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DIFFERENTIAL OPERATORS ON A HYPERSURFACE

BALWANT SINGH*

Introduction

We study differential operators on an affine algebraic variety, especially

a hypersurface, in the context of Nakai's Conjecture. We work over a

field k of characteristic zero. Let X be a reduced affine algebraic variety

over k and let A be its coordinate ring. Let Diff J(A) be the A-module of

differential operators of A over k of order <g n. Nakai's Conjecture as-

serts that if Diff;(A) is generated by Diff̂ (A) for every n ;> 2 then A is

regular. In 1973 Mount and Villamayor [6] proved this in the case when

X is an irreducible curve. In the general case no progress seems to have

been made on the conjecture, except for a result of Brown [2], where the

assertion is proved under an additional hypothesis.(1) An interesting result

proved by Becker [1] and Rego [8] says that Nakai's Conjecture implies

the Conjecture of Zariski-Lipman, which is still open in the general case

and which asserts that if the module of /^-derivations of A is A-projective

then A is regular.

Write A = R/J, where R is a polynomial ring over k and J is an

ideal of R. Let Diff£(i?, A) be the A-module of differential operators of R

into A over k of order <I n. Since R is a polynomial ring, the structure

of Diffϊ(jR, A) is well-known, and DiffJ(A) can be identified with the A-

submodule of those D e DiffftR, A) for which D(J) — 0. In this paper we

first analyze the condition "D{J) = 0" in some detail, and prove in Pro-

position (2.10) that for D(J) to be zero it is sufficient (and necessary) that

D and certain other differential operators derived from D vanish on a set

of generators of J. This is then used to prove that if X is a hypersurface,

i.e. if we can write A = R\J with J principal, then Diff|(A) is completely
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determined by Diff*(A) (Theorem (2.13)), although, of course, in general,

Diff|(A) is not generated by Diff^(A). This relation between Diff£(A) and

Diff^A) leads us to consider the following question, which is stronger

than Nakai's Conjecture: If Diff|(A) is generated by Diff J(A) then is A

regular? We are able to show that the answer is in the affirmative in the

following two cases: (1) if X is a plane curve (Theorem (3.3)); (2) if Xi s

a cone in 3-space (Theorem (5.3)). In the process of proving Theorem

(3.3) we get the following interesting result proved in Theorem (3.1): If

X is a plane curve then the quotient Diff̂  (A)/Diff J (A) Diff^(A) is isomorphic

to ctj Π α2/ctiCt2> where α,, α2 are certain ideals of A.

The author would like to express his thanks to Sankar Dutta for

supplying a proof of Proposition (3.2).

After this work was submitted for publication, the paper [12] of J.-P.

Vigue was brought to our attention by the referee.(1) It follows from

Proposition 5 of this paper of Vigue that if X is a normal cone in the com-

plex affine 3-space and Diff^(A) is generated by Diff J(A) then A is regular.

It has also come to our notice in the meantime that Y. Ishibashi has

recently proved Nakai's Conjecture in case X is a two-dimensional com-

plete intersection cone (with k algebraically closed) [13] and also in case

X is the quotient of an affine n-space over k by a finite subgroup of

GL(n, k) [14]. There is thus an overlap between our Theorem (5.3) and

the results of Vigue and Ishibashi. Our methods, however, are entirely

different and more elementary and might therefore be of some interest,

since very little seems to be known about the structure of differential

operators on X.

§1. Preliminaries

Throughout this paper all rings are assumed to be commutative with

1.

The letter n (resp. m) will denote either an integer or oo.

Let k be a ring, let R be a ^-algebra and let A be an i?-module. The

multiplication on A by an element a e R is denoted aA, We shall regard

Hom fc(i?, A) as a n i?-module via A, i.e. for aeR and D e Homft (iϊ, A) we

let aD = aAo D. For aeR and D e Homfc (R, A) the symbol [D, a] denotes,

as usual, the element DoaR — aAoD of Hom f c(i?, A). For neZ the R-

α) The author would like to thank the referee for this and for pointing out some
misprints in the manuscript.
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submodule Diff\ (22, A) of Homfc (22, A) is defined by induction on n:

R, A) = 0 if n < 0, and

iff̂  (22, A) = {De Horn, (22, A)\ [D, a] e DiffJ"! (22, A) for every o e R}.

Elements of Diff £ (22, A) are called differential operators (of 22 into A over

&) of order <; n.

(1.1) Remark. Let {αj be a set of ^-algebra generators of R. It is

easily checked that if D e Homfc (22, A) and [D, a,] e DiffJT1 (22, A) for every

i then D e Diff £ (2?, A).

Note that Diff,0 (2?, A) = HomΛ (22, A)^A and Diff2 (2?, A) c Difft+\R, A)

for every n. Put Diff? (2?, A) = U nez Diff̂  (#, A).

Next, recall from Nakai [7] the definition of a high order derivation.

For n e Z, n >̂ 0, an element D of Hom^ (2?, A) is called an nth order de-

rivation (of 2ί into A over k) if for any n + 1 elements α0, , an of 22 we

have

D(a0 • αn) = £ ( - l) s + 1 Σ «ΰ αi.0(<*o K άu . αn) ,

where ^ means omitted. Denote by Der£ (22, A) the 22-submodule of Homfc(22, A)

consisting of all nth order derivations. We have Der£(22, A) = 0 and

£ (22, A) = the module of ordinary ^-derivations of 22 into A. Define

l (22, A) = 0 if n < 0.

