
Computationally Effective Search and Optimization Procedure
Using Coarse to Fine Approximations

Pawan K. S. Nain and Kalyanmoy Deb
Kanpur Genetic Algorithms Laboratory (KanGAL)

Indian Institute of Technology Kanpur
Kanpur, PIN 208 016, India�

pksnain, deb � @iitk.ac.in
http://www.iitk.ac.in/kangal

Abstract- This paper presents a concept of combining
genetic algorithms (GAs) with an approximate evalu-
ation technique to achieve a computationally effective
search and optimization procedure. The major objec-
tive of this work is to enable the use of GAs on com-
putationally expensive problems, while retaining their
basic robust search capabilities. Starting with a coarse
approximation model of the problem, GAs successively
use finer models, thereby allowing the proposed algo-
rithm to find the optimal or a near-optimal solution of
computationally expensive problems faster. A general
methodology is proposed for combining any approxi-
mating technique with GA. The proposed methodology
is also tested in conjunction with one particular ap-
proximating technique, namely the artificial neural net-
work, on a B-spline curve fitting problem successfully.
Savings in the exact function evaluation upto 32% are
achieved. The computational advantage demonstrated
here should encourage the use of the proposed approach
to more complex and computationally demanding real-
world problems.

1 Introduction

One of the main hurdles faced by an optimization algorithm
in solving real-world problems is their need of a reason-
ably large computational time in finding an optimal and a
near-optimal solution. In order to reduce the overall com-
putational time, researchers in the area of search and opti-
mization look for efficient algorithms which demand only a
few function evaluations to arrive at a near-optimal solution.
Although successes in this direction have been achieved by
using new and unorthodox techniques (such as evolutionary
algorithms, tabu search, simulated annealing etc.) involving
problem-specific operators, such techniques still demand
a considerable amount of simulation time, particularly in
solving computationally expensive problems. In such prob-
lems, the main difficulty arises due to large computational
time required in evaluating a solution. This is because such
problems either involve many decision variables or a com-
putationally involved evaluation procedure, such as the use
of finite element procedure or a network flow computation.

Although the use of a parallel computer is a remedy to
these problems in reducing the overall computational time,
in this paper, we suggest a fundamental algorithmic change
to the usual optimization procedure which can be used ei-
ther serially or parallely. Most search and optimization al-
gorithms begin their search from one or more random guess

solutions. Thus, the main task of a search algorithm in the
initial few iterations is to provide a direction towards the op-
timal region in the search space. To achieve such a task, it
may not be necessary to use an exact (or a very fine-grained)
model of the optimization problem early on. An approx-
imate model of the problem may be adequate to provide a
reasonably good search direction. However, as the iterations
progress, finer models can be used successively to converge
closer to the true optimum of the actual problem. Although
this idea of using an approximate model in the beginning of
a search algorithm and refining the model with iterations is
not new [1, 6, 9, 11, 12], we suggest a generic procedure
which can be used in any arbitrary problem.

In the reminder of this paper, we describe the proposed
coarse-to-fine grained modeling procedure. Thereafter, we
suggest an artificial neural network (ANN) based proce-
dure, specifically to model an approximate version of the
actual problem and show simulation results of the proposed
technique applied to a two-objective geometric design prob-
lem. Different variations of the ANN design and train-
ing procedures are compared. Simulation results show a
large computational advantage of the proposed procedure,
thereby suggesting the applicability of the proposed proce-
dure in more complex real-world search and optimization
problems.

2 Coarse to Fine Grained Methods Used in
Past Studies

The use of coarse-to-fine grained modeling in optimization
can be found in various application papers available in the
literature, particularly in computational fluid dynamics ap-
plications and complex mechanical component design prob-
lems. One such application is the optimal design of elastic
flywheels using the injection island GA (iiGA) suggested
by Eby et. el. [6]. It uses a finite element code to assist
the iiGA to evaluate the solutions to find the specific en-
ergy density of flywheels. Similar work using the hierar-
chical genetic algorithm (HGA) for a computational fluid
dynamics problem is reported by Sefrioui et. el. [11]. They
used a multi-layered hierarchical topology to solve a clas-
sical exploration/exploitation dilemma while using multiple
models for optimization problems. They have reported to
achieve the same quality results as that obtained by a sim-
ple GA, but spending only about one-third of the computa-
tional time. The other important work in this area is reported
by Poloni et.el. [12]. They have developed a methodology
which uses a multi-objective genetic algorithm (MOGA) for

