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Abstract. In this paper, we study unitary Gaussian processes with in-
dependent increments with which the unitary equivalence to a Hudson -

Parthasarathy evolution systems is proved. This gives a generalization of
results in [11] and [12] in the absence of the stationarity condition.

1. Introduction

In the framework of the theory of quantum stochastic calculus developed by the
work of Hudson and Parthasarathy,consider the (HP) quantum stochastic differ-
ential equations (qsde)

dVt =
∑
µ,ν≥0

VtL
µ
ν (t)Λ

ν
µ(dt), V0 = 1h⊗Γ, (1.1)

(where the coefficients Lµν (t) : µ, ν ≥ 0 are bounded operator-valued locally
bounded functions on R+ in the initial Hilbert space h and Λνµ are the fundamental

processes in the symmetric Fock space Γ = Γsym(L2(R+,k)) with respect to a
fixed orthonormal basis (in short ‘ONB’) {Ej : j ≥ 1} of the noise Hilbert space
k ) ([2]). The conditions for existence and uniqueness of a solution {Vt} were
studied by Hudson and Parthasarathy and others when the coefficient operators
{Lµν (t)} are constants ([6, 8, 10]). In particular, in the absence of the conservation
martingale, the equation takes the form

dVt =
∑
j

{VtLj(t)a†(dt)− VtL∗
j (t)a(dt)}+ VtG(t)dt

with the formal unitarity condition:∑
j

L∗
j (t)Lj(t) + 2Re G(t) = 0

for almost every t ≥ 0, in analogy with the case when Lµν are constants. The
existence and unitarity of the solution V for the time dependent case will be
proven here in theorem 5.1.
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In a series of earlier work ([11, 12]) it has been shown that unitary evolutions
on h⊗H with stationary, independent increments and satisfying a Gaussian con-
dition (where h and H are separable Hilbert spaces) with bounded or possibly
unbounded generator ( in the second case, one needs some further conditions ) are
unitarily isomorphic to the solutions of qsde of the type (1.1) with time indepen-
dent coefficients.

In this article we are interested in the characterization of unitary evolutions
with only independent increments on h ⊗ H and with the assumption that the
expectation evolution relative to a distinguished vector in H is Lifshitz in the time
variable.

The article is organized as follows: Section 2 is meant for recalling some pre-
liminary ideas and fixing some notations on linear operators on Hilbert spaces
and Section 3 collects some results associated with Hilbert space and properties
of evolutions. The main results of section 3 are proved in the Appendix. Section
3 also contain the description of the unitary processes with independent incre-
ments and the assumptions on them. Section 4 is dedicated to the construction
of a Hilbert space, called the noise space and operator coefficients associated with
them. The HP evolution system and its minimality are discussed in Section 5 and
consequently the unitary equivalence of the solution with the unitary process is
proven.

2. Notation and Preliminaries

We assume that all Hilbert spaces in this article are complex separable with
inner products which are anti-linear in the first variable. For each Hilbert spaces
H and K we denote the Banach spaces of all bounded linear operators from H
to K and all trace class operators on H by B(H,K) and B1(H), respectively, and
the trace on B1(H) by Tr(·). We note that for each h ∈ H, there exists a unique
operator Fh ∈ B(K,H⊗K) such that

Fhk = h⊗ k for all k ∈ K. (2.1)

Let h and H be two Hilbert spaces with orthonormal bases {ej : j ≥ 1} and
{ζj : j ≥ 1}, respectively. For each A ∈ B(h⊗H) and u, v ∈ h we define a linear
operator A(u, v) ∈ B(H) by

〈ξ1, A(u, v)ξ2〉 = 〈u⊗ ξ1, A v ⊗ ξ2〉,∀ξ1, ξ2 ∈ H

and read off the following properties (for the proof, see Lemma 2.1 in [11]):

Lemma 2.1. Let A,B ∈ B(h ⊗ H). Then for any u, v, ui, vi ∈ h (i = 1, 2) we
have

(i) A(·, ·) : h × h 7→ B(H) is a jointly continuous sesqui-linear map, and if
A(u, v) = B(u, v) for all u, v ∈ h, then A = B,

