Design and Validation of a Hybrid Interactive Reference Point Method for Multi-Objective Optimization

Madan Sathe

High Performance and Web Computing Group, University of Basel

17. April 2008

Some Backgrounds...

- Work is based on my Diploma Thesis at the Technical University, Dortmund (Germany) and Indian Institute of Technology, Kanpur (India) ...
- ... and focus on non-linear optimization

Publication

June 2008: M. Sathe, G. Rudolph, K. Deb: Design and Validation of a Hybrid Interactive Reference Point Method, IEEE CEC 2008, Hongkong.

Table of Contents

Motivation

Introduction

Hybrid Interactive Reference Point Method

Tool

Case Study: Car-Side Impact

Conclusion

Real-World Problem: Car-Side Impact

- Car is subjected to a side-impact based on European Enhanced Vehicle-Safety Committee (EEVC) procedures
- Assignment: Minimize the damage to a car at side-impact

Conclusion

Real-World Problem: Car-Side Impact (cont.)

- Objectives:
 - Protection of the dummy
 - Minimize the weight of the car
 - Minimize the velocity of the B-Pillar
- \longrightarrow Balance between the weight and the safety performance

Conclusion

Real-World Problem: Car-Side Impact (cont.)

Objective Functions: linear + non-linear

$$f_1(x_1, \dots, x_7) = \sum_{i=1}^7 k_i x_i \longrightarrow \text{Weight},$$

$$f_2(x_2, x_3, x_4) = a_0 - a_1 x_4 - a_2 x_2 x_3 \longrightarrow \text{Pubic Force},$$

$$f_3(x_1, \dots, x_7) = a_3 x_1 x_2 + a_4 x_2 x_4 + a_6 x_3 x_7 + a_7 x_5 x_6 \longrightarrow \text{Velocity of B-Pillar}.$$

Constraints: non-linear

 $g_1(x_2, x_3, x_4) = b_0 + b_1 x_2 x_4 + b_2 x_3 \longrightarrow \text{Abdomen load},$... $g_{10}(x_3, x_5, x_6, x_7) = b_{10} x_3 x_7 + b_{11} x_5 x_6 \longrightarrow \text{Velocity of front door at B-Pillar}.$

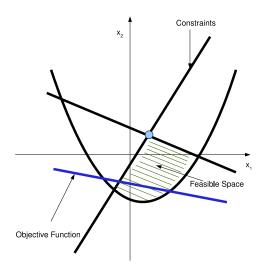
Decision Variables: $x_1 - x_7$

 $l_1 \leq x_1 \leq u_1 \longrightarrow$ Thickness of B-Pillar,

• • •

 $l_7 \leq x_7 \leq u_7 \longrightarrow$ Thickness of roof rail.

Single-Objective Optimization



Multi-Objective Optimization

- At least two competitive objectives which are simultaneously to optimize
- Obtaining multiple incomparable solutions

MOOP

optimize
$$f_m(x)$$
 $m = 1, 2, ..., M$
s.t. $g_j(x) \le 0$ $j = 1, 2, ..., J$,
 $h_k(x) = 0$ $k = 1, 2, ..., K$,
 $x_i^U \le x_i \le x_i^O$ $i = 1, 2, ..., n$.

od Tool

Multi-Objective Optimization (cont.)

Car-Side Impact

Introduction

Hyperthermia Cancer Treatment Planning

$$\begin{array}{ll} \min & f_m(x) & m = 1, 2, 3, \\ \text{s.t.} & g_j(x) \leq 0 & j = 1, 2, \dots, 10, \\ & x_i^L \leq x_i \leq x_i^U & i = 1, 2, \dots, 7. \end{array}$$

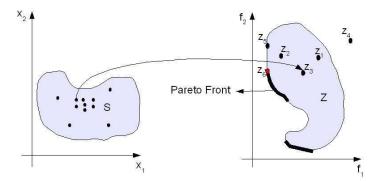
$$\begin{array}{ll} \min & f_m(x) & m = 1, 2, \\ \text{s.t.} & g_j(x) \leq 0 & j = 1, 2, \dots, 10^6, \\ & x_i^L \leq x_i \leq x_i^U & i = 1, 2, \dots, 23. \end{array}$$

Matthias Christen, SNF Project (2007-2010): Nonconvex PDE-contrained optimization in Hyperthermia Cancer Treatment Planning.

Multi-Objective Optimization (cont.)

Decision Space

Objective Space

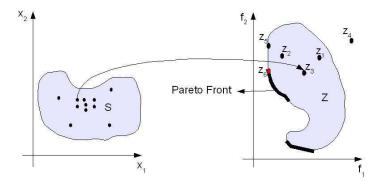


- Decision Space, Objective Function Space
- Goal to minimize f_1, f_2
- Evaluation function $p: S \longrightarrow Z$

Multi-Objective Optimization (cont.)

