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DIFFERENTIAL OPERATORS ON A HYPERSURFACE
BALWANT SINGH*

Introduction

We study differential operators on an affine algebraic variety, especially
a hypersurface, in the context of Nakai’s Conjecture. We work over a
field & of characteristic zero. Let X be a reduced affine algebraic variety
over k and let A be its coordinate ring. Let Diff?(A) be the A-module of
differential operators of A over k of order < n. Nakai’s Conjecture as-
serts that if Diff?(A) is generated by Diffi(A) for every n = 2 then A is
regular. In 1973 Mount and Villamayor [6] proved this in the case when
X is an irreducible curve. In the general case no progress seems to have
been made on the conjecture, except for a result of Brown [2], where the
assertion is proved under an additional hypothesis.! An interesting result
proved by Becker [1] and Rego [8] says that Nakai’s Conjecture implies
the Conjecture of Zariski-Lipman, which is still open in the general case
and which asserts that if the module of k-derivations of A is A-projective
then A is regular.

Write A = R/J, where R is a polynomial ring over k and J is an
ideal of R. Let Diff}(R, A) be the A-module of differential operators of R
into A over k of order < n. Since R is a polynomial ring, the structure
of Diff(R, A) is well-known, and Diff?(A) can be identified with the A-
submodule of those D e DiffR, A) for which D(J) = 0. In this paper we
first analyze the condition “D(J) = 0” in some detail, and prove in Pro-
position (2.10) that for D(J) to be zero it is sufficient (and necessary) that
D and certain other differential operators derived from D vanish on a set
of generators of J. This is then used to prove that if X is a hypersurface,
i.e. if we can write A = R/J with J principal, then Diff}(A) is completely
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68 BALWANT SINGH

determined by Diffi(A) (Theorem (2.13)), although, of course, in general,
Diff2(A) is not generated by Diffi(A). This relation between Diff(A) and
Diff2(A) leads us to consider the following question, which is stronger
than Nakai’s Conjecture: If Diff}(A) is generated by Diff:(A) then is A
regular? We are able to show that the answer is in the affirmative in the
following two cases: (1) if X is a plane curve (Theorem (3.3)); (2) if X is
a cone in 3-space (Theorem (5.3)). In the process of proving Theorem
(3.3) we get the following interesting result proved in Theorem (3.1): If
X is a plane curve then the quotient Diff; (A)/Diff:(A) Diff} (A) is isomorphic
to a, N ay/a,a,, where q;, a, are certain ideals of A.

The author would like to express his thanks to Sankar Dutta for
supplying a proof of Proposition (3.2).

After this work was submitted for publication, the paper [12] of J.-P.
Vigué was brought to our attention by the referee.” It follows from
Proposition 5 of this paper of Vigué that if X is a normal cone in the com-
plex affine 3-space and Diff;(A) is generated by Diffl(A) then A is regular.
It has also come to our notice in the meantime that Y. Ishibashi has
recently proved Nakai’s Conjecture in case X is a two-dimensional com-
plete intersection cone (with %k algebraically closed) [13] and also in case
X is the quotient of an affine n-space over 2 by a finite subgroup of
GL(n, k) [14]. There is thus an overlap between our Theorem (5.3) and
the results of Vigué and Ishibashi. Our methods, however, are entirely
different and more elementary and might therefore be of some interest,
since very little seems to be known about the structure of differential
operators on X.

§1. Preliminaries

Throughout this paper all rings are assumed to be commutative with

The letter n (resp. m) will denote either an integer or oo.

Let 2 be a ring, let R be a k-algebra and let A be an R-module. The
multiplication on A by an element a € R is denoted a,., We shall regard
Hom, (R, A) as an R-module via A, i.e. for ¢ € R and D ¢ Hom, (R, A) we
let aD = a,oD. For acR and D ¢ Hom, (R, A) the symbol [D, a] denotes,
as usual, the element Doa, — a,oD of Hom,(R, A). For neZ the R-

@ The author would like to thank the referee for this and for pointing out some
misprints in the manuscript.
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submodule Diff7(R, A) of Hom,(R, A) is defined by induction on n:
Diff? (R, A) = 0 if n <0, and

Diffy (R, A) = {D € Hom, (R, A)|[D, a] € Diff;"'(R, A) for every a c R}.

Elements of Diff? (R, A) are called differential operators (of R into A over
k) of order < n.

(1.1) Remark. Let {a;} be a set of k-algebra generators of R. It is
easily checked that if D ¢ Hom, (R, A) and [D, a,] € Diff?~' (R, A) for every
i then D e Diff7 (R, A).

Note that Diff) (R, A) = Hom, (R, A) = A and Diff?(R, A) C Diffz*'(R, A)
for every n. Put Diffy (R, A) = U,.,Diff 2 (R, A).

Next, recall from Nakai [7] the definition of a high order derivation.
For neZ, n >0, an element D of Hom, (R, A) is called an nth order de-
rivation (of R into A over k) if for any n + 1 elements q,, - - -, a, of R we
have

n

Diay---a,)=2(=1* 3 @y, Dlag-- -8y, Gy, - @),
<<

$=1

where ~ means omitted. Denote by Der? (R, A) the R-submodule of Hom, (R, A)
consisting of all nth order derivations. We have Derj(R, A) =0 and
Derl (R, A) = the module of ordinary k-derivations of R into A. Define
Deri (R, A) =0 if n <0.