We note the relation between Diff£(22, A) and Der£(22, A) in the fol-

lowing lemma. For x e A let xR denote the 22-linear map a^-> ax of 22

into A.

(1.2) LEMMA.

(1) Let D e Horn, (22, A). Then D e Diff£ (22, A) if and only if D-D(ΐ)R

eDer£(22,A).

(2) Der£ (22, A) = {D e Diff£ (22, A)|D(1) = 0}. Consequently, Der£ (22, A)

C Der£+1(22, A) for every n.

(3) Put Der? (22, A) = {JnezDer£ (22, A). For 0 ^ n £ co we have an 22-

linear isomorphism h: DiffJ(22, A)-+A® Der^(22, A) given by h(D) = (D(l),

D - D(Ϊ)R) and h~\x, D) = xR + 2).

Proof, (1) follows from the formula defining an nth. order derivation

and a similar characterization of a differential operator given in [4, (IV,

16.8.8)]. (2) and (3) follow from (1) by noting that if D e Der£ (A) then JD(1) = 0.
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Let S be a multiplicatively closed subset of R. If k is noetherian and

R is a finitely generated ^-algebra then it follows from [4, (IV, 16.4.15)]

that for every n there is a natural isomorphism S~\Όifΐl(Rf A)) ^

Όifίl (S~ιR, S'^). We use this isomorphism to identify these two modules.

Then S-^Der^i?, A)) = Der£ (S-'R, S^A) by Lemma (1.2).

Assume now that A = R. Write Diff £ (A) for Diff £ (A, A) and Der£(A)

for Der£ (A, A). If D e Diff J (A) and Όf e Difif? (A) then ΏU e DiffΓ m (A)

([4, (IV, 16.8.9)] or [10, Proposition 1]). Further, if U e Der^ (A) then

ZλD'(l) = 0, so that ΌΏ' e Der£+m(A).

For an integer n ;> 2 let us say that DiffJ (A) is generated by Diff J. (A)

if Diff £ (A) equals the A-submodule of all finite sums of the products

A Dn with Du , Dn e Diff* (A). We shall say that Diff? (A) is gen-

erated by Diff* (A) if Diff£(A) is generated by Diff* (A) for every n ^ 2.

Denote by Diff* (A) DiffΓ1 (A) the A-submodule of DiffJ (A) consisting

of all finite sums ΣίDiDi w i t h - A € Diff* (A), A € DiffΓ1 (A). Let Der*(A)

DerJt"J(A) have a similar meaning.

From Lemma (1.2) we immediately get

(1.3) LEMMA. For n ^ 2 we Λαuβ Diff*1 (A) DiffJΓι (A) = DiffΓx(A) +

Der^(A) Der^'^A). Moreover the following three conditions are equivalent:

( i ) Diff Γ (A) is generated by Diff* (A).

(ii) Diff£(A) = Diff* (A) DiffΓ1 (A) for every n^2.

(iii) Der£ (A) = DerΓ ! (A) + Der* (A) DerΓ * (A) for every n^2.

Suppose now that k is a field of characteristic zero and A is a finitely

generated ^-algebra. Then it follows from [4, (IV, 16.11.2)] that if A is

regular then Diff^(A) is generated by Diff^(A). Nakai's Conjecture

asserts the converse:

NAKAI'S CONJECTURE. Let A be a finitely generated algebra over a field

k of characteristic zero. If Diff̂  (A) is generated by Diff̂  (A) then A is

regular.

% 2. General results

Let k be a field of characteristic zero. Let R = k[Xu , Xr] be the

polynomial ring in r variables over k. Let J be a proper ideal of R, let

A = R/J and let η: R-+ A be the natural map. Put xt — η{X^) for 1 <Ξ; i

^ r.
Let Z + be the set of all non-negative integers and put V = (Z+)r. For
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a = (au - - -, ar) e V we use the standard notation: \a\ = a1 + + ar,

a\ = a x \ - - a r \ , X a = X ϊ 1 Xa

r% e t c . F o r n e Z l e t Vn = { a e V \ \ a \ £ n }

and Wn = {ae V\ \a\ = τι}. For 1 ̂  i £ r let e< - (0, , 1, . , 0) e Wt with

1 in the ith place.

For ae V let Δa\ R-^A denote the composite of (1>!) da/dXa: R-+R

and η. Then Jα e Diffiαl (R, A). It is well-known that every D e Diff̂  (R, A)

has a unique expression of the form

D = Σ C«(°)^«

with cα(Z)) e A for all # and ca(D) = 0 for almost all a. Moreover, D e

Difίl(R, A) if and only if ca(D) = 0 for \a\ > n. On the other hand, D e

Diff£ (R, A) is also uniquely determined by the values D(Xa) for a e Vn.

For ne Z we define a map τrn: Diff? (R, A) -> Diff]f (R, A) as follows:

For D e Diff^(2?, A) let πn(D) be the unique element of Diff J (i?, A) deter-

mined by ;rnφ)(Xα) = D(Xa) for all α e Vn.

In (2.1)-(2.3) below, let D e Diff̂  (Λ, A), let 0 e V and let e Z with

(2.1) LEMMA.

Proof. Immediate from the observation

fΔB e., if θ, > 0 ,
L β' J [ 0 , if βj = 0 .

(2.2) LEMMA.

[ττn(D),X,] ^ T Γ ^ . α A ^ l ) .

