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Abstract— Genetic algorithms (GAs) have been argued to
constitute a flexible search thereby enabling to solve difficult
problems which classical optimization methodologies may find
hard to solve. This paper is intended towards this direction
and show a systematic application of a GA and its modification
to solve a real-world optimization problem of sizing a solar
thermal electricity plant. Despite the existence of only three
variables, this problem exhibits a number of other common
difficulties — black-box nature of solution evaluation, massive
multi-modality, wide and non-uniform range of variable values,
and terribly rugged function landscape – which prohibits a
classical optimization method to find even a single acceptable
solution. Both GA implementations perform well and a local
analysis is performed to demonstrate the optimality of obtained
solutions. This study considers both classical and genetic opti-
mization on a fairly complex yet typical real-world optimization
problems and demonstrates the usefulness and future of GAs
in applied optimization activities in practice.
Keywords: Solar thermal electricity plant, optimization, genetic
algorithms, classical optimization, multi-modality, noisy objec-
tive function.

I. INTRODUCTION

Energy is directly related to sustainable human develop-
ment. Energy consumption affects social aspects (2 billion
people have not access to modern energy supplies), damages
human health and alters the atmosphere causing the global
warming. All the energy sources came from the sun, directly
or indirectly. Nowadays, there exist many technologies that
use this enormous source of energy. Among them, solar
thermal electricity is a very promising one that will contribute
significantly to increase the electricity generation by renew-
able sources. In [7], a review of the solar thermal electricity
technology can be found.

Obviously the main problem of the extension of ther-
mal solar plants is the cost. They require very high in-
versions and the electricity production cost is lower in
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conventional fossil fuel plants (if no internationalization
of the external costs is performed). This paper analy-
ses the optimal sizing of a DSG solar thermal elec-
tricity plant that is promoted by the private firms En-
desa (http://www.endesa.es/Portal/en) and So-
lar Millenium (http://www.solarmillenium.com)
in the framework of a collaborative project between German
and Spanish enterprises and public research centers. The
project is called GDV-500 Plus.

From the mathematical point of view, we want to deter-
mine the optimal size of the main components, in order to
maximize the expected annual profits of the plant. To this
end, an optimization model has been built. Other examples of
mathematical programming models for this kind of problems
can be found in [3], where an integer optimization problem
is built to determine the equipment operating configuration
of a central energy plant, and in [10], where an optimization
model is presented that defines a multi-auction capacity al-
location strategy which is optimal with the explicit represen-
tation of uncertainty. The main problem that we face in our
particular model is the fact that, due to the complex nature
of the system and to legal regulations, the profits cannot be
expressed as an explicit function of the decision variables.
Rather than that, the profit function takes the form of a black
box, which has been modeled as an evaluation subroutine.
This subroutine takes into account all the technical and legal
requirements, in order to determine the working strategy of
the plant and, as a result, the annual profits. The problem
is that the function implicitly defined by the subroutine, due
to the nature of the process modeled, is not even continuous
and it has many local optima. This has made it impossible to
solve the problem using traditional optimization solvers (even
able of handling non-convex global optimization problems),
and this is the reason why we have chosen to use a genetic
approach.

The reminder of this paper is organized as follows. In
section II, the problem is described and modeled. In section



III, we report the attempts to solve the model using two
well known global optimization solvers, and we state possible
reasons for their failure. In section IV, solutions obtained
through a real-coded genetic algorithm is described, followed
by that through a modified approach. Some final remarks are
given in section V, and the paper ends with some conclusions
thereafter.

II. DESCRIPTION OF THE MODEL

A. The DSG solar plant

Figure 1 shows the elements of the solar plant. In the solar
field, solar radiation is converted into heat. The condensate
that comes from the block of power (BOP) increases its
temperature and pressure and it is again suitable to produce
work. When the radiation level is insufficient to produce the
required mass flow of steam, a thermal storage and auxiliary
power system are disposed in parallel to produce the sup-
plement energy to the BOP. Thermal storage is designed to
collect energy during daylight and dispatch when necessary.
This system increases the number of hours of operation of the
plant. The auxiliary system is a gas boiler that is designed
to maintain a minimum temperature in the plant in order
to reduce start up periods, and to contribute to electricity
generation.