(ii) A(u, v) = F ∗
uAFv, ‖A(u, v)‖ ≤ ‖A‖‖u‖‖v‖ and A(u, v)∗ = A∗(v, u),

(iii) A(u1, v1)B(u2, v2) = [A (|v1 >< u2| ⊗ 1H)B] (u1, v2),
(iv) AB(u, v) =

∑
j≥1A(u, ej)B(ej , v), where the series converges strongly,

(v) 0 ≤ A(u, v)∗A(u, v) ≤ ‖u‖2A∗A(v, v),
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(vi) for any ξ1, ξ2 ∈ H we have

〈A(u1, v1)ξ1, B(u2, v2)ξ2〉 =
∑
j≥1

〈u2 ⊗ ζj , [B(|v2 >< v1| ⊗ |ξ2 >< ξ1|)A∗]u1 ⊗ ζj〉

= 〈v1 ⊗ ξ1, [A∗(|u1 >< u2| ⊗ 1H)B] v2 ⊗ ξ2〉.

For each A ∈ B(h ⊗ H) and ε ∈ Z2 = {0, 1}, we define an operator A(ε) ∈
B(h⊗H) by

A(ε) :=

{
A if ε = 0,
A∗ if ε = 1.

For 1 ≤ k ≤ n, we define a unitary exchanging map Pk,n : h⊗n ⊗H → h⊗n ⊗H
by

Pk,n(u1 ⊗ · · · ⊗ un ⊗ ξ) := uτk,n(1) ⊗ · · · ⊗ uτk,n(n) ⊗ ξ
on product vectors, where τk,n is the permutation {k, k + 1, · · · , n, 1, . . . , k − 1}
of {1, 2, · · · , n}. Let ε = (ε1, ε2, · · · , εn) ∈ Zn2 . Consider the ampliation of the
operator A(εk) in B(h⊗n ⊗H) given by

A(n,εk) := P ∗
k,n(1h⊗n−1 ⊗A(εk))Pk,n.

Now we define the operator

A(ε) :=
n∏
k=1

A(n,εk) := A(n,ε1) · · ·A(n,εn)

as in B(h⊗n⊗H). Note that as here, through out this article, the product symbol∏n
k=1 stands for product with the ordering from 1 to n. For product vectors

u, v ∈ h⊗n one can see that

A(ε)(u, v) =

(
n∏
i=1

A(n,εi)

)
(u, v) =

n∏
i=1

A(εi)(ui, vi) ∈ B(H), (2.2)

moreover, for 1 ≤ m ≤ n, we see that(
m∏
i=1

A(n,εi)

)
(u, v) =

m∏
i=1

A(εi)(ui, vi)
n∏

i=m+1

〈ui, vi〉 ∈ B(H). (2.3)

When ε = 0 ∈ Zn2 , for simplicity we shall write A(n,k) for A(n,εk) and A(n) for A(ε).

3. Unitary Processes with Independent Increments

Let {Us,t : 0 ≤ s ≤ t < ∞} be a family of unitary operators in B(h ⊗H) with
Us,s = 1 for any s ≥ 0 and Ω be a fixed unit vector in H. Let us consider the

family of unitary operators {U (ε)
s,t } in B(h ⊗ H) for ε ∈ Z2 given by U

(0)
s,t = Us,t

and U
(1)
s,t = U∗

s,t. As in Section 2, for fixed n ≥ 1, ε ∈ Zn2 and each 1 ≤ k ≤ n, we

define the families of operators {U (n,εk)
s,t } and {U (ε)

s,t } in B(h⊗n ⊗H). By identity

(2.2), for product vectors u, v ∈ h⊗n and ε ∈ Zn2 , we have

U
(ε)
s,t (u, v) =

n∏
i=1

U
(εi)
s,t (ui, vi).
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We assume the following on the family of unitary {Us,t ∈ B(h⊗H)}.
Assumption A:

(A1) (Evolution)1 For any 0 ≤ r ≤ s ≤ t <∞, Us,tUr,s = Ur,t and Us,s = 1,
(A2) (Independence of increments) for any 0 ≤ si ≤ ti <∞ (i = 1, 2) such

that [s1, t1) ∩ [s2, t2) = ∅,
(i) Us1,t1(u1, v1) commutes with Us2,t2(u2, v2) and U

∗
s2,t2(u2, v2) for any

ui, vi ∈ h (i = 1, 2).
(ii) For pairs (ui, vi) and (pj , wj) ∈ h(i = 1, 2, . . . , n; j = 1, 2, . . . , k) and

[a, b) and [r, s) disjoint intervals,〈
Ω,

n∏
i=1

U
(εi)
a,b (ui, vi)

k∏
j=1

U
(ε′j)
r,s (pj , wj)Ω

〉

=

〈
Ω,

n∏
i=1

U
(εi)
a,b (ui, vi)Ω

〉 〈
Ω,

k∏
j=1

U
(ε′j)
r,s (pj , wj)Ω

〉
.

Assumption B: (Regularity) for any ∞ > t ≥ s ≥ 0,

sup {|〈Ω, (Us,t − 1)(u, v)Ω〉| : ‖u‖ = ‖v‖ = 1} ≤ C|t− s|
for some positive constant C independent of s, t.

Remark 3.1. Similar sets of assumptions of independence can also be found in
the analysis of Levy processes([4]).However here,unlike in [11, 12], the stationarity
condition is not assumed.

As in [11, 12], we need further assumptions for Gaussianity and minimality:

Assumption C: (Gaussianity) for each t ≥ s ≥ 0 and any uk, vk ∈ h, εk ∈ Z2

(k = 1, 2, 3),

lim
t↓s

1

t− s

〈
Ω,

(
3∏
k=1

(U
(εk)
s,t − 1)(uk, vk)

)
Ω

〉
= 0. (3.1)

Assumption D: (Minimality) the set

S0 =

{
Us,t(u, v)Ω :

s = (s1, s2, · · · , sn), t = (t1, t2, · · · , tn); 0 ≤ s, t <∞,
sj ≤ tj ; u = ⊗nk=1uk, v = ⊗nk=1vk ∈ h, n ≥ 1

}
is total in H.

Remark 3.2. The Assumption D is not really a restriction, one can as well work
by replacing H by H0, the closure of the linear span of S0. In fact, it is easy to see
that Us,t leaves h⊗H0 invariant and that it’s restriction to h⊗H0 is an isometry.
For the unitarity of the restriction, it will be necessary to define S0 as the span

of {U (ε)
s,t (u, v)Ω|s, t;u, v; ε} so that the restriction of U∗

s,t to h⊗H0 is an isometry.
However, as can be seen in the sequel, we only use the isometry of Us,t in this
article.

1 It may be noted that the evolution equation here is from right to left instead of left to right
as was the case in [11], [12]. This is done in order to be in conformity with the notation of [9]

enabling us to use the results there (see Appendix) with minimal changes.
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3.1. Vacuum Expectation. Let us look at the various evolutions associated
with the {Us,t}. Define a two parameter family of operators {Ts,t} on h by

〈u, Ts,tv〉 := 〈Ω, Us,t(u, v)Ω〉 , ∀u, v ∈ h.

For each t ≥ s ≥ 0, since Us,t is unitary, Ts,t is a contractions.

Remark 3.3. The Assumption B implies ‖Ts,t − 1‖ ≤ C|t − s|. In particular,
limt↓s Ts,t = 1 uniformly in s.

Lemma 3.4. Under the Assumptions A and B, the family {Ts,t} of contrac-
tions satisfies

(i) for any r ≤ s ≤ t <∞, Ts,tTr,s = Tr,t and Ts,s = 1h
(ii) for any t′ ≥ t ≥ s ≥ 0, ‖Ts,t′ − Ts,t‖ ≤ C|t′ − t|.

Proof. (i) The evolution and independent increment property of {Us,t} and the
definition of Ts,t gives the result.

