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Abstract Estimation of the nadir objective vector is an important task, particularly
for multi-objective optimization problems having more than two conflicting objec-
tives. Along with the ideal point, nadir point can be used to normalize the objec-
tives so that multi-objective optimization algorithms canbe used more reliably. The
knowledge of the nadir point is also a pre-requisite to many multiple criteria deci-
sion making methodologies. Moreover, nadir point is usefulfor an aid in interactive
methodologies and visualization softwares catered for multi-objective optimization.
However, the computation of exact nadir point for more than two objectives is not an
easy matter, simply because nadir point demands the knowledge of extreme Pareto-
optimal solutions. In the past few years, researchers have proposed several nadir
point estimation procedures using evolutionary optimization methodologies. In this
paper, we review the past studies and reveal an interesting chronicle of events in
this direction. To make the estimation procedure computationally faster and more
accurate, the methodologies were refined one after the otherby mainly focusing
on increasingly lower dimensional subset of Pareto-optimal solutions. Simulation
results on a number of numerical test problems demonstrate better efficacy of the
approach which aims to find only the extreme Pareto-optimal points compared to its
higher-dimensional counterparts.
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1 Introduction

A reliable and accurate estimation of the nadir point in multi-objective optimization
is an important task from a number of reasons. First, along with the ideal objective
vector, the nadir objective vector can be used tonormalize objective functions [14],
a matter often desired for an adequate functioning of multi-objective optimization
algorithms in the presence of objective functions with different magnitudes. Second,
the nadir objective vector is a pre-requisite for finding preferred Pareto-optimal so-
lutions in different interactive algorithms, such as theguess method [3] (where the
idea is to maximize the minimum weighted deviation from the nadir objective vec-
tor), or it is otherwise an integral part of an interactive method like the NIMBUS
method [14, 15]. Third, the knowledge of nadir and ideal objective values helps the
decision-maker in adjusting her/his expectations on a realistic level by providing
the range of each objective and can then be used to aid in specifying preference
information in interactive methods in order to focus on a desired region.

Despite the long-term efforts by researchers, estimation of nadir point is still an
open matter for research. Recently, researchers have suggested different ways to
employ an evolutionary multi-objective optimization (EMO) procedure for this pur-
pose. Since an EMO methodology works with a number of points in each iteration,
its operators can be designed to focus its search towards a number of Pareto-optimal
solutions simultaneously in a single simulation. This flexibility makes an EMO pro-
cedure a potential tool for arriving at important Pareto-optimal points for estimating
the nadir point. In this paper, we review the existing EMO methodologies from the
point of view of dimensionality of the target solutions and discuss advantages and
disadvantages of these methodologies. We argue that an EMO method of finding the
extreme Pareto-optimal points (instead of intermediate Pareto-optimal points) is a
computationally faster approach and the modification of obtained extreme points by
a local search may provide accuracy in the estimation of the nadir point.

Motivations for estimating the nadir point led the MCDM researchers dealing
with methodologies to suggest procedures for approximating the nadir point using
a so-calledpayoff table [1], since 1971. This involves computing the individual op-
timum solutions, constructing a payoff table by evaluatingother objective values at
these optimal solutions, and estimating the nadir point from the worst objective val-
ues from the table. This procedure may not guarantee a true estimation of the nadir
point for more than two objectives. Moreover, the estimatednadir point can be either
an over-estimation or an under-estimation of the true nadirpoint. For example, Is-
erman and Steuer [11] have demonstrated these difficulties for finding a nadir point
using the payoff table method even for linear problems and emphasized the need of
using a better method. Among others, Dessouky et al. [8] suggested three heuristic
methods and Korhonen et al. [13] another heuristic method for this purpose. Let
us point out that all these methods suggested have been developed for linear multi-
objective problems where all objectives and constraints are linear functions of the
variables.

In [9], an algorithm for deriving the nadir point is proposedbased on subprob-
lems. In other words, in order to find the nadir point for anM-objective problem,
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Pareto-optimal solutions of all
(M

2

)

bi-objective optimization problems must first
be found. Such a requirement may make the algorithm computationally impractical
beyond three objectives, although Szczepanski and Wierzbicki [16] implemented
the above idea using EAs and showed applications up to three and four objective
linear optimization problems. It must be emphasized that although the determina-
tion of the nadir point depends on finding the worst objectivevalues in the set of
Pareto-optimal solutions, even for linear problems, this is a difficult task [2].

