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1. Introduction

During the past two decades or so there has been increased interest to find the nonlocal

symmetries of ordinary differential equations [1–4]. Consider an nth order ordinary

differential equation (ODE)

A ≡ dnx

dtn
+ F (t, x, x(1), x(2), . . . , x(n−1)) = 0, x(k) =

dxk

dtk
, (1)

to be invariant under the infinitesimal transformations X = x+ǫη(t, x), T = t+ǫξ(t, x),

where ξ and η are the infinitesimal point symmetries associated with the given

equations. The vector field associated with the Lie point symmetry [5, 6] is then

V = ξ(t, x) ∂
∂t
+ η(t, x) ∂

∂x
.

The Lie point symmetries ξ(t, x) and η(t, x) are obtained by solving the invariant

condition, that is

V (n)(A)|A=0 = 0, (2)

where

V (n) = ξ
∂

∂t
+ η

∂

∂x
+ η(1)

∂

∂x(1)
+ . . .+ η(n)

∂

∂x(n)
, (3a)

η(k) =
dη(k−1)

dt
− x(k)dξ

dt
, η(0) = η, (3b)

is the nth prolongation. Thus the point symmetries ξ(t, x) and η(t, x) can be calculated

in an algorithmic way for a differential equation of any order. However, there exist more

generalized symmetries such as contact symmetries, involving derivatives of x in η and

ξ, and nonlocal symmetries, involving nonlocal terms in η and ξ.

The vector field of the nonlocal symmetries is of the form V = ξ(t, x,
∫

u(t, x)dt) ∂
∂t
+

η(t, x,
∫

u(t, x)dt) ∂
∂x
. Unlike the case of point symmetries these nonlocal symmetries

cannot be determined completely in an algorithmic way because of the presence of

nonlocal terms. The role of such nonlocal symmetries in the integration of differential

equations was illustrated by Abraham-Shrauner et al. and later on by others [1–4].

Conventionally such nonlocal symmetries are explored either by reducing or increasing

the order of the equation [1, 3]. Methods to identify nonlocal symmetries of partial

differential equations were also developed alongside [7–9]. In a recent paper, the nonlocal

symmetries of two higher dimensional generalizations of the modified Emden equations

were studied [10]. The first system is made up of two uncoupled modified Emden

equations. The second system is obtained by assuming the variable of the scalar modified

Emden equation to be complex and separating the real and imaginary parts [11].

In this paper we devise a procedure to identify the nonlocal symmetries of a class of

ODEs which includes the Riccati and Abel chains [12]. In this procedure we nonlocally

map the symmetries of the given nth order nonlinear ODE to the point symmetries

of the associated nth order linear ODE, thereby preserving the order of the equation.

We also show with the aid of specific examples (second order, third order and coupled

second order ODEs), one can obtain the known general solution of a given equation
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using the associated nonlocal symmetries identified by this procedure. In developing

this procedure we make a judicious use of our earlier work on the nonlocal connection

between nonlinear and linear ODEs [13] to construct the nonlocal symmetries for a

given nonlinear ODE. We show that the same procedure is applicable to any order

starting from 2 to arbitrary N . Further, we extend the procedure to deduce the nonlocal

symmetries of a class of coupled second order ODEs, which includes the coupled modified

Emden equation [14].

The plan of the paper is as follows. In Sec. 2 we describe the general procedure

to obtain the nonlocal symmetries associated with a class of second order nonlinear

ODEs. Using the nonlocal symmetries we deduce the general solution for two interesting

equations belonging to this class of equations. Further, we extend the procedure to a

more general class of second order ODEs. In Sec. 3, we extend the applicability of

the procedure to a class of third order ODEs. In Sec. 4, we apply this procedure to a

class of nth order ODEs and deduce the associated nonlocal symmetries. In Sec. 5, we

extend the procedure to a class of coupled second order ODEs and obtain their nonlocal

symmetries. Further, we deduce the general solution of the coupled modified Emden

type equation using its nonlocal symmetries. In Sec. 6, we summarize our results. In

the appendix we demonstrate briefly how the nonlocal symmetries identified through

the developed procedure indeed satisfies the symmetry invariant condition (2).

2. Nonlocal symmetries

Let us consider the following class of nonlinear second order ODE,

ẍ+ (n− 1)
ẋ2

x
+ ((c1 + 2f) +

1

n
xfx)ẋ+

x

n
(f 2 + c1f + c2) = 0, fx =

∂f

∂x
, (4)

where
(

˙= d
dt

)

, which is related to the second order linear ODE,

Ü + c1U̇ + c2U = 0,

(

˙=
d

dt

)

(5)

through the nonlocal transformation

U = xne
∫
f(x)dt. (6)

Here c1, c2 and n are real constants and f = f(x) is an arbitrary given function.

Equation (4) includes many physically and mathematically interesting equations such

as the modified Emden equation [15,16], Ermakov-Pinney equation [17] and generalized

Duffing-van der Pol equation. Equation (4) reduces to the Liénard class of equations

for the parametric choice n = 1. Classification of the forms of f(x) for this Liénard

class of equations admitting Lie point symmetries has been carried out in Refs. [18,19].

We note that for arbitrary forms of f(x), Eq. (4) admits only the time translation

symmetry. In addition to the Lie point symmetries admitted by Eq. (4), there exists

other generalized symmetries such as contact symmetries, nonlocal symmetries and so

on. In order to explore the nonlocal symmetries associated with (4), we use the identity

U̇

U
=

nẋ

x
+ f(x), (7)
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which can be directly deduced from (6).