We note the relation between Diff? (R, A) and Der? (R, A) in the fol-
lowing lemma. For xe A let x, denote the R-linear map a—ax of R
into A.

(1.2) LeEMMA.

(1) Let DeHom, (R, A). Then D e Diff2 (R, A) if and only if D—D(1),
€ Derz (R, A).

(2) Deri(R, A) = {D e Diff; (R, A)|D(1) = 0}. Consequently, Der} (R, A)
C Der?*' (R, A) for every n.

(8) Put Dery (R, A) = U,z Der2(R, A). For 0 < n < oo we have an R-
linear isomorphism h: Diff? (R, A) — A ® Der? (R, A) given by h(D) = (D(1),
D — DQ)z) and h~'(x, D) = x, + D.

Proof. (1) follows from the formula defining an nth order derivation
and a similar characterization of a differential operator given in [4, (IV,
16.8.8)]. (2) and (3) follow from (1) by noting that if D € Der} (A) then D(1) = 0.
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Let S be a multiplicatively closed subset of R. If k& is noetherian and
R is a finitely generated k-algebra then it follows from [4, (IV, 16.4.15)]
that for every n there is a natural isomorphism S-'(DiffZ(R, A)) =
Diff? (SR, S 'A). We use this isomorphism to identify these two modules.
Then S-'(Derz (R, A)) = Der7(S™'R, S-'A) by Lemma (1.2).

Assume now that A = R. Write Diff? (A) for Diff? (4, A) and Der? (A)
for Derz (4, A). If DeDiff;(A) and D’ cDiff?(A) then DD’ e Diff;*™(A)
(4, @AV, 16.8.9)] or [10, Proposition 1]). Further, if D’ e Dery(A) then
DD’(1) = 0, so that DD’ € Der?*™ (A).

For an integer n = 2 let us say that Diff? (A) is generated by Diffi(A)
if Diff?(A) equals the A-submodule of all finite sums of the products
D,... D, with D,, ---, D, ¢ Diff; (A). We shall say that Diff7 (A) is gen-
erated by Diff; (A) if Diff(A) is generated by Diff!(A) for every n = 2.

Denote by Diff; (A) Diff; ' (A) the A-submodule of Diff? (A) consisting
of all finite sums >, D,D; with D, € Diff; (A), D} e Diff?~-*(A). Let Deri(A)
Der; ' (A) have a similar meaning.

From Lemma (1.2) we immediately get

(1.3) Lemma. For n>2 we have Diff;(A) Diff?-!(A) = Diff2~* (A) +-
Der’ (A) Der? ' (A). Moreover the following three conditions are equivalent:

(i) Diffy (A) is generated by Diffi(A).

(i1) Diffy (A) = Diff; (A) Diff2-* (A) for every n = 2.

(iii) Der?(A) = Der? '(A) + Deri(A) Der: ' (A) for every n = 2.

Suppose now that k is a field of characteristic zero and A is a finitely
generated k-algebra. Then it follows from [4, IV, 16.11.2)] that if A is
regular then Diffy(A) is generated by Diffi(A). Nakai’s Conjecture
asserts the converse:

Nakar's CONJECTURE. Let A be a finitely generated algebra over a field
k of characteristic zero. If Diffy (A) is generated by Diffi(A) then A is
regular.

§2. General results

Let k& be a field of characteristic zero. Let R = k[X|, ---, X,] be the
polynomial ring in r variables over k. Let J be a proper ideal of R, let
A = R[J and let 5: R— A be the natural map. Put x, = (X)) for 1 < ¢
<r

Let Z* be the set of all non-negative integers and put V =(Z*)". For
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a=(a, -,a)eV we use the standard notation: |a|=a, + -+ + «a,,
al=a! !, X*=Xp... X etc. ForneZ let V,={aeVl|a|<n}
and W, ={aeV]|a|=n}. For1<i<rlete,=(,---,1,---,0) e W, with
1 in the ith place.

For e Vlet 4,: R— A denote the composite of (1/a!)3%/6X*: R — R
and . Then 4, e Diff "' (R, A). It is well-known that every D e Diff; (R, A)

has a unique expression of the form

D = 3 c(D)4,

acV

with ¢,(D) e A for all « and c,(D) = 0 for almost all «. Moreover, D ¢
Diffz (R, A) if and only if ¢ (D) = 0 for |«| >n. On the other hand, D¢
Diff; (R, A) is also uniquely determined by the values D(X®) for a e V,.

For ne Z we define a map r,: Diffy (R, A) — Diff? (R, A) as follows:
For D e Diffp(R, A) let z,(D) be the unique element of Diff7 (R, A) deter-
mined by 7,(D)(X®) = D(X*) for all e V,.

In (2.1)-(2.3) below, let D e Diffy (R, A), let e V and let je Z with
1sj=r.

(2.1) Lemma.
cﬂ([Da Xj]) = cﬁ+e](D) .
Proof. Immediate from the observation

Aﬂ—e,; If ﬂj>0’

[A9X= .
o Xl {O, if B;=0.

(2.2) LEMMA.
[z.(D), Xj] = =, ([D, X]) .