Since an estimation of the nadir objective vector necessitates information about
the whole Pareto-optimal surface, any procedure of estimating this point should in-
volve finding Pareto-optimal solutions. This makes the taskmore difficult compared
to finding the ideal point [13]. Since EMO algorithms are potential for finding an
approximate set of the entire or a part of the Pareto-optimalsurface, they stand as
viable candidates for this task. A couple of recent studies [5, 16] have demonstrated
a promise in this direction. Another motivation for using anEMO procedure is that
nadir point estimation is to be made only once in a problem before beginning the
actual decision making process. So, even if the proposed procedure uses somewhat
large computational effort (one of the criticisms made often against an evolutionary
optimization method), a reliable and accurate methodologyfor estimating the nadir
point is desired.

2 Dimensional Decomposition of Nadir Point Estimation
Procedures

In this section, we review the existing evolutionary optimization based nadir point
estimation procedures from a point of view of the dimensionality of the target set for
the evolutionary optimization procedure. The nadir point can be estimated from any
of the following scenarios: (i) the entire Pareto-optimal surface is known, (ii) the
critical edges of the Pareto-optimal surface (boundaries of Pareto-optimal surface
responsible for locating the nadir point) are known, or (iii) only thecritical extreme
Pareto-optimal points (extreme points of the Pareto-optimal surface responsible for
locating the nadir point) are known. Interestingly, at least one procedure is already
suggested for each of the above tasks and we describe them here.

2.1 ‘Surface-to-Nadir’: Computing Solutions from Entire
Pareto-optimal Surface

A naive and simple-minded idea comes from finding a representative set of the en-
tire Pareto-optimal surface with an EMO approach. Althoughthe idea is intuitive,
the difficulties of this method are many: (i) it needs an exponentially higher number
of points to cover the entire Pareto-optimal surface as the number of objectives in-
crease, (ii) to estimate the nadir point accurately, it mustfind extreme Pareto-optimal
points accurately, thereby deserving special attention for the search of the extreme
points, (iii) it often requires a diversity parameter specifying the minimum desirable
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distance between any two obtained points, hence making the procedure sensitive to
a parameter. An earlier study [16] has shown the effect of thediversity parameter
on the obtained accuracy of the estimated nadir point. Further, EMO methodologies
have shown to not work well in finding a well-distributed set of solutions on the en-
tire Pareto-optimal surface for more than four objectives [7], thereby making EMO
methodologies difficult to apply in practical scenarios.

2.2 ‘Edge-to-Nadir’: Computing Edge Solutions of Pareto-optimal
Surface

Since intermediate (non-extreme) Pareto-optimal solutions do not usually contribute
in determining the location of the nadir point, one may try tofind only critical edges
(boundaries responsible for a true estimate of the nadir point) of the Pareto-optimal
surface. One way to do this would be to solve

(M
2

)

pair-wise objective combinations
and collect the corresponding solutions together by computing the missing objec-
tives [9, 16]. The dominated points can then be deleted and the nadir point can be
estimated. However, although this procedure requires relatively smaller computa-
tional effort than that in the ‘Surface-to-Nadir’ approach, there are still some diffi-
culties: (i) the accuracy of the procedure depends on the diversity parameter used to
find a distributed set of solutions on the critical edges of the Pareto-optimal surface,
(ii) many pair-wise optimizations may find the same boundary(or a part of them)
repeatedly, thereby wasting computational efforts, (iii)such a technique may require
to find multi-modal Pareto-optimal solutions (solutions having identical efficientfi-
f j solutions but differing in at least one other objective, forexample) and may need
to employ a lexicographic procedure to find the true extreme Pareto-optimal points.

2.3 ‘Extreme-point-to-Nadir’: Computing Objective-wise Worst
Pareto-optimal Points

It is also intuitive to realize that even most of the intermediate edge points do not
help in estimating the nadir point. It is then quite temptingto develop a procedure
which will find only the extreme Pareto-optimal points, so that the nadir point can be
constructed from these points. A couple of recent studies [5, 16] suggested such pro-
cedures using an EMO approach and showed their potential forthe purpose. How-
ever, evolutionary optimization algorithms are not guaranteed to find the exact op-
timal solutions. Hence, an EMO designed to find the extreme Pareto-optimal points
may not be able to exactly locate the extreme points, therebymaking only an approx-
imate estimation of the nadir point. A recent study [6] suggested the use of a local
search procedure based on the reference point approach [14,17] on the approximate
extreme solutions obtained by the modified NSGA-II procedure [5]. This study used
a heuristic weight fixation scheme which may face difficulties in certain problems.