(ii) By (i), for a fixed s ≥ 0 and any t′ ≥ t ≥ s, we have

‖Ts,t′ − Ts,t‖ = ‖ (Tt,t′ − 1)Ts,t‖ ≤ ‖Ts,t‖‖Tt,t′ − 1‖ ≤ C|t′ − t|.

�

Then we have the following result about the evolutions of the type Ts,t by
corollary 6.2 in the Appendix:

There exists G ∈ L∞
loc(R+,Bs(h)) (definition is given in Appendix) such that

Ts,t − 1 =

∫ t

s

G(τ)Ts,τdτ (3.2)

and limh↓0
Tt,t+h−I

h = G(t) in the strong operator topology for almost every t.
We shall need the following observation (see Equation (6.2) in [11]):∑

k≥1

‖(Us,t − 1) (φk, w)Ω‖2 = 〈w, (1− Ts,t)w〉+ 〈(1− Ts,t)w,w〉 (3.3)

for any w ∈ h, where {φk} is an complete orthonormal basis of h.

Lemma 3.5. (i) Under the Assumption C, for any s ≥ 0 and n ≥ 3,
u, v ∈ h⊗n and ε ∈ Zn2 ,we have

lim
t↓s

1

t− s

〈
Ω,

(
n∏
k=1

[(
U

(εk)
s,t − 1

)
(uk, vk)

])
Ω

〉
= 0, (3.4)

(ii) assume B and C.Then for u, v ∈ h, product vectors p,w ∈ h⊗n and ε ∈ Z2,
ε′ ∈ Zn2 ,we have

lim
t↓s

1

t− s

〈
(Us,t − 1)

(ε)
(u, v)Ω,

(
U

(ε′)
s,t − 1

)
(p,w)Ω

〉
(3.5)

= (−1)ε lim
t↓s

1

t− s

〈
(Us,t − 1) (u, v)Ω,

(
U

(ε′)
s,t − 1

)
(p,w)Ω

〉
.
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Proof. (i) The proof is a simple modification of the proof of Lemma 6.6 in [11].
(ii) The idea here is similar to that in the proof of Lemma 6.7 in [11]. For ε = 0,

it is obvious. To see this for ε = 1, put

Φ =
(
U

(ε′)
s,t − 1

)
(p,w)Ω

and consider the following

lim
t↓s

1

t− s
〈(
Us,t + U∗

s,t − 2
)
(u, v)Ω,ΦΩ

〉
(3.6)

= − lim
t↓s

1

t− s
〈[(

U∗
s,t − 1

)
(Us,t − 1)

]
(u, v)Ω,ΦΩ

〉
= − lim

t↓s

1

t− s
∑
k≥1

〈(Us,t − 1) (ek, v)Ω, (Us,t − 1) (ek, u)ΦΩ〉 .

On the other hand, we have∣∣∣∣∣∣ 1

t− s
∑
k≥1

〈(Us,t − 1) (ek, v)Ω, (Us,t − 1) (ek, u)ΦΩ〉

∣∣∣∣∣∣
2

≤

∑
k≥1

1

t− s
‖(Us,t − 1) (ek, v)Ω‖2

∑
k≥1

1

t− s
‖(Us,t − 1) (ek, u)ΦΩ‖2

 .

By (3.3) and (iv) in Lemma, the above quantity is equal to

2Re

〈
v,

1− Ts,t
t− s

v

〉
1

t− s
〈
ΦΩ,

[(
U∗
s,t − 1

)
(Us,t − 1)

]
(u, u)ΦΩ

〉
= 2Re

〈
v,

1− Ts,t
t− s

v

〉
1

t− s
〈
ΦΩ,

(
2− U∗

s,t − Us,t
)
(u, u)ΦΩ

〉
.