2.1. General Theory

The above nonlocal connection between Eqs. (4) and (5) allows us to deduce the

nonlocal symmetries of Eq. (4). To verify this we proceed as follows. Let ξ and η

be the infinitesimal point transformations, that is U ′ = U + ǫη(t, U), T = t + ǫξ(t, U),

associated with the linear ODE (5). Then the symmetry vector field associated with

the infinitesimal transformations read as

Λ = ξ
∂

∂t
+ η

∂

∂U
, (8)

and the first extension is

Λ1 = ξ
∂

∂t
+ η

∂

∂U
+ (η̇ − U̇ ξ̇)

∂

∂U̇
. (9)

Let us designate the symmetry vector field and its first prolongation of the nonlinear

ODE (4) to be of the form

Ω = λ
∂

∂t
+ µ

∂

∂x
, (10)

and

Ω1 = λ
∂

∂t
+ µ

∂

∂x
+ (µ̇− ẋλ̇)

∂

∂ẋ
, (11)

respectively, where λ and µ are the infinitesimals associated with the variables t and x,

respectively.

Theorem 1 Given the set of Lie point symmetries ξ and η of the linear ODE (5), a

set of nonlocal symmetries λ and µ of the nonlinear ODE (4) follows therefrom.

Proof : From the identity (7) we define

U̇

U
=

nẋ

x
+ f(x) = X. (12)

The above relation is a contact type transformation using which one can rewrite Eq.

(4) and Eq. (5) as the Riccati equation

Ẋ +X2 + c1X + c2 = 0.

(

˙=
d

dt

)

(13)

The symmetry vector field of this equation can be obtained by using the relation X = U̇
U

and rewriting Eq. (9) as

Λ1 = ξ
∂

∂t
+
[ η̇

U
− ηU̇

U2
−Xξ̇

] ∂

∂X
≡ Σ. (14)

We note that Eq. (13), being a first order ODE, admits infinite number of Lie point

symmetries. These Lie point symmetries of Eq. (13) become contact symmetries of the

linear second order ODE (5) through the relation X = U̇
U
.
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Similarly one can rewrite Eq. (11) using the relation X = n ẋ
x
+ f(x) as

Ω1 = λ
∂

∂t
+
[

(− n

x2
ẋ+ fx)µ+ (µ̇− ẋλ̇)

n

x

] ∂

∂X
≡ Ξ, fx =

∂f

∂x
. (15)

As the symmetry vector fields Σ and Ξ are for the same equation (13), their infinitesimal

symmetries must be equal. Therefore, comparing equations (14) and (15) one obtains

ξ = λ,
[ η̇

U
− ηU̇

U2
− f(x)ξ̇

]

=
[

(− n

x2
ẋ+ fx)µ+ µ̇

n

x

]

. (16)

Rewriting the second equation in (16) we arrive at the relation

n

x
µ̇+ (− n

x2
ẋ+ fx)µ =

[ d

dt
(
η

U
)− f(x)ξ̇

]

. (17)

Since the infinitesimal symmetries ξ and η of the linear ODE are known and U in

(17) is taken in the form (6), the right hand side now becomes an explicit function of t

and x. Solving the resultant first order linear ODE one can obtain the function µ which

is nothing but the symmetry associated with the nonlinear ODE, see Appendix. Since

U is given by the nonlocal form (6) the resultant symmetries in general turn out to be

a nonlocal ones. �

2.2. Examples

(a) Example 1:

In order to illustrate the above theory we consider the simple parametric choice

c1 = c2 = 0 for which Eq. (4) and Eq. (5) reduce to the forms

ẍ+ (n− 1)
ẋ2

x
+ 2ẋf +

1

n
xẋfx +

x

n
f 2 = 0, fx =

∂f

∂x
, (18)

and

Ü = 0, (19)

respectively. It is well known that the free particle equation (19) admits the following

eight Lie point symmetries, see for example [5, 6, 22],

Λ1 =
∂

∂t
, Λ2 =

∂

∂U
, Λ3 = t

∂

∂U
, Λ4 = U

∂

∂U
, Λ5 = U

∂

∂t
,

Λ6 = t
∂

∂t
, Λ7 = t2

∂

∂t
+ tU

∂

∂U
, Λ8 = tU

∂

∂t
+ U2 ∂

∂U
. (20)

Substituting the above symmetry generators Λi’s, i = 1, 2, . . . , 8, and U = xe
∫
f(x)dt, in

Eq. (17), we get ξ = λ and the following seven first order ODEs for µ,

n

x
µ̇+ (fx −

n

x2
ẋ)µ+ (xf + nẋ)x−(n+1)e−

∫
f(x)dt = 0, (21)

n

x
µ̇+ (fx −

n

x2
ẋ)µ− (x− txf − ntẋ)x−(n+1)e−

∫
f(x)dt = 0, (22)

n

x
µ̇+ (fx −

n

x2
ẋ)µ = 0, (23)

n

x
µ̇+ (fx −

n

x2
ẋ)µ+ (xf + nẋ)fxn−1e−

∫
f(x)dt = 0, (24)
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n

x
µ̇+ (fx −

n

x2
ẋ)µ+ f(x) = 0, (25)

n

x
µ̇+ (fx −

n

x2
ẋ)µ+ 2tf − 1 = 0, (26)

n

x
µ̇+ (fx −

n

x2
ẋ)µ+ 2(xf + nẋ)x2n−1fe2

∫
f(x)dt − 1 = 0. (27)

Integrating each one of the above first order linear ODEs we get the corresponding

infinitesimal symmetry µ. Substituting the infinitesimal symmetries λ and µ in (10) we

get following nonlocal symmetries of equation (18),

Ω1 =
∂

∂t
, (28)

Ω2 =

(

x−n

n
e
∫
( x
n
fx−f)dt − 1

n2

∫

x1−nfxe
∫
( x
n
fx−f)dtdt

)

xe−
1
n

∫
(xfx)dt

∂

∂x
, (29)