A Review of Evolutionary Based Nadir Point Estimation Procedures 5

f j

f i

f j f k(x*)

z
z

w

EMOz

Pareto−optimal
surface

P

Ez

P

Fig. 1 The local search procedure is illus-
trated.

This is because the task of a local search in
locating an extreme Pareto-optimal point is
more involved than the usual task of find-
ing a locally optimal solution in single-
objective optimization. Consider Figure 1,
in which the outcome of a typical EMO
procedure is usually a near-extreme solu-
tion, zEMO (the figure may indicate an ex-
aggeration of an actual EMO outcome).
Usually, such a solution need not even be
a Pareto-optimal solution. The task of the
local search isnot to find any arbitrary
Pareto-optimal point (sayzP) close to the
EMO point, but to find the true extreme
Pareto-optimal point (zE ) corresponding to
the objective functionf j for which the
EMO point was found to be the worst. It
is not a straightforward task to get the this
point (zE ) from the EMO point (zEMO) di-
rectly in every scenario using a single-level
heuristic optimization.

In this study, we replace the heuristic local search procedure by using a two-
level reference point based approach to improve the accuracy of locating extreme
points. In the outer-level optimization task, a combination of a reference point (z)
and a weight vector (w) is the set of decision variables and the objective function
evaluation involves another (lower-level) optimization task. For the lower-level opti-
mization, original variable vector (x) is the variable and the augmented achievement
scaralizing function with supplied (z, w) by the outer-level solution is optimized.
The starting solution is the EMO solution (xEMO) for this optimization task. At the
optimal solution (x∗P, which corresponds to the efficient vector,zP) to this task, the
value of the critical objective functionf j(x∗P) is computed and is used as the ob-
jective value of (z, w) solution of the upper-level optimization problem. Thus, the
outer-level optimization searches for(z,w) for which the above-computed objec-
tive function has its maximum value, thereby finding the desired extreme point. The
starting solution for the outer-level optimization can be(zEMO,w0), wherew0 is a
vector with all entries equal to 1/M (M is the number of objectives). During the op-
timization,z is restricted to lie within a hyperbox around the EMO point (zEMO) and
w is restricted to lie within the range [0.001, 1] in each dimension. In the following,
we present the overall procedure:

Step 1: Compute ideal and worst objective vectors by minimizing and maximiz-
ing each function individually. They are needed in computing the termination
criterion for the EMO procedure.

Step 2: Apply extremized-crowded NSGA-II approach [5] to find a set of non-
dominated extreme points. Iterations are continued till a termination criterion is
met. Say, at the end of this simulation,P non-dominated near-extreme points
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(x( j)
EMO for j = 1,2, . . . ,P) are found. Identify the best and worst objective vectors

fmin andfmax from theseP solutions.
Step 3: Apply a local search procedure from each near-extreme solutionx( j)

EMO

(having objective vectorf( j)
EMO) by using the two-level reference point approach

(described below) to find the corresponding extreme solution y∗( j). A pointx( j)
EMO

is used for local search if at least one of its objective values (sayk-th objective)
matches to that in the maximum objective vectorfmax and the point is declared
as a critical extreme point. The outer-level optimization uses a combination of
reference point and weight vector(z,w) as the decision variable vector and max-
imizes an objective function which is computed by an inner-level optimization
(given in equation 2):

Maximize(z,w) f ∗k
( j)(z,w),

subject to w ∈ [0.001,1]1,

z ∈ f( j)
EMO+[−0.5,1.5](fmax

− fmin),

(1)

where1 is vector of ones. The optimal objective valuef ∗k
( j)(z,w) depends on

the current reference pointz and weight vectorw and is the optimal objective
function values to the following inner-level optimizationproblem involving the
augmented achievement scalarizing function:

Minimize(y( j)) maxM
i=1 wi

(

fi(y( j))−zi

f max
i − f min

i

)

+ ρ ∑M
m=1 wm

(

fm(y( j))−zm
f max
m − f min

m

)

,

subject to y( j) ∈ S ,
(2)

whereS is the feasible variable space restricted by the original constraints and
variable bounds. To this problem, search is performed in theoriginal decision
variable space. The solutiony∗( j) to this inner-level optimization problem deter-
mines the optimal objective vectorf ∗k

( j), which is used in the outer-level opti-
mization problem. The outer-level optimization is initialized with the EMO so-

lution z(0) = f( j)
EMO andw(0) = (1/M)1. The inner-level optimization is initialized

with the EMO solutiony( j)
(0)

= x( j)
EMO. Resulting optimal solution for the two-level

local search isy( j)
LS with an objective vectorf( j)

LS and corresponding reference point

and weight vectors arez( j)
LS andw( j)

LS, respectively. Step 3 is repeated for allP
EMO solutions.