Fig. 1. DSG solar plant modeled.

Therefore, there are three main quantities to be dimen-
sioned in the optimization process: the solar collector area,
the storage capacity and the power of the auxiliary boiler.

B. Main assumptions

Due to the complex technical limitations of the plant, and
in agreement with the organizations participating in the study,
the following assumptions have been made on the component
systems of the plant and on the operation strategy.

With respect to the solar collector field, it uses direct solar
radiation. The steam mass generated has been considered to
depend only on the direct solar radiation received. Therefore,
based on a file of expected hourly solar radiation for the
whole year, the steam mass flow produced per square meter at
the solar field has been determined, and these data are used to
feed the evaluation subroutine. Due to technical reasons, the
maximum size of the solar field has been set to 750000 m2.

TABLE I
DECISION VARIABLES OF THE MODEL.

Variable Description Unit
AC Solar collector field size m2

E Storage capacity kJ
PAUX Power of the auxiliary boiler kW

The capacity of the storage is measured in terms of the
number of hours that the tanks can provide the energy
necessary to drive the block of power. But a tank cannot
be arbitrarily large. Therefore, whenever a tank reaches a
maximum possible capacity (equivalent to 8 hours of stor-
age), a new tank has to be built. This causes discontinuities
in the costs function, given that every 8 hours of storage,
the cost is incremented in 15 million e (the fixed cost of
building a new tank). On the other hand, in order to account
for ambient losses, the energy flow coming from the storage
is multiplied by 0.9 if one tank is used, by 0.85 if two tanks
are used, by 0.8 if three tanks are used, and so on.

On the other hand, the operation strategy affects the
optimal size of the components of the solar plant. In this
paper, the operation strategy has been defined in order
to reproduce the complexity of the problem. The strategy
defined is based on experience of operation of this kind of
plants. The operation for each hour can be summarized as
follows

1) Evaluate direct solar radiation and calculate the mass
steam production with the collector field model.

2) If the mass flow is enough to activate the plant to at
least a 75% of the power (load fraction), the plant is
producing electricity just with solar energy. If the mass
flow exceeds the necessary amount for a 100% charge,
the remaining energy is stored.

3) In the case that the steam mass production does not
reach the minimum value fixed before, the storage
complements the required energy. This is only possible
if there is enough energy already stored.

4) When the steam mass cannot be obtained with the
solar collector field and the storage, the auxiliary
boiler supplements the rest. Due to legal regulations,
the overall yearly operation of the auxiliary boiler is
limited to 15% of the net electricity production of the
plant.

5) The collector field charges the storage system during
daylight if 75% of the gross power of the plant cannot
be obtained with the previously described scheme.

Taking these assumptions into account, the model has been
built as follows.

C. The Optimization model

As previously mentioned, the decision variables of the
model are the sizes of the three main components of the
central, as displayed in Table I.

Making use of these variables, the (apparently simple)
optimization problem to be solved is:



TABLE II
OPERATION STRATEGY RELATED VARIABLES (HERE, i = 1, . . . , 8760).

Variable Description Unit
Ei Energy stored after hour i kJ

FUNC i Load fraction of hour i %
EAUX i Energy generated by the auxiliary system in hour i kJ
PERC i Accumulated percentage of energy generated by the %

auxiliary system until hour i

maximize P (AC , E, PAUX ),
subject to 0 ≤ AC ≤ 750000,

0 ≤ E,

0 ≤ PAUX ,

(1)

where P is the profit function. Broadly speaking, P = I−C,
where I are the expected incomes obtained by selling the
electricity, and the costs C include installation, maintenance,
fuel, insurance and contingency costs. As previously men-
tioned, the problem is that P does not have an explicit
mathematical form as a function of the decision variables. In
order to evaluate P for each value of the decision variables,
the following subroutine (which contains all the assumptions
described in section II-B) must be run.