Proof. Both sides belong to Diff2-!(R, A). Therefore it is enough to
prove that they coincide on X* for all «¢e V,_,. Let «e V,_,. Then

[7(D), X, }(X") = m (D)X, X)) — X;m(DNX") = D(X,X*) — X,D(X")
= [D, X;J(X*) = 7,_([D, X,)(X").

(2.3) ProPOSITION.
c(D) = D(X?) — mp5 (D) (XP).

Proof. Induction on |B|. Evaluating D = .., c(D)4, on 1 we get
D(1) = c¢(D), which is our assertion for || = 0. Now, let |8 > 0. Choose
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i such that g, >0, and let 7 = 8 — e;. Then

cy(D) = c([D, X}]) (Lemma (2.1))
= [D, X,J(X7) — = ([D, X])(X7) (Induction)
= [D, X;}(X") — [x5-.(D), X;}(X7) (Lemma (2.2))
= D(Xﬁ) - ﬂlﬂl—l(D)(‘Xﬁ) ’

since w5 _,(D)X") = D(X") by definition.
(2.4) IDENTIFICATION. Let us identify
Diff} (A) = (D e Diff2(R, A)|D(J) = 0},
Der;(A) = {D e Der; (R, A)|D(J) = 0}

via the map D — Dy

(2.5) ProrosiTiON. Let D € Deri (A) and D’ € Diff2 (A). Then for every
aecW,,, we have
cdDD) = Y a DX e, (D).
i=1
(Note that if @; = 0 then c,_,,(D’) is not defined, but then we take the
corresponding summand to be zero by standard convention.)

Proof. Induction on n. The assertion being clear for n <0, letn >0
and letee W,,,, We may assume that « =e, + p with ge W,. By in-
duction we have

2.5.1) cADID!, X)) = 3 .D(X)c,_.(ID', X))

i=1
= 3 BDX e, D)
by Lemma (2.1). On the other hand, by Lemma (2.1) again we have
(2.5.2) c(DD) = c([DD', X]]) .

Thus we need to compare D[D’, X|] and [DD’, X,]. Since D is a 1-deriva-
tion, we have [DD', X|] — D[D’, X|] = D(X,)D’. Therefore

(2.5.3) c;[DD, X|] — ¢ (DD, X)]) = c(D(X,)D) = D(X,)c,(D’).

Now, by (2.5.1), (2.5.2) and (2.5.3) we have
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¢(DD) = c([DD’, X]) = DX)e,D) + 3 pD(Xe, (D)
— Z . D(X)e,-. (D) .
(2.6) DeriniTioN. For D e Diffy (R, A) and fe V define
(D, XPy = ’éV‘_,VcMﬁ(D)Aa .
Note that (D, 1) = D and if D e Diffy (R, A) then (D, X?) ¢ Diff; '*(R, A).

(2.7) DerFinITION. Let @: Diffy (R, A) X V — Der; (R, A) be the pairing
defined by (D, g) = (D, X*) — (KD, X*#Y(1))x = (D, X*) — ¢,(D)4, (see
Lemma (1.2)). Note that @ is R-linear in the first variable. Further note
that @ is the direct limit of the pairings

@, .. Diff? (R, A) X W,, — Der; ™ (R, A)
given by
D,..(D, B) = (D, X*) — c)(D)4,.

(2.8) ProrosiTioN. For m < n we have an exact sequence

0 —> Diff (R, A) =—> Diff2 (R, 4) 2% @ Deri (R, 4),

BEWR

where 0, (D) = (D, (D, B)serwn

Proof. We have 0, ,, (Diffy (R, A)) C Der (R, A) = 0. Suppose O, ,(D)
= 0. Then (D, X*) = c(D)d, for every fe W,. By definition, (D, X*?)
= 3 uev Casg(D)4,. Therefore by the uniqueness of this expression we have
C.is(D) = 0 for |a] > 0. This being so for every fe W,, we get c (D) =0
for all @ ¢ V with || > m. This means that D ¢ Diff} (R, A).

(2.9) Lemma. Let DeDiffy (R, A), let 3, 7€V and let je Z with 1 <
j<r. Then:

D D, X, =D, X]

(2 D, X%, X"y =D, X¥*7).

(3 (D, X)), X*) = (D, X;X°%).

@ If X¢=Y,---Y, with Y,,---,Y.¢e{X, -, X,} then (D, X*?) =
[---[[D, Y], Yl -, Y.

Proof. (1) follows from Lemma (2.1). For « e V we have ¢ (D, X*),
X)) = c.u{D, X*)) = cour.s(D) = ¢ ((D, X?*7)), which proves (2). (3) fol-
lows from (1) and (2), and (4) follows from (3).
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(2.10) ProrosiTiON. Let I be an ideal of R. For D ¢ Diff; (R, A) the fol-
lowing five conditions are equivalent:

(i) D{) c IA.

(ii) [D, X)) CIA for all i,1 <i<r, and there exists a set of
generators {f}} of I such that D(f;) e IA for every j.

(i) <D, X*>(I) < IA for every pe V.

@iv) <D, X*>I) C IA for every Be V,_ ..

(v) There exists a set of generators {f,} of I such that (D, X?)(f;) e IA
for every pe V,_, and for every j.