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications of the IAS Fellows

https://core.ac.uk/display/291575207?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

exploring the design space to find a local Pareto-optimal set
of solutions. Next, they train a neural network with the
database of solutions obtained so far to get the global ap-
proximation of the objective function. Finally, by defining
the proper weights to combine the objectives, a single objec-
tive optimizer using the conjugate gradient method is run on
the globally approximated objective function obtained ear-
lier. They tested this methodology for the design of sailing
yacht fin keel problem, coupling their optimization code to a
3D Navier-Stokes equation solver. A recent work combines
the approximating concept with GA for structural optimiza-
tion applications [13]. Investigators have tried to reduce the
number of exact computations while ensuring to converge
to the optima of the original problem. They claimed to re-
duce the exact analysis by more than 97% for the optimal
design of a 10-bar truss structure. Despite the success, it re-
mains to be seen what advantage will be achieved in a more
and realistic truss structure optimization problem. Jin and
Sendhoff [9] provide a good survey of approximation meth-
ods, while Branke and Schmidt [1] have recently reported
a faster convergence achieved using local models based on
interpolation and regression techniques.

3 Proposed Approach

We propose to combine a GA with the approximation tech-
nique which allows a GA to require a reduced number of
function evaluations in solving computationally expensive
problems. Since the function evaluation of solution vectors
is required at every generation for fitness assignment in the
GA procedure and for most of the practical applications GA
is usually run for hundreds, if not thousands, of generations
with a significant population size, it turns out to be the most
desirable place for improving the computational efficiency
of a traditional GA procedure. In order to reduce the com-
putational time required to execute one function evaluation,
the following strategies can be used:

� Use a partial evaluation of a solution
� Use a parallel computer
� Use an approximation of the optimization problem

Certain search and optimization problems may be function-
ally decomposable into a number of subproblems. In such
problems, the most important subproblems can only be eval-
uated in the initial GA generations. Although this procedure
will introduce some error in evaluating a solution in early
generations (since not all subproblems are evaluated), the
computations can be performed quickly. As mentioned ear-
lier, in the early generations the task of an optimizer is to
determine correct search directions towards the optimum,
such errors may not cause a large deviation from the true
search direction. However, as generations progress, more
and more less important subproblems can be included and
more accurate function evaluations are expected.

Because of the availability of parallel computers, it may
be plausible to take advantage of parallel computing of dif-
ferent tasks involved in a function evaluation. For example,
to evaluate a solution involving FFT or finite element com-
putations, the solution can be sent to multiple processors

for a faster computation. Since GAs use a population of
solutions in each generation, most parallel GA applications
perform a distributed computing of allocating a complete
solution to each available processor, thereby reducing the
overall computational time to complete one generation.

The focus of this study is to use a successive approxima-
tion of the optimization problem. Starting with a coarsely
approximated model of the problem, GAs use succes-
sively fine-grained models with generations. Figure 1 de-
picts this procedure. The figure shows a hypothetical one-
dimensional objective function for minimization in a solid
line. Since this problem has a number of local minimum so-
lutions (which is one of the difficulties often exist in a real-
world optimization problem), it would be a difficult problem
for any optimization technique. It is concluded elsewhere
[7] that to find the global optimum in such a problem using
a GA, a population of size

�������	�
, where

�
is the inverse

of the signal-to-noise of the function, is needed. The signal
being the difference between the global and the next-best
local optimal values and the noise being equal to the vari-
ance of the function values. Thus, the objective function
shown in the figure demands a large population size, if the
GA has to start from an initial random population. Figure 1
shows a coarsely approximated function in the entire range
of the function with a dashed line. There could be a variety
of ways such an approximated function can be obtained:

� Linear or quadratic approximation of the true func-
tion

� Approximation through a set of basis functions
� Approximation through a chosen set of solutions

Classical methods often linearize non-linear optimiza-
tion problems at suitable solutions and use a linear pro-
gramming technique successively, such as the Frank-Wolfe
method or successive linearization methods [10]. Besides,
linearization techniques, non-linear problems can be ap-
proximated by quadratic or higher-order polynomial func-
tions. Powell’s quadratic approximation technique is a pop-
ular single-variable search technique [3] in finding an opti-
mum of a non-linear problem.