D. Evaluation subroutine

In this section, we will outline the main steps of the
evaluation subroutine, which has been implemented in C++
language, in order to compile it together with the solver.
This way, the subroutine is called every time the solver
needs a function evaluation. In summary, once the values
of the decision values are set, the subroutine determines the
operation strategy of the plant for each of the 8760 hours
of the year, and the profits (incomes and costs) are obtained
accordingly. Therefore, apart from the value of the profit
function P , the subroutine creates a series of variables that
define the operation strategy, as displayed in table II. Variable
FUNC i indicates the load fraction at hour i, and thus it can
be equal to 0 if the system does not work, or any value
between 75 and 100.

Let us now describe the evaluation subroutine step by step.
Let us assume that certain values of the decision variables,
AC , E and PAUX are given. Then, we proceed in the
following way.

1) Initial calculations. Given the value of E,
a) Calculate the number of tanks to be installed, by

dividing E by the maximum capacity of a tank.
b) Determine the performance of the tanks, which

depends on the number of tanks installed, as
described in section II-B.

c) The number of tanks also influences the amount
of soil that has to be used for the plant. Namely,
for any new tank starting from the third one, a
supplementary amount of soil has to be consid-
ered.

2) Operation loop. The operation strategy has to be
determined now, according to points 1–5 of section
II-B. Namely, for each hour of the year, we determine
the load fraction of the plant, in the following way.

a) The direct solar radiation of hour i is read from
the data file, and the steam mass per square meter
is calculated accordingly. This value is multiplied
by AC to obtain the total steam mass of the hour.

b) If the steam produced at the solar field is enough
for a 100% charge, FUNC i is given the value 1
(100%), and the remaining energy is added to the
previously stored amount, and accounted for in
variable Ei. This value can never exceed the total
storage capacity given by the decision variable E.
The auxiliary system is not used.

c) If the steam mass provides a charge between
75% and 100%, the plant works at the highest
possible charge percentage (this is the value given
to FUNC i ), with no aid from the storage or from
the auxiliary system.

d) If the steam mass generated at the solar field
does not suffice for a 75% charge, then several
situations can occur:
i) If there is enough energy stored to reach the

75% charge, then the necessary amount is
taken from the tanks, Ei is actualized accord-
ingly, FUNC i is set to 0.75, and the auxiliary
system is not used.

ii) If there is not enough energy stored, we need
to complement the rest from the auxiliary
system. In order to do this, the two following
conditions must hold:
• The installed capacity of the auxiliary sys-

tem (given by decision variable PAUX )
must be enough to produce the required
energy.

• The accumulated (up to hour i) percentage
of energy supplied by the auxiliary system
cannot exceed the limit (15%).

If any of these two conditions fail, then the
system does not work at hour i. Therefore, the
energy produced at the solar field is stored, Ei

is actualized accordingly, and FUNC i is set
to 0.
If the two conditions hold, then the storage
is emptied (Ei = 0), the value of EAUX i is
the energy supplied by the auxiliary system at
this hour, and FUNC i is set to 0.75.

e) The accumulated hybridization percentage
PERC i is actualized, depending on the values
of EAUX i and FUNC i .

f) The incomes corresponding to the hour i are
calculated according to the value of FUNC i and
to the selling price pi.
Once these calculations are completed, the sub-
routine goes back to point a) for the next hour.



3) Final calculations. Once the hourly loop is completed,
the profit function is calculated in the following way:

a) The global yearly incomes are calculated as the
sum of the 8760 hourly incomes.

b) The installation costs comprise the costs of the
solar panels, the tanks, the auxiliary system (these
three depend on the values of the decision vari-
ables), the block of power and the soil. All these
costs are annualized for given life cycle and
discount rate.

c) Annual maintenance costs are assumed to be a
fixed percentage of the total installation costs.

d) The fuel cost (for the auxiliary system) has a fixed
monthly component and a variable component
which depends on the corresponding values of
EAUX i .

e) Insurance and contingency costs are also assumed
to be fixed percentages of the total installation
costs.

The global scheme of the subroutine can be seen in the
flowchart displayed in Figure 2.