Proof. The implications (i) = (ii) and (iii) = (iv) = (v) are trivial, while
the implication (i) = (iii) is immediate from part (4) of the above lemma.

(ii) = (@). It is enough to prove that D(X?*f,) € IA for every pe V and
for every j. For |8 = 0 this is an assumption in (ii). If || > 0 then we
may assume that 8 =e, + 7 with 7e V. Then D(X*f) = [D, X}(X'f) +
X.D(X'f;). Therefore the assertion follows by induction on |g|.

(v) = (1). Induction on n. The assertion being clear for n < 0, assume
that n > 1. We have {[D, X}], X?> = (D, X, X*> by Lemma (2.9). Therefore
by (v) {[D, X}, X*)(f;) € IA for every Be V,_, and for every j. So, by in-
duction, [D, X;J(I) C IA for every i, 1 <i < r. Further, by taking g =0
in (v) we have D(f;) € IA for every j. Therefore, by (ii) = (1), D) C IA.

Applying the proposition with I = J and using the identification (2.4)
we get

(2.11) CororrLarY. For D e Diff? (R, A) the following three conditions
are equivalent:

(i) D eDiffz(A).

(ii) <D, X*) e Diff ;~'*1(A) for every ge V.

(i) <D, X*) e Diffz-*I(A) for every Be V,_,.

In view of the above corollary the pairings @,, of Definition (2.7)
induce pairings

@nm: DIff2(A) X W, —> Derz-™(A).
It follows from Proposition (2.8) that for m < n we have an exact sequence

0 — Diffp (A) = Diffz (4)™™ @ Der: ™ (4),
BEWR

where 0, ,.(D) = (¢.,.(D, B)scw..
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(2.12) DEerFINITION. For n e Z define
DUA) = {(dp)sew._, eﬂe 5,'9 Der;(A)|ds(x;) = d.(x,) whenever
Bte=T+e, B,7eW,,,1<i,j<r}.

If D e Diff7 (A) and 6, (D) = (dy)scw,_, then dy(x,) = ¢,,.(D). It fol-
lows that im (4,,.,) € 2%(A). Therefore, writing 6, = 6, ,_,, we have an
exact sequence

0 — Diff1-'(A) =—> Diff? (4) 7> @(A).
Of particular interest to us is the exact sequence
0 — Diff! (4) = Diff2 (4) 2> 23(4) .

We note that
ZA) = {(d,, -, d,) e @ Derl(A)ldy(x) = d(x) for all i,j)

and that if D e Diffi(A) then 6,D) =, ---, d,), where d, € Deri(A) is
given by d,(x,) = c.,..(D). In the following theorem we prove that if J
is principal then 6, is surjective.

(2.13) THEOREM. Suppose J is principal. Then the sequence
0 — Diff! (4) = Diff2 (4) —> 9%(A) — 0
is exact.

Proof. We have only to prove the surjectivity of 6,. Let (d,, ---,d,)
e 24(A). Let a;;€ R be a lift of d,(x,) such that a,;, = a,, for all i, j. Then,
since d, is a l-derivation of A we have

(E) Zlaijaf/an = g.f

=
with g, € R, where f is a generator of J. Differentiating E, with respect
to X,, adding the results over 1 < i < r, dividing the sum by 2 and re-
membering that a,; = a,;, we get

33 bAflOX, + % gaj,aZf/aX; + 3 @ #0X0X, = of

with b, ---,b,, g€ R. Define D = }_,.,,c.(D)4, € Diff; (R, A) by c«(D) = 0,
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c.(D) = 5(b) and c.,.,.(D) = 79(a;;), 1 <i,j <r. Then the above equality
implies that D(f) = 0. Moreover, we have (D, X,> = X .cr,Care(D)4, =
7(b)4s + 335-19a;)d,,, so that (D, X;}(f) = 5(b,f + >3- ,,0f/6X,) = 0 by
(E;). This proves that (D, X*)(f) = 0 for every Be V,. Therefore D(Rf)
= 0 by Proposition (2.10), and we get D e Diff{ (A). Since c,,..(D) = d,(x,),
we have (D) = (d,, ---,d,). This proves that 6§, is surjective.

(2.14) Remark. The above proof actually constructs a k-linear right
inverse of §,. For if we define ¢(d,, - - -, d,) = D in the above notation then
it is easily checked that #(d,, - - -, d,) is independent of the choice of lifts
a;; of d(x;) with the condition that a,; = a;..

(2.15) Remark. In general, 6, is not surjective. Example: Take r = 2
and J = Rf with f = X; — X}. For ge W, define d, € Der} (A) as follows:
deo = 8x,4,, + 12x,4,,, diy,, = 12x,4,, + 18xi4,,, d ., = 18x34,, + 27x,x,4,,.
Then d = (.o, Ea1y Aoy € D3(A). We claim that d € im (f,). For suppose
d = 0(D) with D ¢ Diffi (A). Put c¢;; = ¢y (D). Then ¢,, = 8x,, ¢, = 12x,,
¢, = 18x} and ¢, = 27x,x,. By Corollary (2.11) we have D(f) = 0, (D, x,X(f)
=0 and (D, x,)(f) = 0. Computing (D, x,>(f) — 2x,D(f) = 0 we find that
(7 + 6cy)xx, € (x5, x3). This implies that 7 + 6¢c, € (x,, x,). From (D, x,)(f)
=0 we get (6 + 3c,)x? € (x,), which implies that 6 + 3¢, € (x,, x,). Thus
we get 5 e (x, x,), a contradiction.

