem holds good.

Theorem 4 A set of nonlocal symmetries of the m™ nonlinear ODE
(D} + c1(t) Dy 4 .+ e () g(z, 1) =0, (92)

where D} = (% + f(:E,t))m, can be obtained directly from the Lie point symmetries of
the m'™ order linear ODE
_dmU

U™ 4o ()yU™ D 4 4o (U =0, U™ = — (93)

Proof : The nonlinear ODE (92)) is connected to the linear ODE (@3] through the
nonlocal transformation U = g(z,t)e/ /@94 Note that this nonlocal transformation is
the same as ([66]), connecting the second order linear ODE (63]) and the nonlinear ODE
(64). Consequently, a set of nonlocal symmetries of Eq. (@2)) can be found in principle
by substituting the point symmetries of the linear ODE (Q3)) in Eq. (70) and solving the
resultant equations, as in the case of second and third order nonlinear ODEs. O

However, we note here that one cannot obtain all the point symmetries of the
linear ODE (93] of arbitrary order m. Therefore we consider a specific parametric
choice ¢;(t) =0, 1=1,2,...,m — 1, which reduces Eq. (@3] to the form

amu
— =0. 4
T =0 (94)
Equation (04]) admits at least the following two point symmetries for arbitrary order m,
0 0
A= —. Ay=U—. 95
o TP T au (95)

Substituting now the nonlocal transformation U = g(x,t)e/ /@D in (@) we get the
nonlinear ODE

<% + f(:c,t))mg(x, t) = 0. (96)

Note that Eq. (O0) is a generalization of Eqs. (I8) and (72)). To identify the nonlocal
symmetries of (06]), we substitute the Lie point symmetries of (@4]) in (70)). Solving the
resultant equations we deduce the following nonlocal symmetries of the nonlinear ODE

(@),

0 L[S (f4 D (8 g |d gt 9 (42 (8 0
Q = — — fgz (fz+az(g))dt/— — — fgz (fz+az(g))dtdt -~
T ot {e ge | dt + g ° ox’ (97)

4
ool (2 ()2

Let us consider the specific choice g(x,t) = x", f(x,t) = f(x), which reduces
Eq.([©2) to the following form,

(% + f@))mfw — 0. (99)
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The above equation is a generalization of the Riccati and Abel chains. The nonlocal

symmetries associated with this equation is obtained by substituting g(z,t) = 2" and
f(z,t) = f(x) in (O7) and ([©OF) and are given as
0 < 0

0 =—, Oy = ge S utedt

YT ot 2 Oz

Proposition 4: The nonlocal symmetry Qo reduces Eq. (99) to the integrable Riccati

(100)

chain (% + nz)m_l z = 0 through the reduction transformation z = % + %
Proof : Consider now the Lagrange’s system associated with €2y which is
dt dx di

= = 101
TR (101)
The characteristics are t and

R (102)
x n
The reduced equation is then found to be
d m—1
(dt + nz) z=0. (103)
O

We know that the Riccati chain can be integrated to get the general solution [I3]
for a specified order m, say, z = v(t). Substituting this in the reduction transformation
and rearranging we get

i—v@x+%ﬂ@:0. (104)

One can obtain the general solution of (@) by solving the above first order nonlinear
ODE. Thus we find that the problem of solving any arbitrary equation belonging to the
class ([@9)) is reduced to solving the first order ODE (I04)).

5. Coupled Second order nonlinear ODEs

Having discussed the procedure for deducing the nonlocal symmetries for a class of
arbitrary order ODE, we now extend the procedure to coupled second order ODEs. Let

us consider the following system of coupled second order ODEs,
2

B4 (0= 1) =+ 20 + (o + fy) + =2 =0, (105a)
f Y Y
§+%n—DE~+%g+—@w+yw%+;f=0, (1050)
Je = gﬁ, 9z = ax’ fy = and Gy = ag , which are related to the system of free particle
equations
U=o0, V =0, (106)

through the nonlocal transformations

U = g"el It V = yre ol@v)dt, (107)
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Equation (I03) includes the coupled modified Emden equation [I4] and the coupled
generalized Duffing-van der Pol oscillator equation for specific forms of f and g. The
integrability of Eq. (I03]) and its further generalizations have been studied in [36]. The
symmetry vector field associated with the system of linear equation (I06]) is given by

3}
A= 1
5 LT gr g (108)
The first prolongation of this vector field is
0 0 .0 .0
5 ;T T gyt (" Uf)aU + (72 Vf)av (109)
We assume that the system of nonlinear equations (I05) admits a symmetry vector field
of the form
3} 0 0
Q=X 110
8t+'u18 +M20y (110)
and its prolongation is given as
0 3} .0 .0
Ol = — — 1 — IN) =+ (fi2 — g\ =—. 111
g T gy T (= EA) 5o+ (e y)ay (111)

Theorem 5 A set of nonlocal symmetries X\, uy and ps of Eq. ({I03) for the case f = g
can be obtained from the point symmetries &, my and ny of Eq. (104).

