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Abstract

We obtain the exact ground state and a part of the excitation spec-
trum in one dimension on a line and the exact ground state on a circle
in the case where N particles are interacting via nearest and next-
to-nearest neighbour interactions. Further, using the exact ground
state, we establish a mapping between these N -body problems and
the short-range Dyson models introduced recently to model interme-
diate spectral statistics. Using this mapping we compute the one-
and two-point functions of a related many-body theory and show the
absence of long-range order in the thermodynamic limit. However,
quite remarkably, we prove the existence of an off-diagonal long-range
order in the symmetrized version of the related many-body theory.
Generalization of the models to other root systems is also considered.
Besides, we also generalize the model on the full line to higher dimen-
sions. Finally, we consider a model in two dimensions in which all the
states exhibit novel correlations.
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1 Introduction

In recent years, the Calogero-Sutherland type N -body problems [1, 2] in one
dimension have attracted considerable attention not only because they are
exactly solvable [3] but also due to their relationship with (1+1)-dimensional
conformal field theory, random matrix theory [4] etc. In particular, the
connections between exactly solvable models [5] and random matrix theory
[6] have been very fruitful. For example, by mapping these models to ran-
dom matrices from an orthogonal, unitary or symplectic Gaussian ensemble,
Sutherland [2] was able to obtain all static correlation functions of the corre-
sponding many body theory. The key point of this model is the pairwise long-
range interaction among the N particles. One may add here that the family
consisting of exactly solvable models, related to fully integrable systems, is
quite small [3] and their importance lies in the fact that their small per-
turbations describe wide range of physically interesting situations. Further,
recent developments [7] relating equilibrium statistical mechanics to random
matrix theory owing to non-integrability of dynamical systems has made the
pursuit of unifying seemingly disparate ideas a very important theme. The
results presented in this paper belong to the emerging intersection of several
frontiers like quantum chaos, random matrix theory, many-body theory and
equilibrium statistical mechanics [8].

The universality in level correlations in linear (Gaussian) random ma-
trix ensembles agrees very well with those in chaotic quantum systems [9] as
also in many-body systems like nuclei [6]. On the other hand, random matrix
theory was connected to the world of exactly solvable models when the Brow-
nian motion model was presented by Dyson [10], and later on, by the works
on level dynamics [11]. However, there are dynamical systems which are
neither chaotic nor integrable - the so-called pseudo-integrable systems [12].
It is known that the spectral statistics of such systems are “non-universal
with a universal trend” [13]. In particular, for Aharonov-Bohm billiards, the
level spacing distribution is linear for small spacing and it falls off exponen-
tially for large spacing [14]. Similar features are numerically observed for the
Anderson model in three dimensions at the metal-insulator transition point
[15]. To understand these statistical features, and in the context of random
banded matrices, a new random matrix model (which has been called as
the short-range Dyson model in [16]) was introduced [17, 18] wherein the
energy levels are treated as in the Coulomb gas model with the difference
that only nearest neighbours interact. This new model explains features of
intermediate statistics [16] in some polygonal billiards.

In view of all this it is worth enquiring if one can construct an N -body
problem which is exactly solvable and which is connected to the short-range
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Dyson model (SRDM)? If possible, then using this correspondence one can
hope to calculate the correlation functions of the corresponding many-body
theory and see if the system exhibits long-range order and/or off-diagonal
long-range order.

The purpose of this paper is to present two such models in one dimension,
one on a line and the other on a circle. We obtain the exact ground state
and a part of the excitation spectrum on a line and the exact ground state
on a circle in case the N particles are interacting via nearest and next-to-
nearest neighbour interactions [19]. Further, in both the cases we show how
the norm of the ground state wave function is related to the joint probability
density function of the eigenvalues of short-range Dyson models. Using this
mapping, we obtain one- and two-point functions of a related many-body
theory in the thermodynamic limit and prove the absence of long-range order
in the system. However, quite remarkably, we prove the existence of an off-
diagonal long-range order in the symmetrized version of the corresponding
many-body theory [20].

We also extend this work in several different directions. For example,
we consider an N -body problem with nearest and next-to-nearest neighbour
interaction in an arbitrary number of dimensions D and show that the ground
state and a part of the excitation spectrum can still be obtained analytically.
We also obtain a part of the bound state spectrum in one dimension (both on
a full line and on a circle) by replacing the root system AN−1 by BCN , DN

etc. Besides, we also consider a model in two dimensions for which novel
correlations are present in the ground as well as the excited states.

The plan of the paper is the following. In Sec.II we consider an N -body
problem on a line characterized by the Hamiltonian (throughout this paper
we shall use h̄ = m = 1)

H = −1

2

N
∑

i=1

∂2

∂x2
i

+ g
N−1
∑

i=1

1

(xi − xi+1)2
− G

N−1
∑

i=2

1

(xi−1 − xi)(xi − xi+1)

+ V

(

N
∑

i=1

x2
i

)

(1)

with G ≥ 0 while g > −1/4 to prevent the collapse that a more attractive
inversely quadratic potential would cause. We show that the ground state
and at least a part of the excitation spectrum can be obtained if

g = β(β − 1), G = β2, V =
ω2

2

N
∑

i=1

x2
i . (2)

Note that with the above restriction on G and g, β ≥ 1/2. Further we also
point out the connection between the norm of the ground state wave function
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and the joint probability distribution function for eigenvalues in SRDM. In
Sec. III we consider another N -body problem, but this time on a circle
characterized by the Hamiltonian

H = −1

2

N
∑

i=1

∂2

∂x2
i

+ g
π2

L2

N
∑

i=1

1

sin2[ π
L
(xi − xi+1)]

−Gπ
2

L2

N
∑

i=1

cot
[

(xi−1 − xi)
π

L

]

cot
[

(xi − xi+1)
π

L

]

, (xN+1 = x1) , (3)

(where again G ≥ 0 while g > −1/4) and obtain the exact ground state in
case g and G are again as related by eq. (2). Further, we also point out the
connection between the norm of the ground state wave function and the joint
probability distribution function for eigenvalues of short-range circular Dyson
model (SRCDM). Using this connection, in Secs. IV and V we obtain several
exact results for the corresponding many-body theory in the thermodynamic
limit. In particular, in Sec. IV we calculate the two-particle correlation
functions of a related many-body theory in the thermodynamic limit and
prove the absence of long-range order in the system. In Sec. V we consider
the symmetrized version of the model considered in Sec. III and show the
existence of an off-diagonal long-range order in the bosonic system in the
thermodynamic limit. In Sec. VI we consider the BCN generalization of
the model (1) and obtain the exact ground state of the system. In Sec. VII
we consider the BCN generalization of the model (3) and obtain the exact
ground state of the system. In Sec. VIII we consider a generalization of the
model (1) to higher dimensions and obtain the ground state and a part of
the excitation spectrum. In Sec. IX we consider a variant of the model (1) in
two dimensions and obtain the ground state as well a class of excited states
all of which have a novel correlation built into them. Finally, in Sec. X we
summarize the results obtained and point out several open questions.

2 N-body problem in one dimension on a line

Let us start from the Hamiltonian (1) and restrict our attention to the sector
of configuration space corresponding to a definite ordering of the particles,
say

xi ≥ xi+1 , i = 1, 2, ..., N − 1 . (4)

On using the ansatz

ψ = φ
N−1
∏

i=1

(xi − xi+1)
β , (5)
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in the corresponding Schrödinger equation Hψ = Eψ, it is easily shown that,
provided g and G are related to β by eq. (2), φ satisfies the equation

− 1

2

N
∑

i=1

∂2φ

∂x2
i

− β
N−1
∑

i=1

1

(xi − xi+1)

(

∂φ

∂xi
− ∂φ

∂xi+1

)

+ (V − E)φ = 0 . (6)

Following Calogero we start from φ as given by eq. (6) and assume that

φ = Pk(x)Φ(r) . (7)

where r2 =
∑N

i=1 x
2
i . The function, Φ satisfies the equation

Φ′′(r) + [N + 2k − 1 + 2(N − 1)β]
1

r
Φ′(r) + 2[E − V (r)]Φ(r) = 0 , (8)

provided Pk(x) is a homogeneous polynomial of degree k (k = 0, 1, 2, ...) in
the particle-coordinates and satisfies generalized Laplace equation

[ N
∑

i=1

∂2

∂x2
i

+ 2β
N−1
∑

i=1

1

(xi − xi+1)

(

∂

∂xi

− ∂

∂xi+1

)

]

Pk(x) = 0 . (9)

We shall discuss few solutions of the Laplace equation (9) below.
Let us now specialize to the case of the oscillator potential i.e. V (r) =

ω2

2
r2. In this case, eq. (8) is the well known radial equation for the oscillator

problem in more than one dimension and its solution is

Φ(r) = exp(−ωr2/2)La
n(ωr2), n = 0, 1, 2, .... (10)

where La
n(x) is the associated Laguerre polynomial while the energy eigen-

values are given by

En =
[

2n + k +
N

2
+ (N − 1)β

]

ω = E0 + (2n+ k)ω , (11)

with a = E
ω
− 2n− 1. Few comments are in order at this stage.