§3. Differential operators on a plane curve

With the notation of Section 2, assume that r =2 and J = Rf is a
non-zero, proper, principal ideal of R. For i =1, 2, put f., = »(3f/0X,) and
let a; = {d(x))|d € Der} (A)}. Then aqa,, a, are ideals of A. Recall that in
this case we have

2(A) = {(d,, dy) € Der}, (A) @ Der; (A)|d\(x;) = dy(x,)}.

Let z: 2%(A) — a, N a, be the map defined by z(d, d, = d.(x,) = dyx).
Clearly, ris A-linear and surjective. Put ¢ = z6,: Diff; (A) - a, N a,.

(3.1) TurEoREM. Assume that f,, and f,, are non-zero divisors in A.
Then t is an isomorphism, and the sequence

0 —> Diffl (A) = > Diff} (4)—>a, N a,—> 0

is exact. Moreover, o (Diff} (A) Diffl (A)) = a,a,. In particular, we have an
A-isomorphism
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Diff? (A)/Diffi(A) Diff! (4) = a, N o, .

Proof. If deDeri(A) then d(x)f., + d(x,)f,, = 0. Since f,, and f,, are
non-zero divisors, we have d(x,) = 0 if and only if d(x,) = 0. Consequently,
d = 0 if and only if d(x) = 0 if and only if d(x,) = 0. This proves that =
is an isomorphism. The exactness of the sequence follows now from
Theorem (2.13). Since Diff! (A) Diffi (A) = Diff; (4) + Der; (A) Deri(A) by
Lemma (1.3) and ¢ (Diffi (A)) = 0, the remaining part of the theorem will
follow if we show that ¢ (Der}(A) Deri(A)) = a,a,. Let D, D’ € Deri(A) and
let 6,(DD’) = (d,, d;). Then ¢(DD’) = z(d,, d,) = d\(x,) = ¢y .(DD’) by the
remarks preceding Theorem (2.13). By Proposition (2.5) we have ¢, ,(DD’)
= D(x)co,n(D) + D(x,)cq (D) = D(x)D'(x;) + D(x,)D'(x,). This proves that
o (Der}(A) Deri(A)) C a,a,, Conversely, let a,eq,, i =1,2. Choose D, D' ¢
Der}(A) such that a, = D(x,), a, = D’'(x,). Let b, = D(x,), b, = D'(x,). Then
a,f., + b.f., =0 and b.f,, + a,f,, = 0. Therefore, since f,, is a non-zero
divisor, we get a,a, = b,b,, Now, by the above computation we have ¢ (DD’)
= a,a, + b,b, = 2a,a,. This proves that a,a, C ¢ (Deri(A) Der}(A)), and the
theorem is proved.

(3.2) ProposiTioN. Let I, I, be ideals of R containing f. Assume that
R/I, and R|I, are of finite length and that I, + I, +# R. Then Tor!(R/I,
R|L) # 0.

Proof (S. Dutta). Localizing at a maximal ideal of R containing
I, + I,, we may assume that R is a regular local ring of dimension two
containing k. By [3, Chapter XV, Section 5, Case C’ and Chapter XVI,
Section 5, Case 1] we have an exact sequence

Torf (R/I,, A) ® R/I,——> Torf (R/1,, R/I,) —> Tor{ (R/L,, R/I) —>0.

Since f is a non-zero divisor in R, we have Tor# (R/I,, A) = R/I,. Therefore
the exact sequence becomes

R/I, ® R/I, —> Tor? (R/I,, R/I,) —> Tort (R/I,, R/I,) —>0.

Put t = length (Tor{ (R/I,, R/I,)) and t, = length (Tor? (R/I,, R/I,)). Than ¢,
t; are non-negative integers and ¢, =0 for i % 0,1,2. From the exact
sequence we have ¢t — ¢ + ¢, = 0. Since dim(R/I) + dim(R/L) = 0 < 2,
we have £, — t, + ¢, = 0 by [9, Chapter V, Section 3]. Thus wa g3t i=t,
and it is now enough to prove that ¢, > 0. Let
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0—> R 25 R SR> RI[,—>0

be a minimal free resolution of R/I,, Let m be the maximal ideal of R.
Choose ae R such that a¢l, and mea C 1. Letb=a® (1,0, -.,0)e R/,
®z R", where @ is the natural image of ¢ in R/I,. Then b =+ 0 and, since
im () € mR"*', b eker (1/;, ® 2) = Tor? (R/I,, R/I,). This proves that ¢,> 0.

(3.3) THEOREM. Let J be a proper, principal ideal of R = k[X,, X,]
and let A = R[J. Assume that A is reduced.® Then A is regular if and
only if Diff} (A) = Diff} (A) Diff} (A).