Another way to approximate a function is to use a set
of basis functions and find a weighted sum of such basis
functions (finite or infinite numbers of them) as an approxi-
mation. Fourier approximation and Walsh function approx-
imations are two such examples. Once such an approxima-
tion is known, the individual properties of the optimum of
the basis functions may be analyzed to make a guess of the
optimum of the approximating function.

The optimization problem can be evaluated exactly at
a few finite number of pre-specified solutions in the entire
range of the decision variables. Thereafter, an approximat-
ing function can be fitted through these function values us-
ing regression or some other sophisticated techniques such
as artificial neural networks. It is clear that if a large num-
ber of solutions are chosen, the approximating function will
take a shape similar to the original function. On the other
hand, if only a few solutions are chosen, the approximated
function will ignore the local details and represent a coarse
trend in variation of the function values. If this approximat-

ing function is optimized, it is likely that a GA will proceed
in the right direction. However, as a GA tends to converge to
the optimum of the approximating function, the approximat-
ing function needs to be modified to make a better approxi-
mated function from before. Since the population diversity
will be reduced while approximating the first approximated
function, the second approximating function need not be
defined over the whole range of the decision variables, as
shown in Figure 1. Since the approximating function will

Exact function

 X

Model 1

Model N

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 1: Progressive approximate modeling.

be defined over a smaller search region, more local details
can appear in successive approximations. This process may
continue till no further approximation results in an improve-
ment in the function value. Although the successive approx-
imation technique described above seems a reasonable plan,
care must be taken to ensure that adequate diversity is left
while switching from one approximating function to a better
one.

Figure 2 outlines a schematic of a plausible plan for the
proposed procedure. The combined procedure begins with a

0 Q 2Q

n n n

 Generation’s of GA

T*Q(T−1)Q

Intial
Coarse
Model
learnt

Model
refined
and
relearnt

model
learnt

Final
population
Exact
function
evaluation

GA run
using

model

intial

GA run
using

GA run
using
final
model

refined
model

Final

Figure 2: A line diagram of the proposed technique.

set of randomly created � solutions, where � is the popula-
tion size. Since an adequate size of solutions are required to

arrive at an approximated problem, we execute a GA with
exact function evaluations for � generations, thereby col-
lecting a total of ����� � � solutions for approximation. At
the end of � generations, the approximation technique is in-
voked with ��� solutions and the first approximated problem
is created. The GA is then performed for the next ���
	 ���
generations with this approximated problem. Thereafter,
the GA is performed with the exact function for the next
� generations and a new approximated problem is created.
This procedure is continued till the termination criterion is
met. Thus, this procedure requires a fraction �� � of total
evaluations in evaluating the problem exactly. With gen-
erations, the approximations continue to happen in smaller
regions and, therefore, the training set ��� can be reduced in
size. We follow a linear reduction in this paper.

If a problem cannot be evaluated exactly, instead some
approximations (such as involving FFT or finite element
techniques) are needed to evaluate, the parameter � is set
to zero and GAs are run for � generations with the most
coarse model (in the case of a finite element method only
a few elements can be chosen to start with). It is interest-
ing to note that a set of basis functions with varying impor-
tance to local variations can be used as approximating func-
tions here. In such cases, a GA may be started with an ap-
proximating function involving only a few basis functions,
thereby allowing a quicker computation of the optimal solu-
tion. With generations, more and more basis functions can
be added to make the model more similar to the actual op-
timization problem. In this study we concentrate on solving
problems for which an exact evaluation method exists but
is computationally expensive. However, similar methodol-
ogy can also be used to solve problem for which no exact
evaluation method exists.