1. For large N , the energy E is proportional to N so that

lim
N→∞

E

N
=
(

β +
1

2

)

ω , (12)

i.e., the system has a good thermodynamic limit. In contrast, notice
that the long-ranged Calogero model does not have a good thermody-
namic limit since in that case for large N , E/N goes like N .

2. The spectrum can be interpreted as due to noninteracting bosons (or
fermions) plus (n, k)- independent (but N -dependent) shift.
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The ground state eigenvalue and eigenfunction of the model is thus given
by (n = k = 0)

E0 =
[

(N − 1)β +
N

2

]

ω , (13)

ψ0 = exp

(

−ω
2

N
∑

i=1

x2
i

)

N−1
∏

i=1

(xi − xi+1)
β . (14)

A neat way of proving that we have indeed obtained the ground state can
be given using the method of supersymmetric quantum mechanics [21]. To
this end, we define the operators

Qi =
d

dxi
+ ωxi + β

[

1

(xi−1 − xi)
− 1

(xi − xi+1)

]

, (i = 2, 3, ..., N − 1) ,

Q1 =
d

dx1
+ ωx1 − β

1

x1 − x2
,

QN =
d

dxN
+ ωxN + β

1

xN−1 − xN
, (15)

and their Hermitian conjugates Q+
i . It is easy to see that the Q′s annihilate

the ground state as given by eq. (14). Further, the Hamiltonian (1) can be
written in terms of these operators as

H − E0 =
1

2

N
∑

i=1

Q+
i Qi , (16)

where E0 is as given by eq. (13). Now since the operator on the right hand
side is nonnegative and annihilates the ground state wavefunction as given
by eq. (14), hence E0 as given by eq. (13) must be the ground state energy
of the system.

On rewriting ψ0 in terms of a new variable

yi ≡
√

ω

β
xi , (17)

one finds that the probability distribution for N particles is given by

ψ2
0 = C exp

(

−β
N
∑

i=1

y2
i

)

N−1
∏

i=1

(yi − yi+1)
2β (18)

where C is the normalization constant. We now observe that for β = 1, 2, 4,
this ψ2 can be identified with the joint probability density function for the
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eigenvalues of SRDM with Gaussian orthogonal, unitary or symplectic en-
sembles respectively. We can therefore borrow the well-known results for
these ensembles [18, 17] and obtain exact results about a many-body theory
defined in the limit, N → ∞, ω → 0, Nω = finite which defines the density
of the system. For example, as N → ∞, the one-point function tends to a
Gaussian for any β [17] and is given by

R1(x) =
N√
2πσ2

exp (− x2

2σ2
) , (19)

where σ2 = (β+1)
ω

. Other results about the many-body theory will be dis-
cussed in Secs. IV and V.

Finally, let us discuss the polynomial solutions to the Laplace equation
(9). So far, we have been able to obtain solutions in the following cases:

(i) k = 2, N ≥ 2 (ii)k = 3, N ≥ 3 (iii)k = 4, N ≥ 4 (iv)k = 5, N ≥
5 (v)k = 6, N ≥ 6.

Besides we have also obtained solutions for k = 4, 5, 6 in case N = 3,
and for k = 5, 6 in case N = 4. We find that for k ≥ 3, the demand
that there be no pole in Pk(x) alone does not require Pk(x) to be completely
symmetrical polynomial. However, for k = 3, 4 and N = 3, 4 it turns out that
solution to Laplace eq. (9) exists only if Pk(x) is a completely symmetric
polynomial. We suspect that this may be true in general. On assuming
completely symmetric Pk(x) we find that in all the above cases we have a
one-parameter family of solutions. In particular the various solutions are as
follows (it is understood that the particle indices i, j, k, ... are always unequal
unless mentioned otherwise).

(i) k = 2, N ≥ 2

Pk(x) = a
N
∑

i=1

x2
i + b

N
∑

i<j

xixj , (20)

with β given by

β =
aN

(N − 1)(b− 2a)
. (21)

(ii) k = 3, N ≥ 3

Pk(x) = a
N
∑

i=1

x3
i + b

N
∑

i,j=1

x2
ixj + c

N
∑

i<j<k

xixjxk , (22)

where c = 3(b− a) and β is given by

β =
3a+ (N − 1)b

(N − 1)(b− 3a)
. (23)
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(iii) k = 4, N ≥ 4

Pk(x) = a
N
∑

i=1

x4
i + b

N
∑

i,j=1

x3
ixj + c

N
∑

i<j

x2
ix

2
j

+d
N
∑

i,j<k

x2
ixjxk + e

N
∑

i<j<k<l

xixjxkxl , (24)

where

e = 6(c− 2a) , d = b+ 2c− 4a ,

(N + 4)b+ 2(N − 2)c− 4(N − 2)a+ 2(N − 1)(2a+ b− c)β = 0 ,(25)

and β is given by

β =
6a+ (N − 1)c

(N − 1)(b− 4a)
. (26)

(iv) k = 5, N ≥ 5

Pk(x) = a
N
∑

i=1

x5
i + b

N
∑

i,j=1

x4
ixj + c

N
∑

i,j=1

x3
ix

2
j + d

N
∑

i,j<k

x3
ixjxk

+e
N
∑

k,i<j

x2
ix

2
jxk + f

N
∑

i,j<k<l

x2
ixjxkxl + g

N
∑

i<j<k<l<m

xixjxkxlxm , (27)

where

e = 5c− 5a− 3b , d = b+ 2c− 5a ,

f = 12c− 15a− 9b , g = 30(c− a− b) ,

(5N − 7)c− 3(N − 4)b− 5(N − 2)a

+(N − 1)(5a+ 3b− 2c)β = 0 , (28)

and β is given by

β =
10a+ (N − 1)c

(N − 1)(b− 5a)
. (29)

(iv) k = 6, N ≥ 6
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Pk(x) = a
N
∑

i=1

x6
i + b

N
∑

i,j=1

x5
ixj + c

N
∑

i,j=1

x4
ix

2
j + d

N
∑

i,j<k

x4
ixjxk + e

N
∑

i<j

x3
ix

3
j

+f
N
∑

ij,k=1

x3
ix

2
jxk + g

N
∑

i,j<k<l

x3
ixjxkxl + h

N
∑

i<j<k

x2
ix

2
jx

2
k + p

N
∑

i<j,<k<l

x2
ix

2
jxkxl

+q
N
∑

i,j<k<l<m

x2
ixjxkxlxm + r

N
∑

i<j<k<l<m<n

xixjxkxlxmxn , (30)

where

3e = 4b− 2c+ 6a + f , d = b+ 2c− 6a , g = 2f + 2c− 4b− 6a ,

h = 2f + 9a− 4b− c , p = 5f + 18a− 8b− 6c ,

q = 6(2f + 9a− 4b− 3c) , r = 30(f + 6a− 2b− 2c) ,

(5N − 9)f − 2(4N − 15)b+ 18(N − 5)a− 6(N − 5)c

+(N − 1)(8b+ 6c− 2f − 18a)β = 0 ,

14b− 2c+ 6a+ (N − 1)f + 2(N − 1)(3a+ 2b− c)β = 0 , (31)

and β is given by

β =
15a+ (N − 1)c

(N − 1)(b− 6a)
. (32)

It would be nice if one can find solutions for higher values of k and further
check if solutions exist (if at all) only if Pk(x) is a completely symmetric
polynomial. While we are unable to prove it, we suspect that, subject to the
solutions of the Laplace equation for higher k, we have obtained the complete
spectrum for this problem.

Finally it is worth enquiring if the bound state spectrum of the Hamilto-
nian (1) can also be obtained in case the oscillator potential is replaced by
any other potential. It turns out that as in the Calogero case [22], in this
case also the answer to the question is in affirmative. In particular, if instead
the N particles are interacting via the N -body potential as given by

V (x1, x2, ..., xN ) = −α
N
∑

i=1

1
√

∑

i x
2
i

, (33)

then also (most likely the entire) discrete spectrum can be obtained. This is
because, after using the ansatz (7), eq. (8) is essentially the radial Schrödinger
equation for an attractive Coulomb potential and it is well known that the
only two problems which are analytically solvable for all partial waves are

10



the Coulomb and the oscillator potentials. In particular the solution of (8)
is then given by (note r2 =

∑N
i=1 x

2
i )

Φ(r) = exp(−
√

2 | E |r)Lb
n(2

√

2 | E |r) , (34)

and the corresponding energy eigenvalues are

En,k = − α2

2
[

n+ k + N
2
− 1 + (N − 1)β

]2 , (35)

when b = N+2k−3+2(N−1)β. It may be noted that whereas in the oscillator
case the spectrum is linear in β, it is (−E)−1/2 which is linear in β in the
case of the Coulomb-like potential. Secondly, as in any oscillator (Coulomb)
problem, the energy depends on n and k only through the combination 2n+k
(n + k).