Decision Space

Objective Space

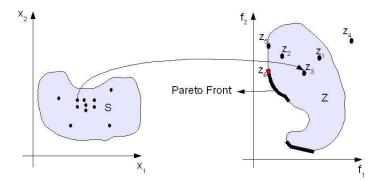


- Pareto Domination $(z_3 \leq z_1)$
- Constraint Domination ($z_1 \leq_c z_4$)
- Incomparable solutions $(z_2 \sim z_3)$

Multi-Objective Optimization (cont.)

Decision Space

Objective Space



- Pareto Optimal (in S)
- Global Pareto Optimal Set (in S)
- Pareto Front (in Z)

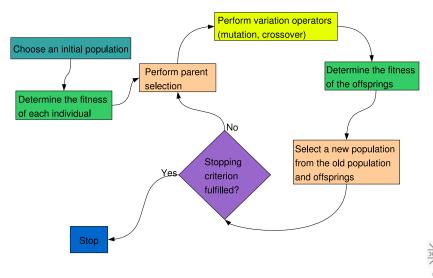
Evolutionary Algorithms: Basics

- Random search heuristics which hopefully give a good approximation of the global optimum
- Applicable if deterministic methods do not find a solution in a reasonable time

Term	Interpretation	
Individual	$x \in \mathbb{R}^n \ (x \in \mathbb{B}^n)$	_
Mutation	Operates on exactly one individual $(x_i^{\text{mut}} = x_i + z_i)$	
Population	Collection of individuals with a specified size	
Crossover	Mix at least two individuals to create a new individual	
Fitness	Evaluate each individual (often objective function)	
Generation	Number of steps	
Parents	Individuals from the old generation	
Offsprings	Individuals created by variation operators from parents	×XX
Selection	Choose individuals from a population	BAS

Conclusion

Evolutionary Algorithms: General Outline

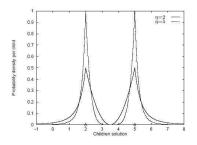


Evolutionary Algorithms: (1+1) - EA

Algorithm

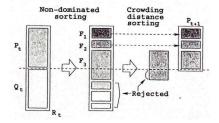
Introduction

```
Choose x_0 \in S randomly, i = 0.
while i < \maxGenerations
y_i = \max_{pol}(x_i);
if f(y_i) < f(x_i) then x_{i+1} = y_i
else x_{i+1} = x_i;
i++;
```

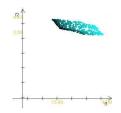


Evolutionary Algorithms for Multi-Objective Optimization

• State of the art EMOs: NSGA II, SPEA2, ...



• Works very well on problems with two- and three-dimensional objective functions



Disadvantages: EMOs

- Calculate the approximated Pareto front takes some time with EMOs
- Posterori inclusion of $DM \longrightarrow$ Finding final solution difficult
- Challenging task by problems with more than three objectives
- \longrightarrow Interactive Algorithms

Interactive Algorithms

Basic Idea

- Include a user with the corresponding utility function
- Self-Exploration of the search space
- Feedback to current solutions
- Focus on regions of interest
- Goal: Satisfying the decision maker
- since 1960: Huge amount of classical interactive algorithms (Idea: Transformation of MOOP in SOOP)
- since 1993: Combination of classical methods with the field Computational Intelligence

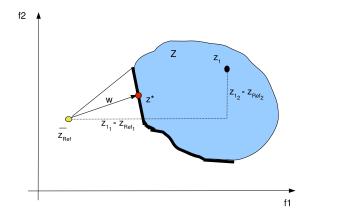
Interactive Reference Point Method: Algorithm

General Outline

- 1. Present information about the problem to the DM.
- 2. Ask the DM to specify a reference point.
- 3. Minimize an achievement function and obtain a Pareto optimal solution. Present the solution to the DM.
- 4. Calculate a number of k other solutions by minimizing a scalarizing function with perturbed reference points.
- 5. Present alternatives to the DM.
- 6. If the user is not satisfied, specify a new reference point.