Ω3 =

(

x−n

n
te

∫
( x
n
fx−f)dt − 1

n2

∫

tx1−nfxe
∫
( x
n
fx−f)dtdt

)

xe−
1
n

∫
(xfx)dt

∂

∂x
, (30)

Ω4 = xe−
∫
( x
n
fx)dt

∂

∂x
, (31)

Ω5 = xne
∫
fdt ∂

∂t
−
(

1

n

∫

xn−1f(nẋ+ xf)e
∫
( x
n
fx+f)dtdt

)

xe−
1
n

∫
(xfx)dt

∂

∂x
, (32)

Ω6 = t
∂

∂t
− xe−

1
n

∫
(xfx)dt

(

1

n

∫

fe
1
n

∫
(xfx)dtdt

)

∂

∂x
, (33)

Ω7 = t2
∂

∂t
+ xe−

∫
x
n
fxdt

(

1

n

∫

(1− 2tf)e−
1
n

∫
xfxdtdt

)

∂

∂x
, (34)

Ω8 = txne
∫
fdt ∂

∂t
+ xe−

∫
x
n
fxdt

(

1

n

∫

xn−1(txf 2 + n(tf − 1)ẋ)e
∫
( 1
n
xfx+f)dtdt

)

∂

∂x
. (35)

One can verify that each one of the above nonlocal symmetries indeed satisfies the

invariance condition (2) and is the nonlocal symmetry vector field of (18). This is

demonstrated in the Appendix for a particular symmetry vector, namely Ω2, as an

example.

We note here that there is also a possibility to find the nonlocal symmetries of

Eq. (18) by introducing suitable auxiliary/covering equation and deducing the point

symmetries associated with the combined system giving rise to a one parameter group

as studied in Refs. [8, 9]. However, we have not explored such a possibility here.

Proposition 1: The nonlocal symmetry Ω4 reduces Eq. (18) to the Riccati equation

dz/dt = −nz2 through the reduction transformation z = ẋ
x
+ f

n
.

Proof : Let us consider the Lagrange’s system associated with the nonlocal symmetry

Ω4 given by Eq. (31),

dt

0
=

dx

x
=

dẋ

ẋ− x2

n
fx

. (36)

The characteristics are t and

z =
ẋ

x
+

f

n
. (37)
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We find the reduced equation of (18) is the following Riccati equation,

dz

dt
= −nz2, (38)

whose general solution is given as

z =
1

I1 + nt
, (39)

where I1 is the integration constant. �

Substituting the above solution in (37) and rearranging we get

ẋ− x

I1 + nt
+ x

f

n
= 0 (40)

Solving the above equation one can find the general solution of (18). However, one finds

that Eq. (40) can be integrated only for certain specific forms of f . One such form of

f for which Eq. (40) is integrable is f = kxm. For this choice of f and n = 1, Eq. (18)

reduces to the generalized Emden equation [13, 20, 21]

ẍ+ (m+ 2)kxmẋ+ k2x2m+1 = 0, (41)

whose general solution is obtained by integrating (40) as

x(t) =
I1 + t

[

I2 +
km
m+1

(I1 + t)m+1
]

1
m

. (42)

where I1 and I2 are the integration constants, which agrees with the known result [13].

We wish to point out here that in additon to the above nonlocal symmetries, Eq. (41) has

the following Lie point symmetries which can be deduced using the standard procedure,

for example using MULIE [5, 6, 22],

Ω1 =
∂

∂t
, Ω9 = t

∂

∂t
− x

m

∂

∂x
. (43)

Obviously the symmetries Ω9 is outside the scope of the above nonlocal connection

(Theorem 1).

(b) Example 2:

Next we consider another interesting nonlinear ODE of the form

ẍ+ c2x+
k2

x3
= 0, (44)

which arises in different areas of physics and has been studied in Ref. [13, 17, 23–25].

This equation arises in a wide variety of fields such as the study of cosmological

field [26], quantum field theory in curved space [27], quantum cosmology [28], molecular

structures [29, 30] and Bose-Einstein condensation [31]. Equation (44) is found to be

connected to the harmonic oscillator equation

Ü + c2U = 0, (45)

by the nonlocal transformation U = xe
∫

k

x2
dt. The nonlocal symmetries associated with

Eq. (44) can be found by following the procedure discussed in Sec. 2. Substituting the
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following known Lie point symmetries of the harmonic oscillator (45) in (17) [5, 6, 22],

Λ1 =
∂

∂t
, Λ2 = sin 2ωt

∂

∂t
+ ωU cos 2ωt

∂

∂U
, Λ3 = cos 2ωt

∂

∂t
− ωU sin 2ωt

∂

∂U
,

Λ4 = U(sinωt
∂

∂t
+ ωU cosωt

∂

∂U
), Λ5 = U

∂

∂U
, Λ6 = U(cosωt

∂

∂t
− ωU sinωt

∂

∂U
),

Λ7 = sinωt
∂

∂U
, Λ8 = cosωt

∂

∂U
, (46)

where ω =
√
c2, we get a set of first order ODEs. Solving these first order ODEs, with

the substitution U = xe
∫

k

x2
dt, we get the following nonlocal symmetries of Eq. (44):

Ω1 =
∂

∂t
, (47)

Ω2 = sin 2ωt
∂

∂t
− 2ωxe2k

∫
1
x2

dt

∫

α1e
−2k

∫
1
x2

dtdt)
∂

∂x
, (48)

Ω3 = cos 2ωt
∂

∂t
+ 2ωxe2k

∫
1
x
dt

(
∫

α2e
−2k

∫
1
x2 dt

)

∂

∂x
, (49)

Ω4 = xek
∫

1
x2

dt

[

sinωt
∂

∂t
+ ek

∫
1
x2

dt

∫

α3

(

e−k
∫

1
x2

dt

x

)

dt
∂

∂t

]