Is there any underlying reason why one is able to obtain the discrete
spectrum for the N -body problem with either the oscillator or the Coulomb-
like potential (33) ? Following [23] it is easily shown that in both the cases
one can write down an underlying SU(1, 1) algebra. Further, since the many-
body potential W in (1) is a homogeneous function of the coordinates of
degree -2, i.e. it satisfies

N
∑

l=1

xl
∂W

∂xl

= −2W , (36)

hence, following the arguments of [23], one can also establish a simple alge-
braic relationship between the energy eigenstates of the N -body problem (1)
with the Coulomb-like potential (33) and the harmonic oscillator potential.

It may be noted that the Hamiltonian (1) is not completely symmetric in
the sense that whereas all other particles have two neighbours, particle 1 and
N have only one neighbour. Can one make it symmetric so that all particles
will be treated on the same footing? One possible way is to add some extra
terms in H . For example, consider

H1 = H +H ′ , (37)

where H is as given by eq. (1) while H ′ has the form

H ′ =
g

(xN − x1)2
−G

[

1

(xN − x1)(x1 − x2)
+

1

(xN−1 − xN )(xN − x1)

]

.(38)

Clearly, by adding these extra terms, the problem has become cyclic invariant
for any N while for N = 3 it is identical to the Calogero problem and hence
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is in fact completely symmetric under the interchange of any two of the three
particle coordinates. It may be noted that in the thermodynamic limit, these
extra terms are irrelevant.

We can again start from the ansatz (5) (but with N−1 replaced by N) in
the Schrödinger equation H1ψ = Eψ and using eq. (2) we find that φ again
satisfies eq. (6) but with N − 1 in the second term being replaced by N . On
further using the substitution as given by eq. (7) one finds that Φ satisfies
eq. (8) but with the coefficient of the 2β term being N instead of N − 1
while Pk(x) is again a homogeneous polynomial of degree k (k=0,1,2,...) in
the particle coordinates, which now satisfies instead of eq. (9)

[ N
∑

i=1

∂2

∂x2
i

+ 2β
N
∑

i=1

1

(xi − xi+1)

(

∂

∂xi

− ∂

∂xi+1

)

]

Pk(x) = 0 , (39)

with xN+1 = x1.
How do the solutions to the Laplace eqs. (9) and (39) compare? For

N = 3, eq. (39) is identical to that of Calogero and for this case Calogero
has already obtained the solutions for any k. For N > 3 and for k ≥ 3,
the demand that there be no pole in Pk(x) alone does not require Pk(x) to
be completely symmetrical polynomial. However, for k = 3, 4 and N = 4
it again turns out that solution to Laplace eq. (39) exists only if Pk(x)
is a completely symmetric polynomial. We suspect that this may be true
in general. On assuming completely symmetric Pk(x) we have been able to
obtain a two-parameter family of solutions in case k=3,4,5,6 and N ≥ k (note
that for eq. (9) we have obtained only one-parameter family of solutions). As
an illustration, the solution for N ≥ 4 and k = 4 is given by (it is understood
that the particle indices i, j, k, ... are always unequal)

Pk(x) = a
N
∑

i=1

x4
i + b

N
∑

i,j=1

x3
ixj + c

N
∑

i<j

x2
ix

2
j

+d
N
∑

i,j<k

x2
ixjxk + e

N
∑

i<j<k<l

xixjxkxl , (40)

where

e = 2(2a+ 2d− 2b− c) , (41)

6a+ (N − 1)c+ β[8a− 2b+ (2c− d)(N − 2)] = 0 , (42)

6b+(N−2)d+2β[2(N−1)b−2(N−4)a+(N−4)c−2(N−1)d] = 0 .(43)

Solution to the new Φ equation can be easily written down in case V (r) =
ω2r2

2
or if it is given by eq. (33). For example, it is easily checked that in the
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former case the solution is again given by eq. (11) but the energy eigenvalues
are now given by

En,k = [2n+ k +
N

2
+Nβ]ω = E0 + (2n+ k)ω . (44)

Similarly, in the later case, the solution is as given by eq. (35) except that
in the term containing β, N − 1 must be replaced by N .

Apart from these two potentials, where we have obtained the entire bound
state spectrum, there are several other potentials which are quasi-exactly
solvable. For example, for the potential

V
(

∑

x2
i

)

= A
N
∑

i=1

x2
i − B

(

N
∑

i=1

x2
i

)2

+ C

(

N
∑

i=1

x2
i

)3

, (45)

it is easily shown that the ground state energy and eigenfunctions are

E = − B

4
√
C

[N + 2(N − 1)β] , (46)

ψ0 = exp
[

−
√
C

4
(

N
∑

i=1

x2
i )

2 +
B

4
√
C

N
∑

i=1

x2
i

]N−1
∏

i=1

(xi − xi+1)
β , (47)

provided A,B,C are related by

A =
B2

4C
− [N + 2 + 2(N − 1)β]

√
C . (48)

It is worth enquiring if the probability distribution for N particles corre-
sponding to (47) can be mapped to some matrix model. In this context let
us point out that the corresponding (long-ranged) Calogero problem was in
fact mapped to the matrix model corresponding to branched polymers [24].
So far as we are aware of, answer to this question is not known in our case.

3 N-body problem in one-dimension with pe-

riodic boundary condition

Soon after the seminal papers of Calogero [1] and Sutherland [2] where they
considered an N -body problem on full line, Sutherland [25] also considered
an N -body problem with long-ranged interaction and with periodic bound-
ary condition. He obtained the exact ground state energy and showed that
the corresponding N -particle probability density function is related to the
random matrix with circular ensemble [25]. Using the known results for the
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random matrix theory [6], he was able to obtain the static correlation func-
tions of the corresponding many body theory. It is then natural to enquire
if one can also obtain the exact ground state of an N -body problem with
nearest and next-to-nearest neighbour interaction with periodic boundary
condition (PBC). Further, one would like to enquire if the corresponding N -
particle probability density can be mapped to some known matrix model.
The hope is that in this case one may be able to obtain the correlation func-
tions of a related many-body theory in the thermodynamic limit. We now
show that the answer to the question is in the affirmative.

Let us start from the Hamiltonian (3). We wish to find the ground state
of the system subject to the periodic boundary condition (PBC)

ψ(x1, ..., xi + L, ..., xN ) = ψ(x1, ..., xi, ..., xN ). (49)

For this, we start with a trial wave function of the form

Ψ0 =
N
∏

i=1

sinβ
[

π

L
(xi − xi+1)

]

, (xN+1 = x1) . (50)

In this section, we restrict the coordinates xi to the sector L ≥ x1 ≥ x2 ≥
... ≥ xN ≥ 0, so that eq. (50) makes sense even for noninteger β. The exten-
sion to the full configuration space will be made in Sec. 5. On substituting
eq. (50) in the Schrödinger equation for the Hamiltonian (3), we find that it
is indeed a solution provided g and G are again related to β by eq. (2). The
corresponding ground state energy turns out to be

E0 =
Nβ2π2

L2
. (51)

The fact that this is indeed the ground state energy can be neatly proved
by using the operators [34]

Qi =
d

dxi
+ β

π

L

[

cot(xi−1 − xi) − cot(xi − xi+1)
]

, (52)

and their Hermitian conjugates Q+
i . It is easy to see that the Q′s annihilate

the ground state as given by eq. (50). The Hamiltonian (3) can be rewritten
in terms of these operators as

H − E0 =
1

2

∑

i

Q+
i Qi , (53)

where E0 is as given by eq. (51). Hence E0 must be the ground state energy
of the system.
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Thus unlike the Calogero-Sutherland type of models, our models (both
of Sec. II and here) have good thermodynamic limit, i.e., the ground state
energy per particle (= E0/N) is finite as N → ∞.

Having obtained the exact ground state, it is natural to enquire if the
corresponding N -particle probability density can be mapped to the joint
probability distribution of some SRCDM so that we can obtain some exact
results for the corresponding many-body theory. It turns out that indeed the
square of the ground-state wave function is related to the joint probability
distribution function for the SRCDM from where we conclude that the den-
sity is a constant if 0 ≤ x ≤ N

L
, and zero outside. Other exact results for the

many-body theory will be discussed in the next two sections.

4 Some exact results for the many-body prob-

lem

The square of the ground-state wavefunction of the many-body problem in-
troduced in Sec.II (Sec.III) can be identified with the joint probability dis-
tribution function of eigenvalues of the SRDM (SRCDM). Using SRCDM,
Pandey [17] and Bogomolny et al. [18] have shown that for any β, the two-
point correlation function has the form

R
(β)
2 (s) =

∞
∑

n=1

P (β)(n, s) , (54)

where s is the separation of two levels (or distance between two particles in
the many-body theory considered here) and

P (β)(n, s) =
(β + 1)n(β+1)

Γ[n(β + 1)]
sn(β+1)−1e−(β+1)s . (55)

¿From this expression it is not very easy to compute R2(s) for arbitrary β.
However, it is easy to obtain the Laplace transform of R2(s) for any β. In
particular, if

g2(t) =
∫ ∞

0
R2(s)e

−tsds , (56)

then

g2(t) =
∞
∑

n=1

g(n, t) , (57)

where g(n, t) is the Laplace transform of P (n, s), i.e.,

g(n, t) =
∫ ∞

0
P (n, s)e−tsds . (58)
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On using P (β)(n, s) as given by eq. (55) in eq. (58) it is easily shown that

g(β)(n, t) =

(

β + 1

t+ β + 1

)(β+1)n

. (59)

Hence

g
(β)
2 (t) =

∞
∑

n=1

g(β)(n, t) =
1

( t+β+1
β+1

)β+1 − 1
, (60)

from which one has to compute R
(β)
2 (s) by the Laplace inversion.