3.1 Approximation Through Artificial Neural Networks

We propose combining a GA with the artificial neural net-
works (ANN) as the basic approximating technique for fit-
ness computation. The primary reason for using ANN as the
basic approximating tool is its proven capabilities as func-
tion approximation tool from a given data set. The mul-
tilayer perceptron trained with the back-propagation algo-
rithm may be viewed as a practical vehicle for performing a
non-linear input output mapping of general nature [8]. The
overall GA-ANN procedure is shown in a flowchart in Fig-
ure 3.

An advantage of the proposed technique is its adaptabil-
ity. Initially the GA population will be randomly spread
in the entire search space for the problem undertaken.
Since the same information is available in the ANN train-
ing database the approximated model generated using this
database, will also be very general in nature and hence may
miss some finer details about the search space. However as
the generations proceed, the GA population will start drift-
ing and focusing on the important regions which it iden-
tifies based on the current model. So when the proposed
technique updates its model using exact function evalua-
tion for the current generation, it will have more informa-
tion about the local regions of interest as more population

using Approximate Model

Fitness Calculation

Perform Selection, Crossover and Mutation

Generate/Refresh

by Basic Method

Basic Method

No

Yes

Intialize Population

Generate Fitness and Solution Vector Database

 Generation Counter

Generate/Retrain Database

Fitness Calculation of New Population

Approximate Model if Database is Full

Fitness Calculation of New Population

Is Generation Count < Maximum Generation

Reassign Fitness to Final Population using

for Approximate Model Generation

Yes No

Figure 3: A flow chart of the proposed GA-ANN technique.

members will now be available in those regions than earlier.
The ANN will now retrain and update its weights making
it learn and adapt to the new smaller regions in the search
space. Hence it will give finer refined approximated model
to direct the search of GA in the subsequent generations.
Thus the proposed technique will adaptively refine the ap-
proximated model from coarse to fine approximated model
of the optimization problem. It is assumed in this study
that the computational time for each function evaluation is
so large that the time taken for ANN training is compara-
tively small. It is also worth mentioning that the proposed
technique is equally applicable to single and multi-objective
optimization as an additional objective in the optimization
problem is equivalent to addition of one more neuron in the
output layer of ANN.

4 Proof of Principle Results

The proposed technique is tested on a B-spline curve fitting
problem here. A saw-tooth function with two teeth is taken
as the basic curve to be fitted using B-splines. B-splines
enable a better local control of the curve as opposed to the
global control achievable in Bezier curves by using a special
set of blending functions that provide local influence [14].
They also provide the ability to add control points with-
out increasing the degree of the curve. A sudden change
in function values (Figure 4) sets as a challenging task for
curve fitting algorithms.

A B-spline with the parameter ����� produces a polyno-
mial curve of degree two, with ��� continuity for all curve
segments and guarantees to pass through the starting and
end control points and make tangents at the corresponding

B−Spline

 Saw Tooth

x

F
u
n
c
t
i
o
n

v
a
l
u
e

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 4: The B-spline curve fitting problem.

line segments. If we edit any control point in the B-spline,
it will at-most affect � segments in its vicinity and hence
keeping the perturbation local in nature. In the current prob-
lem, the number of control points are taken to be �
	 , thus
dividing total � range in �� equal divisions. However, it is
important to note that in order to create meaningful solu-
tions, the first and the last control points for the B-spline is
fixed at tooth root height and tooth peak height, respectively,
thereby leaving only ��� control points to be treated as deci-
sion variables. For the curve fitting problem, the following
two conflicting objectives are considered:

� Minimize the error between the saw-tooth curve and

the B-spline fitted curve, and� Minimize the maximum curvature of the B-spline fit-
ted curve.

Figure 4 also shows a typical B-spline fitted curve to the
saw-tooth function. The first objective is calculated as the
overall area between the two curves. When this objective is
minimized (that is the B-spline fitted curve is very similar to
the saw-tooth function), there is bound to be a large curva-
ture near ��� ��� � . Since in some applications, a large curva-
ture is to be avoided, the sole minimization of the second ob-
jective will produce a curve which would be a straight line
joining the first (��� �) and the last (�	��
) points. As can
be seen from the figure that such a curve will make the error
(the first objective) large. Thus, the above two objectives
constitute a pair of conflicting objectives in the curve fitting
problem. Since the problem is posed as a multi-objective
problem, we have chosen to use NSGA-II (non-dominated
sorting GA - II) [5] to solve the problem.