Proof. If Aisregular then the equality Diff2(A) = Diffi(A) Diff;(A) fol-
lows from [4, (IV, 16.11.2)]. Conversely, suppose Diff;(A) = Diff} (A) Diff; (A).
We may assume that J = 0. LetJ = Rf and let f =f, -- - f, be the prime
factorization of f in R. Since k is infinite, we may make a linear change
of variables to assume that of;/0X,+ 0 for all i =1, ---,s,j=1,2. Then,
since f is without multiple factors, f,, and f,, are non-zero divisors in A.
Since f,,44,0) — fudoy € Derj(A), we have f, eqa, and f, €a, Therefore
Ala, and Afa, are of finite length. Let I, be the ideal of R containing f
such that a;, = I,/Rf,j = 1, 2. Since Diff?(A) = Diff} (A) Diff} (A), we have,
by Theorem (3.1), 0= a, N a/a,a, = Tor{(A/a,, A/a,) = Torf (R/I,, R/L,).
Therefore I, + I, = R by Proposition (3.2). Now, let m be a maximal ideal
of A. Then q; or a, say aq,, is not contained in m. This means that there
exists D e Der;(A) such that D(x,) & m. Since f,, # 0, x, is transcendental
over k. Since A/m is algebraic over k, m contains a non-zero polynomial
g(x)) € k[x,]. Choose such g of least degree. Then D(g) = 7(ag/oX,)D(x,) & m.
Thus D(m) ¢ m. Let B be the mA,-adic completion of A,, and let n be the
maximal ideal of B. Then D extends to a l-derivation D of B such that
ﬁ(n) ¢ n. Therefore by Zariski’s Lemma [11, Lemma 4] B is of the form
B = B,[[Y]] with Y analytically independent over B,. Since B, hence B,,
is reduced and dim B, = 0, B, is regular. Therefore B is regular. This
proves that A, is regular for every maximal ideal m of A.

§4. A[T] and A[T, T]

In this section let & be a noetherian ring, let A be a finitely generated
k-algebra and let T be an indeterminate over A. Let u: A=— A[T] be
the natural inclusion. For ie Z, i >0, let p,: A[T] - A be the A-linear
map defined by f = 3,2, (T — 1)ip,(f) for fe A[T]. Define q,: Diffy (A[T])

® See note added in proof.
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— Diffy (A) by q(D) = p,Du for D e Diff;? (A[T]). Note that p,Du ¢ Diff;(A),
since p, is A-linear. Note also that ¢, maps Diff? (A[T]) into Diff? (A) for
every n. Further, we have Du = >,.,(T — 1)'uq,(D) for D e Diffy (A[T]).

Regard Diffy (A, A[T]) as an A[T]-module in a natural way. For
D e Diffy (A, A[T]) let (D) denote the k[T]-linear endomorphism of A[T]
obtained from D by extension of scalars, i.e. for > ..,a,Te A[T] with
a,eA, D) (iz00:T) = 320 D(a)T. Using Remark (1.1) it is easily
checked that this gives us an A[T]-linear map

u: Diff; (4, A[T]) —> Diffz,, (A[T]) C Diff; (A[T])

with x« (Diffy (A, A[T])) C Diff},, (A[T]) C Diff; (A[T]) for every n. Identify
Diffy (A) as an A-submodule of Diffy (A, A[T]) via u, and denote by 2 the
restriction of x to Diffy (A).

(4.1) Lemma. (1) 350(T — 1)! uq,n = identity on Diffy (A, A[T]).

(2) For every non-negative integer s, q,T°2 = identity on Diff; (A).

(3) If D, D’ eDiffy (A) then A(DD’) = A(D)A(D’). Consequently,

2(Diffy (A) Diff; (A)) < Diffy, (A[T]) Diffir, (A[T])

for all m, n.

(4) q,(Diffy (A[T)) Diffz (A[T])) < Diffi (A) Diff2 (A) for all m, n.

Proof. (1) and (2) follow from the definition. (3) follows from the fact
that each of A(DD’) and A(D)A(D') is k[T]-linear and coincides with DD’
on A. To prove (4), let D e Diff7 (A[T]), D’ € Diffz (A[T]). By (1) we have
D't = Tiao(T — Dug(D'w) = Yoz (T — 1'ug D). Therefore

DD'u = zo ([D, (T — 1)1 + (T — 1)'D)uq(D’)

and so
q(DD’) = i};opo([D, (T — 1] + (T — 1)'Dyug(D")

= 214D, (T = D + (T = )D)gD),

which belongs to Diff? (A) Diff?(A). This proves (4).

In the following proposition we have identified Diff; (A[T]) as an
A[T]-submodule of Diffy (A[T, T-']) via the natural map Diffy (A(T]) —
(Diffy (A[T])), = Diffy (A[T, T-'), which is injective because T is a non-
zero divisor in A[T].

(4.2) PropositioN. For D e Diff? (A) the following three conditions are
equivalent:
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(i) D e Diff} (A) Diff; ' (A).
(ii) (D) e Diff} (A[T]) Dift~* (A[T)).
(iii) A(D) e Diff} (A[T, T-']) Diff3~* (A[T, T-']).