For integer β, it is possible to perform the Laplace inversion by making
use of the fact that

1

xn − 1
=

1

n

n−1
∑

k=0

e2ikπ/n

x− e2ikπ/n
, (61)

yielding

R
(β)
2 (s) =

β
∑

k=0

Ωke(β+1)s(Ωk−1) (62)

where

Ω = e2πi/(β+1) . (63)

For β = 1, which corresponds to the orthogonal ensemble, the result is
already known [17, 18] : R

(1)
2 (s) = 1 − e−4s.

It is interesting to mention that R
(1)
2 (s) agrees very well with some of

the pseudo-integrable billiards (e.g., the π
3
-rhombus billiard). It is important

here to note that for rhombus billiards [16], the Hamiltonian matrix has ele-
ments which fall in their magnitude away from the principal diagonal. Thus,
beyond a certain bandwidth, the elements are insignificant and the matrix is
effectively banded. Immediately then, the results of banded matrices become
applicable. Although there seems to be good agreement of the results from
this random matrix theory as shown in [16, 18], in [16] it is also shown that

there are other polygonal billiards for which R
(1)
2 (s) is not an appropriate

correlator. It is possible that for different bandwidths, and, by an inclusion
of interactions beyond nearest neighbours in the short-range Dyson model,
a family of random matrices result. This may, eventually, explain the entire
family of systems exhibiting intermediate spectral statistics.

Coming back to the two-point correlation function, depending on if β is
an odd or an even integer, R2(s), as given by eq. (62), can be written in
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a closed form which shows that R2(s) is indeed real and further, it clearly
exhibits oscillations for large s. In particular, it is easily shown that

R2(β = 2p+ 1, s) = 1 − e−2(2p+2)s + 2e−(2p+2)s
p
∑

m=1

e(2p+2)s cos( mπ
p+1

)

cos
[

mπ

p+ 1
+ (2p+ 2)s sin(

mπ

p+ 1
)
]

, (64)

R2(β = 2p, s) = 1 + 2e−(2p+1)s
p
∑

m=1

e(2p+1)s cos( 2mπ
2p+1

)

cos
[

2mπ

2p+ 1
+ (2p+ 1)s sin(

2mπ

2p+ 1
)
]

. (65)

For illustration, we give below explicit expressions for β = 2, 3, 4

R
(2)
2 (s) = 1 − 2e−

9s
2 cos

(

3
√

3s

2
− π

3

)

;

R
(3)
2 (s) = 1 − e−8s − 2e−4s sin(4s);

R
(4)
2 (s) = 1 + 2e5s(−1+cos(2π/5)) cos

[

2π

5
+ 5s sin

(

2π

5

)]

+ 2e5s(−1+cos(4π/5)) cos
[

4π

5
+ 5s sin

(

4π

5

)]

. (66)

In Fig. 1, we have plotted R
(β)
2 (s) as a function of s for β = 1, 2, 3, 4.

These results show that, for integer β, there is no long-range order in the
corresponding many-body theory.

Similarly, if β is half-integral, i.e., β = (2n+ 1)/2 then it is easily shown
that

R
((2n+1)/2)
2 (s) =

1

2

2n
∑

k=0

Ω2ke−
2n+1

2
s(1−Ω2k)

[

1 + erf
(

√

(2n+ 1)s

2
Ωk
)]

, (67)

where Ω is as given by eq. (63).
For arbitrary β, however, we are unable to perform the Laplace inversion

and hence we do not have a closed expression for R2(s). However, one can
numerically calculate it by using eqs. (54) and (55). In Fig. 2, we have

plotted R
(β)
2 (s) as a function of s for β = 1, 4/3, 3/2, 5/3, 2, 7/3, 5/2. From

this figure it is clear that even for fractional β, there is no long-range order.
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5 Off-diagonal long-range order

So far, nothing has been specified regarding the statistical character of the
particles involved in the N-body problem of Sec. III. We now do that by first
symmetrizing the Hamiltonian, that is by rewriting it as

H = −1

2

N
∑

i=1

∂2

∂x2
i

+
∑

PεSN

Θ(xP (1) − xP (2))...Θ(xP (N−1) − xP (N))W (xP (1), ..., xP (N)) ,(68)

where θ is the step function and W (x1, ..., xN ) is the N-body potential of eq.
(3). Next, relying on the solution given in eq. (50), we introduce the (not
normalized) wave function:

ψN (x1, ..., xN) = εPφN(xP (1), ..., xP (N)) , (69)

where P is the permutation in SN such that 1 > xP (1) > xP (2) > ... > xP (N) >
0, εP = 1(εP = sign(P )) in the N-boson (N-fermion) case and

φN(x1, ..., xN) =
N
∏

n=1

| sinπ(xn − xn+1) |β ; (xN+1 = x1) , (70)

(we have set the scale factor L equal to 1). Primitively, the function (69) is
defined on the hypercube [0, 1]N . The following properties of ψN are easily
verified, provided that β ≥ 2:

1. In the bosonic case, ψN can be continued to a multi-periodic function
in the whole space RN (or equivalently on the torus TN):

ψN (x1, ..., xi+1, ..., xN) = ψN (x1, ..., xi, ..., xN) ; (i = 1, ..., N) ,(71)

which belongs to C2 (i.e. is twice continuously differentiable). Owing
to this property and the results of Sec.3, ψN then obeys the Schrödinger
equation (with Hamiltonian (3) and energy as given by eq. (51)) not
only in the sector x1 > x2 > ... > xN but every where. Thus, ψN

describes the ground state wave function of the N-boson system. More-
over, it is translation invariant (on RN ):

ψN (x1 +a, x2 +a, ..., xN +a) = ψN(x1, x2, ..., xN) ; V a ε R .(72)
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2. In the fermionic case, the continuation by periodicity is possible only
for odd N , in which case eq. (71) still holds with ψN ε C2. For even N
on the contrary, enforcing the periodicity (71) leads to a discontinuous
function ψN , so that the Schrödinger equation is no longer satisfied on
the configuration space TN .

Therefore, in the following we shall implicitly restrict ourselves to odd
values of N when treating fermions. The translation invariance (72)
then remains valid.

We are interested in the one-particle reduced density matrix, given by

ρN (x−x′) =
N

CN

∫ 1

0
dx1...

∫ 1

0
dxN−1ψN (x1, ..., xN−1, x)ψN (x1, ..., xN−1, x

′) ,(73)

where CN stands for the squared norm of the wave function:

CN =
∫ 1

0
dx1...

∫ 1

0
dxN | ψN (x1, ..., xN) |2 . (74)

That the R.H.S. of eq. (73) defines a (periodic) function of (x − x′) is an
easy consequence of eqs. (71) and (72). The normalization of ρN is such that
ρN (0) = N , the particle density. Further, the function ρN(ξ) is manifestly of
positive type on the U(1) group, which implies that its Fourier coefficients,

ρ
(n)
N =

∫ 1

0
dξe−2iπnξρN(ξ) ; (n = 0,±1,±2, ...) , (75)

are non-negative (Bochner’s theorem). In fact, this directly appears if one
writes their explicit expression

ρ
(n)
N =

N

CN

∫ 1

0
dx1...

∫ 1

0
dxN−1ψN (x1, ..., xN−1, 0) X

X
∫ 1

0
dxe2iπnxψN(x1, ..., xN−1, x) , (76)

in the form (obtained by using the periodicity property):

ρ
(n)
N =

N

CN

∫ 1

0
dx1...

∫ 1

0
dxN−1 |

∫ 1

0
dxe2iπnxψN(x1, ..., xN−1, x) |2 . (77)

In the bosonic case, since the function ρN is not only of positive type but
also positive (like ψN ), eq. (75) shows us that

ρ
(0)
N ≥ ρ

(n)
N ; (n = ±1,±2, ...) . (78)

In the fermionic case, eq. (78) is not necessarily true (because ψN changes
sign on TN) and it is not an easy matter to determine the largest Fourier
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coefficient. Notice that the coefficients ρ
(n)
N , which physically represent the

expectation values of the number of particles having momentum kn = 2πn in
the ground state, are nothing but the eigenvalues of the one-particle reduced
density matrix (diagonal in the kn representation). According to the Onsager-
Penrose criterion [26], no condensation can occur in the system (at least for
Bose particles) if the largest of these eigenvalues is not an extensive quantity
in the thermodynamic limit, that is, if

lim
N→∞

ρ
(0)
N

N
= 0 . (79)

For Fermi particles, this criterion is not sufficient, and one has to look also at
the largest eigenvalue of the two-particle reduced density matrix [28]. Since
we are presently unable to determine the largest eigenvalue of ρN itself in the
fermionic case, we shall not discuss extensively the latter here. Nevertheless,
we shall look for the large N behaviour of ρ

(0)
N for bosons and fermions at a

time, as this does not require much extra work and can give some indications
in the fermionic case too. Let us write:

ρ
(0)
N

N
=
AN

CN
, (80)

where CN is given by eq. (74) and

AN =
∫ 1

0
dx1...