, (50)

Ω5 = xe2k
∫

1
x2

dt ∂

∂x
, (51)

Ω6 = xek
∫

1
x2

dt

[

cosωt
∂

∂t
− ek

∫
1
x2

dt

∫

(

k2 cos(ωt) + x4ω2 cos(ωt)

+xẋ cos(ωt) + wx3ẋ sin(ωt)
)e−k

∫
1
x2

dt

x3
dt

∂

∂x

]

, (52)

Ω7 = xe2k
∫

1
x2

dt

[
∫

(
ω

x
cos(ωt)− ẋ

x2
sin(ωt)− k

x3
sin(ωt))e−3k

∫
1
x2

dtdt

]

∂

∂x
, (53)

Ω8 = xe2k
∫

1
x2

dt

[
∫

1

x
e−

∫
3k
x2

dt

(

ω sin(ωt) + (
k

x2
+

ẋ

x
) cos(ωt)

)

dt

]

∂

∂x
, (54)

where

α1 = ω sin 2ωt+
k

x2
cos 2ωt,

α2 =
k

x2
sin 2ωt− ω cos 2ωt,

α3 = ωxẋ cos(ωt)− xẋ

x
sin(ωt)− ω2x2 sin(ωt)− k2

x2
sin(ωt),

We also wish to point out here that in addition to the above nonlocal symmetries, Eq.

(44) has the following three Lie point symmetries,

Ω9 =
(

2 sin2(
√
c2t)− 1

) ∂

∂t
+ 2

√
c2x cos(

√
c2t) sin(

√
c2t)

∂

∂x
, (55)

Ω10 = 2 cos(
√
c2t) sin(

√
c2t)

∂

∂t
+
(

2
√
c2x sin

2(
√
c2t)−

√
c2x
) ∂

∂x
, (56)

Ω11 =
1

c2

(

sin2(
√
c2t)− 1

) ∂

∂t
−

√
x√
c2

sin(
√
c2t) cos(

√
c2t)

∂

∂x
. (57)
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Proposition 2: The nonlocal symmetry Ω5 reduces Eq. (44) to the Riccati equation

dz/dt = −z2 + c2 through the reduction transformation z = ẋ/x+ k/x2.

Proof : Let us consider the Lagrange’s system associated with the nonlocal symmetry

Ω5 given by Eq. (51),

dt

0
=

dx

x
=

dẋ

ẋ+ 2k
x3

(58)

The characteristics of this system are t and

z =
ẋ

x
+

k

x2
. (59)

The reduced equation of (44) is found to be

dz

dt
= −z2 + c2. (60)

The general solution of the above Riccati equation is

z = −√
c2 tan(

√
c2(t− I1)). (61)

�

Substituting the expression for z in (59) and rearranging we get

ẋ+
√
c2x tan(

√
c2t+ I1)) +

k

x
= 0. (62)

Integrating (62) we find the general solution of (44) as

x(t) =
cos(

√
c2t+ I1)

(

I2 − 2k√
c2
tan(

√
c2t+ I1)

)
1
2

, (63)

where I1 and I2 are the integration constants, which agrees with the known solution [13].

2.3. Extension to more general class of second order ODEs

The procedure described to deduce the nonlocal symmetries of Eq. (4) can be further

extended to deduce the nonlocal symmetries of more general nonlinear ODEs of the

form
(

D2
h + c1(t)Dh + c2(t)

)

g(x, t) = 0, (64)

where Dh =
(

d
dt
+ f(x, t)

)

. The above equation (64) is related to the following

nonautonomous linear ODE

Ü + c1(t)U̇ + c2(t)U = 0, (65)

through the nonlocal transformation

U = g(x, t)e
∫
f(x,t)dt. (66)

Theorem 2 Equation (64) admits a set of nonlocal symmetries which can be obtained

directly from the Lie point symmetries ξ and η of Eq. (65).
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Proof : From the above nonlocal transformation we define

X =
U̇

U
=

ġ

g
+ f(x, t). (67)

The above relation is a contact type transformation using which one can rewrite Eq.

(64) and Eq. (65) as the Riccati equation

Ẋ +X2 + c1(t)X + c2(t) = 0, ˙=
d

dt
. (68)

The symmetry vector field of this equation can be again obtained by using the relation

X = U̇
U
and rewriting Eq. (9) and Eq. (11) we get

Λ1 = ξ
∂

∂t
+

[

η̇

U
− ηU̇

U2
−Xξ̇

]

∂

∂X
≡ Σ

and

Ω1 = λ
∂

∂t
+

{

(µ̇− ẋλ̇)
gx
g

+ µ

[

fx +
∂

∂x

(

ġ

g

)]

+ λ
d

dt

(

gt
g

)

+ λft

}

∂

∂X
≡ Ξ,(69)

respectively. Comparing (14) and (69) we get

ξ = λ,
η̇

U
− ηU̇

U2
− f(x, t)ξ̇ = µ̇

gx
g

+ µ

{

fx +
∂

∂x

(

ġ

g

)}

+
d

dt

(

ξgt
g

)

+ ξft.(70)

Rewriting the second equation in (70) we arrive at the relation

gx
g
µ̇+

{

fx +
∂

∂x

(

ġ

g

)}

µ =
d

dt

( η

U

)

− f(x, t)ξ̇ − d

dt

(

ξgt
g

)

− ξft. (71)

Substituting U = g(x, t)e
∫
f(x,t)dt and the point symmetries of Eq. (65) in the above first

order linear ODE and solving for µ, we can obtain a set of nonlocal symmetries of Eq.