III. DIFFICULTIES OF THE PROBLEM

At a first stage, we made an attempt to solve the problem
with traditional global optimization solvers. To this end, both
the evaluation subroutine and the main module have been
implemented on a personal computer, in C++ language, using
the Microsoft Visual C++ compiler. Both the entry data and
the solution output are provided by simple text files, which
can be automatically converted into Microsoft Excel files.
The module was prepared to call an optimization solver. In
this attempt, two global solvers have been used.

The LGO software (Library of Global Optimization),
developed by Pintér Consulting Services [8], has been de-
signed to solve general nonlinear optimization problems,
including problems with multiple optima, and it has been
successfully tested with many real non-convex problems. It
combines local and global optimization strategies, with or
without information about derivatives, with deterministic or
stochastic parameters. Namely, the library incorporates the
following solvers: A global branch and bound solver, a global
adaptive random search solver, a multi-start global random
search solver and a constrained local search solver based on
the reduced gradient. For further details, see [8], [9].

On the other hand, the LINDO API system
(http://lindo.com/) also includes global and local
optimization solvers. Namely, there is a multi-start global
optimization solver, a general non-linear solver, simplex
based solvers for linear programming problems, an interior
point solver for linear and quadratic programming problems
and several solvers for mixed integer linear and non-linear
problems. The global solver combines a series of range
bounding and range reduction techniques within a branch
and bound framework. The multi-start solver generates a
sequence of candidate starting points in the solution space,
while a traditional non-linear programming technique is
used to find a local optimum for each starting point.
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Fig. 2. Flowchart of the evaluation subroutine.

None of the two libraries succeeded in finding a consis-
tently good solution for the problem. The different solvers
used either got stuck in a local optimum (in the best case) or
even produced solutions that were clearly outperformed by
others. Moreover, certain applications from specific initial
points have produced good intermediate solutions. When
both solvers are restarted from these solutions, they did not
result in acceptable solutions.

The possible reasons for the erratic behavior of the solvers
are the following:
• The objective function is a black box, from which

the solvers do not seem to be able to obtain useful
information other than the value of the function for each
point.

• The problem seems to have plenty of local optima.
• The function has lots of discontinuities, which cause

significant "jumps" in the values of the profit function,
thereby causing internal derivative computation (if re-
quired) problematic.

• The structure of the evaluation subroutine, basically



consisting on nested if-then commands results in a noisy
behavior that misleads the solvers.

• Variables take widely different ranges of values, thereby
making it difficult for the solvers to provide adequate
emphasis to correct variable combinations. For the sim-
plex search, this may come from the generation of a
skewed (with a large aspect ratio) simplex.

In order to get an idea of the difficulty of the function
landscape, we have created five sets of 10,000 random points
and evaluated them. Table III presents the best solution and
its function value among each one of these five sets. The
best solutions are quite different from each other, thereby
providing no clue about the possible good search regions in
this problem.

TABLE III
COMPARISON OF GA-OPTIMIZED SOLUTION WITH FIVE SETS OF

RANDOMLY CREATED SOLUTIONS.

Set P (x) x
(e) AC (m2) E (kJ) Paux (kW)

1 27049676 693450 5405000000 174300
2 23514158 594975 2492000000 268100
3 22306797 655575 4981000000 535300
4 22996207 688200 2478000000 312300
5 28176740 712125 6490000000 98010

To get a more specific idea of the nature of the objective
function, we compute the objective function for several
values of the variable (AC) in the range [700,000, 750,000]
m2 at a step of 10 m2 and keep E = 6, 346, 926, 197.10
kJ and PAUX = 92, 768.3 kW (which, as we will see later,
are their optimal values). This produces 5,001 solutions in
total. Figure 3 shows the variation of objective values with
AC in the above range. The inset figure clearly shows that
the function has many local optimum and is also too noisy
to compute gradients properly by using any computational
method.
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Fig. 3. Profit function variation with AC reveals multi-modality, noise and
jumps in the objective function (E = 6, 346, 926, 197, PAUX = 92, 768).