For any given B-spline curve � , the exact evaluation of
the first objective can be achieved in the following manner:���� ��� � ����� �������� � saw-tooth � � � � � (1)

Since such a computation is difficult to achieve exactly
(mainly because of the non-differential modulus function
used in the operand), we compute the above integral numer-
ically by using the Trapezoidal rule. The accuracy of the
integral will depend on the number of divisions considered
during the integration. The more divisions, the better is the
approximation. We have used ! �"� divisions in the entire
range of � and call the procedure an exact evaluation proce-
dure. The second objective can be written as follows:$#%� ��� � ��� �&('*)���+� ,.-0/, � -1
3254 ,6/, �87

#:9<;>= # � (2)

Since the B-spline curve � is defined piece-wise, the term
for the curvature can be derived exactly for each segment.
The term can then be optimized exactly using the first and
second-order optimization criteria and the following loca-
tion of the optimum is found in each B-spline segment:

?+@ �BAC D ��E if ?�F�G ��E
 E if ?�F�H
 E?IF E otherwise,
(3)

where the parameter ?+F is calculated as follows:? F � �KJLJ � � � � � � � 2NM"J�J � M � � M � �� #JLJ 2OM #JLJ E
�KJLJP� � � �NQ � � 2�� # EM�JLJR� M � �NQ M � 2�M # �

Here
� � � E M � � , � � � E M � � and

� � #�E M # � are three control points
of each segment. Once the optimal ? @ is calculated, the
corresponding curvature can be calculated as follows:S � � J M JLJ � � JLJ M J� � #J 2NM #J � ;>= # E (4)

where the first derivatives ��J and M�J are calculated as fol-
lows: �KJT� � ?�@ �
 � � � 2 �
 �UQ ?�@ � � � 2 ?+@ � # EM"JR� � ?�@ �
 � M � 2 �
 �NQ ?+@ � M � 2 ?�@ M # �
Such computations can be performed for all segments and
the maximum curvature of the entire B-spline curve can be
determined. For a large number of B-spline segments, many
such computations are required, thereby involving a large
computation time to evaluate the second objective. If such
computations are extended to 3-D curve or surface fitting,
the computations become even more expensive.

The ANN module which is used in conjunction with
NSGA-II uses two different types of training procedures,
namely batch training and incremental training after everyV

generations for next W generations. Thus, the test prob-
lem is solved with two different models, namely the incre-
mental (X - V - W) model and the batch (Y -

V
- W) model. Each

model is tried with various combinations of parameter set-
tings. A three-layer ANN with one hidden layer is used. In-
put layer has 40 neurons and the output layer has 2 neurons.
A momentum factor of 0.1 is used. A unipolar sigmoidal
activation function with logistics equal to 0.5 is chosen. In
all cases, we have used a permissible normalized RMS er-
ror of 0.005. All input data are scaled in [0.1,0.9] and the
output data are scaled between zero and one. For initial and
final 25% generations, we have used Q �"� W and

�<� W train-
ing cases, respectively. For intermediate generations, we
have linearly reduced the number of training cases. NSGA-
II with a population size of 200 and SBX crossover proba-
bility of 0.9 with distribution index of 10 and the polynomial
mutation probability of 1/39 with a distribution index of 50
are used.

0.1

0.2

0.3

0.4

0.5

0.6

0.3 0.4 0.5 0.6 0.7

Solution B
Sawtooth

Solution A

F
u
n
c
t
i
o
n

v
a
l
u
e

X

Figure 9: Two extreme non-dominated solutions from theY -
 � - Z model.

In order to investigate the suitable working ranges for the
proposed approach, we have tried using various parameter
settings, by particularly varying number of hidden neurons

100

200

300

400

500

600

0.006 0.007 0.008 0.009 0.01 0.011
Area Error

M
a
x
i
m
u
m

C
u
r
v
a
t
u
r
e

Exact evaluations
B−20−2
B−10−2

Figure 5: Batch model results trained with 400 patterns.