Step 4: Finally, construct the nadir point from the worst objective values of ex-

treme Pareto-optimal points (f( j)
LS), j = 1,2, . . . ,P) obtained by the local search

procedure.

The use of augmented achievement scalarizing function doesnot allow the inner-
level optimization to converge to a weak Pareto-optimal solution. But, in certain
problems, the approach may only allow to find an extremeproper Pareto-optimal
solution [14] depending on the value of the parameterρ . Alternatively, it is possi-



A Review of Evolutionary Based Nadir Point Estimation Procedures 7

ble to use a lexicographic formulation of the achievement scalarizing function to
guarantee Pareto optimality [14].

3 Results on Numerical Test Problems

In this section, we present simulation results of ‘Extreme-point-to-Nadir’ approach
and compare its performance with the other two procedures for which results are
borrowed from the original study [16]. For all simulations using the ‘Extreme-point-
to-Nadir’ approach, we have used the following parameter values. Details of this
procedure are given in [5]. Population size (N) is proportional to number of variables
(n), asN = 20n. Crossover and mutation probabilities are 0.9 and 1/n, respectively.
The distribution index for simulated binary crossover operator (SBX) [4] is 10 and
the same for polynomial mutation operator [4] is 50. The NSGA-II procedure is
terminated when the change in normalized distance metric (computed as(NDmax−

NDmin)/NDavg) is less than 0.0001. The quantitiesNDmax, NDmin, andNDavg are
maximum, minimum and average normalized distance (ND) metric value (defined
below) over the past 50 generations:

ND =

√

√

√

√

1
M

M

∑
i=1

(

zest
i − z∗i
zw

i − z∗i

)2

, (3)

wherezest
i , zw

i , z∗i are the estimated nadir point, worst objective point and ideal point,
respectively. The parameterρ for the augmented scalarizing function is set to 10−5.

3.1 Problem SZ1

We borrow the first two problems from a recent study [16] whichapplied the first
two nadir point estimation methodologies (‘Surface-to-Nadir’ and ‘Edge-to-Nadir’
approaches). The first problem is as follows:

Minimize







f1(x) = −(100−7x1−20x2−9x3),
f2(x) = −(4x1 +5x2+3x3),
f3(x) = −x3,







,

subject to 112x1 + x2+13
5x3 ≤ 9,

x1 +2x2+ x3 ≤ 10,
xi ≥ 0, i = 1,2,3.

(4)

The previous study [16] reported the true nadir point to beznad= (−3.6364,0,0)T .
Figure 2 shows a sketch of the feasible objective space and the corresponding
Pareto-optimal surface (shaded region). The ‘Surface-to-Nadir’ approach first finds
a set of well-distributed points on the entire Pareto-optimal surface and then con-
structs the nadir point from the obtained points. After 120,000solution evaluations
(total number of solutions evaluated by the during the entire optimization process),
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the point(−5.06,0,0)T was declared as an estimate of the nadir point in [16]. The
’Edge-to-Nadir’ approach finds the Pareto-optimal edges corresponding to pair-wise
minimizations of objectives. In this problem, all three pairs of objectives will find
representative points on the edges shown with a thick line. The nadir point is then
estimated to be(−4.78,0,0)T [16]. Even after 360,000 solution evaluations, the
resulting estimate using the ‘Edge-to-Nadir’ approach was(−4.36,0,0)T , having
20% higher value in the first objective from the true value. Although the problem
is linear and has only three variables, the above two evolutionary methodologies
seem to have faced difficulties in finding the true nadir pointin this problem. We
now employ the ‘Extreme-point-to-Nadir’ approach with theproposed local search
procedure.