IV. GENETIC ALGORITHM AS AN OPTIMIZATION TOOL

Genetic algorithms (GAs) are population based optimiza-
tion algorithms which do not use any gradient information
[4], [6]. While dealing with practical problems having dif-
ferent complexities, such as noise, multimodality, numerical
scaling of variables and others, many of which are prevalent
to this problem, GAs have demonstrated their usefulness in
the past. First, we apply a standard GA to the solar thermal
electricity plant optimization problem and then discuss a
modified approach.

A. A Standard GA

All variables of this problem are real-valued, thus
we use a real-coded GA (RGA) for this problem. A
C-code implementing RGA is available from website
http://www.iitk.ac.in/kangal/soft.htm and
is used here. The solution evaluation code supplied by the
organization is compiled and linked with the compiled RGA
code in a linux operating system. For evaluating a solution x,
RGA sends the variable vector to the evaluation code which
then returns the function value, P (x), of the supplied solution
vector. Figure 4 shows a schematic diagram of the linking
procedure of RGA with the solution evaluator. Starting with
a set of population members, RGA works in iteration by
creating new solutions which get evaluated by the solution
evaluator. The optimized solution is then printed.
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Fig. 4. The linking of an existing GA code with a solution evaluator.

RGA uses binary tournament selection, simulated binary
crossover (SBX) [2], and a polynomial mutation operator [1].
A population of size 50, a crossover probability of 0.9 with
SBX index of 2, a mutation probability of 1/3 with index 10
are chosen. The GA is run for 150 generations. These are
standard values suggested in previous studies. To initialize
the GA population, we use the following artificial upper
bound for variables E and PAUX : E ≤ 1020, PAUX ≤ 1020.
We obtain the following solution (x = (AC , E, PAUX )T ):

AC = 749, 980.86 m2, E = 6, 191, 823, 943.05 kJ,
PAUX = 92, 898.24 kW, P (x) = 29, 189, 994.89 e.

First of all, we observe that our chosen artificial upper bounds
on E and PAUX did not influence the obtained solution. Sec-
ondly, the optimized value of Ac is very close to the supplied
upper bound of 750, 000 m2. Thus, if this upper bound can



be increased, a better objective value is expected. Figure 5
shows how the population best and average objective values
improve with generation number. The initial population best
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Fig. 5. Population best and average objective function values with
generation number.

solution has an objective value −4.9106e19 (a negative profit
due to income (I) being smaller than cost (C)). At generation
56, the population-best solution becomes positive for the first
time, and then keeps on improving with generation before
stabilizing to its converged value 2.9189e07. Thus, the GA is
able to make a significant progress from a very large negative
value to a very high positive value in a span of only about
120 generations. The inset plot in Figure 5 shows the detailed
progress of the algorithm after the 80-th generation. GA
seems to progress steadily with generation finally reaching
the optimized value at generation 138. Note that the GA took
a total of 50 × 150 or 7, 500 solution evaluations. It is also
interesting to note that the solution obtained by GA with
7,500 solution evaluations is better than the best solution
found by a random selection of 10,000 solutions, as reported
in Table III.

From the GA-optimized solution, we make another in-
teresting observation. Each variable takes quite a different
order of magnitude. The supplied and chosen variable bounds
were quite large, thereby making any optimization algorithm
difficult to focus near the true optimum in this problem. To
make the search more focused, we propose a modified GA
with a continuously updated variable bound scheme.

B. A Continuously Updated Genetic Algorithm

In the modified GA, we run the above GA for 150
generations and note the best solution (say x∗) found thus
far. For each variable xi, the population standard deviation
σi is computed. Thereafter, for the next 50 generations (we
call an epoch) we update the variable bounds as follows:

x
(L)
i = x∗i − σi, (2)

x
(U)
i = x∗i + σi. (3)

All the existing population members which are within the
above variable bounds are accepted in the new population.
The remaining population slots are filled by creating random
solutions within the above variable bounds. This procedure
is continued for every 50 generations until there is no
difference in the best solutions of two consecutive epochs.
This continuously updated variable bound procedure will
allow a focused search and will allow the modified GA to
converge to a solution with generations.