∫ 1

0
dxN−1ψN (x1, ..., xN−1, 0)

∫ 1

0
dxψN (x1, ..., xN−1, x) ,(81)

(the expression (76) of ρ
(0)
N is more convenient than (77) for our purpose).

Because of the special form (69)-(70) of the wave function, the computation
of the squared norm CN is already not a trivial task, in sharp contrast to
the case of N free, impenetrable particles. As a consequence, the (mainly
algebraic) method introduced long ago by Lenard [27] to deal with the latter
case does not apply here, and we have to resort to another device. For
conciseness, we introduce the notation:

S(xn − xn−1)= | sin π(xn − xn+1) |β , (82)

and define:

S2(△) =
∫ △

0
dxS(x)S(△− x) ; (0 ≤ △ ≤ 1) . (83)

Our starting point will be the following representations of CN and AN :

CN = (N − 1)!
1

2π

∫ ∞

−∞
dxe−ixF̃ (x)N , (84)
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AN = (N − 1)!
1

2π

∫ ∞

−∞
dxe−ixF̃ (x)N−3

[

F̃ (x)G̃(x) + ηNH̃(x)2
]

, (85)

where

F̃ (x) =
∫ 1

0
d△ei△xS(△)2 ,

G̃(x) =
∫ 1

0
d△ei△xS2(△)2 ,

H̃(x) =
∫ 1

0
d△ei△xS(△)S2(△)2 , (86)

and

ηN =
(N − 2) for bosons
−1 for fermions .

(87)

The representations (84)-(87) follow from the convolution structure of the
expressions (74) and (81) of CN and AN , when written in terms of appropriate
variables. Their proof is given in the Appendix. Our aim is to extract from
them the large N behaviour of CN and AN . Their form is especially suited
for that purpose, because the integrands in eqs. (84) and (85) are entire
functions, as polynomial combinations of Fourier transforms of functions with
compact support (eq. (86)). Indeed, we are then allowed to, first, shift the
integration path and then apply the residue theorem to meromorphic pieces
of the integrands. However, it turns out that the calculations needed for
arbitrary (integer) values of β are quite cumbersome. So, in order to keep
the argument clear enough, we shall content ourselves to present below these
calculations in the simplest case, namely β = 1 (recall that, strictly speaking,
this value is not allowed), being understood that similar results are obtained
for all integers β ≥ 2.

For β = 1, S(△) = sin π△, and eq. (86) gives, after reductions:

F̃ (x) =
2π2

i

1 − eix

x(x2 − 4π2)
,

G̃(x) =
4π4

i

5x2 − 4π2

x3(x2 − 4π2)3
+ eixR(−1)(x) ,

H̃(x) = −4π3

i

1

x(x2 − 4π2)2
+ eixR(−2)(x) , (88)

where R(n)(x) is a generic notation for rational functions behaving like xn

when x → ∞, and the precise form of which will be eventually of no im-
portance. This produces, for the functions to be integrated in eqs. (84) and
(85):

F̃ (x)N = (
2π2

i
)N
[

1

[x(x2 − 4π2)]N
+

N
∑

n=1

einxR(−3N)
n (x)

]

, (89)
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F̃ (x)N−3[F̃ (x)G̃(x) + ηNH̃(x)2]

= i

(

2π2

i

)N {
(5 + 2ηN)x2 − 4π2

[x(x2 − 4π2)]N+1
+

N+1
∑

n=1

einxR(−3N−1)
n (x)

}

. (90)

Let us stress again that these functions, when analytically continued, are
holomorphic in the whole complex plane (the poles appearing in the first
term are exactly canceled by the remaining ones).

We consider first CN , now given by

CN = (N−1)!

(

2π2

i

)N
1

2π

∫ ∞

−∞
dxe−ix

{

1

[x(x2 − 4π2)]N
+

N
∑

n=1

einxR(−3N)
n (x)

}

.(91)

Since the function within the curly bracket is an entire one, we can shift the
integration path to I ≡ {z = x+ ia | x ε R}. Let us choose a > 0. Then,
by Cauchy theorem

∫

I
dze−iz

N
∑

n=1

einzR(−3N)
n (z) = 0 . (92)

Indeed, the integrand is holomorphic above I and is bounded there by const.
| z |−3N , which allows us to close the integration path at infinity in the upper
complex plane. We end up with

CN = (N − 1)!

(

2π2

i

)N
1

2π

∫

I
dz

e−iz

zN (z2 − 4π2)N
. (93)

Similarly, we are allowed to close the integration path at infinity in eq. (93),
but this time in the lower complex plane. The integrand has now poles at
z = 0,±2π, and applying the residue theorem leads to explicit expressions
for CN . Unfortunately, these expressions turn out to appear as (finite) sums
with alternating signs, the terms of which become very close to each other for
large N . They are therefore useless for determining the asymptotic behaviour
of CN , and we have to proceed differently. Let us write

∫

I dz
e−iz

zN (z2−4π2)N = 1
(N−1)!

dN−1

dαN−1 |α=4π2

∫

I dz
e−iz

zN (z2−α)

= −2iπ
(N−1)!

dN−1

dαN−1 |α=4π2 [R+(α) +R−(α) +R0(α)] , (94)

where R±(α) and R0(α) are the residues of the last integrand at z = ±√
α

and z = 0 respectively. They are readily computed, assuming first that
N = 2M + 1 is odd:

R+(α) +R−(α) =
cos

√
α

αM+1
=

∞
∑

r=0

(−1)r

(2r)!
αr−M−1 ,

R0(α) = −
M
∑

r=0

(−1)r

(2r)!
αr−M−1 . (95)
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Hence

R+(α) +R−(α) +R0(α) = (−1)M+1
∞
∑

s=0

(−1)s

(2M + 2s+ 2)!
αs (96)

Using eqs. (93), (94) and (96) we then obtain

CN =

(

2π2

i

)N

(−1)M+1(−i) d
N−1

dαN−1
|α=4π2

∞
∑

s=0

(−1)s

(2M + 2s+ 2)!
αs

= (2π2)N
∞
∑

n=0

(N + n− 1)!

n!(3N + 2n− 1)!
(−4π2)n . (97)

The result is exactly the same for even N . It suffices now to observe that
the last series alternates in sign and is decreasing to deduce

CN = (2π2)N (N − 1)!

(3N − 1)!
[1 +O(

1

N
)] . (98)

Our procedure for evaluating AN is quite similar, and we give below only
the main steps. From eqs. (85) and (90) we get

AN = (N − 1)!(2π2

i
)N i

2π

∫

I dze
−iz (5+2ηN )z2−4π2

ZN+1(z2−4π2)N+1

= 1
N

(2π2

i
)N i

2π
dN

dαN |α=4π2

∫

I dze
−iz

[

5+2ηN

zN−1(z2−α)
− 4π2

zN+1(z2−α)

]

, (99)

and, after computing the residues at z = ±√
α and z = 0, we get

AN = (−2π2)N

N
dN

dαN |α=4π2

∑∞
s=0

[

5+2ηN

(N+2s)!
− 4π2

(N+2s+2)!

]

(−α)s

= (2π2)N

N

∑∞
n=0

(N+n)!
n!

[

5+2ηN

(3N+2n)!
− 4π2

(3N+2n+2)!

]

(−4π2)n . (100)

Again, the last series alternates in sign and decreases, which entails

AN = (5 + 2ηN)(2π2)N (N − 1)!

(3N)!
[1 +O(

1

N
] . (101)

Finally, using eqs. (80), (98), (101) and (87) we obtain

ρ
(0)
N

N
=

5 + 2ηN

3N

[

1 +O
(

1

N

)]

=
2
3
[1 +O( 1

N
)] for bosons

1
N

[1 +O( 1
N

)] for fermions
(102)

The same procedure applies for all integer values of β, although the algebra
becomes quite involved. The general result for bosons (and for any integer
β) is:

lim
N→∞

ρ
(0)
N

N
=

(β!)4[(3β + 1)!]2

[(2β)!]2[(2β + 1)!]3
. (103)
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Our method does not adapt straight forwardly to the case of non-integer
values of β, but there is clearly no reason to expect a different outcome for
such intermediate values. Therefore, the Onsager-Penrose criterion (79) is
not met for bosons, and we reach the conclusion that Bose-Einstein conden-
sation is possible in the bosonic version of the N -body model discussed in
Sect.3.

In the fermionic version, the result (102) is not conclusive, as explained
after eq. (79). It only points (not too surprisingly) to the absence of quantum
phase in the system.

6 The BN model in one dimension

Subsequent to the seminal work of Calogero and Sutherland for the AN−1

system, the entire bound state spectrum of the Calogero model was obtained
for BCN , DN root systems [3]. It is then natural to enquire if in our case, can
one at least obtain the exact ground state and radial excitation spectrum in
the BCN or DN case? We now show that the answer to this question is in
the affirmative.