In Step 1, we find the ideal point by minimizing each objectiveusing Matlab’s
fmincon() code, which employs the sequential quadratic method with BFGS as
a unconstrained optimization procedure and cubic search asa line search procedure.
Three minimizations providez∗ = (−100,−31,−5.625)T as the ideal point, requir-
ing 28, 16, and 16 solution evaluations, respectively. We also need the worst point
for terminating Step 2. The pointzw = (0,0,0)T is found with 28, 24, 28 solution
evaluations.

In Step 2, we apply the extremized crowded NSGA-II with a parameter setting
as described above. Figure 3 shows the variation of the normalized distance metric
with generation. The algorithm is terminated after generation 108 and total solution
evaluations needed are 60×109= 6,540. Four solutions are found at the end of the
simulation and are presented in Table 1 and in Figure 2 with diamonds. Notice, how
the modified NSGA-II finds non-dominatednear-extreme points (A, B, C, and D) for
the entire Pareto-optimal surface, without finding any intermediate points. From the
table with four obtained solutions, we observe the worst andbest objective vectors as
fmax = (−3.7878,0.0000,0.0000)T andfmin = (−100.0000,−30.9050,−5.6207)T,
respectively. Interesting to note thatfmax is already close to the true nadir point
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Table 1 Four solutions found by the extremized crowded NSGA-II for Problem SZ1. ’LS’ stands
for results after local search.

j f( j)
EMO x( j)

EMO
1 (−12.4541,−30.9050,−0.0052)T (4.0065,2.9727,0.0052)T

2 (−49.3921,−16.8739,−5.6207)T (0.0029,0.0001,5.6207)T

3 (−3.7878,−26.8347,−3.5788)T (0.0434,3.1850,3.5788)T

4 (−100.0000,0.0000,0.0000)T (0.0000,0.0000,0.0000)T

j k f( j)
LS x( j)

LS
1 – No worst objective value –
2 – No worst objective value –
3 1 (−3.6364,−26.8182,−3.6364)T (0,3.1818,3.6364)T

4 2,3 (−100,0,0)T (0,0,0)T

znad= (−3.6364,0,0)T . Now, we employ the local search procedure from the two
solutions corresponding to the worst objective vectorfmax.

In Step 3, we observe that solution 1 (point D) and solution 2 (point B) are not one
of the worst solutions, so we ignore these points from further consideration. In fact,
these two solutions exist in the NSGA-II final population because they correspond to
the minimum value of objectivesf2 and f3, respectively. Solution 3 (point C) corre-
sponds to the worst of objectivef1 (with k = 1) and hence will be subjected to a local
search in the hope of improving it to reach the true extreme (worst) Pareto-optimal
point corresponding to objectivef1. The resulting solution (point O) is shown in
the table. This optimization requires 204 solution evaluations. The corresponding

optimal weight vector and reference point are found to bew(3)
LS = (0.0010,1,1)T

and z(3)
LS = (140.5305,−41.9543,−6.3891)T, respectively. It is interesting to ob-

serve fromf(3)
EMO and z(3)

LS how the two-level local search procedure finds a large

value of the first objective inf(3)
LS by keeping the other two objective values close to

the NSGA-II point and uses a relatively small value of weightfor the first objective
to allow the search of the achievement scalarizing functionalmost along the− f1
direction to locate the extreme point.

Next, we consider solution 4 (point A), which corresponds tothe worst of
both objectivesf2 and f3 (with k = 2 and 3). Thus, we maximize a normal-

ized sum of both these objectives (∑3
j=2

( f j(x)− f min
j )

f max
j − f min

j
) in the inner-loop of local

search method. The same pointf(4)
LS = (−100,0,0)T is found in only 20 solution

evaluations. Corresponding optimal weight vector and reference point arew(4)
LS =

(0.3333,0.0010,0.0010)T and z(4)
LS = (−148.1061,−15.4525,−2.8103)T, respec-

tively.

In Step 4, we collate these points (f(3)
LS andf(4)

LS) and declare the estimated nadir
point as(−3.6364,0,0)T , which is identical to the exact nadir point. Total number
of solution evaluations needed by all steps of the procedureis 6,904, of which about
95% evaluations are needed by the EMO procedure alone. The computation needed
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by this ‘Extreme-point-to-Nadir’ approach is only about 6%of that needed by the
other two approaches and importantly the ‘Extreme-point-to-Nadir’ approach also
finds a more accurate result. This study demonstrates how thetask of finding the
nadir point can become computationally faster and accurateif the focus is made in
finding extreme points, rather than on the entire Pareto-optimal surface or on the
edges of the Pareto-optimal surface.

