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" ABSTRACT

The derivation of Maxwell’s equations commencing with Coulomb’s law

p. 337-344
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can

be carried out in several Ways by extending the work of Page. However, their

derivation without assuming any experimental results of electromagnetics
Coulomb’s law has not so far been carried out., This communication give;
axiomatic derxvétlon of Maxwell's equations assuming only the conservati
charge, special relativity with the associated structure of space and a rela
connecting electnc and magnetic field intensities.

' INTRODUGCTION

like
S an
n of
tion

Einstein!, ‘Leigh Page?3 set the norms for its use in developing Maxwell’s equa-

SEVEN years after the publication of the special theory of relativity by Albert

tions starting from Coulomb’s law. Since then, several improvements were

made culminating in a generalization of his method by Elliottt. All these.

methods,

However, centre around at least one experimental result like Coulomb’s law or Biot-

Savart law apart from the basic assumption of conservation of charge. If

Maxwell's

equations are required to be derived axiomatically, only the following three axioms and

the a§sociatea definitions may be assumed, viz. (1) impossibility of action at
(special relativity); (2) impossibility of creating or destroying charge withoy

a distance
t creating

or destroying the mass carrying them; and (3) a relation connecting B with-E.
" It has been implied in current literature on electromagnetic theory that no derivation
exists up to now which can purport to be axiomatic. The purpose of this communication _

is t6.give a method .of derivation which extends and parallels the works of

Page and

Elliott but utilizes only the above two assumptions and the associated definitions.

The first assumption is covered essentially by special relativity and the

associated

concepts like the retarded potential. The 'second assumption is equivalent to the

principle of conservation of charge. Along with these the properties-of charge
implicitly in the current theories of the structure of elementary particles are alsg

as defined
assumed.

One such property with which“we commence the derivation of Maxwell's equation is that
the force between two chm ges in Euchdean space decreases as the distance betyween them

increases.

The subject matter to follow is treated irl the following order: In the next section

a general expression for the electric field intensity is derived. This is follow
relativistic transformations of the expression resulting in a generalized form o

ed by the
Lorentz’s

forcq law. In sections 4, 5, 6 and 7, the general form of the gradient and ‘rull of the
electric field intensity and the magnetic field intensity are derived. In all these sections

*This paper is substantxally the reproduction of a limited circulation report issued by the
Dept. of Elec. Comm. Engg, Indian Institute of Science, Bangalore, dated 11 July 1966, submitted

by the author.
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only the first assumption is present without implying the second assumption: -However,
when the principle of conservation of charge is invoked; as in section 8, the generalized
equations so derived reduce exactly to Maxwell's equations. The last section gives a
discussion of some of the implications of the approach.

2. GENERAL EXPRESSION FOR THE ELECTRIC FIELD INTENSITY

Since Coulomb’s inverse square law or any other -experimental postulate of elec- -

tromagnetics is sought to be avoided, the logical starting point of the derivation is a
general expression for electric field intensity covering all admissible laws of variation of
the field intensity as a function of distance. The basic property of charge which-prohi-
. bits the force between two charges from iicreasing as the distance betwéen them in-
creases, gives rise to the condition that the general force law should monotonically décrease
or at least be constant with the increase in distance. Hence, if a test charge Qy is
placed at (x;, x5, %3) in the field created by a static volumetric charge distribution
Py (&, %, %), the’ total force exerted on Qx is glvc,n by

P (0 ) = @:’é;,m e 5D s BB BT
i=1 ¢ = . -

where, if a,, a,, a; are unit vectors along the three principal axes,

7 = ayX gy tagiy in the coordinates X, X, X,

r = &% +a,%, 1 a,%, in the coordinates X,X,X,.

‘¢g = dielectric constant of free space (in general, units adjusting paramete1) ’

V = volume containing the charges -

a; = non-negative undetermined coefficients. : .
The undeterrmned coefficients enable Eq. (1) to represent any conceivable monotomcally
non-increasing force law.