Consider the BCN Hamiltonian,

H = −1

2

N
∑

i=1

∂2

∂x2
i

+ V

(

N
∑

i=1

x2
i

)

+ g
N−1
∑

i=1

[

1

(xi − xi+1)2
+

1

(xi + xi+1)2

]

−G
N−1
∑

i=2

[

(

1

xi−1 − xi
− 1

xi−1 + xi

)(

1

xi − xi+1
+

1

xi + xi+1

)

]

+g1

N
∑

i=1

1

x2
i

, (104)

of which BN , CN and DN are the special cases. We again restrict our atten-
tion to the sector of configuration space corresponding to a definite ordering
of the particles as given by eq. (4).

We start with the ansatz

ψ = P2k(x)φ(r)

(

N
∏

i=1

(x2
i )

γ/2

)

N−1
∏

i=1

(x2
i − x2

i+1)
β , (105)

where r2 =
∑N

i=1 x
2
i . On substituting it in the Schrödinger equation for the

BN -Hamiltonian (104) we find that φ satisfies

Φ
′′

(r)+[N+4k−1+2Nγ+4(N−1)β]
1

r
Φ′(r)+2 [E − V (r)] Φ(r) = 0 ,(106)
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provided g and G are again related to β by eq. (2) while g1 is related to γ
by

g1 =
γ

2
(γ − 1) . (107)

Here, P2k(x) is a homogeneous polynomial of degree 2k (k = 0, 1, 2, ...) in the
particle-coordinates and satisfies the generalized Laplace equation

[ N
∑

i=1

∂2

∂x2
i

+2γ
N
∑

i=1

1

xi

∂

∂xi
+4β

N−1
∑

i=1

1

(x2
i − x2

i+1)

(

xi
∂

∂xi
− xi+1

∂

∂xi+1

)

]

P2k(x) = 0 .(108)

Let us now specialize to the case of the oscillator potential, i.e., V (r) =
ω2

2
r2. In this case, (106) is the well known radial equation for the oscillator

problem in more than one dimension and its solution is

Φ(r) = exp(−ωr2/2)La
n(ωr2), n = 0, 1, 2, .... (109)

where La
n(x) is the associated Laguerre polynomial while the energy eigen-

values are given by

En =
[

2n + 2k +
N

2
+Nγ + 2(N − 1)β

]

ω , (110)

with a = E
ω
− 2n − 1. The exact ground state is obtained from here when

n = k = 0. The fact that n = k = 0 gives the exact ground state energy of the
system can be easily shown a la AN−1 case by the method of supersymmetric
quantum mechanics. It may be noted that for large N , the energy E is
proportional to N so that like the AN−1 case, the BN model also has a good
thermodynamic limit. In contrast, notice that the long-ranged BN Calogero
model does not have a good thermodynamic limit.

Are there homogeneous polynomial solutions of eq. (108) of degree 2k
(k ≥ 1)? While we are unable to answer this question for any k, at least
for small values of k (k > 0) there does not seem to be any solution to eq.
(108). For example, we have failed to find any polynomial solution of degree
2,4 and 6. Thus it appears that unlike the AN−1 case, in the BCN case one
is only able to obtain the ground state and radial excitations over it.

Proceeding in the same way, the energy eigenvalues and eigenfunctions in
the case of the Coulomb-like potential (33) are

E = − α2

2
[

n+ 2k + N−1
2

+Nγ + 2(N − 1)β
]2 (111)

Φ = e−
√

2|E|rLb
n(2

√

2 | E |r) (112)
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where b = N − 2 + 4k + 2Nγ + 4(N − 1)β. Again, so far we have been able
to obtain solutions only in case k=0.

As in Sec.II, in the BCN Hamiltonian (104), all the particles are not being
treated on the same footing. Again, one possibility is to add extra terms.
Consider for example,

H1 = H +H ′ , (113)

where H is as given by eq. (104) while H ′ has the form

H ′ = g
[

1

(xN − x1)2
+

1

(xN + x1)2

]

− G
[

(
1

xN − x1
− 1

xN + x1
)(

1

x1 − x2
+

1

x1 + x2
)

+
(

1

xN−1 − xN

− 1

xN−1 + xN

)(
1

xN − x1

+
1

xN + x1

)
]

. (114)

One can now run through the arguments as given above and show that the
eigenstates for both the oscillator and Coulomb-like potentials have the same
form as given above except that in the term multiplying β, N−1 gets replaced
by N at all places including in the Laplace eq. (108). However, now we find
that there are indeed solutions to the Laplace eq. (108) (with N−1 replaced
by N). In particular, the solution for any N(≥ 4) and k = 4 is given by

Pk=4(x) = a
N
∑

i=1

x4
i + b

N
∑

i<j

x2
ix

2
j , (115)

where

b

a
= −2

[

3 + 8β + 2γ

N − 1 + 2(N − 1)γ + 4(N − 2)β

]

. (116)

As in the AN−1 case, we again find that even though the Laplace eq. (108)
is only invariant under cyclic permutations, the solution is in fact invariant
under the permutation of any two coordinates. It will be interesting to try
to find solutions for higher values of k and study the full degeneracy of the
spectrum.

Besides these two, one can obtain a part of the spectra including the
ground state for several other potentials but we shall not discuss them here.
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7 BCN model in one dimension with periodic

boundary condition

Following the work of Sutherland [25] on the AN−1 root system, the exact
ground state as well as the excitation spectrum was also obtained in the case
of the BCN , DN root systems [3]. It is then worth enquiring if, in our case,
one can also obtain the ground state and the excitation spectrum. As a first
step in that direction, we shall obtain the exact ground state of the BCN

model with periodic boundary condition.
The Hamiltonian for the BCN case is given by

H = −1

2

N
∑

i=1

∂2

∂x2
i

+ g
π2

L2

N
∑

i=1

[

1

sin2 π
L
(xi − xi+1)

+
1

sin2 π
L
(xi + xi+1)

]

+ g1
π2

L2

∑

i

1

sin2 π
L
xi

+ g2
π2

L2

∑

i

1

sin2 2π
L
xi

−G
π2

L2

N
∑

i=1

[

cot
π

L
(xi−1 − xi)

− cot
π

L
(xi−1 + xi)

][

cot
π

L
(xi − xi+1) + cot

π

L
(xi + xi+1)

]

. (117)

We again restrict our attention to the sector of the configuration space cor-
responding to a definite ordering of the particles as given by eq. (2). For this
case, we start with a trial wave function of the form

Ψ0 =
N
∏

i=1

sinγ θi

N
∏

i=1

(sin2 2θi)
γ1/2

N
∏

i=1

[sin2(θi−θi+1)]
β/2

N
∏

i=1

[sin2(θi+θi+1)]
β2 ,(118)

(θi = πxi/L) and substitute it in the Schrödinger equation for the Hamilto-
nian (117). We find that it is indeed a solution provided g and G are again
related to β by eq. (2) while g1, g2 are related to γ, γ1 by

g1 =
γ

2
[γ + 2γ1 − 1] , g2 = 2γ1(γ1 − 1) . (119)

The corresponding ground state energy turns out to be

E0 =
Nπ2

2L2
(γ + γ1 + 2β)2 . (120)

The fact that this is indeed the ground state energy can be easily proved as
in Secs. II and III.
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8 N-body problem in D-dimensions

Having obtained some results for the N -body problem (1) in one dimension,
we study generalization to higher dimensions. Let us consider the following
model in D-dimensions :

H = −1

2

N
∑

i=1

~∇2
i + g

N−1
∑

i=1

1

(~ri − ~ri+1)2

− G
N−1
∑

i=2

(~ri−1 − ~ri).(~ri − ~ri+1)

(~ri−1 − ~ri)2(~ri − ~ri+1)2
+ V

(

N
∑

i=1

~r2
i

)

. (121)

On using the ansatz,

ψ =
( N−1
∏

i=1

| ~ri − ~r1+1 |β
)

φ(r) , r2 =
N
∑

i=1

~r2
i , (122)

in the Schrödinger equation for the Hamiltonian (121), it can be shown that
φ(r) satisfies

φ
′′

(r) + [DN − 1 + 2(N − 1)β]
1

r
φ′(r) + 2(E − V (r))φ(r) = 0 , (123)

provided g and G are related to β by

g = β2 + (D − 2)β , G = β2 . (124)

Equation (123) is easily solved in the case of the oscillator potential (i.e.,
V (r) = ω2

2
r2) yielding the energy eigenstates as

φ(r) = exp
(

−ω
2
r2
)

Lb
n(ωr2) , (125)

En =
[

2n + (N − 1)β +
DN

2

]

ω . (126)

Here b = E
ω
−2n−1. It may be noted that as in all other higher dimensional

many-body problems, one has only obtained a part of the energy eigenvalue
spectrum which however includes the ground state. In particular, the ground
state energy eigenvalue and eigenfunction is given by

E0 =
[

(N − 1)β +
DN

2

]

ω , (127)

ψ0 = exp
(

− ω

2

N
∑

i=1

r2
i

) N−1
∏

i=1

| ~ri − ~ri+1 |β . (128)
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As expected, for D = 1 these results go over to those obtained in Sec. II.
The fact that this is indeed the ground state energy can be easily proved by
using again a supersymmetric formulation [21].