100

200

300

400

500

600

0.006 0.007 0.008 0.009 0.01 0.011
Area Error

M
a
x
i
m
u
m

C
u
r
v
a
t
u
r
e

Exact evaluations
I−20−2
I−10−2

Figure 6: Incremental model results trained with 400 pat-
terns.

100

200

300

400

500

600

0.006 0.007 0.008 0.009 0.01 0.011
Area Error

M
a
x
i
m
u
m

C
u
r
v
a
t
u
r
e

Exact evaluations
I−20−2
B−10−3

Figure 7: Best of incremental and batch model results.

100

200

300

400

500

600

0.006 0.007 0.008 0.009 0.01 0.011

B−10−3
Exact at 1100 generation
Exact at 750 generation

M
a
x
i
m
u
m

C
u
r
v
a
t
u
r
e

Area Error

Figure 8: Comparison of the best of the proposed tech-
nique and the exact solution at generation 1100.

in the ANN, ANN learning rate, � and � . As a bench-
mark result, we have run NSGA-II with a population size
of 200 using the exact function evaluations (as described
above) for 750 generations. The obtained non-dominated
front is shown in Figures 5 to 8 using a solid line. The over-
all function evaluations required in this exact simulation run
are ���������
	�� or ���	��������� . All NSGA-II-ANN simulations
are also performed for the same number of exact function
evaluations.

After the non-dominated solutions are found, they are
evaluated using the exact model and plotted in all figures (5
to 8). In all simulations with batch and incremental learning
models with different parameter settings, the obtained non-
dominated front is better than that obtained using the exact
model. The best result for incremental training is found
with the � - � � - � model, while in the case of batch train-
ing slightly better results are found with the � - ��� - � model.

This demonstrates that although approximate models are
used, the combined NSGA-II-ANN procedure proposed in
this paper is able to find a better non-dominated front than
the exact model. In order to investigate how many genera-
tions it would take by the NSGA-II with exact evaluations
to obtain a front similar to that obtained using the proposed
approach, we have continued the NSGA-II run with exact
evaluations. Figure 8 shows that the � - ��� - � model reaches
a similar front in about 1,100 generations (except that for
larger error values the obtained front is still inferior than
that obtained using the proposed approach). In comparison
to these evaluations, the approximate model makes a saving
of around � � % of exact evaluations.

Figure 9 show two extreme non-dominated solutions ob-
tained by the � - ��� - � model. The saw-tooth function is also
shown in dots. The figure shows that one solution (marked
as A) is a better fit with the saw-tooth function, whereas the

100

200

300

400

500

600

0.006 0.007 0.008 0.009 0.01 0.011
Area Error

M
a
x
i
m
u
m

C
u
r
v
a
t
u
r
e

Exact evaluations
B−10−3 with rms error 0.004
B−10−3 with rms error 0.005
B−10−3 with rms error 0.006

Figure 10: Effect of permissible rms normalized error on
B-10-3 model performance.

0

0.2

0.4

0.6

0.8

1

0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
rms error

n
o
r
m
a
l
i
z
e
d

c
o
n
v
e
r
g
e
n
c
e

m
e
t
r
i
c

Exact at 750 generation
Exact at 1100 generation

B−10−3 results

Best level for B−10−3
Best level for I−20−2

Figure 11: Normalized convergence metric for B-10-3
model.

other solution (marked as B) not a good fit in the vicinity
of ��� ��� �

, but produces a smaller curvature. For clarity
in showing the nature of the fitted curves near ��� ��� �

, the
solutions are plotted in ��	�
 ��� ���������� .
4.1 Effect of Permissible Normalized RMS Error

The issue of choosing proper permissible normalized rms
error for ANN also plays an important role in the proposed
NSGA-II-ANN procedure. A too high value of permissible
normalized rms error may not adequately approximate the
true problem as it will permit too much difference between
ANN output and training data. This is referred as poor ap-
proximation of the true problem by NSGA-II-ANN proce-
dure. Similarly, a too low value of permissible normalized
rms error will lead to over-approximation of the true prob-
lem. It is the case in which though the ANN output will

match almost exactly with the training pattern data, but will
loose its generalization capability. This indicates that there
should be a critical value for permissible normalized rms er-
ror at which the proposed NSGA-II-ANN procedure should
give best performance.