(64). �

3. Nonlocal symmetries : Third order ODEs

The procedure to deduce nonlocal symmetries discussed in Sec. 2 can be

straightforwardly extended to third order ODEs. In this section we use this procedure

to deduce the nonlocal symmetries of the following class of third order nonlinear ODEs,

...
x +

1

n
((3nf + xfx + 3n(n− 1)

ẋ

x
)ẍ) + (n− 1)(n− 2)

ẋ3

x2

+ (x(3nfx + xfxx) + 3n(n− 1)f)
ẋ2

nx
+ 3(nf + xfx)f

ẋ

n
+

x

n
f 3 = 0. (72)

Theorem 3 A class of nonlocal symmetries of the nonlinear ODE (72) can be obtained

directly from the Lie point symmetries of the second order linear ODE
...
U = 0, (73)
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Proof : It is straightforward to check that Eqs. (72) are (73) and connected through

the nonlocal transformation

U = xne
∫
f(x)dt. (74)

From the above relation we find U̇
U
= ẋ

x
+f , which is same as Eq. (12). Therefore, we find

that the procedure discussed in Sec. 2 can be straightforwardly applied to Eq. (72) as

well and the nonlocal symmetries are obtained by substituting the Lie point symmetries

of (73) in (17) and solving the resultant equations. �

The third order linear ODE (73) is known to admit the following seven Lie point

symmetries [5, 6, 22],

Λ1 =
∂

∂t
, Λ2 =

∂

∂U
, Λ3 = t2

∂

∂U
, Λ4 = t

∂

∂t
, Λ5 = t

∂

∂U
, Λ6 = U

∂

∂U
,

Λ7 =
t2

2

∂

∂t
+ Ut

∂

∂U
. (75)

Substituting the above Lie point symmetry vector fields in Eq. (17) and solving the

resultant first order linear ODEs we find the following symmetry vector fields of Eq.

(72),

Ω1 =
∂

∂t
, Ω2 = −xe−

∫
xfx
n

dt

∫

(

x−(n+1)(
x

n
f + ẋ)e

∫
(xfx

n
−f)dt

)

dt
∂

∂x
, (76)

Ω3 = xe−
∫ xfx

n
dt

∫

1

nx2
e
∫
(xfx

n
−f)dt

(

2t− t2f − 2t2
ẋ

x

)

dt
∂

∂x
, (77)

Ω4 = t
∂

∂t
− xe−

∫
xfx
n

dt

∫
(

f

n
e
∫
(xfx

n
)dt

)

dt
∂

∂x
, (78)

Ω5 = xe−
∫

xfx
n

∫

e
∫

1
nx2

(xfx
n

−f)dt

(

1− tf − 2t
ẋ

x

)

dt
∂

∂x
, (79)

Ω6 = xe−
∫ xfx

n
dt ∂

∂x
, (80)

Ω7 =
t2

2

∂

∂t
+

x

n
e−

∫ xfx
n

dt

∫

(1− tf)e
∫
(xfx

n
)dtdt

∂

∂x
. (81)

Proposition 3: The nonlocal symmetry Ω6 reduces Eq. (72) to the modified

Emden equation/second order Riccati equation d2z
dt2

+ 3nzż + n2z3 through the reduction

transformation z = ẋ/x+ f/n.

To check the above assertion let us consider the Lagrange’s system associated with

the symmetry Ω6 given by Eq. (80),

dt

0
=

dx

x
=

dẋ

ẋ− x2 fx
n

. (82)

The characteristics of this system are t and

z =
ẋ

x
+

f

n
. (83)

The reduced equation now turns out to be of the form

d2z

dt2
+ 3nzż + n2z3 = 0, (84)
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which is the modified Emden equation and also known as the second order Riccati

equation. Note here that eq. (41) reduces to Eq. (84) for the choice m = 1. The

solution of (84) can be therefore obtained from (42) with the substitution m = 1 and is

given as

z =
I1 + t

(I2 + I1t+
t2

2
)
, (85)

where I1 and I2 are integration constants. �

Rearranging the reduction transformation with the substitution z = (I1+ t)/((I2+

I1t +
t2

2
)), we get

ẋ− x(I1 + t)

(I2 + I1t+
t2

2
)
+

x

n
f = 0. (86)

We note that the above equation is integrable only for certain specific forms of f . We

consider one such simple form for f as f = kx. For this form of f Eq. (72) reduces to

a special case of the Chazy equation XII [13, 32–35],
...
x + 4kxẍ+ 3kẋ2 + 6k2x2ẋ+ k3x4 = 0. (87)

Integrating Eq. (86) with f = kx, we get the general solution of (87) as

x(t) =
kt2

2
+ I1t + I1I2

I1I3 + kI1I2t+
kI1
2
t2 + k2t3

6

, (88)

where I1, I2 and I3 are the integration constants. We wish to note that, in addition to

the above nonlocal symmetries, Eq. (87) possesses the following Lie point symmetries

also,

Ω1 =
∂

∂t
, Ω8 = x

∂

∂x
− t

∂

∂t
, Ω9 = −t2

2

∂

∂t
+ xt

∂

∂x
− 3

2k

∂

∂x
. (89)

3.1. More general class of third order ODEs

In addition to Eq. (72) one finds a more general class of third order ODEs of the

following form

(D3
h + c1(t)D

2
h + c2(t)Dh + c3(t))g(x, t) = 0, (90)

where Dh =
(

d
dt
+ f(x, t)

)

and ci(t), i = 1, 2, 3, are arbitrary functions of t, which

admits nonlocal symmetries. This class of third order nonlinear ODEs is related to the

following nonautonomous third order linear ODE of the form
...
U + c1(t)Ü + c2(t)U̇ + c3(t)U = 0, (91)

through the nonlocal transformation U = g(x, t)e
∫
f(x,t)dt. In order to identify the

nonlocal symmetries associated with Eq. (90), one can straightforwardly apply the

procedure discussed in Sec. 2.3. Substituting the point symmetries ξ and η of the third

order linear ODE (70) and solving, one can obtain the nonlocal symmetries of (90).
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4. Arbitrary order nonlinear ODEs

Having discussed the applicability of the procedure to obtain the nonlocal symmetries

of certain class of second and third order ODEs we extend the procedure to a class of

arbitrary order nonlinear ODEs. In this context the following theorem holds good.