At this point it is worth asking if the probability distribution for N parti-
cles (at least for some D(> 1)) can be mapped to some known random matrix
ensemble ? In this context we recall that in the case of the Calogero-type
model, it has been shown that in two space dimensions | ψ0 |2 can be mapped
to complex random matrix [31]. Using this identification one was able to cal-
culate all the correlation functions of the corresponding many-body theory
and show the absence of long-range order but the presence of an off-diagonal
long-range order in that theory. Unfortunately, so far as we are aware of,
answer to this question is unknown in this particular case. We hope that at
least in the case of two space dimensions, where | ψ0 |2 for our model is given
by

|ψ0(zi)|2 = C exp

(

−ω
N
∑

i=1

|zi|2
)

N−1
∏

i=1

|zi − zi+1|2β , (129)

| ψ0 |2 can be mapped to some variant of the short-range Dyson model.
Finally, we observe that the ground state and a class of excited states can

also be obtained inD-dimensions in case the oscillator potential is replaced by

the N -body Coulomb-like potential V (r) = −α/
√

∑

r2
i , because the resulting

equation (123) is essentially the radial equation for the Coulomb potential.
In particular, the energy eigenvalues and eigenfunctions are given by

En = − α2

2
[

n+ DN−1
2

+ (N − 1)β
]2 , (130)

ψn = exp(−
√

2|E|r)Lb′

n (2
√

2|E|r)
(N−1
∏

i=1

|ri − ri+1|β
)

, (131)

where b′ = DN − 2 + 2(N − 1)β. It may again be noted that whereas the
ground state energy is linear in β in the oscillator case, it is not so in the
case of the Coulomb-like N -body potential.

9 Short-range model in two dimensions with

novel correlations

Few years back, Murthy et al. [32] considered a model in two dimensions
with two-body and three-body long-ranged interactions and obtained the
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exact ground state and a class of excited states. The interesting feature of
this model was that all these states had a built-in novel correlation of the
form | Xij |g where

Xij = xiyj − xjyi . (132)

It is then natural to enquire if one can construct a model in two dimensions
and obtain ground and few excited states of the system all of which would
have a built-in short-range correlation of the form

Xj,j+1 = xjyj+1 − yjxj+1 . (133)

We now show that this is indeed possible. Let us consider the following
Hamiltonian

H = −1

2

N
∑

i=1

~∇2
i +

ω2

2

N
∑

i=1

~r2
i + g

N−1
∑

i=1

~r2
i + ~r2

i+1

X2
i,i+1

−G
N−1
∑

i=2

~ri−1 · ~ri+1

Xi−1,iXi,i+1
(134)

where Xi,i+1 is as given by eq. (133). We start with the ansatz

ψ(xi, yi) =

[

N−1
∏

i=1

Xβ
i,i+1

]

exp

(

−ω
2

∑

i

~r2
i

)

φ(xi, yi) . (135)

On substituting the ansatz in the Schrödinger equation Hψ = Eψ, one finds
that φ satisfies the equation

[

− 1

2

N
∑

i=1

~∇2
i + ω

N
∑

i=1

~ri
~̇∇i + β

N−1
∑

i=1

1

Xi,i+1

(

xi+1
∂

∂yi

− yi+1
∂

∂xi

+ yi
∂

∂xi+1
− xi

∂

∂yi+1

)]

φ =
(

E − [N + 2(N − 1)β]ω
)

φ , (136)

provided g and G are related by (2). It is interesting to note that even
though we are considering the novel correlation model in two-dimensions,
the relationship between g and G is as in the case of our one-dimensional
model. We do not know if this has any deep significance.

We conclude from here that ψ, as given by eq. (135), with φ being a
constant is the ground state of the system with the corresponding ground
state energy being

E0 = [N + 2(N − 1)β]ω . (137)

Let us remark that, like the relationship between coupling constants, the
ground state energy too has essentially the same form as that of the one-
dimensional short-range AN−1 model as given by eq. (13). That one has
indeed obtained the ground state can be proved as before.
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As in other many-body problems in two and higher dimensions, we are
unable to find the complete excited-state spectrum. However, a class of
excited states can be obtained from (136). To that end we introduce the
complex coordinates

z = x+iy, z∗ = x−iy, ∂ ≡ ∂

∂z
=

1

2

(

∂

∂x
− i

∂

∂y

)

, ∂∗ ≡ ∂

∂z∗
=

1

2

(

∂

∂x
+ i

∂

∂y

)

.(138)

In terms of these coordinates, the differential eq. (136) takes the form

[

− 2
N
∑

i=1

∂i∂
∗
i + 2β

N−1
∑

i=1

(

zi+1∂i − zi∂i+1 + z∗i ∂
∗
i+1 − z∗i+1∂

∗
i

)

(

ziz∗i+1 − z∗i zi+1

)

+ ω
N
∑

i=1

(

zi∂i + z∗i ∂
∗
i

)

− (E − E0)
]

φ = 0. (139)

Now it is readily proved shown that the Hamiltonian H commutes with the
total angular momentum operator L =

∑N
i=1(zi∂i − z∗i ∂

∗
i ), so that one can

classify solutions according to their angular momentum: Lφ = lφ.
On defining t = ω

∑

i ziz
∗
i and let φ ≡ φ(t) it is easily shown that φ(t)

satisfies

tφ
′′

(t) +
[

E0

ω
− t

]

φ′(t) +
(

E −E0

2ω

)

φ(t) = 0 , (140)

where E0 is as given by eq. (137). Hence the allowed solutions with l = 0
are

E = E0 + 2nω, φ(t) = L
E0
ω

−1
n (t) . (141)

Solutions with angular momentum l > 0 or l < 0 can similarly be obtained
by introducing tz = ω

∑

i z
2
i or tz∗ = ω

∑

i(z
∗
i )

2. For example, let φ = φ(tz).
Then eq. (139) reduces to

2ωtz
dφ

dtz
= (E − E0)φ . (142)

This is the well known Euler equation whose solutions are just monomials
in tz. The solution is given by φ(tz) = tmz (m > 0), and hence the angular
momentum l = 2m while the energy eigenvalues are E = E0 + 2mω =
E0 + lω. Further, we can combine these solutions with the l = 0 solutions
obtained above and obtain a tower of excited states. For example, let us
define φ(zi, z

∗
i ) = φ1(t)φ2(tz), where φ1 is a solution with l = 0, while φ2 is
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the solution with l > 0. On using φ2(tz) = tmz it is easily shown that φ1 again
satisfies a confluent hypergeometric equation,

tφ
′′

1(t) +
[

E0

ω
+ 2m− t

]

φ′
1(t) +

(

E − E0

2ω
+m

)

φ1(t) = 0 . (143)

Hence the energy eigenvalues are given by E − E0 = (2nr + 2m)ω. One
may repeat the procedure to obtain exact solutions for a tower of states with
l < 0.

10 Summary

In this paper we have discussed anN -body problem in one dimension and pre-
sented its exact ground state on a circle and most likely the entire spectrum
on a real line. There are several similarities as well as differences between the
model discussed here and Calogero-Sutherland (CSM) type of models and it
might be worthwhile to compare the salient features of the two.

1. Whereas in CSM the interaction is between all neighbours, in our case
the interaction is only between nearest and next-to-nearest neighbours.
Note however that in both the cases it is an inverse square interaction.

2. Whereas in CSM (in one dimension) there is only two-body interaction,
both two- and three-body interactions are required in our model for
partial (or possibly exact) solvability on a real line.

3. Whereas the complete bound state spectrum is obtained in the Suther-
land model (periodic potential) or if there is external harmonic or
Coulomb-like N -body potential as given by eq. (33) and in the case of
both AN−1 and BCN root systems, it is not clear if this is so in our
case even though it is likely that this may be so in the AN−1 case.

4. Whereas our system, both on a line and on a circle, has good thermo-
dynamic limit (i.e. E/N is finite for large N), CSM does not have good
thermodynamic limit in either case and E/N diverges like N for large
N .

5. In both the cases, the norm of the ground state wavefunction can be
mapped to the joint probability density function of the eigenvalues of
some random matrix. Using this correspondence, in both the cases, one
is able to calculate one- and two-point functions. However, whereas in
the CSM this is possible only at three values of the coupling (corre-
sponding to orthogonal, unitary or simplictic random matrices), in our
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case the correlation functions can be computed analytically for any in-
tegral or half-integral values of the coupling while numerically it can
be done for any positive β.

6. In the CSM case with an external potential of the form

V

(

∑

i

x2
i

)

= A
N
∑

i=1

x2
i +B

(

∑

i

x2
i

)2

+ C

(

∑

i

x2
i

)3

(144)

it has been shown [24] that the norm of the ground state wave func-
tion can be mapped to a random matrix corresponding to branched
polymers. It is not known if a similar mapping is possible in our case.

7. A multi-species generalization of CSM has been done [33], it is not clear
if a similar generalization is possible in our case or not.