Proof. Both sides belong to Diff^"1^, A). Therefore it is enough to

prove that they coincide on Xa for all a e Vn_x. Let a e VΛ-1. Then

= [D, X,](X ) = ^ .

(2.3) PROPOSITION.

Proof. Induction on |/3|. Evaluating D = 2]α6FCα(i5)zία on 1 we get

D(l) = co(D), which is our assertion for \β\ = 0. Now, let \β\ > 0. Choose
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ί such that βt > 0, and let r = β — et. Then

cβ(D) = cr([D, XJ) (Lemma (2.1))

= [Z), XJ(X9 - πirUV>, XJMX') (Induction)

= [D, XJ(X0 - [π,,,-,Φ), XJ<X') (Lemma (2.2))

since π^^φXXO = Z>(X0 by definition.

(2.4) IDENTIFICATION. Let us identify

DiffJ(A) = {D e DiffJ(R, A)\D(J) = 0},

DerJ(i4) = {D e Der£ (fi, Λ)|D(J) = 0}

via the map D —> DJJ.

(2.5) PROPOSITION. Lei D e Der^ (A) and D' e Diffj? (A). Then for every

a € Wn+1 we have

(Note that if at = 0 then ca_e.(D') is not defined, but then we take the
corresponding summand to be zero by standard convention.)

Proof. Induction on n. The assertion being clear for n < 0, let n Ξ> 0

and letα 6 Wn+1. We may assume that a — ex + β with β e VΓTC. By in-

duction we have

(2.5.1) cβ(D[D>, X,]) = ± βίD(Xι)cβ-eί([D\ X,])
i l

by Lemma (2.1). On the other hand, by Lemma (2.1) again we have

(2.5.2) ca(DD') = cβ([DD', XJ).

Thus we need to compare D[D', X,] and [DD', X,]. Since D is a 1-deriva-

tion, we have [DD', X,] - D[D', X,] = DiXJD'. Therefore

(2.5.3) cβ[DD', X,] - cβ(D[D', X,]) =

Now, by (2.5.1), (2.5.2) and (2.5.3) we have
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ca(DD') = cβ([DD',

(2.6) DEFINITION. For D e Diff? (#, A) and /3 e V define

Note that <L>, 1> = D and if D e Diff̂  (i?, A) then <D, X^> e DiffjT I/J|(JS, A).

(2.7) DEFINITION. Let Φ: Diff? (JR, A) x V^ Der* (R, A) be the pairing

defined by Φ(D, β) = <A Z^> - «£>, X*χi))B = <A X^> - c,(D)J0 (see

Lemma (1.2)). Note that Φ is iMinear in the first variable. Further note

that Φ is the direct limit of the pairings

Φntn: DiffS(Λ, A)χWn-+ ΌeτΓm(R, A)

given by

(2.8) PROPOSITION. For m <, n we have an exact sequence

0 -* Difff (Λ, A) =_> DiffJ (J2, A) ^ > 0 DerΓm (B, A),
βewm

where Θn,m(D) = (#,,B(D, j3))ί6irm.

Proo/. We have θ n , m (Diffjf (i?, A)) c DerJ? (R, A) = 0. Suppose θn,n(D)

= 0. Then (D, X") = cβ(D)J0 for every β e Wm. By definition, (D, X«>

= Σ«erCa+β(D)Aa. Therefore by the uniqueness of this expression we have

ca+β(D) = 0 for |α| > 0. This being so for every β e Wm, we get ca(D) = 0

for all a e V with \a\ > m. This means that D e Diff?(β, A).

(2.9) L E M M A . L e t D e D i f f * ( R , A ) , let β , ΐ e V a n d let j e Z w i t h 1 < ;

j _S r . T h e n :

(1) <AX,> = [AXJ.
(2)

(3)

(4) If X* = Y, Ys with Ylt • • , Ys 6 {X, • • , X } ί/ierc <D, X^> =

[ --HA y j . y j , • • • , * • . ] .

Proo/. (1) follows from Lemma (2.1). For α e V we have c Λ («A ^ > ,

Xr» = ca+r«I>, X ' » = ca+r+β(D) = c .«A ^ ί + r » , which proves (2). (3) fol-

lows from (1) and (2), and (4) follows from (3).
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(2.10) PROPOSITION. Let I be an ideal of R. For D e Diff£(i?, A) the fol-

lowing five conditions are equivalent:

( i ) Z)(J)cJA
(ii) [D, XJ(J) c I A for all i, 1 ^ i <; r, and there exists a set of

generators {fj} of I such that D(fj) e IA for every j .

(iii) (D, Xβ)(I) c IA for every βeV.

(iv) <A Xβ)(I) C IA for every β e Vn_λ.

( v ) There exists a set of generators {/,} of I such that (D, Xβ)(fj) e IA

for every βe Vn_1 and for every j .

Proof The implications (i) =^ (ii) and (iii) =̂> (iv) =Φ (v) are trivial, while

the implication (i) => (iii) is immediate from part (4) of the above lemma.

(ii) => (i). It is enough to prove that D{Xβf^) e IA for every βeV and

for every j . For \β\| = 0 this is an assumption in (ii). If \β\ > 0 then we

may assume that β = eλ + ϊ with ϊ e V. Then D(Xβf3) = [D, XMX'fj) +

XιD{Xrf^). Therefore the assertion follows by induction on |/3|.