Proof : Using the nonlocal transformations (I07) one can write the following identities,

U i Vg
Z —nZ =X — =nZ =Y. 112
G f(z,y) : V=", +9g(x,y) (112)

Using the above contact transformations, one can rewrite Eqs. (I05) and (I06]) in terms
of the new variables X and Y. The symmetry Vector field of these new equations can

be obtained by using the relations X = =, Y = & and rewriting (I09) as
o |m U | o i 1% | o
AN=¢(+ | & —me—ms— X — s — Y| = = 3. 11
o T 5] ox v e Y oy (113)

Similarly one can rewrite (ITI) using the relation X = 2+ f(z,y) and Y = % +9(z,y)
as

0 0X oY 0
1 _ - —
Q _Aaﬁ{’“a + H2 g + (fn — 2A)— }&X
0X oy . om0 _ _
+ |:,u18—y ‘|‘M28—y + (,u2 _yk)§:| 8—Y = = (114)

As the symmetry vector fields > and = are for the same equation and therefore the
infinitesimal symmetries must also be equal. Comparing the above two equations we
get the following relations,

B n 0X 0Y_171 U :
£= M\ Sl s e = g (z,y)&, (115)

0X ay V :
=X oy — ) 116
y,uz + p oy H2—— By v 2 V2 (z, )¢ (116)



Nonlocal symmetries 16

We note here that the above equations are relations connecting the known point
symmetries of the linear ODEs to symmetries of the nonlinear ODEs. Solving these
coupled equations one can obtain the symmetries for the nonlocal equation. However,
we find that the general solution of the above equation cannot be given for arbitrary
forms of f and g. The forms of f and ¢ have to be suitably chosen to decouple the above
system of equations. In order to decouple the equations (I15) and (I16) we consider the
relation

u o

2T St 117

= e (117)
For the specific choice f = g, the nonlocal part in the above equation vanishes and we
obtain

u o

—=—=1/7. 118

v= (118)

The symmetry vector in terms of the new variable Z becomes

1 0 Uu o

A= 11

f V771 a7 12 a2 a 07’ (119)
8 "t 9 " 0

Q= — — — . 12

Aor T oz T e o7 (120)
Comparing the above two equations we get
m 1

A=¢ (— _ —) 121
3 H1 = U~V + M2 (121)

Substituting this in the symmetry determlnmg equation (II6) we get

s (it o) <o (B B+ L5 (B) - Mo om

Solving the above linear first order ODE with the substitution of following point
symmetries of the linear system (I06) [5,/6122],

PNV NN 1 VT N}
RIS TS BT RSN M 3
A12:U% Va?/ Ags —t2%+Ut%+Vt£/

Ay Ut%+U2%+UV8?/ A15:Vt§ +UV%+V2£/ (123)
one can deduce a set of nonlocal symmetries associated with the nonlinear ODE ([I05]).
O

We find that Eq. (I22) is a first order linear ODE whose solution can be deduced
straightforwardly and therefore we consider a simple case and obtain the corresponding
nonlocal symmetry. For this purpose we consider the symmetry vector Aq; in Eq. (I23).
Substituting this in Eq. (I22]) and solving the resultant equation we get

1 0
iy = ge- i Jer0Ra g a_fy”, (124)
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Substituting this in (I2I)) we find p; and the symmetry vector field corresponding to
Aqq is given as

0 1 0
Oy = g n J@tfydt 2 o5 [@ty)fydt 2 125
H oz Y dy (125)
Proposition 5: The nonlocal symmetry Q1 reduces Eq. (103), with f(x,y) = g(z,y),
to the integrable Riccati equations “2 = —nz}, and 2 = —nz} through the reduction

transformations zy = £ + 1 f and 2z, = % +1f
Proof : The Lagrange’s system associated with the symmetry vector 27 is
dt dr dy dz dy