In order to investigate the effect of permissible normal-
ized rms error, various simulations were performed. Fig-
ure 10 show one such study. Various values of permissi-
ble normalized rms error were tried with � - � � -

�
model in

 ��� ��� � ���� � � ��� . It was found that permissible normalized
rms error less then 0.003 leads to over-approximation of
the true problem. Hence NSGA-II-ANN procedure fails
to converge for the current problem. Permissible normal-
ized rms error for values upto 0.004 found non-dominated
front which was better than exact function evaluations for
750 generation, indicating savings of exact evaluations. At
permissible normalized rms error value of 0.005, the per-
formance of proposed NSGA-II-ANN procedure is best as
non-dominated front is pushed to the extreme left in the ob-
jective space for minimization of both objectives. However,
further increasing permissible normalized rms error value
at and above 0.006 shows the case of poor approximation of
exact problem with no savings in the exact evaluations. For
clarity of observation, Figure 10 shows only three such sim-
ulations along with exact evaluations for 750 generations.
It clearly shows the best performance of B-10-3 model at
0.005 permissible normalized rms error value.

Table 1: Convergence metric calculation.
Model RMS Conv. Normalized
name error metric Conv. metric�
- ��� - � 0.003 0.012525 0.3779�
- ��� - � 0.004 0.012525 0.3779�
- ��� - � 0.005 0.000779 0.0235�
- ��� - � 0.006 0.033142 1.0000�
- ��� - � 0.007 0.033142 1.0000�
- ��� - � 0.008 0.033142 1.0000�
- ��� - � 0.009 0.033142 1.0000�
- ��� - � 0.010 0.033142 1.0000�
- � � - � 0.005 0.003458 0.1043

Exact- !�"�� N.A. 0.019351 0.5839
Exact- �#����� N.A. 0.003795 0.1145

The visual decision about the performance level of var-
ious simulations closely spaced in objective space is ex-
tremely difficult. Hence the need to quantify the perfor-
mance is well recognized [2, 4]. The normalized con-
vergence metric value for various simulations can clearly
demonstrate the performance of proposed NSGA-II-ANN
procedure and hence can effectively assist in the decision
making. The detailed procedure for calculating normal-
ized convergence metric is described elsewhere [4]. As
the current problem is a real world problem, the true Pareto-
optimal front for which is not known, a non-dominated ref-
erence set $&% containing 274 data points is obtained from
combined pool of 11 simulations (shown in Table 1) with
2200 data points. For calculating the convergence metric
value, first the non-dominated set ' of last generation of
simulation is identified. Then for each point in ' , small-

est normalized Euclidean distance to ��� is calculated. Next
the convergence metric value is calculated by averaging the
normalized distance of all points in the � . Lastly, in or-
der to keep the convergence metric within � ���	�	
 , we di-
vide the convergence metric value by the maximum value
found among all simulations. Table 1 shows the normal-
ized convergence metric value calculated for various simu-
lations by proposed NSGA-II-ANN procedure. Figure 11
shows the same normalized convergence metric value plot
for � - ��� - model at various permissible normalized rms
error values. The best normalized convergence level ob-
tained with � - ��� - � model, exact function evaluation for 750
and 1100 generations by NSGA-II are shown by horizontal
lines on same plot. It can now be safely concluded that the
proposed NSGA-II-ANN procedure with both � - � � - � and
� - ��� - models has outperformed NSGA-II run with exact
function evaluations for 1100 generations. Thus a saving
of �� % of exact evaluations can be claimed for both � - ��� - �
and � - ��� - models. Figure 11 also shows that overall best
performance is obtained with � - ��� - model.

5 Conclusions and Extensions

Many real-world search and optimization problems involve
too computationally expensive evaluation procedures to
make them useful in practice. Although researchers and
practitioners adopt different techniques, such as using a par-
allel computer or using problem-specific operators, in this
paper we have suggested the use of successive approxima-
tion models for a faster run-time. Starting from a coarse
approximated model of the original problem captured by an
artificial neural network (ANN) using a set of initial solu-
tions as a training data set, the proposed genetic algorithm
(GA) uses the approximate model. It has been argued that
such coarse-to-fine grained approximated models, if coordi-
nated correctly, may direct a GA in the right direction and
enable a GA to find a near-optimal or an optimal solution
quickly.