Since by Assumption B, |
〈
v,

1−Ts,t

t−s v
〉
| ≤ C‖v‖2 for any v ∈ h and since by the

part(i) of this lemma,

lim
t↓s

1

t− s
〈
ΦΩ,

(
2− U∗

s,t − Us,t
)
(u, u)ΦΩ

〉
= 0,

we obtain by (3.7) that limt↓s
1
t−s

〈(
Us,t + U∗

s,t − 2
)
(u, v)Ω,ΦΩ

〉
=

lim
t↓s

1

t− s
∑
k≥1

〈
(Us,t − 1) (ek, u)Ω, (Us,t − 1) (ek, v)

(
U

(ε′)
s,t − 1

)
(p,w)Ω

〉
= 0,

which implies (3.6). �

For each s ≥ 0 and for vectors u, v, p, w ∈ h the identity (3.5) gives

lim
t↓s

1

t− s

〈
(Us,t − 1)

(ε)
(u, v)Ω, (Us,t − 1)

(ε′)
(p, w)Ω

〉
(3.7)

= (−1)ε+ε
′
lim
t↓s

1

t− s
〈(Us,t − 1) (u, v)Ω, (Us,t − 1) (p, w)Ω〉 .
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We now introduce the partial trace TrH which is a linear map from B1(h⊗H)
to B1(h) defined by

〈u,TrH(B)v〉 :=
∑
j≥1

〈u⊗ ζj , Bv ⊗ ζj〉, ∀u, v ∈ h

for B ∈ B1(h ⊗ H). In particular, TrH(B) = Tr(B2)B1 for B = B1 ⊗ B2. Then
we define a family of operators {Zs,t}0≤s≤t on the Banach space B1(h) by

Zs,t(ρ) = TrH
[
Us,t (ρ⊗ |Ω >< Ω|)U∗

s,t

]
, ρ ∈ B1(h). (3.8)

Thus, for any u, v, p, w ∈ h, we have

〈p, Zs,t(|w >< v|)u〉 := 〈Us,t(u, v)Ω, Us,t(p, w)Ω〉 . (3.9)

For ρ ∈ B1(h), by the definition of Zs,t and trace norm (see page no. 47 in [5]),
we have

‖Zs,t(ρ)‖1 =
∥∥TrH[Us,t (ρ⊗ |Ω >< Ω|)U∗

s,t]
∥∥
1

= sup
φ,ψ: ons of h

∑
k≥1

∣∣〈φk,TrH [Us,t (ρ⊗ |Ω >< Ω|)U∗
s,t

]
ψk
〉∣∣

≤ sup
φ,ψ: ons of h

∑
j,k≥1

∣∣〈φk ⊗ ζj , Us,t (ρ⊗ |Ω >< Ω|)U∗
s,tψk ⊗ ζj

〉∣∣
≤
∥∥Us,t (ρ⊗ |Ω >< Ω|)U∗

s,t

∥∥
1
≤ ‖ρ‖1.

Thus Zs,t is contractive. For any u, v ∈ h,

‖Us,t(u, v)Ω‖2 = 〈u,Zs,t(|v >< v|)u〉

and positivity of Zs,t is clear.

Lemma 3.6. Under the Assumptions A and B, {Zs,t} is a family of positive
contractive map on B1(h) satisfying

(i) for any 0 ≤ r ≤ s ≤ t <∞, Zs,tZr,s = Zr,t, Zs,s = 1
(ii) for any t′ ≥ t ≥ s ≥ 0, ‖Zs,t′ − Zs,t‖1 ≤ 4C|t′ − t|,
(iii) For any ρ ∈ B1(h), T r(Zs,tρ) = Tr(ρ).

Proof. (i)To prove evolution property of Zs,t it is enough to show that

〈Ur,t(u, v)Ω, Ur,t(p, w)Ω〉 = 〈p, Zr,t(|w >< v|)u〉 = 〈p, Zs,tZr,s(|w >< v|)u〉

for any u, v, p, w ∈ h. This can be checked by using the evolution and independent
increment properties of the unitary family Us,t.