(v) =̂> (i). Induction on n. The assertion being clear for n ^ 0, assume

that 7i ^ 1. We have <[£>, XJ, Xβ) = <D, X,X^> by Lemma (2.9). Therefore

by (v) <[Z), XJ, Xβ)(fj) e /A for every β e Vn_2 and for every jf. So, by in-

duction, [Z), Xt](I) C /A for every i, 1 ^ i ^ r. Further, by taking ^ = 0

in (v) we have D(fj) e IA for every j . Therefore, by (ii) => (i), D(I) c IA.

Applying the proposition with I — J and using the identification (2.4)

we get

(2.11) COROLLARY. For DeΌiftl(R,A) the following three conditions

are equivalent:

( i ) DeΌifΐUA).

(ii) <Z>, X?) e Diffr ""(A) for every β e V.

(iii) (D, X"> e Diffr""0A) for every β e V,,.,.

In view of the above corollary the pairings Φn<m of Definition (2.7)

induce pairings

Ψn,m: Diff&4) X Wm >ΏerΓm(A).

It follows from Proposition (2.8) that for m ί n w e have an exact sequence

0 -> Diff? (A) •=—> DiffJ (Λ) ̂ > © D β r r " (A),

where θn,m(D) = (^,m(A j9))ίeH,m.



DIFFERENTIAL OPERATORS 75

(2.12) DEFINITION. For n e Z define

&i(A) = {(dβ)βeWn_1 e © D e r i ( A ) | d ^ ) = dr(x;) whenever

0 + e , - r + ej9 β , ϊ e Wn_u l ^ i j ^ r } .

If D e Diffϊ(A) and ̂ .^(ZJ) = (dβ)βeWn_x then d,(x,) = c,+ei(Z)). It fol-

lows that im (#„,„_!) c ^ϊ(A). Therefore, writing βn = θn^n_u we have an

exact sequence

0 -> Diff Γ \A) - - > Diff I (A) -^-> &»(A).

Of particular interest to us is the exact sequence

0 -> DiffJ(A) - - > Diff,2(A) - * * ̂ ( A ) .

We note that

SKA) = {(dl9 , dr) e Θ D e r U ^ l d ^ ) - d/^) for all ij]
i l

and that if D eDiff^(A) then Θ2(D) = (dl9 , dr), where d{ eDer^(A) is

given by dt{x) = ce.+ej(D). In the following theorem we prove that if J

is principal then θ2 is surjective.

(2.13) THEOREM. Suppose J is principal Then the sequence

0 -* Diff,1 (A) =-_> Diff2 (A) -A> ̂ 2(A) -> 0

is βxαcί.

Proof. We have only to prove the surjectivity of θ2. Let (dl9 , dr)

e f̂c(A). Let atj e R be a lift of d^x^) such that α u = α ; ί for all ί,j. Then,

since dt is a 1-derivation of A we have

(Et)
7 = 1

with ^^ e J?, where / is a generator of J. Differentiating Et with respect

to Xi9 adding the results over 1 ̂  i ^ r, dividing the sum by 2 and re-

membering that atj = α ; ί, we get

+ ^ta^fldX] + Σ atlcFfldXtdXj = gf

with &!, , br, g e R. Define D = J^^Yl ca(D)da e DiffJ (R, A) by c«(i)) = 0,
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cei(D) = ηφί) and ce.+e.(D) = ^(αo), 1 <: ί,j <: r. Then the above equality

implies that D(f) = 0. Moreover, we have <Z>, **> = Σ a e ^ c ^ . φ K =

> + Σ i = i ^ X , , so that <D, X,>(/) = φtf+Σi-i^f/dXj) = 0 by

This proves that <Z>, X^>(/) = 0 for every β e V,. Therefore D(Rf)

= 0 by Proposition (2.10), and we get D e Diff|(A). Since cei+e.(D) = <*,(*,),

we have Θ2{D) — (du , d r). This proves that θ2 is surjective.

(2.14) Remark. The above proof actually constructs a Minear right

inverse of θ2. For if we define t(du , dr) = Z) in the above notation then

it is easily checked that t(du , dr) is independent of the choice of lifts

ai5 of di(xj) with the condition that aίό = ajt.

(2.15) Remark. In general, #3 is not surjective. Example: Take r = 2

and J - Rf with f = X2

2 - X\. For /3 e W2 define d̂  e Deri (A) as follows:

d(2ϊ0) = 8^J β l + 12x2Je2, dα>1) = 12^2Jei + 18Λ?4,, d(0,2) = 18^J β l + 2 7 ^ ^ ^ .

Then d — (d(2)0), d( l j l ), d(0f2)) e ^|(A). We claim that deim(^ 3). For suppose

d = θzφ) with ΰ e Difffc

3(A). Put ciS = c{Uj)(D). Then c30 = 8x1? c21 = 12x2,

c12 = 18x? and c03 = 27x2x2. By Corollary (2.11) we have D(f) = 0, <A ^X/)

= 0 and <D, x2>(/) = 0. Computing <Z>, x2>(/) - 2x2D(f) = 0 we find that

(7 + βcJtfiSa e (xL xD This implies that 7 + 6c20 e (Xi, x2). From <Z>, ^>(/)

= 0 we get (6 + 3c20)xξ e (x2), which implies that 6 + 3c20 e (xί9 x2). Thus

we get 5 e (x1? x2), a contradiction.

§ 3. Differential operators on a plane curve

With the notation of Section 2, assume that r = 2 and J = Rf is a

non-zero, proper, principal ideal of R. For £ = 1, 2, put fXχ = -η(dfldX^) and

let αf = {^(xJld eDerJ.(A)}. Then αt, α2 are ideals of A. Recall that in

this case we have

3\{A) = {(dl5 d2) 6 Der1, (A) ® Όeτ\ (A^d^ = d2(^)}.