8. Generalization to D-dimensions (D > 1) is possible in CSM as well
as in our model and in both the cases one is able to obtain only a
partial spectrum including the ground state. In both the cases, both
two- and three-body interactions are required. Whereas our system
has a good thermodynamic limit in any dimension D, the CSM does
not have a good thermodynamic limit in any dimension. However,
whereas the norm of the ground state wave function can be mapped to
complex random matrices in the CSM case in two dimensions [31], no
such mapping has so far been possible in our case for D > 1.

9. Model with novel correlations is possible in two dimensions in both
the cases [32] but unlike CSM, our system has a good thermodynamic
limit.

10. In the CSM, it has been possible to obtain the entire spectrum alge-
braically by using supersymmetry and shape invariance [34]. It would
be nice if similar thing can also be done in our model. Further, in
the CSM, one has also written down the supersymmetric version of the
model [35]. It would be worth enquiring if a similar thing can also be
done in our model.

11. In the CSM type models, one knows the various exactly solvable prob-
lems in which the N -particles interact pairwise by two body interaction
[36]. The question one would like to ask in our context is: what are
the various exactly solvable problems in one dimension in which the N
particles have only nearest- and next-to-nearest neighbour interactions?
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12. In the CSM, not only one- and two-point but even n-point correlation
functions are known. It would be nice if the same is also possible in
the present context.

13. A la Haldane-Shastry spin models [37], can we also construct spin mod-
els in the context of our model?

14. Unlike CSM, in our case the off-diagonal long-range order is nonzero in
the bosonic version of the many-body theory in one dimension. Note
however that the off-diagonal long-range order is nonzero in the CSM
in two dimensions.

Appendix

1. Proof of the representation (84) of CN

By construction, the square of the wave function (69) is a symmetrical
function of all its arguments, so that we can write eq. (74) as well:

CN = N !
∫ 1

0
dx1

∫ x1

0
dx2...

∫ xN−1

0
dxN | ψN (x1, ..., xN) |2 , (145)

where the particle coordinates are now properly ordered. We are thus
allowed to substitute φN for ψN in (145) and obtain from eqs. (70) and
(82)

CN = N !
∫ 1

0
dx1

∫ x1

0
dx2...

∫ xN−1

0
dxN

N
∏

n=1

S(xn − xn+1)
2 . (146)

Changing the integration variables (x1, x2, ..., xN ) to (△1,△2, ...,△N−1, xN),
where

△n = xn − xn+1 ; (n = 1, ..., N − 1) , (147)

one easily gets

CN = N !
∫ 1

0
d△1

∫ 1−△1

0
d△2...

∫ 1−△1−...−△N−2

0
d△N−1 X

X
∫ 1−

∑N−1

p=1
△p

0
dxN

N−1
∏

n=1

S(△n)
2S(xN − x1)

2 . (148)
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Since xN − x1 = −∑N−1
p=1 △p is in fact independent of xN in the new

set of variables, eq. (148) becomes, using also S(−x) = S(1 − x):

CN = N !
∫ 1

0
d△1

∫ 1−△1

0
d△2...

∫ 1−△1−...−△N−2

0
d△N−1 X

X (1 −
N−1
∑

p=1

△p)
N−1
∏

n=1

S(△n)
2S(1 −

N−1
∑

p=1

△p)
2 . (149)

It is now convenient to introduce the extra variable

△N = 1 −
N−1
∑

p=1

△p , (150)

and to recast eq. (149) in the form

CN = N !
∫ 1

0
d△1

∫ 1

0
d△2...

∫ 1

0
d△N−1

∫ 1

0
d△Nδ(1 −

N
∑

p=1

△p) X

X △N

N
∏

n=1

S(△N)2

= N !
∫ 1

0
d△1...

∫ 1

0
d△Nδ(1 −

N
∑

p=1

△p)
1

N

N
∑

m=1

△m

N
∏

n=1

S(△n)
2

= (N − 1)!
∫ 1

0
d△1...

∫ 1

0
d△Nδ(1 −

N
∑

p=1

△p)
N
∏

n=1

S(△n)
2 .(151)

In the second equality, we have used the fact that, apart from the factor
△N , the integrand and the integration range are completely symmet-
rical in the variables (△1, ...,△N). Finally, the integration over these
variables factorizes after introducing the representation

δ(1 −
N
∑

p=1

△p) =
1

2π

∫ ∞

−∞
dxe−ix(1−

∑N

p=1
△p) , (152)

and interchanging the x- and △−integrations. This produces eq. (84).

2. Proof of the representation (85) of AN

Proceeding along the same lines, we first put the expression (81) of AN

in the form

AN = (N − 1)!
∫ 1

0
dx1

∫ x1

0
dx2...

∫ xN−2

0
dxN−1φN(x1, ..., xN−1, 0) X

X RN (x1, ..., xN−1) , (153)
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where

RN (x1, ..., xN−1) =
∫ xN−1

0
dxφN(x1, ..., xN−1, x)

±
∫ xN−2

xN−1

dxφN(x1, ..., x, xN−1) + ...+
∫ 1

x1

dxφN(x, x1, ..., xN−1)

=
∫ xN−1

0
dxφN(x1, ..., xN−1, x) +

∫ 1

x1

dxφN(x, x1, ..., xN−1)

+
N−2
∑

p=1

νp

∫ xp

xp+1

dxφN(x1, ..., xp, x, xp+1, ..., xN) . (154)

Here, νp = 1(νp = (−1)p) for bosons (fermions) and we have used the
restriction to odd N in the second case. Thanks to the periodicity and
the cyclic symmetry of φN , the first two terms in the last expression
above can be collected to give

∫ xN−1

x1−1
dxφN(x, x1, ..., xN−1) .

Hence RN becomes (with xN = x1 − 1)

RN (x1, ..., xN−1) =
N−1
∑

p=1

νp

∫ xp

xp+1

dxφN(x1, ..., xp, x, xp+1, ..., xN−1)

=
N−1
∑

p=1

νp

N−1
∏

n=1

S(xn − xn+1)
∫ xp

xp+1

dxS(x− xp+1)S(xp − x) , (n 6= p)

=
N−1
∑

p=1

νp

N−1
∑

n=1

S(xn − xn+1)S2(xp − xp+1) , (n 6= p) (155)

according to the definition (83). We also have:

φN(x1, ..., xN−1, 0) =
N−2
∏

m=1

S(xm − xm+1)S(xN−1)S(x1) . (156)

Inserting eqs. (155) and (156) in eq. (153) and introducing as before
the new integration variables △n ≡ xn − xn+1 (n = 1, ..., N − 2) and
xN−1, we obtain

AN = (N − 1)!
∫ 1

0
d△1

∫ 1−△1

0
d△2...

∫ 1−△1−...−△N−3

0
d△N−2 X
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X
∫ △N−1

0
dxN−1

N−2
∏

m=1

S(△m)S(xN−1)S(xN−1 −△N−1) X

X
N−1
∑

p=1

νp

N−1
∏

n=1

S(△n)S2(△p) ; (n 6= p) (157)

where △N−1 = 1 − ∑N−2
p=1 △p. The integration over xN−1 gives the

factor S2(△N−1) in place of S(xN−1)S(xN−1 −△N−1), so that

AN = (N − 1)!
∫ 1

0
d△1...

∫ 1

0
d△N−1δ(1 −

N−1
∑

p=1

△p)
[ N−2
∏

m=1

X

X S(△m)S2(△N−1)
N−1
∑

p=1

νp

N−1
∏

n=1

S(△n)S2(△p)
]

, (n 6= p) .(158)

On taking into account the complete symmetry of the integration mea-
sure, one finds that the square bracket in eq. (158) can be replaced
by

[...] =
N−2
∏

m=1

S(△m)2S2(△N−1)
2 + ηN

N−3
∏

m=1

S(△m)2 X

X [S(△N−2)S2(△N−2)][S(△N−1)S2(△N−1)] , (159)

where ηN is as defined in eq. (87). Finally, one obtains the factorization
of the multiple integral in eq. (158) by using again the representation
(152) of the δ measure (with (N − 1) in place of N). This entails eq.
(85).

A last remark may be in order. Alternative, equivalent forms of the
representations (84) and (85) would be obtained by relying on Fourier ex-
pansions instead of Fourier integrals, that is by considering the integrands in
eqs. (149) and (157) not as functions with compact supports [0, 1]N ⊂ RN ,
resp. [0, 1]N−1 ⊂ RN−1, but as periodic functions (this would amount to
modifying eq. (152) accordingly). It turns out however that the resulting
representations of CN and AN (as Fourier series) are much less convenient
for the explicit or asymptotic evaluations of these quantities.
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Figure Legends

Fig. 1 The two-point correlation function for four integer values of β (from
left to rightmost are increasing values from 1 to 4) shows clearly an absence
of long-range order.

Fig. 2 The two-point correlation function for some fractional values of β
plotted alongwith β equal to 1 and 2. ¿From left to rightmost are increasing
values from 1, 4/3, 3/2, 5/3, 2, 7/3, and 5/2. Thus, even for fractional values,
there is no long-range order.
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