3.2 Problem SZ2

Next, we consider the second numerical optimization problem of [16]:

Minimize















9x1 +19.5x2+7.5x3

7x1 +20x2+9x3

−4x1−5x2−3x3

−x3















,

subject to 1.5x1− x2+1.6x3 ≤ 9,
x1 +2x2+ x3 ≤ 10,
xi ≥ 0, i = 1,2,3.

(5)

The true nadir point for this problem isznad = (94.5,96.3636,0,0)T . The ear-
lier study [16] obtained a close point(94.4998,95.8747,0,0)T using the ’Edge-
to-Nadir’ approach. This study required a total of 120,000 solution evaluations. In
the following, we show the results of ‘Extreme-point-to-Nadir’ approach on this
problem.

In Step 1 of the procedure, we find the ideal and worst objectives values:
z∗ = (0,0,−31,−5.625)T and zw = (97.5,100,0,0)T , respectively. This requires
(12+12+24+28)=76 and (28+12+16+16)=72 solution evaluations, respectively.

Thereafter, in Step 2, we apply the extremized crowded NSGA-II procedure us-
ing a population size of 60 and initializing the population aroundxi ∈ [0,10] for
all three variables. The NSGA-II run is terminated at generation 315 with the pre-
scribed termination criterion, thereby requiring a total of 50× 316 or 12,640 so-
lution evaluations. Solutions obtained are tabulated in Table 2. The minimum and

Table 2 Extremized crowded NSGA-II and local search method on problem SZ2.

j x( j)
EMO Objective vector,f( j)

EMO
1 (0.0001,0,5.6249)T (42.1879,50.6249,−16.8752,−5.6249)T

2 (0.0001,3.1830,3.6336)T (89.3219,96.3635,−26.8164,−3.6336)T

3 (3.9980,2.9998,0.0003)T (94.4810,87.9854,−30.9920,−0.0003)T

4 (0,0,0)T (0,0,0,0)T

j k w( j)
LS z( j)

LS Extreme point,f( j)
LS

1 – No worst objective value
2 2 (1.0,1.0,0.7,0.8)T (183.8,192.7,−26.8,−3.6)T (89.3182,96.3636,−26.8182,−3.6364)T

3 1 (0.3,0.3,0.2,0.3)T (189.0,184.4,−31.0,5.6)T (94.5000,88.0000,−31.0000,0.0000)T

4 3,4 0.25(1,1,1,1)T (0,0,0,0)T (0,0,0,0)T
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maximum objective vectors are:fmin = (0.0000,0.0000,−30.9920,−5.6249)T and
fmax= (94.4810,96.3635,0.0000,0.0000)T, respectively. Notice that the maximum
vector is close to the true nadir point mentioned above. We shall now investigate
whether the proposed local search is able to improve this point to find the exact
nadir point.

We observe that the objective values of the first solution does not correspond to
any element offmax. Thus, in Step 3, we employ the two-level local search procedure

only from the other three solutions. Resulting solutions and correspondingz( j)
LS and

w( j)
LS vectors are shown in the table. For solutions 2 and 3, we maximize objectivesf2

and f1, respectively. Since solution 4 is worst with respect to both objectivesf3 and
f4, we maximize the sum of normalized objectives, as describedfor the previous
problem. The solution evaluations required till convergence for each of the three
optimizations are 204, 25 and 20, respectively.

From the obtained local search solutions (last column in thetable), we estimate
the nadir point as(94.5000,96.3636,0,0)T, which is identical to the true nadir point
for this problem. The total number of solution evaluations is 13,037. This is only
about 10% of the total solution evaluations needed in [16]. Moreover, our approach
finds the exact nadir point, whereas [16] could not find the exact nadir point even
with about 10 times more solution evaluations.

3.3 Problem KM

Next, we consider a three-objective optimization problem,which provides difficulty
for the payoff table method to estimate the nadir point. Thisproblem was used in
[12]:

Minimize







−x1− x2 +5
1
5(x2

1−10x1+ x2
2−4x2+11)

(5− x1)(x2−11)







,

subject to 3x1 + x2−12≤ 0,
2x1 + x2−9≤ 0,
x1 +2x2−12≤ 0,
0≤ x1 ≤ 4, 0≤ x2 ≤ 6.