If the electrlc field intensity Ey is defined as the force per unit charge, then

Ex(%y, %3, %3) = — Fy(%, xz’ %) . o (2)
S - | ,

When the charges are not static, the force and field intensity expressions should be
derived from the principles of special relativity. Thus, if a static observer Oy with
“his coordinates X, X,X, interprets the force and field intensity created by a charge

distribution ey (¥;, %,, ;) with respect to a test charge Qx as Fy (x;, %,, #,) and Ey

(%1, %9, %3) respectlvely and relates these according to Eq. (2), then an observer Oy in
another coordinate Y,Y,Y,, one of whose coordinate axis, say Y;Y,, is moving along
XX, axis with a relative velocity u,, interprets the force and field intensity created by the
same charge distribution with respect to the same test charge, differently estimated

as Py(¥1, ¥a, s, ) and Qy, as Fy(yy, ¥, 5, ) and Ey (v, v,, s, ) respectively and relates
them according to the equation

: : 1
. Ey(y1, yo) ¥3 t) = @:{Fy(yl»‘yz:vys» ty- - ' ' -(3)

When the test charge is at rest with respect to:0y, the force transformation law® in
special relativity will be

Fy = NaFy,+a, Fy)+a,Fy, S )
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Abbreviaﬁng the term in the bracket of Eq. (6) as By, the Magnetic fiel

" mations. »
' ‘ . Qy
Exy=M\= (EY1—"%BY2)
Qx
Qy .
Exs =k — (EY2‘|‘°UaBy1) -
T ox :
. . Q )
“Exy= Q: Eys ]

SESHAGIRI: AXIOMATIC DERIVATION OF MAXWELL'S EQUATIONS .

where, Fy,, Fys, Fx; are the components of the force Fy and A is the Lorentz factor

(1—12/c?)~ 2" Combining Eqs. (3) and (4) and separating the components of
one obtains the relations . . .

-~

g |
Eyi(y1, Y2r ¥3 1) =X —‘{EXI(xl’ X, %3)-
S5 Qv T .
Eys (91 Y2 Yo ) = M52 Exo(1, %, %) ¢
v .

Q
Eys (Y1, Y2 Y3 8) = -)‘{_Em(xv X3, %3)
. Y . J
where ' '
"Ey=aEx;+aExy+a3Exg

Ey = a\Eyy+a:Evy+a3Ey;
3. RELATIVISTIC TRANSFORMATION OF THE GENERAL FORCE

When a velocity V(f) is assigned to the test charge with respect to the

thevectors,

LAW

coordinates

Y,Y,Y,, the relativistic transformatlon law for the force Fy will be, aftey combining

it with Eqgs. (3) and 4,

Fy = QY Y+QYVX (“3 XExgj) '

which has -as its components

W Q
By; (Y1, Yar Y3 8) = — -3 Exy (%1, %3, %) X]
. e Qy

R . A \ ’
By, (yp Yo Y3 ) = + 0—23 Ex (%1, €3, %3) Jr :

By (yp Yo Y3, 1) =0
Eq (6) can be written analogous to Lorentz’s force law as
Fy = QyEy+QyV xBy

..(6)

d intensity, "

o (8)

The relat1v1st1c transformatlons (5) and (7) can be inverted to reahze the transfor-

4. DIVERGENCE RELATION FOR ELECTRIC FIELD INTENSI’]"Y

.. (9)

Let S be an imaginary closed surface ‘which does not intersect the charges in the

region. Since the divergence theorem cannot be applied to the force law o
have to consider-an arbitrarily: small’ au\ahary sphere X of radius « surroun

Eq. (1), we
ding » = 0.
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For the connected region enclosing the volume v, dlvergence theorem can be applied®
resulting in the equatlon

m v {um Ei exlr=r) _” v 1S S Pxlr—7)-da
VI’ N “~ 4TC€07’ y+a N—-)m 4ﬂ€07(7+a)

Lim
N 3
j N Z 41:507' r—} a;)

utilizing the identities,

pX Lim 1
4mey V7 N &

Eq. (10) can be written in the inﬁnitésimal form as .