Let τ: ^J(A) -> αj Π α2 be the map defined by r ^ , d2) = rf^x^ = cί̂ Xj).

Clearly, r is A-linear and surjective. Put a = τθ2\ Diff^A)-^^ Π α2.

(3.1) THEOREM. Assume that fxι and fX2 are non-zero divisors in A.

Then τ is an isomorphism, and the sequence

0 >Όifίl(A)^—>Ώifίl(A)-^->a1 Π α2 >0

is exact. Moreover, a (Diff̂  (A) Diff̂  (A)) = axa2. In particular, we have an

A'isomorphism
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Diff|(A)/Diff*(A) Ώifίl(A) s a, ΓΊ α , / ^ .

Proo/. If d e Der^ (A) then d{x,)fXl + d(x2)/,2 = 0. Since fxi and /,2 are

non-zero divisors, we have d(xx) — 0 if and only if d(x2) — 0. Consequently,

d = 0 if and only if dfo) = 0 if and only if d(x2) = 0. This proves that τ

is an isomorphism. The exactness of the sequence follows now from

Theorem (2.13). Since Diffi (A) DifΓi (A) = Diff£ (A) + Der* (A) Der* (A) by

Lemma (1.3) and σ(Difίl(A)) = 0, the remaining part of the theorem will

follow if we show that σ (Deri (A) DerJ(A)) = a,a2. Let D, Ό' e Der£(A) and

let Θ2{DD') = (dl9 d2). Then σ(ZλD') = τ(du d2) = dx(x2) = c{lΛ)(DD') by the

remarks preceding Theorem (2.13). By Proposition (2.5) we have ciuι)(DD')

= D{xx)c{M(Df) + D(x2)cα,0)φ0 = Dix^DXx,) + D(x2)D'(Xl). This proves that

σ (Der^ (A) Der^ (A)) c axa2. Conversely, let at e ai9 i = 1, 2. Choose D, D' e

Ώeτl (A) such that aλ = D{xλ), a2 = D'(x2). Let bx = D(x2), b2 = Dί(x1). Then

«i/n + bJX2 = 0 and b2fxi + a2fX2 = 0. Therefore, since / r i is a non-zero

divisor, we get axa2 = ft^g. Now, by the above computation we have σ(DD')

= axa2 + &!&2 = 2axa2. This proves that α^s c σ(Der^(A) Der^(A)), and the

theorem is proved.

(3.2) PROPOSITION. Let Iu I2 be ideals of R containing f. Assume that

RIIX and i?//2 are of finite length and that Iγ + I2Φ R. Then Ύorf(RIIl9

Φ 0.

Proof (S. Dutta). Localizing at a maximal ideal of R containing

Ji + 72, we may assume that R is a regular local ring of dimension two

containing k. By [3, Chapter XV, Section 5, Case Cr and Chapter XVI,

Section 5, Case 1] we have an exact sequence

Tor? (R/Iu A) 0R R/I2 > Tor? (R/l, R/I2) > Torf (R/Ilf R/I2) > 0 .

Since / is a non-zero divisor in R, we have Torf (R/Iι? A) ^ R/I^. Therefore

the exact sequence becomes

Rll ®B R\l2 • Tor? (R/Iu R/I2) > Torf (R/Iu R/I2) > 0 .

Put t = length (Tori (R/Iu R/I2)) and tt = length (Torf (R/l, R/I2)). Then t,

ti are non-negative integers and tt — 0 for ί Φ 0,1, 2. From the exact

sequence we have t — tx + t0 ^ 0. Since dim (R/Id + dim (R/L) = 0 < 2,

we have t0 - tx + t2 = 0 by [9, Chapter V, Section 3]. Thus we g3t *:> ί2>

and it is now enough to prove that t2 > 0. Let
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0 >R--L>Rn + i >R

be a minimal free resolution of R/I2. Let nt be the maximal ideal of R.

Choose a e R such that a e Ix and ma c Iτ. Let b = a ® (1, 0, , 0) e R/It

®R Rn

9 where a is the natural image of a in R/Ilm Then b Φ 0 and, since

im (λ) c nijRn+1, b e ker (1R/Il ® X) = Tor? (JR/Ij, i?/I2). This proves that ί2 > 0.

(3.3) THEOREM. Let J be a proper, principal ideal of R = k[Xu X2]

and let A = RjJ. Assume that A is reduced.(ί) Then A is regular if and

only if Diffj?(A) = Diff*1 (A) Difiζ (A).

Proof If A is regular then the equality Diffji(A) = DiffJ(A) Diffί(A) fol-

lows from [4, (IV, 16.11.2)]. Conversely, suppose Diffί(A) = Diftl(A) Diftl(A).

We may assume that J Φ 0. Let J = Rf and let / = fx /, be the prime

factorization of / in R. Since k is infinite, we may make a linear change

of variables to assume that BfJdXj Φ 0 for all i — 1, , s, j = 1, 2. Then,

since / is without multiple factors, fxχ and fx% are non-zero divisors in A.