Proof. The implication (i) = (ii) follows from Lemma (4.1) (3), while
the implication (ii) = (iii) is clear. Now, assume (iii). Then (D) =
>7,D,D; (finite sum) with D,eDiff;(A[T, T, D; e Diff3~' (A[T, T'].
Since A is a finitely generated k-algebra, there exists a positive integer s such
that 7D, ¢ Diff} (A[T]) and T“Dj e Diffy~' (A[T]). Put 4 = 33, T°[D,, T°1D;
e Diffz~' (A[T, T-']). We have >, (T*D,)(T*D}) = 4 + T*A(D). Therefore
4 e Diff; ' (A[T)). Now, g3, (T*D,)(T*D))) ¢ Diff; (A) Diff; ' (A) by Lemma
(4.1) (4), and q,(4) e Diffy~' (A) C Diff} (A) Diff;~* (A). Therefore q(T* (D))
e Diffl (A) Diff?-'(A), and now (i) follows by Lemma (4.1) (2).

(4.3) Cororrary. If Diff7 (A[T]) = Diff} (A[T]) Diffz-* (A[T]) or
Diff7 (A[T, T-']) = Diffi (A[T, T-']) Diffz* (A[T, T']) then Diff;(A) =
Diff! (A) Diffz -1 (A).

§5. Differential operators on a cone in 3-space

Let us return now to the notation of Section 2. For ¢ ¢ Vand ge R,
put g.. = 7(3°g/6X").

(5.1) Lemma. Assume that J = Rf and that x,, f., is an A-regular
sequence. Let D e Diff? (A). Suppose c (D) € x,A for all those « € V, for which
a, = 0. Then there exists D’ ¢ Diff7 (A) such that D = x,D’.

Proof. Since x, is a non-zero divisor in A, it is enough to prove that
c.D) e x,A for every acV,. We do this by lexicographic induction on
(n—|al, @,). Let e V,. The result being given for «, = 0, we may assume
that «, =1. Put § =a —e,. By Corollary (2.11) (D, X#) ¢ Diff7-'#' (A).
Therefore, since c,(D)4,(f) = 0, we have

0= (D, XN = T e dDMA(D).
Ir1>0

Let 7€V, 5, with |[7|>0and |7 + g < |a|. Then|7|=1,|7 + 8] = |«] and
either 7 = e, or 7, = 0. It follows that for every index 7 s e, appearing
in the above summation we have (n — |7 + 8|, 7, + B,) < (n — |a|, «,) lexi-
cographically. Therefore by induction we get c.(D)4.(f) e x,A. Since
4.(f) =1, and x, f,, is A-regular, we get c (D) € x,A.
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(5.2) LEmma. Let HekR[Y,Z] be a homogeneous polynomial in two
variables Y, Z over k, of degree >2, monic in Z and without multiple
factors. Then (OH[0Z)* does not belong to the ideal (Y*0H[3Y, Y?*0H[0Z, H)
of kY, Z].

Proof. Replacing k by its algebraic closure, we may assume that
H=[];.,(Z - t,Y) with n = deg(H) and ¢, ---, ¢, distinct elements of k.
Suppose (0H[0Z)* = FY*0H[oY + GY*%H/oZ + KH with F, G, KeR[Y, Z],
F, G homogeneous of degree n — 3, and K homogeneous of degree n — 2.
Putting Y =1 and Z = ¢, in this identity for a fixed { and dividing the
result by [],..(¢; —t,) we get [Tt —t) =8 + (& —f)ti + - + (8ues
— [ ti P — fu i for 1<i<n, where f, g,¢k are defined by F =
DY Z), G = Ynsig, Y *iZi, Tt follows that if we define
C=(Cij)i2i,js0 With ¢;; = [];,, (¢, — ;) and ¢,; = ¢{~* for j = 2 then det (C) = 0.
On the other hand, it is easily checked that, since ¢, - - -, ¢, are distinct,
det (C) = 0. This contradiction proves the lemma.

(5.3) THEOREM. Let J be a homogeneous, proper, pricipal ideal of
R = k[X,, X,, X;]} and let A = R/J. Assume that A is reduced.” Then A is
regular if and only if Diff} (A) = Diff} (A) Diff} (A).

Proof. If A is regular then the equality Diff?(A) = Diff} (A) Diff!(A)
follows from [4, (IV, 16.11.2)]. Conversely, suppose Diff?(A) = Diff} (A)
-Diff} (A). Let T be a homogeneous element of A of degree one. Then
Diff?(A,) = Diff; (A,) Diff; (A;). Since A, = A,)[T, T-'] with T algebrai-
cally independent over A, it follows from Corollary (4.3) that

(6.3.1) Diffi (A ) = Diffi (A(r) Diffi (A(r) -

Now, since deg (1) =1, A, is a reduced ring of the form k[Y;, Y,J/(f(Y,
Y,)). Therefore by (5.3.1) and Theorem (3.3) A, is regular. This proves
that the curve Proj(A4) is non-singular. Therefore the only possible sin-
gularity of the cone Spec(A) is its vertex. Also, A is Cohen-Macaulay.
Therefore A is normal.

Suppose A is not regular. Let J = RF with F = F(X,, X,, X;) homo-
geneous, and let n = deg(F). Then n >2. Since char (k) =0, we can
arrange the following by a homogeneous change of variables: First,
F = X + >, F, X3/ with F, € k[X,, X,] homogeneous of degree j for every

@ See note added in proof.