.‘ .pXL-;m . o e
V'EX T NE {an (r+a;)3 (oc+a~)2 } , (1)

_ where bis a units adjusting constant with the dimensions of volume. It is important to
-consider the point why « should not be allowed to tend to zero. The reason is as follows:
In the general force law of Eq. (1) the possibility of some of the a; taking"a value of
~zero is not ruled out. The anly constraint is that a; should be non—negatlve Therefore,
if a particular @;= 0, then

whereas if a; # 0,

L)mo -a?

o> (oc+a ) » ‘

Hence, the limit for « —> 0 should be determmed only after the values of the undeter-
mined coefficients a; are determined. -

The divergence relation can be determmed for the dynamic case as a relat1v1st1c :
transformation of Eq. (11) By definition

- 9By,  0Ey, 0Eyy
V Yy = < p) 2
ayl Ve s

utilizing Eq. (5) and the followmg relations derived for any functlon F from the Lorentz
'transformatlons‘-* viz.

-(12)

8F oF oF

oF_ [aF
s
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Eq. (12) reduces to

VEY— 8 (VEX)

Combmlng Eq. (14) Wlth Eq. (11),
o

9% Pxrim
A-By _}\deo N”‘”Nzi 2my 7—[—(1 (oc—{—(/zi)2 _J{L

Eq. '(15) gives the divergence relation for dynamic case.

5. DIVERGENCE RELATION FOR MAGNETIC FIELD INTENSITY

The divergence relation for magnetic field 1nten51ty for the dynamic ca
obtained straightforwardly as follows:
By definition,

aBYI 0Byg ~ 0Byg
. o ay1 Y2 Y3
Applying Egs. (7) and (13), it transforms to ‘
: rvg (OF oE
v.B, = _(_i _ _ﬂ)& ,
¢ 0%, 0%, QY‘ .

V.By =

The right-hand side is identically zero. Therefore,
. " y.By =0

se can be

..(16)

‘ Eq. (16) implies the non-existence of the magnetic charge irrespectiveof the walidity of
the law of consérvation of charge and for any conceivable monotonically nonlincreasing

“force law. - This conclusion appears to point out, without ambiguity, the futili
efforts to discover the magnetic charge by any experiment.

-

‘ - 6. CURL RELATION FOR ELECTRIC FIELD INTENSITY

ity of the

For the electrostatlc case, curl EX can be obtamed by methods similar to-those

employed earlier”. Because of the identity,
, N
Lim

V N—>w. N

4 (H’éli_)

=1

If a scalar potential .

"’..(xl: "2'_"5) - j”v .

is defined, then Eq. (17).reduces to -
- ' ) Ex = —vé
Since VXve =0, VXEx=0
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For the dynamic case, by deﬁnitionA _ X , .

vy _ aE—YE) a, (a—-E Lo a_E-‘/?) P
Y5 0ys 0y 0N 1 Oy

From Eqs. (9), (13), (16) and (19), it follows that

0Eyy 0Ex ~0 :')\Q_’f [BEYZ '_~8Ey1]
0% 0%, Ox L oy %2 _
If in addition to Egs. (9), (13), (16) and (19) an additional relativistic transformation,
viz. ’ ’ : '

VXEQ = “1(

L2n

OF _oF

=1 —'1}3 e

‘ . ot 2Y3
is utilized, it can be shown'that , ] ) )
OEys 0Ey, _ O_ZQ_Y(GEys_ 6Ey2) (?5/_1 +Q_X> ..(22)
0%, 0x5 Ox\ 9, 0yg ot Qv
and - Ex Bk QJ(%; aE_.Y}) (aBYZJrQﬁ) N X,
) 0%, . 0%, ©Qx \ %4 vy ot Qv :
From Eqs. (21), (22), (23) and (7), the curl relation for the dynamic C as results and is
given by - - : ' ' S

- Oxn Qiyfn 2 0y
vxE, = - g, &, (Bya—t @;) ~ -2

- 7. CURL RELATION FOR MAGNETIC FIELD INTENSITY

’ " The curl relafi‘c>n for magnetic field intensity can be determined directly for the
dynamic case, starting from the static divergence relation for electric field intensity.
. By definition, . ) : C _ : !