The proposed technique is applied to a geometric two-
objective curve fitting problem of minimizing the difference
between the fitted and the desired curve and of minimizing
the maximum curvature in the fitted curve. Simulation re-
sults involving a batch learning ANN and an incremental
learning ANN obtained using different numbers of train-
ing cases and durations of exploiting the approximate model
have shown that the proposed GA-ANN approach can find a
non-dominated front with about ��� % overall function eval-
uations than that needed if the exact function evaluations
were used. Simulations with different values of permissible
normalized rms error for ANN have shown that though the
proposed approach works successfully for a range of rms
error value, there exists a critical value of permissible nor-
malized rms error at which the GA-ANN approach gives
the best performance. However, the overall procedure intro-
duces a number of new parameters, the sensitivity of which
on the obtained speed-up must be established by performing
a more elaborate parametric study.

Acknowledgments

The first author acknowledges the support from British Tele-
com under contract number ML832835/CT405106.

Bibliography

[1] Branke, J., and Schmidt, C.: Faster convergence by means of
fi tness estimation. In Soft Computing Journal, (in press).

[2] Deb, K.: Multi-Objective Optimization Using Evolutionary
Algorithms First Edition, Chichester, UK: Wiley, 2001.

[3] Deb, K.: Optimization for engineering design: Algorithms
and examples. New Delhi: Prentice-Hall, 1995.

[4] Deb, K., and Jain, S.: Running performance metrics for evo-
lutionary multi-objective optimization. Proceedings of the
Fourth Asia-Pacific Conference on Simulated Evolution and
Learning (SEAL’02), (Singapore). 2002, pp. 13–20.

[5] Deb, K., Pratap. A, Agarwal, S., and Meyarivan, T.: A fast
and elitist multi-objective genetic algorithm: NSGA-II. IEEE
Transaction on Evolutionary Computation, 6(2), 181–197,
2002.

[6] Eby, D., Averill, R. C., Punch III, W. F., and Goodman, E. D.:
Evaluation of injection island GA performance on flywheel
design optimization. In Proceedings, Third Conference on
Adaptive Computing in Design and Manufacturing. Springer,
1998.

[7] Goldberg, D. E., Deb, K., and Clark, J. H.: Genetic algo-
rithms, noise, and the sizing of populations. Complex Sys-
tems, 6, 333–362, 1992.

[8] Haykin, S.: Neural networks a comprehensive foundation.
second edition, Singapore: Addison Wesley, 2001. pp 208.

[9] Jin, Y.,and Sendhoff, B.: Fitness approximation in evolution-
ary computation – A survey. In Proceedings, Genetic and
Evolutionary Computation Conference, 2002. Morgan Kauf-
mann, 2002, pp 1105-1112.

[10] Reklaitis, G. V., Ravindran, A. and Ragsdell, K. M.: Engi-
neering Optimization Methods and Applications. New York:
Wiley, 1983.

[11] Sefrioui, M., and P �� riaux, J.: A hierarchical genetic algo-
rithm using multiple models for optimization. In Proceed-
ings, 6th International Conference on Parallel Problem Solv-
ing from Nature - PPSN VI . Lecture Notes in Computer Sci-
ence 1917, Springer 2000.

[12] Poloni, C., Giurgevich, A., Onesti, L., and Prdiroda, V.: Hy-
bridization of a multi-objective genetic algorithm, a neural
network and a classical optimizer for a complex design prob-
lem in fluid dynamics. In Computer Methods in Applied Me-
chanics and Engineering, volume 186, 2000, pp-403-420.

[13] Nair, P. B., Keane, A. J., and Shimpi, R. P.: Combin-
ing approximating concepts with genetic algorithm-based
structural optimization procedures. In Proceedings,First
ISSMO/NASA/AIAA Internet Conference on Approximations
and Fast Reanalysis in Engineering Optimization, 1998.

[14] Zied, I.: CAD/CAM theory and practice. New Delhi, India:
Tata McGraw-Hill Publishing Company, 2000.