Since fxj(uo) - fXχΔ(M e DerAXA), we have fx% e ax and fXl e α2. Therefore

AJ&! and Aja2 are of finite length. Let Ij be the ideal of R containing /

such that a, = IJRf, j = 1, 2. Since Difffc

2(^) = Difl5(A) Diff^A), we have,

by Theorem (3.1), 0 = ^ ( 1 a2ja,a2 ^ Tori (A/αj, A/a2) = Tori(i?/^, iϊ//2).

Therefore Jj + ί2 = -B by Proposition (3.2). Now, let m be a maximal ideal

of A. Then aλ or α2, say α1? is not contained in m. This means that there

exists D e Der* (A) such that ZKxj) $ m. Since fx% Φ 0, xt is transcendental

over k. Since A/m is algebraic over k, m contains a non-zero polynomial

(̂Xj) e ^[xj]. Choose such g of least degree. Then D(g) = η(dgldX^)D{x^ $ m.

Thus D(m) ςzί m. Let B be the mAm-adic completion of Am and let n be the

maximal ideal of B. Then JD extends to a 1-derivation D of B such that

JD(Π) ςzί n. Therefore by Zariski's Lemma [11, Lemma 4] B is of the form

B = JB0[[Y]] with y analytically independent over ΰ 0 . Since 2?, hence BOi

is reduced and dim J50 = 0, Bo is regular. Therefore B is regular. This

proves that Am is regular for every maximal ideal m of A.

§ 4. A[T] and Λ[Γ, Γ'1]

In this section let k be a noetherian ring, let A be a finitely generated
^-algebra and let T be an indeterminate over A. Let u: Ac=—>A[Γ] be
the natural inclusion. Fqr i e Z, i ^ 0, let JV. A[Γ] —>A be the A-linear
map defined by / = Σ ^ o (T - l)%(f) for f e A[T]. Define g,: Diff? (A[T])

π ) See note added in proof.
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-> Diff? (A) by qt(D) = ptΌu for D e Diff? (A[Γ]). Note that p,Du e Diff^(A),

since pt is A-linear. Note also that qt maps Diffg (A[T]) into Diff £ (A) for

every τι. Further, we have Dw = Σ ^ o ( Γ ~ 1)^^(5) for D e Diff? (A[Γ]).

Regard Diff? (A, A[T]) as an A[Γ]-module in a natural way. For

D € Diff? (A, A[Γ]) let μ(D) denote the M?Ί-linear endomorphism of A[T]

obtained from D by extension of scalars, i.e. ϊor Σi^oViT1 e A[T] with

at eA, μ{D)(Σ1i^aίT
i) = Σi^D(at)T\ Using Remark (1.1) it is easily

checked that this gives us an A[T]-linear map

μ: Diffr (A, A[T]) —-> Diff?CΓ3 (A[T1) c Diff? (A[T])

with μ (Difΐl (A, A[T])) c Diff2[Γ] (A[Γ]) C DiffJ (A[T\) for every w. Identify

Diff̂  (A) as an A-submodule of Diffj3 (A, Afϊ7]) via u, and denote by λ the

restriction of μ to Diff̂  (A).

(4.1) LEMMA. (1) Σ^o(T - 1)* uqtμ = identity on Difl^(A, A[T]).

(2) For every non-negative integer s, q0T
sλ — identity on Diff̂  (A).

(3) If D, Ώf e Diff? (A) then λ(DD') = λ(D)λ{D'\ Consequently,

λ (Diff? (A) DiffJ (A)) c Diff?[Γ] (A[T\) DifiRf[r] (A[Γ])

/or αZZ m, n.

(4) g0 (Diff? (A[T)) DifiF; (A[Γ])) c DiflF? (A) Diff; (A) /or αZ/ m, n.

Proof. (1) and (2) follow from the definition. (3) follows from the fact

that each of λ(DDf) and λ{D)λ(Df) is ^[Γ]-linear and coincides with DΠ

on A. To prove (4), let D e Diff? (A[T]\ Π e Diff? (A[T\). By (1) we have

D'u = Σ ^ o ( Γ ~ WWiWyu)) = Σ ^ o ( Γ - l ) ' ^ ^ ) . Therefore

>'" = Σ (ίA (Γ - 1)*] + (Γ - iyD)uqi{Df)

and so

go(J5iy) = ΣPo([A (T7 - I)1] + (Γ - lYD)uqi(D>)

= Σ <7o([A (T7 - DΊ + (T -

which belongs to Diff £* (A) Diff % (A). This proves (4).

In the following proposition we have identified Diff̂  (A[T]) as an

A[71-submodule of Diff^(A[Γ, T~1]) via the natural map Diff? (A(Γ])-•

(Difί;(A[T]))τ = Diff^(A[Γ, Γ"1]), which is injective because T is a non-

zero divisor in A[T\.

(4.2) PROPOSITION. For D e Diff^(A) ί/ιe following three conditions are

equivalent:
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( i)
(ϋ)
(iii) i(D) 6 Diff1 (A[T, T-']) Diffr' (A[T, T'1]).

Proof. The implication (i) => (ii) follows from Lemma (4.1) (3), while

the implication (ii) => (iii) is clear. Now, assume (iii). Then λ(D) =

ΣJDJUJ (finite sum) with Ds e DiffI (A [T, T'1]), D'j e Diffr1 (A[T, T'1]).