0Ex,  OEy,  O0Ey, '

T A, T e

which can be transformed relativistically using Eqs. (13), (9) and (7) into A

A 0By, 9By\Qy . My QyOE .
Ey = 2%Y (g E) 0 <__L’2 __Y1>__1 M Oy O xa .(25)
VEx = Ox (v-Ey) =0, o . ) 0x " @ 0x & (25)
Eq. (25) can be rewritten using Egs. (14) and (15) into ) ‘
-aByz oB 1 Ush [PX Li 1 X ab o? QX 1 aEYB V ‘
— = 30| TXLim ¢ S | . Qi ...(26
B @ le o N2\ T los T @0
ic1

- . . V.E =

Eq. (26) is for the assumption that the axis Y, Y, is'sliding along the axis XX, Similar
cquations can be obtained for assumed relative velocities of the other axis pairs. . This
enables us to generalize Eq. (26) and write the combination of the three components as

- BB, 1p | 27)

0260 Qy CT ¥

where I}, is the general form of the current density and is a vector formed out of the three
components corresponding to the first term in the right:hand side of Eq. (26).
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8. REDUCTION TO MAXWELL’'S EQUATIONS

In the foregoing sections a complete set of four équations, viz. Egs. (15),

and (27) were derived axiomatically without even assuming the conservation

(16), (24)
of charge. -

Thus they constitute a set of general electromagnetic equations in which charge conser-

vation is immaterial. However, our present purpose being the derivation of

Maxwell’s

equations, the second axiom or assumption mentioned in the introductory se¢ction will

now be invoked.
If charge is conserved the first condition to be satisfied is

' Qx =0y
and the second condition coﬁsequential»‘to Eq. (28} is
: PxdVy = OydVy,
Since volume transforms like distance in the present case,

Py = APy -

To derive the condition that must be satisfied by Eqgs. (15), (16), (24) and

...(28)
| .(29)

...(30)
(27), as a

result of the restrictions imposed by Eqs. (28)-and (30), the expression for y.Ey must
be examined. Though several derivations lead to the same condition, the simplest one

out of these methods is given in the followmg Eq. (15) can be rewritten, afte
Eqs.- (28) and (30) into :
a2 ]

e
E _YLun
V- By = N NZ L2m' 7—{—a oc—-|—a)2 J>

comparing Eq. (31) with Eq. (11),\1‘5 can be inferred that whereas P, trang
fy. while y.Ey transforms to y¢.Ey, the terms inside the bracket of Eq.
remained an invariant. Since b is a units adjusting constant and is invariant

bracket of Eq. (11) is invariant under the transformation is

I;lm _aL_W_
(= IN*“NZ{anV—i—a)j 0

applying

..(31)

formed to
(11) have
under.the

“transformation analogous to ¢, and since the quantities @, » and « suffer Lorentz-
Fitzerald contraction in the direction of motion, the condition that the ter

ms in the

..(32)

Since the velocity in-general need not be zero, A # 1 and since 4;, b and 7 are non-negative,

q. (32) is satisfied only if all 4; assume zero values Imposing this conditior‘l
(16) (24) and (27) reduced to '

~

e
V'EY = _g
- €9
v.By = it
V.Ey =— By ‘
E
 v.B, =9 &Y
vy ey ¢

which are the well-known equations of Maxwell,

Egs. (15),
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DISCUSSION = - - o

In the foregoing sections Maxwell’s equations were derlved axiomatically Wlthout'
assuming any experimental result. It may be pointed out that the velocity of hight, C,
is the result of Michaelson’s experiment. However, it should be noted that no where
in the derivation a value for C has been assumed, nor the fact that it is the velocity of
light. On the contrary C comes into picture only through the Lorentz factor {1 —(v%/c?)747)
so that throughout the derivation C stands for-the upper limit for. the velocity of travel
of any effect from its cause since action at a distance is assumed to be impossible.
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