(6)

Individual minimizations of objectives identify the vector z∗ = (−2,−3.1,−55)T

as the ideal objective vector. This requires a total of (18 + 37 + 9)=64 solution
evaluations. The maximization of the objectives leads to the worst objective vector
zw = (5,4.6,−14.25)T with (12+18+18)=48 solution evaluations. The payoff ta-
ble method finds(5,2.2,−14.25)T as the wrongly estimated nadir point from these
minimization results. Another study [10] used a grid-search strategy (computation-
ally possible due to the presence of only three objectives) of creating a number
of feasible solutions systematically and constructing thenadir point from the solu-
tions obtained. The estimated nadir point was(5,4.6,−14.25)T . We now employ
the ‘Extreme-point-to-Nadir’ approach with the proposed local search procedure.
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As described above, Step 1 of the approach findsz∗ = (−2,−3.1,−55)T and
zw = (5,4.6,−14.25)T . In Step 2 of the approach, we employ the extremized
crowded NSGA-II and find four non-dominated extreme solutions, as shown in the
second column of Table 3. It is interesting to note that the fourth solution is not

Table 3 Extremized crowded NSGA-II and local search method on Problem KM.

j x( j)
EMO Objective vector,f( j)

EMO k Extreme point,f( j)
LS

1 (0,0)T (5,2.2,−55)T 1 (5,2.2,−55)T

2 (3.511,1.466)T (0.023,−3.100,−14.194)T 3 (0,−3.1,−14.25)T

3 (0,6)T (−1,4.6,−25)T 2 (−1,4.6,−25)T

4 (2.007,4.965)T (−1.973,−0.050,−18.060)T – No worst objective value

needed to estimate the nadir point, but the extremized principle keeps this extreme
solution corresponding tof1 to possibly eliminate spurious solutions which may
otherwise stay in the population and provide a wrong estimate of the nadir point. The
simulation is terminated after 135 generations, thereby requiring 40×136= 5,440
solution evaluations. At the end of Step 2, the estimated nadir point is znad =
(5,4.6,−14.212)T , which seems to disagree somewhat on the third objective value
with that found by the grid-search strategy.

To investigate if any further improvement is possible, we proceed to Step 3 and
apply three local searches, each started with one of the firstthree solutions pre-
sented in Table 3, as these three solutions correspond to theworst value of one of
the objectives. The minimum and maximum objective vectors from these solutions
are:fmin =(−1,−3.1,−55)T andfmax=(5,4.6,−14.194)T , respectively. Solution 1
from the table corresponds to the worst value of the first objective (k = 1). Thus, the
outer optimization run maximizes objectivef1. This optimization took 487 solu-
tion evaluations. The table clearly shows that solution 2 obtained by NSGA-II was
not a Pareto-optimal point. The local search approach starting from this solution is
able to find a better solution(0,−3.1,−14.25)T , requiring a total of 198 solution
evaluations. This shows the importance of employing the local search approach in
obtaining exact extreme points. The third solution could not be improved any fur-
ther, since it is already the desired extreme point with respect to f2 with k = 2, but
the optimization requires 786 solution evaluations to terminate with the prescribed
conditions.

The nadir point estimated by the combination of extremized crowded NSGA-II
and the local searches is(5,4.6,−14.25)T , which is identical to that obtained by the
grid search strategy [10]. Overall, the ‘Extreme-point-to-Nadir’ approach required
7,023 solution evaluations to estimate the nadir point exactly to this non-linear prob-
lem, for which the EMO procedure required about 77% of the total computations.
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4 Conclusions

Recent studies have shown that evolutionary multi-objective optimization (EMO)
procedures are potential for the estimation of nadir point.In this paper, we have
reviewed three such implementations which seemed to vary according to the dimen-
sion of the desired target set. By comparing the number of solution evaluations of
these procedures, we have concluded that the ‘Extreme-point-to-Nadir’ approach
which directly focuses to find extreme Pareto-optimal points is a computationally
faster approach and requires an order of magnitude less solution evaluations. The
accuracy of the EMO procedure has also been improved by usinga two-level local
search procedure and with a marginal increase in the computational effort. Simi-
lar results are observed on other problems (which we could not provide here due
to space restrictions). The local search based ‘Extreme-point-to-Nadir’ approach
seems to be a promising procedure for making a reliable and accurate estimate of
the nadir point in a multi-objective optimization problem.
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