Theorem 4 A set of nonlocal symmetries of the mth nonlinear ODE
(

Dm
h + c1(t)D

m−1
h + . . .+ cm−1(t)

)

g(x, t) = 0, (92)

where Dm
h =

(

d
dt
+ f(x, t)

)m
, can be obtained directly from the Lie point symmetries of

the mth order linear ODE

U (m) + c1(t)U
(m−1) + . . .+ cm−1(t)U = 0, U (m) =

dmU

dtm
. (93)

Proof : The nonlinear ODE (92) is connected to the linear ODE (93) through the

nonlocal transformation U = g(x, t)e
∫
f(x,t)dt. Note that this nonlocal transformation is

the same as (66), connecting the second order linear ODE (65) and the nonlinear ODE

(64). Consequently, a set of nonlocal symmetries of Eq. (92) can be found in principle

by substituting the point symmetries of the linear ODE (93) in Eq. (70) and solving the

resultant equations, as in the case of second and third order nonlinear ODEs. �

However, we note here that one cannot obtain all the point symmetries of the

linear ODE (93) of arbitrary order m. Therefore we consider a specific parametric

choice ci(t) = 0, i = 1, 2, . . . , m− 1, which reduces Eq. (93) to the form

dmU

dtm
= 0. (94)

Equation (94) admits at least the following two point symmetries for arbitrary order m,

Λ1 =
∂

∂t
, Λ2 = U

∂

∂U
. (95)

Substituting now the nonlocal transformation U = g(x, t)e
∫
f(x,t)dt in (94) we get the

nonlinear ODE
(

d

dt
+ f(x, t)

)m

g(x, t) = 0. (96)

Note that Eq. (96) is a generalization of Eqs. (18) and (72). To identify the nonlocal

symmetries of (96), we substitute the Lie point symmetries of (94) in (70). Solving the

resultant equations we deduce the following nonlocal symmetries of the nonlinear ODE

(96),

Ω1 =
∂

∂t
−
[

e−
∫ g

gx
(fx+

∂
∂x

( ġ
g
))dt

∫

g

gx

[

d

dt
+ ft

](

gt
g

)

e
∫ g

gx
(fx+

∂
∂x(

ġ
g ))dtdt

]

∂

∂x
, (97)

Ω2 = exp

[

−
∫
{

g

gx

[

fx +
∂

∂x

(

ġ

g

)]}

dt

]

∂

∂x
. (98)

Let us consider the specific choice g(x, t) = xn, f(x, t) = f(x), which reduces

Eq.(92) to the following form,
(

d

dt
+ f(x)

)m

xn = 0. (99)
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The above equation is a generalization of the Riccati and Abel chains. The nonlocal

symmetries associated with this equation is obtained by substituting g(x, t) = xn and

f(x, t) = f(x) in (97) and (98) and are given as

Ω1 =
∂

∂t
, Ω2 = xe−

∫
x
n
fxdt

∂

∂x
. (100)

Proposition 4: The nonlocal symmetry Ω2 reduces Eq. (99) to the integrable Riccati

chain
(

d
dt
+ nz

)m−1
z = 0 through the reduction transformation z = ẋ

x
+ f

n
.

Proof : Consider now the Lagrange’s system associated with Ω2 which is

dt

0
=

dx

x
=

dẋ

ẋ− x2

n
fx

. (101)

The characteristics are t and

z =
ẋ

x
+

f

n
. (102)

The reduced equation is then found to be
(

d

dt
+ nz

)m−1

z = 0. (103)

�

We know that the Riccati chain can be integrated to get the general solution [13]

for a specified order m, say, z = v(t). Substituting this in the reduction transformation

and rearranging we get

ẋ− v(t)x+
x

n
f(x) = 0. (104)

One can obtain the general solution of (99) by solving the above first order nonlinear

ODE. Thus we find that the problem of solving any arbitrary equation belonging to the

class (99) is reduced to solving the first order ODE (104).

5. Coupled Second order nonlinear ODEs

Having discussed the procedure for deducing the nonlocal symmetries for a class of

arbitrary order ODE, we now extend the procedure to coupled second order ODEs. Let

us consider the following system of coupled second order ODEs,

ẍ+ (n− 1)
ẋ2

x
+ 2ẋf +

x

n
(fxẋ+ fyẏ) +

x

n
f 2 = 0, (105a)

ÿ + (n− 1)
ẏ2

y
+ 2ẏg +

y

n
(gxẋ+ gyẏ) +

y

n
g2 = 0, (105b)

fx = ∂f

∂x
, gx = ∂g

∂x
, fy =

∂f

∂y
and gy =

∂g

∂y
, which are related to the system of free particle

equations

Ü = 0, V̈ = 0, (106)

through the nonlocal transformations

U = xne
∫
f(x,y)dt, V = yne

∫
g(x,y)dt. (107)
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Equation (105) includes the coupled modified Emden equation [14] and the coupled

generalized Duffing-van der Pol oscillator equation for specific forms of f and g. The

integrability of Eq. (105) and its further generalizations have been studied in [36]. The

symmetry vector field associated with the system of linear equation (106) is given by

Λ = ξ
∂

∂t
+ η1

∂

∂U
+ η2

∂

∂V
. (108)

The first prolongation of this vector field is

Λ1 = ξ
∂

∂t
+ η1

∂

∂U
+ η2

∂

∂V
+ (η̇1 − U̇ ξ̇)

∂

∂U̇
+ (η̇2 − V̇ ξ̇)

∂

∂V̇
. (109)

We assume that the system of nonlinear equations (105) admits a symmetry vector field

of the form

Ω = λ
∂

∂t
+ µ1

∂

∂x
+ µ2

∂

∂y
(110)

and its prolongation is given as

Ω1 = λ
∂

∂t
+ µ1

∂

∂x
+ (µ̇1 − ẋλ̇)

∂

∂ẋ
+ (µ̇2 − ẏλ̇)

∂

∂ẏ
. (111)

Theorem 5 A set of nonlocal symmetries λ, µ1 and µ2 of Eq. (105) for the case f = g

can be obtained from the point symmetries ξ, η1 and η2 of Eq. (106).