Since A is a finitely generated ^-algebra, there exists a positive integer s such

that TsDj e Diff1 (A[ΓJ) and T'D'j e Diff;-1 (A[T]). Put Δ = Σi TS[DP T°]D'}
eDiffr 1 (A[T, T-1]). We have ΣλT'DXT'D',) = Δ + T2s^(ί)). Therefore

J e Diff;-1 (At?7]). Now, q££i (.T'Ό^T'I/j)) e Diff1 (A) Diff;-1 (A) by Lemma

(4.1) (4), and qo(Δ) e Diff;-1 (A) c Diff1 (A) Diffr' (A). Therefore qa(T°l{D))

e Diff1 (A) Diffr1 (A), and now (i) follows by Lemma (4.1) (2).

(4.3) COROLLARY. If Diff;(A[T]) = Diffί(A[Γ]) Diffr1 (A[T\) or

Diff;(A[Γ, T-1]) = Diffί(A[Γ, Γ'1]) Diffr1 (A[Γ, T"1]) then Diff; (A) =

Diffi(A)Diff;-1(A).

§ 5. Differential operators on a cone in 3-space

Let us return now to the notation of Section 2. For a e V and g 6 R,

put gχa = η{d"gldXa).

(5.1) LEMMA. Assume that J = Rf and that xt, fXr is an A-regular

sequence. Let D e Diff I (A). Suppose ca(D) e xtA for all those a eVn for which

ar = 0. Then there exists D' e Diff£ (A) such that D = x,D'.

Proof. Since xt is a non-zero divisor in A, it is enough to prove that

cJJD) e xtA for every a 6 Vn. We do this by lexicographic induction on

(n—\a\, ar). Let a e Vn. The result being given for ar = 0, we may assume

that ocr ̂  1. Put β = a - er. By Corollary (2.11) (D, X") e Diffr l ί ! (A).

Therefore, since cβ(D)Δ0(f) = 0, we have

0 = (D, X">(/) =reΣ[βί cr+β(D)Δr(f).
lrί>o

L e t r e Vn_]β] w i t h \T\ > 0 a n d \T + β\ £ \a\. T h e n \T\ = 1, \ϊ + β\ = | α | a n d

either Γ = βr or Γr = 0. It follows that for every index ϊ ψ er appearing

in the above summation we have (n — \T + β\, ϊr + βr) < (n — \a\, ar) lexi-

cographically. Therefore by induction we get ca{D)Δer(f) e xγA. Since

ΔeXf) = fχr

 a n d x» fxr i s ^-regular, we get ca(D) e xxA.
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(5.2) LEMMA. LetHek[Y,Z] be a homogeneous polynomial in two

variables Y, Z over k, of degree >̂ 2, monίc in Z and without multiple

factors. Then (dH/dZ)2 does not belong to the ideal (Y2dHldY, Y2dH/dZ, H)

ofk[Y,Z).

Proof. Replacing k by its algebraic closure, we may assume that

H = Uϊ=i(z - UY) with n = deg(H) and tu ••-,*„ distinct elements of k.

Suppose {dHldZf = FY2dHjdY + GY2dH/dZ + KH with F, G, Kek[Y, Z],

F, G homogeneous of degree n — 3, and K homogeneous of degree n — 2.

Putting Y = 1 and Z = tt in this identity for a fixed i and dividing the

result by Π ^ t f t ~ *;) we get X[SΦi{U - *,) = ^0 + (g, - fQ)tt + + (?„.,

— fn-i)tΓ3 — fn-Ά~2 for 1 ̂  £ ̂  7i, where f^gjek are defined by F =

Σ ^ o Λ y " " 8 " ^ G - Σ 5 - o f t i r n " 8 " i ^ . It follows that if we define

C = (co)^t,^» with cfl = Π w (<f ~ 0 and c^ - t{~2 for ^ 2 then det (C) = 0.

On the other hand, it is easily checked that, since tu , tn are distinct,

det(C) Φ 0. This contradiction proves the lemma.

(5.3) THEOREM. Let J be a homogeneous, proper, prίcipal ideal of

R = k[Xu X2, X3] and let A = R/J. Assume that A is reduced.(1) Then A is

regular if and only if Όifΐl(A) = Όiffl(A) Όifΐl(A).

Proof. If A is regular then the equality Όifί2

k(A) = Όi&l (A) Diff£ (A)

follows from [4, (IV, 16.11.2)]. Conversely, suppose Όiff* (A) = DifPί (A)

(A). Let T be a homogeneous element of A of degree one. Then

r) - Diffί(AΓ) Diffi(Ar). Since Aτ - A ( n [Γ, ϊ7"1] with T algebrai-

cally independent over A(Γ), it follows from Corollary (4.3) that

(5.3.1) Difif| (A ( n ) = Diffί (A(Γ)) DiffJ (A ( Γ )).

Now, since άeg(T) = 1, A ( Γ ) is a reduced ring of the form k[Yl9 Y2]l(f(Y1,

Y2)). Therefore by (5.3.1) and Theorem (3.3) A(τ) is regular. This proves

that the curve Proj (A) is non-singular. Therefore the only possible sin-

gularity of the cone Spec (A) is its vertex. Also, A is Cohen-Macaulay.

Therefore A is normal.

Suppose A is not regular. Let J = RF with F = F(X19 X2, X3) homo-

geneous, and let n = deg (F). Then n > 2. Since char (k) = 0, we can

arrange the following by a homogeneous change of variables: First,

JP = Xf + J^n

j==1FjX^~J with Fj e k[Xu X2] homogeneous of degree j for every

See note added in proof.
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j , and Fx = 0. Then, since A is reduced, Disc^3 (F), the discriminant of

F with respect to Xs, is non-zero. We choose Xλ such that DiscX3(F) £

Z ^ K , Z2]. Then DiscZs(F(0, X2, X3))^0 and it follows that F(0, X2y X3) and

3F(0, X2y X<s)ldXz have no common factors, and F(0, X2, X3) has no multiple

factors.