Example: Scalarizing Function

$$s(f(x), \bar{z}_{\text{Ref}}, w) = \max_{i=1}^{M} [w_i(f_i(x) - \bar{z}_{\text{Ref}_i})] + \rho \sum_{i=1}^{M} [w_i(f_i(x) - \bar{z}_{\text{Ref}_i})] \text{ with } \rho > 0$$



Interactive Evolutionary Algorithms for Multi-Objective Optimization: Motivation

I-EMOs can

- ... calculate many solutions during one run
 - User can choose some rough reference points
 - User obtains a better insight into the promised region
 - Focus on interesting trade-offs in the neighborhoods
- ... cover several regions of interest
 - User can choose different preference information
- ... deal with multi-objective problems (no transformation needed)
- ... deal with non-smooth functions
- (1+1)-EA guides the user by focusing on small pieces of starting solutions

Hybrid Interactive Reference Point Method: Basic Idea

(1+1) - EA

Select $x_0 \in S$ randomly, i = 0. while *i* < maxGenerations $y_i = \text{mut}_{\text{pol}}(x_i);$ if $f(y_i) < f(x_i)$ then $x_{i+1} = y_i$ else $x_{i+1} = x_i$; i++;

(1+1) - EA + Scalarizing

Select $x_0 \in S$ randomly, i = 0. while *i* < maxGenerations $y_i = mut_{pol}(x_i);$ if $s(y_i, \overline{z}_i, w) < s(x_i, \overline{z}_i, w)$ then $x_{i+1} = y_i$ else $x_{i+1} = x_i$: i++;

where

$$s(f(x), \overline{z}, w) = \text{maximize}_{i=1}^{M} [w_i(f_i(x) - \overline{z}_i)] + \rho \sum_{i=1}^{M} [w_i(f_i(x) - \overline{z}_i)] \text{ with } \rho > 0$$

Hybrid Interactive Reference Point Method

Hybrid Interactive Reference Point Algorithm

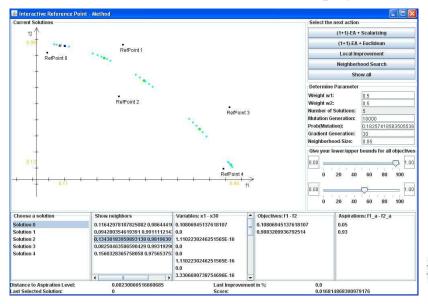
- 1. DM determines *n* reference points \bar{z}_i with $i \in \{1, ..., n\}$.
- 2. Create *n* randomized and feasible starting points z_i .
- 3. While DM not satisfied with solution
 - Optimize with the (1+1) EA + Scalarizing
- 4. Possible local improvement with "Pareto descent method"
- 5. Calculate user-defined neighborhood

Configuration - Display

Number of Objectives:	2		
Number of Variables: 30		Select a predefined	l problem
Number of Constraints: 0		ZDT3	-
Maximum Mutation Generation:	1000	2010	
Maximum Gradient Generation:	30	c	-
Number of Starting Solutions:	ZDT1	-	
		ZDT2	
Demo-Version		ZDT3	
		ZDT4	
		ZDT6	
	100	WeldedBeam	
		CarSideImpact	

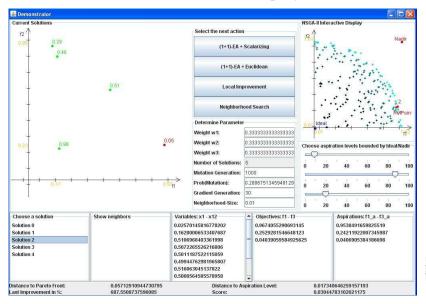
Conclusion

Interactive Reference Point - Display



Conclusion

Demonstrator - **Display**



Recall: Car-Side Impact

- Car is subjected to a side-impact based on European Enhanced Vehicle-Safety Committee (EEVC) procedures
- Assignment: Minimize the damage to a car at side-impact
- Objectives: Protection of the Dummy, Minimize the weight of the car, minimize the velocity of the B-Pillar
- An increase in dimension of the car parameters may improve the performance on the dummy but the increased weight of the car may have an adverse effect on the fuel economy
- \longrightarrow Balance between the weight and the safety performance

Case Study: Car-Side Impact

Video

Start: Car-Side Impact

Evaluation of the application

Criteria

- System generates Pareto optimal solutions
- System supports the DM to find a compromise solution
- System creates an insight into the Pareto front
- System takes per iteration a small amount of computation time
- System provides some information about solutions
- Communication between system and DM is simple

Summary

Summary

- Basics for Multi-Objective Optimization, Evolutionary Algorithms
- New Hybrid Interactive Reference Point Method
- Case Study: Car Side Impact

Conclusion

Research Field

MOOP	MOOP
optimize $f_m(x)$	optimize $f_m(x)$
s.t. $g_j(x) \leq 0$	s.t. $g_j(x) \leq 0$
$h_k(x) = 0$	$h_k(x) = 0$
$x_i^U \le x_i \le x_i^O$	x_i discrete

KTI-Project (2007 - 2010): Mixed-Integer Optimization in automobile sheet metal forming processes

Thank you for your attention !!! Any questions ???