Proof : Using the nonlocal transformations (107) one can write the following identities,

U̇

U
= n

ẋ

x
+ f(x, y) = X,

V̇

V
= n

ẏ

y
+ g(x, y) = Y. (112)

Using the above contact transformations, one can rewrite Eqs. (105) and (106) in terms

of the new variables X and Y . The symmetry vector field of these new equations can

be obtained by using the relations X = U̇
U
, Y = V̇

V
and rewriting (109) as

Λ1 = ξ
∂

∂t
+

[

η̇1
U

− η1
U̇

U2
−Xξ̇

]

∂

∂X
+

[

η̇2
V

− η2
V̇

V 2
− Y ξ̇

]

∂

∂Y
≡ Σ. (113)

Similarly one can rewrite (111) using the relation X = nẋ
x
+f(x, y) and Y = nẏ

y
+g(x, y)

as

Ω1 = λ
∂

∂t
+

[

µ1
∂X

∂x
+ µ2

∂Y

∂x
+ (µ̇1 − ẋλ̇1)

n

x

]

∂

∂X

+

[

µ1
∂X

∂y
+ µ2

∂Y

∂y
+ (µ̇2 − ẏλ̇)

n

y

]

∂

∂Y
≡ Ξ. (114)

As the symmetry vector fields Σ and Ξ are for the same equation and therefore the

infinitesimal symmetries must also be equal. Comparing the above two equations we

get the following relations,

ξ = λ,
n

x
µ̇1 + µ1

∂X

∂x
+ µ2

∂Y

∂x
=

η̇1
U

− η1
U̇

U2
− f(x, y)ξ̇, (115)

n

y
µ̇2 + µ1

∂X

∂y
+ µ2

∂Y

∂y
=

η̇2
V

− η2
V̇

V 2
− g(x, y)ξ̇. (116)
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We note here that the above equations are relations connecting the known point

symmetries of the linear ODEs to symmetries of the nonlinear ODEs. Solving these

coupled equations one can obtain the symmetries for the nonlocal equation. However,

we find that the general solution of the above equation cannot be given for arbitrary

forms of f and g. The forms of f and g have to be suitably chosen to decouple the above

system of equations. In order to decouple the equations (115) and (116) we consider the

relation
U

V
=

xn

yn
e
∫
(f−g)dt. (117)

For the specific choice f = g, the nonlocal part in the above equation vanishes and we

obtain
U

V
=

xn

yn
= Z. (118)

The symmetry vector in terms of the new variable Z becomes

Λ = ξ
∂

∂t
+

1

V
η1

∂

∂Z
− U

V 2
η2

∂

∂Z
, (119)

Ω = λ
∂

∂t
+ nµ1

xn−1

yn
∂

∂Z
− nµ2

xn

yn+1

∂

∂Z
. (120)

Comparing the above two equations we get

λ = ξ, µ1 =
x

n

(η1
U

− η2
V

)

+
x

y
µ2. (121)

Substituting this in the symmetry determining equation (116) we get

µ̇2 +
µ2

n

(

(x+ y)fy − n
ẏ

y

)

= xy
(η2
V

− η1
U

)

+
y

n

d

dt

(η2
V

)

− y

n
f(x, y)ξ̇. (122)

Solving the above linear first order ODE with the substitution of following point

symmetries of the linear system (106) [5, 6, 22],

Λ1 =
∂

∂t
, Λ2 =

∂

∂U
, Λ3 =

∂

∂V
Λ4 = t

∂

∂t
, Λ5 = t

∂

∂U
, Λ6 = t

∂

∂V
,

Λ7 = U
∂

∂t
, Λ8 = V

∂

∂t
, Λ9 = U

∂

∂V
, Λ10 = V

∂

∂U
, Λ11 = U

∂

∂U
+ V

∂

∂V
,

Λ12 = U
∂

∂U
− V

∂

∂V
, Λ13 = t2

∂

∂t
+ Ut

∂

∂U
+ V t

∂

∂V
,

Λ14 = Ut
∂

∂t
+ U2 ∂

∂U
+ UV

∂

∂V
, Λ15 = V t

∂

∂t
+ UV

∂

∂U
+ V 2 ∂

∂V
, (123)

one can deduce a set of nonlocal symmetries associated with the nonlinear ODE (105).

�

We find that Eq. (122) is a first order linear ODE whose solution can be deduced

straightforwardly and therefore we consider a simple case and obtain the corresponding

nonlocal symmetry. For this purpose we consider the symmetry vector Λ11 in Eq. (123).

Substituting this in Eq. (122) and solving the resultant equation we get

µ2 = ye−
1
n

∫
(x+y)fydt, fy =

∂f

∂y
. (124)
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Substituting this in (121) we find µ1 and the symmetry vector field corresponding to

Λ11 is given as

Ω11 = xe−
1
n

∫
(x+y)fydt

∂

∂x
+ ye−

1
n

∫
(x+y)fydt

∂

∂y
. (125)

Proposition 5: The nonlocal symmetry Ω11 reduces Eq. (105), with f(x, y) = g(x, y),

to the integrable Riccati equations dz1
dt

= −nz21 , and
dz2
dt

= −nz22 through the reduction

transformations z1 =
ẋ
x
+ 1

n
f , and z2 =

ẏ

y
+ 1

n
f .