Having arranged the above, we claim the following:

(1) dFldX2e(XlfX2).

(2) (dFldX3γ e (Xl9 XldFldX2, X\dFldXz, F).

(3) JF, XU dFldX3 is an R-regular sequence.

(4) (3FldXd2e(F) + (XuX2)\

Note that (1) and (4) follow from the fact that Fx = 0. (2) follows from

Lemma (5.2) applied to H = F(0, X2, X3). To prove (3), first note that Xu

F, dFjdXz is an i?-regular sequence by our choice of variables. Then, since

these three elements are homogeneous, any permutation of these is again

i?-regular. This proves our claim.

Now, given D e Diff? (R, A), put ε(D) = Σ«eF,«3=oC« (D)Δa. In particular,

if D e Diff? (A) than we have ε(D) e Diff? (E, A) (see (2.4)).

Since A is normal, it follows from [5, p. 893] that Der^ (A) is generated

as an A-module by d, du d2y d, where d = %xΔex + x2άe2 + xsάez, d, = FXzΔe2

—FX2Jes, d2 = FXiΔex — FXlJeΆ and d3 = FxJex — FXlΔe2. Consider the elements

d2, dxd, d\ of Diff|(A). Using Proposition (2.5) it is easily checked that

we have

ε(d2) = xjei + x2Δe2 + 2x\Δ2ei + 2x1xiΔβl +

ε(dxd) = FXiΔe2 + xxFXzΔeχ+e2 + 2x2FX3Δ2e2

e(dl) = aΔe2

where a = FX2XzFXΆ - Fx*FSi. By (4) we can write (FX5f = b,xx + b2x\ with

&!, 62 e A homogeneous and deg (b2) = 2n — 4. By (1) we can write α =

wFX3 + vxxx + v2x2 with u, vuv2e A. Put D = (b2 — v2)d — wdj — 62d
2 + d\

€ Diff̂  (A). Then an easy computation shows that

ε(D) - - v2x^ei + U A 4 2 - 2x?62J2ei - 2x1x2bJei + e
J2e2 '

Thus ca(D) e xxA for all those a e V2 for which a3 = 0. Therefore it fol-

lows from (3) and Lemma (5.1) that there exists Όf e Diff̂  (A) such that

D - xjy. We have c 2 e i φ') = xϊιc2eχ{D) = - 2xxb2. Let

α = {y e A|3 3 e Diff' (A) with c2ei(3) = y}.
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Then α is an ideal of A and xxb2 e α. Now, we have Diff|(A) = Diff£(A)

•DiffJCA) by assumption. So Diff,2 (A) = Diff,1 (A) + Der1 (A) Der1 (A) by

Lemma (1.3). Therefore, since Der^(A) is generated by d, dlf d2, d3, it

follows from Proposition (2.5) that α is generated by x\, xxFX2, xxFXz, (FX2)
2,

FX2FXz, (FX3)
2. All these elements are homogeneous and deg ((FX2)

2) =

άeg(FX2Fx) = άeg((FXz)
2) = 2 n - 2 > 2 τ ι - 3 = άegixA). It follows that xfi2 e

(xl, xxFx%, XiFx^. Therefore, since xx is a non-zero divisor, b2 e (xu FX2, FX9).

Since (Fx)
2 = b1x1 + b2x\, we get (FX3)

2 e (xl9 x2

2FX2, x
2

2FX3). This contradicts

(2), and the theorem is proved.

§ 6. A remark on the non-reduced case

In proving our results in Sections 3 and 5 we have assumed that A

is reduced. We believe that this condition can be dropped.(1) Let us show

this in the case dim (A) = 0. With the notation of Section 2 let r — 1,

and omit the subscript 1. Assume that J = Rf is non-zero, proper and

principal. Then A = k[x] = k[X]l(f) and Δ = ηdjdX. Put fx = η(dfldX).

(6.1) PROPOSITION. // Diff| (A) = Diff̂  (A) Diff1 (A) then A is reduced,

hence regular.

Proof. Let

0 -> Diff1 (A) <=—> Diff,2 (A) - ^ > DerI (A) > 0

be the exact sequence of Theorem (2.13). Recall that in this case ΘZ{D)

= c2(D)J. Identify Der1 (A) with the ideal α - {d(x)\de Der1 (A)} of A by

sending d e Όerl (A) to d(x). Then it follows from Proposition (2.5) that

θ2 (Der^ (A) Der^ (A)) = α2. By our assumption and Lemma (1.3) we have

Diff| (A) = Diff1 (A) + Der1 (A) Der1 (A). Therefore a - α2. Now, a = {ae

A\afx=z 0}. It follows that if / = f[x f% is the prime factorization of /

with /i, ,/m mutually coprime then α = {η{fλ fm)). Thus the equality

a = a2 implies that ft fm belongs to the ideal (/, f\ fl) of R. This is

possible only if tx = = tm = 1, i.e., if A is reduced.

NOTE ADDED IN PROOF. It was recently proved by the author jointly

with D. P. Patil that if X is a hypersurface and Diff\ (A) = Diff\ (A) Diff\ (A)

then A is reduced. Thus, in Theorems (3.3) and (5.3) we can drop the

assumption that A be reduced.

See note added in proof.
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