82 BALWANT SINGH

J, and F, = 0. Then, since A is reduced, Discy, (F), the discriminant of
F with respect to X;, is non-zero. We choose X, such that Disc,(F) ¢
Xk[X,, X;]. Then Discy, (F(0, X,, X,))+0 and it follows that F(0, X,, X,) and
oF (0, X,, X,)/6X, have no common factors, and F(0, X,, X;) has no multiple
factors.

Having arranged the above, we claim the following:

(1) oFJaX, e (X, X)).

(2) @F6X,) ¢ (X, X3F[0X,, X}0F[oX,, F).

(8) F, X, d0F[0X, is an R-regular sequence.

4) F[6X) e (F) + (X, X,)~
Note that (1) and (4) follow from the fact that F, = 0. (2) follows from
Lemma (5.2) applied to H = F(0, X,, X;). To prove (3), first note that X|,
F, 0F/3X, is an R-regular sequence by our choice of variables. Then, since
these three elements are homogeneous, any permutation of these is again
R-regular. This proves our claim.

Now, given D e Diff;; (R, A), put (D) = > .cv,ay=eCo (D)4,. In particular,
if D e Diff; (A) than we have &D) e Diffy (R, A) (see (2.4)).

Since A is normal, it follows from [5, p. 893] that Der}(A) is generated
as an A-module by d, d,, d,, d, where d = x,4,, + x,4,, + x,4,,, d, = F, 4,
—-F,d,.,d, =F4, —F, 4, and d,= F, 4, — F, 4,,. Consider the elements
d* dd, d! of Diffi(A). Using Proposition (2.5) it is easily checked that
we have

«d?) = x,4,, + x,4,, + 2x34,,, + 2x,x,4,,,., + 2x4,.,,

edd) =F, 4, + xF.A4,,.., + 2x,F, 4,,,

o(d?) = ad., + 2AF, )4, ,
where a = F,,. F,, — F;F.,. By (4) we can write (F,)* = bx, + b,x} with
b,, b, e A homogeneous and deg (b,) = 2n — 4. By (1) we can write ¢ =
uF,, + vx, + vx, with w,v,v,€e A. Put D = (b, — v)d — ud, — b,d* + d}
e Diff?(A). Then an easy computation shows that

D) = —vxd,, + vxd,, — 2x%bzdze1 - 2x1x2bzde1+e2 + 2x,0,4,,, .

Thus c (D) € x,A for all those a« € V, for which @, = 0. Therefore it fol-
lows from (3) and Lemma (5.1) that there exists D’ e Diff} (A) such that
D = x,D’. We have ¢, (D) = x7'c,.,(D) = — 2x,b,. Let

a = {y e A|36 e Diff2(A) with c,,(3) = 3} .
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Then a is an ideal of A and x,b,ea. Now, we have Diff? (A) = Diff} (4)
-Diffi (A) by assumption. So Diff?(A) = Diff} (A) + Der} (A) Deri(A) by
Lemma (1.3). Therefore, since Der;(A) is generated by d, d,, d,, d,, it
follows from Proposition (2.5) that a is generated by «i, x,F,,, x,F,,, (F.,)},
F,F,, (F,). All these elements are homogeneous and deg((F,,)?) =
deg(F,F,) =deg((F,)") =2n — 2> 2n — 3 = deg(x,b,). It follows that x,b, ¢
(%3, x,F,,, x,F,). Therefore, since x, is a non-zero divisor, b, € (x,, F,,, F.).
Since (F,,)* = byx, + bx}, we get (F,)" e (x,, ©iF,, x}F,). This contradicts
(2), and the theorem is proved.

§6. A remark on the non-reduced case

In proving our results in Sections 3 and 5 we have assumed that A
is reduced. We believe that this condition can be dropped.®> Let us show
this in the case dim(A) = 0. With the notation of Section 2 let r =1,
and omit the subscript 1. Assume that J = Rf is non-zero, proper and
principal. Then A = k[x] = k[X]/(f) and 4 = 59/6X. Put f, = »(5f/oX).

(6.1) ProposiTioN. If Diff} (A) = Diff} (A) Diffl (A) then A is reduced,
hence regular.

Proof. Let
0 — Diff! (4) => Diff? (A) —> Der} (4) —> 0

be the exact sequence of Theorem (2.13). Recall that in this case 6,(D)
= c(D)4. Identify Der;(A) with the ideal a = {d(x)|d € Der;(A)} of A by
sending d € Der; (A) to d(x). Then it follows from Proposition (2.5) that
0, (Der; (A) Der;(A)) = a®. By our assumption and Lemma (1.3) we have
Diff (A) = Diff; (A) + Der;(A) Der; (A). Therefore a = a®. Now, a = {ae
Alof, = 0}. It follows that if f = fi*-.. fi» is the prime factorization of f
with f,, - - -, f, mutually coprime then a = (y(f, - - - f,)). Thus the equality
a = a* implies that f, - - - f,, belongs to the ideal (f,f}--- fi) of R. This is
possible only if ¢ = --- =¢, =1, le., if A is reduced.

NoTE ADDED IN PROOF. It was recently proved by the author jointly
with D. P. Patil that if X is a hypersurface and Diff% (A) = Diff} (A) Diff} (4)
then A is reduced. Thus, in Theorems (3.3) and (5.3) we can drop the
assumption that A be reduced.

® See note added in proof.
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