We use identical GA parameter values as before. The
proposed GA runs for 650 generations before converging to
the following solution:

AC = 749, 999.99 m2, E = 6, 346, 926, 947.98 kJ,
PAUX = 92, 768.27 kW, P (x) = 29, 201, 019.61 e.

This solution is slightly better (about 0.04%) than that
obtained by our previous GA. The variable AC reaches very
close to its specified upper bound and other two variable
values are also close to that found by previous GA procedure.
Figure 6 shows the population best and average function
value with generation. Since the range of objective values
from initial generation to final generation is quite significant,
the progress of the algorithm is not comprehensible from the
overall plot. The inset figure shows the function values after
generation 100 and the steady progress of the algorithm is
clear from the figure.
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Fig. 6. Population best and average objective function values with
generation number for the modified GA.

To investigate the accuracy of this optimized solution
and to support its probable optimality, we compute the
solutions in the vicinity of the optimized solution. For an
analysis for the variable E, we fix AC = 749, 999.99
m2 and PAUX = 92, 768 kW in their optimized values
and vary E in [6.335e9, 6.350e9] kJ with an increment of
1000 kJ. This range is chosen around the optimized value
of E. This resulted in 10,000 solutions and we plot the
corresponding objective values in Figure 7. There are two
distinct facts to be observed from this figure. First, the
objective function seems to be quite sensitive to E and as
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Fig. 7. An exhaustive search for variable E in the vicinity of GA solution
confirms the accuracy of GA solution by the modified approach (AC =
749, 999.99, PAUX = 92, 768).

argued in section III the underlying objective function seems
to be noisy in nature. It is not surprising that derivative based
optimization methodologies faced difficulties in solving this
problem. Secondly, our optimized solution seems to lie
right on the best solution found in the above range of E.
Interestingly, there are only a few good solutions in the
vicinity of our optimized solution and most neighboring
solutions are drastically worse than the optimized solution.
Such difficulties are termed as ’isolation’ elsewhere [5] and
were studied using hand-crafted test problems. In this paper,
we come across a real-world problem which clearly exhibits
the presence of isolation near an optimal solution. In solving
this problem, we faced difficulties with a couple of state-of-
the-art classical optimization algorithms and simultaneously
demonstrate the ease of solving the problem using a standard
GA and a modification of it for a more reliable application.

We also compute and plot a wide range of values of
PAUX with fixed values of AC = 749, 999.99 m2 and E =
6, 346, 926, 947.98 kJ in Figure 8. The objective function
seems to vary rather smoothly on this variable, except a
sudden jump at PAUX = 92, 768.27 kW. The objective value
seems to be largest at this PAUX value, an increase of which
reduces the objective value. Such a discontinuity right at the
optimal value will cause many derivative and trust-region
based optimization methods to fail. The inset figure shows
that even in this case, the proposed GA is able to find the
right optimal value. The GA-optimized function value, shown
in a dashed line, is found to match with the best objective
value of the plot, thereby indicating that the GA-optimized
solution is optimal.

A similar observation is also found for the variable AC in
which the optimal value of AC is at the upper boundary.
Figure 9 indicates that the objective value has a noisy
increasing trend with higher value of AC and the inset figure
shows that optimum lies at AC = 750, 000 m2, which is
found by the proposed GA. Many optimization algorithms
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Fig. 8. An exhaustive search for variable PAUX in the vicinity of GA
solution confirms the accuracy of GA solution by the modified approach
(AC = 749, 999.99, E = 6, 346, 926, 947.98).

will have difficulties in handling such noisy objective values
and avoid all local optima and converge to the true global
optimum.
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Fig. 9. An exhaustive search for variable AC n the vicinity of GA solution
confirms the accuracy of GA solution by the modified approach (E =
6, 346, 926, 947.98, PAUX = 92, 768).