0 x_?::&—%(:ﬁ—i-y)fy:y—%(ijy)fy

The characteristics of this system are t, z; = % + % f,and 2z = % + % f, and the reduced

(126)

equations become

le ng
E = —nz%, % = —nzg. (127)
The solution of the above system is
1 1
_ - 128
ATt T Lint (128)
where I; and I5 are integration constants. O

Substituting these in the expressions in the reduction transformations, and
rearranging we get, we get
. T x . Yy Y
Y hrm at YT ham (129)
We note that the above set of first order coupled ODEs is integrable only for specific
forms of f(x,y). For the choice f(z,y) = g(x,y) = a1z + asy, Eq. (I05) reduces to the
following system of coupled modified Emden type equation [14136],

i+ 2(ax + agy)® + (1@ + agy)x + (a1 + agy)?z = 0,
i+ 2(a1r + agy)y + (@13 + a2®))y + (a17 + agy)®y = 0. (130)
By solving the corresponding system of first order ODEs (I29), the general solution of
(I30)) can be obtained as
B 211 (I + 1)
o (21, + (21, + 1)) 4 ag (204 + (215 + 1)t)’
Iz +1)
y(t) = :
ar [ (214 + (21, + 6)t) + ax(214 + (215 + t)t)
where I3 and I, are two more integration constants, and the general solution agrees with
the known result [14,[36].

(1)

(131)

6. Conclusion

In this paper, we have developed a new systematic procedure to deduce the nonlocal
symmetries of a class of arbitrary order nonlinear ODEs. The procedure uses the
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knowledge of the Lie point symmetries of the linear equations and the nonlocal
transformation connecting the linear and the nonlinear ODEs. We note here that the
order of the linear and the corresponding nonlinear equation remains the same. The
procedure is illustrated for the second and third order ODEs with examples and the
procedure is shown to be applicable to arbitrary order equations as well. Using these
nonlocal symmetries we have constructed the general solution certain specific nonlinear
ODEs. We also find that an m'™ order ODE of the form (@8] with arbitrary f(z) can be
reduced to an (m — 1) order equation of the Riccati chain. Further, we have extended
the procedure to second order coupled ODEs and obtained the general solution of the
coupled modified Emden equation using the associated nonlocal symmetries.
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Appendix

Demonstration of the correctness of nonlocal symmetries

In this section we briefly illustrate that the nonlocal symmetries obtained using the
procedure discussed in Sec. 2l indeed satisfies the invariant condition (2). In order to
do so, we consider as a specific example the following nonlocal symmetry vector (29]) of

Eq. (13),
n n? Ox
The symmetry invariance condition is given as
0 0 0 0
A+ pe +pY -+ p® ) (G — i) =0 132
( 5 THay TH 5 T 5z ) (@ = 0(,2)) =0, (132)

where ¢(z, 1) = —((n — 1)% +2i f + Laif, + £ f?), the first prolongation p(V = ji — i\
and the second prolongation p(? = % (u(l)) — ZA. From the symmetry vector (29) we
find

1

A=0, p= <%6I(if””—f)dt 3 /a:l_"fxef(ixf”_f)dtdt) we~nJ wledt, (133)

Therefore we find that ) = % and u® = %. Substituting these in the symmetry

invariance condition we find
— pipe = iV s + p® =0, (134)

Differentiating p with respect to ¢, we find p(" and p(?. Substituting these in the above
equation we find p given by Eq. (I33) satisfies the symmetry invariant condition (I34)).
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Similarly one finds that all the other remaining nonlocal symmetries of Eq. (I8]) satisfy
the symmetry invariant condition.

We wish to note that the general form of the nonlocal symmetries for the class of
ODEs (@2) of an arbitrary finite order m is obtained by solving (71) and is given as

pw=-el [C’+/g§e_p {% <ge_ffdt) —&f— fE— % (%)] dt} , (135)

where C' is an integration constant, p = — [ g% (fx + a% (g)) dt, n and & are the point

symmetries of the linear ODE (@3)). One can verify that the above deduced general form
of nonlocal symmetry satisfies the symmetry invariance condition (2) for an arbitrary
finite order m as in the case of )y above. It is also straightforward to check that the
specific forms of p used in finding the generators €2; for the various examples in Secs.

- Bl follow from (I35]).
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