Proof : The Lagrange’s system associated with the symmetry vector Ω11 is

dt

0
=

dx

x
=

dy

y
=

dẋ

ẋ− x
n
(x+ y)fy

=
dẏ

ẏ − y

n
(x+ y)fy

(126)

The characteristics of this system are t, z1 =
ẋ
x
+ 1

n
f , and z2 =

ẏ

y
+ 1

n
f , and the reduced

equations become

dz1
dt

= −nz21 ,
dz2
dt

= −nz22 . (127)

The solution of the above system is

z1 =
1

I1 + nt
, z2 =

1

I2 + nt
, (128)

where I1 and I2 are integration constants. �

Substituting these in the expressions in the reduction transformations, and

rearranging we get, we get

ẋ =
x

I1 + nt
− x

n
f, ẏ =

y

I2 + nt
− y

n
f. (129)

We note that the above set of first order coupled ODEs is integrable only for specific

forms of f(x, y). For the choice f(x, y) = g(x, y) = a1x+ a2y, Eq. (105) reduces to the

following system of coupled modified Emden type equation [14, 36],

ẍ+ 2(a1x+ a2y)ẋ+ (a1ẋ+ a2ẏ)x+ (a1x+ a2y)
2x = 0,

ÿ + 2(a1x+ a2y)ẏ + (a1ẋ+ a2ẏ)y + (a1x+ a2y)
2y = 0. (130)

By solving the corresponding system of first order ODEs (129), the general solution of

(130) can be obtained as

x(t) =
2I1(I2 + t)

a1I1(2I4 + (2I2 + t)t) + a2(2I4 + (2I3 + t)t)
,

y(t) =
(I3 + t)

a1I1(2I4 + (2I2 + t)t) + a2(2I4 + (2I3 + t)t)
, (131)

where I3 and I4 are two more integration constants, and the general solution agrees with

the known result [14, 36].

6. Conclusion

In this paper, we have developed a new systematic procedure to deduce the nonlocal

symmetries of a class of arbitrary order nonlinear ODEs. The procedure uses the
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knowledge of the Lie point symmetries of the linear equations and the nonlocal

transformation connecting the linear and the nonlinear ODEs. We note here that the

order of the linear and the corresponding nonlinear equation remains the same. The

procedure is illustrated for the second and third order ODEs with examples and the

procedure is shown to be applicable to arbitrary order equations as well. Using these

nonlocal symmetries we have constructed the general solution certain specific nonlinear

ODEs. We also find that an mth order ODE of the form (96) with arbitrary f(x) can be

reduced to an (m− 1)th order equation of the Riccati chain. Further, we have extended

the procedure to second order coupled ODEs and obtained the general solution of the

coupled modified Emden equation using the associated nonlocal symmetries.
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Appendix

Demonstration of the correctness of nonlocal symmetries

In this section we briefly illustrate that the nonlocal symmetries obtained using the

procedure discussed in Sec. 2 indeed satisfies the invariant condition (2). In order to

do so, we consider as a specific example the following nonlocal symmetry vector (29) of

Eq. (18),

Ω2 =

(

x−n

n
e
∫
( x
n
fx−f)dt − 1

n2

∫

x1−nfxe
∫
( 1
n
xfx−f)dtdt

)

xe−
1
n

∫
xfxdt

∂

∂x
.

The symmetry invariance condition is given as
(

λ
∂

∂t
+ µ

∂

∂x
+ µ(1) ∂

∂ẋ
+ µ(2) ∂

∂ẍ

)

(ẍ− φ(x, ẋ)) = 0, (132)

where φ(x, ẋ) = −((n− 1) ẋ
2

x
+2ẋf + 1

n
xẋfx+

x
n
f 2), the first prolongation µ(1) = µ̇− ẋλ̇

and the second prolongation µ(2) = d
dt

(

µ(1)
)

− ẍλ̇. From the symmetry vector (29) we

find

λ = 0, µ =

(

x−n

n
e
∫
( x
n
fx−f)dt − 1

n2

∫

x1−nfxe
∫
( 1
n
xfx−f)dtdt

)

xe−
1
n

∫
xfxdt. (133)

Therefore we find that µ(1) = dµ

dt
and µ(2) = dµ(1)

dt
. Substituting these in the symmetry

invariance condition we find

− µφx − µ(1)φẋ + µ(2) = 0. (134)

Differentiating µ with respect to t, we find µ(1) and µ(2). Substituting these in the above

equation we find µ given by Eq. (133) satisfies the symmetry invariant condition (134).



Nonlocal symmetries 19

Similarly one finds that all the other remaining nonlocal symmetries of Eq. (18) satisfy

the symmetry invariant condition.

We wish to note that the general form of the nonlocal symmetries for the class of

ODEs (92) of an arbitrary finite order m is obtained by solving (71) and is given as

µ = ep
[

C +

∫

gx
g
e−p

[

d

dt

(η

x
e−

∫
fdt
)

− ξft − f ξ̇ − d

dt

(

ξgt
g

)]

dt

]

, (135)

where C is an integration constant, p = −
∫

g

gx

(

fx +
∂
∂x

(

ġ

g

))

dt, η and ξ are the point

symmetries of the linear ODE (93). One can verify that the above deduced general form

of nonlocal symmetry satisfies the symmetry invariance condition (2) for an arbitrary

finite order m as in the case of Ω2 above. It is also straightforward to check that the

specific forms of µ used in finding the generators Ωi for the various examples in Secs. 2

- 5 follow from (135).
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