To investigate the robustness of the modified approach, we
perform 10 different simulations starting from different initial
populations. Table IV shows the best solution obtained in
each simulation terminating at 650-th generation. The varia-
tion in obtained solutions are not much (0.0017%) difference
between best and worst obtained solutions. Moreover, the
corresponding variable values are also close to each other.
These results indicate that the proposed GA procedure is
robust for the present application.

V. FINAL REMARKS

From the point of view of the plant, the optimal solution
obtained can be interpreted as follows. First, the value AC =



TABLE IV
BEST SOLUTION OBTAINED IN 10 RUNS OF MODIFIED GA APPROACH.

P (x∗) x∗

(e) AC (m2) E (kJ) PAUX (kW)
29201019.61 749999.99 6346926947.98 92768.27
29201018.75 749999.94 6346929408.75 92768.26
29201018.62 749999.94 6346929669.93 92768.26
29201018.62 749999.94 6346929478.79 92768.27
29200967.67 749997.61 6347055515.19 92768.46
29200967.42 749997.62 6347055515.19 92768.46
29200957.23 749997.01 6347087739.59 92768.27
29200953.07 749997.00 6347092303.42 92768.31
29200922.51 749999.96 6346929711.66 92777.49
29200522.97 749992.62 6318673893.16 92768.70

750, 000 m2 is the bound imposed by the firm. In fact, in
preliminary studies where we did not establish this limit,
the ideal area was around 950, 000 m2. Second, the value
PAUX = 92, 768.27 kW reflects the necessary power that
can enable the plant to reach 75% of its full production, using
exclusively the auxiliary system. Finally, the total storage
capacity would be one full tank and around 90% of the
second one. There are also two other remarkable data in
the optimal solution. The sum over the whole year of the
variables FUNC i equals 5,413.70 hours. This means that
the plant is working 61.80% out of the 8,760 hours of the
year. The final value PERC 8760 is 15%, that is, the legal
hybridization limit is reached at the end of the year.

Having solved the problem using GAs and then providing
justification for the optimality of the obtained solution,
we have now understood various challenges provided by
the three-variable optimization problem of sizing the solar
thermal electricity plant. We outline them in the following:

• The objective function is noisy.
• The objective function has massive multimodality.
• The objective function has discontinuities.
• The optimal solution lies on a discontinuous point in

the search space.
• The optimal solution lies on a variable boundary.
• The optimal solution is isolated and is surrounded by

not-so-good solutions, resembling a local needle-in-
haystack problem.

• The optimal decision variable values are of different
orders of magnitude with a maximum difference of five
orders of magnitude.

Any of the above challenges is difficult for most derivative
and classical optimization methods. The combination of these
challenges is even worse. The flexibility and global search
perspective of GAs make them suitable for solving such
problems. Finally, this problem indicates that a small sized
problem (with only three variables in this problem) need not
always be termed as an easy problem for an optimization
algorithm. The function landscape provides a true picture of
the challenges offered by a problem.

VI. CONCLUSIONS

Many optimization studies demonstrated in the literature
usually involve smooth objective functions and well-scaled
variables. However, the practice is far from being so ideal.
In this paper, we come across a three-variable maximization
problem which exhibits common complexities which many
real-world optimization problems possess. Some of these
difficulties are (i) black-box optimization, (ii) noisy objective
function, (iii) massive multi-modality, (iv) non-uniform range
of variable values, and (v) extremely wide range of search
region. When attempted to solve using a couple of classical
gradient based optimization techniques, the effort resulted in
no useful solution due to the inflexibilities involved with the
classical approaches in dealing with above difficulties.

On the contrary, with genetic algorithms, we have experi-
enced a completely different outcome. A standard real-coded
GA, starting from not-so-good initial random solutions, has
been able to progress close to reasonably good solutions
quickly by negotiating all the above difficulties. To make the
performance better, we have also suggested a modified GA
with a continuously updated search procedure. An analysis
of solutions around the vicinity of the obtained solution has
supported the optimality of the obtained solution.

This study clearly demonstrates the usefulness of genetic
algorithms in practical optimization and flexibility of han-
dling different vagaries of problem difficulties which often
arise in applied optimization problems.
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