(ii) For any rank one operator ρ = |w >< v|, w, v ∈ h, we have
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‖(Zs,t − 1)(|w >< v|)‖1
= sup

{φ},{ψ} ONB of h

∑
k≥1

|〈φk, (Zs,t − 1)(|w >< v|)ψk〉|

= sup
φ,ψ

∑
k≥1

|〈Us,t(ψk, v)Ω, Us,t(φk, w)Ω〉 − 〈ψk, v〉〈φk, w〉|

≤ sup
φ,ψ

∑
k≥1

|〈(Us,t − 1)(ψk, v)Ω, (Us,t − 1)(φk, w)Ω〉|

+ sup
φ,ψ

∑
k≥1

|〈ψk, v〉〈Ω, (Us,t − 1)(φk, w)Ω|

+ sup
φ,ψ

∑
k≥1

|〈Ω, (Us,t − 1)(ψk, v)Ω〉〈φk, w〉|

≤ sup
φ,ψ

∑
k≥1

‖(Us,t − 1)(ψk, v)Ω‖2
1/2 ∑

k≥1

‖(Us,t − 1)(ψk, w)Ω‖2
1/2

+ sup
φ,ψ

∑
k≥1

|〈ψk, v〉|2
1/2 ∑

k≥1

|〈φk, (Ts,t − 1)w〉|2
1/2

+ sup
φ,ψ

∑
k≥1

|〈φk, w〉|2
1/2 ∑

k≥1

|〈ψk, (Ts,t − 1)v〉|2
1/2

.

Hence by identity (3.3) and Assumption B we obtain

‖(Zs,t − 1)(|w >< v|)‖1
≤ 2‖(Ts,t − 1)‖‖w‖‖v‖+ ‖(Ts,t − 1)w‖‖v‖+ ‖(Ts,t − 1)v‖‖w‖
≤ 4C|t− s|‖w‖ ‖v‖.

Now any for ρ =
∑
k λk|φk >< ψk| ∈ B1(h), where {φk} and {ψk} are two

orthonormal bases of h and we have

‖Zs,t(ρ)− ρ‖1 ≤ 4C

(∑
k

|λk|

)
|t− s| ≤ 4C‖ρ‖1|t− s|

and hence

‖Zs,t − 1‖ ≤ 4C|t− s|. (3.10)

By evolution property and contractivity of {Zs,t}

‖Zs,t′ − Zs,t‖ = ‖ (Zt,t′ − 1)Zs,t‖ ≤ ‖Zs,t‖‖Zt,t′ − 1‖ ≤ 4C|t′ − t|.

(iii) It can be proved as in lemma 6.5 in [11] �

The Corollary 6.2 in the Appendix leads to following result for the evolution
Zs,t.: Under the Assumptions A and B there exists L ∈ L∞

loc(R+,Bs(B1(h)))
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(see Appendix for definition) such that

Zs,t − 1 =

∫ t

s

L(τ)Zs,τdτ, lim
h↓0

Zt,t+h − I
h

= L(t). (3.11)

4. Construction of Noise Space

Consider the algebra M generated by the tuples (u, v, ε) with multiplication
structure given by (u, v, ε) · (p,w, ε′) = (u ⊗ w, v ⊗ z, ε ⊕ ε′). For each s ≥ 0 we
define a scalar valued map Ks on M ×M by setting, for (u, v, ε), (p,w, ε′) ∈M ,

Ks ((u, v, ε), (w, z, ε
′)) := lim

t↓s

1

t− s

〈(
U

(ε)
s,t − 1

)
(u, v)Ω,

(
U
ε′

s,t − 1
)
(p,w)Ω

〉
if the limit exists.

Theorem 4.1. For almost every s ≥ 0

(i) the map Ks is a positive definite kernel on M ,
(ii) there exists a unique (up to unitary equivalence) separable Hilbert space

ks, an embedding ηs :M → ks such that

{ηs(u, v, ε) : (u, v, ε) ∈M} is total in ks, (4.1)

〈ηs(u, v, ε), ηs(p,w, ε′)〉 = Ks ((u, v, ε), (p,w, ε
′)) , (4.2)

(iii) for any (u, v, ε) ∈M , u = ⊗ni=1ui, v = ⊗ni=1vi and ε = (ε1, · · · , εn)

ηs(u, v, ε) =

n∑
i=1

∏
k 6=i

〈uk, vk〉 ηs(ui, vi, εi), (4.3)

(iv) ηs(u, v, 1) = −ηs(u, v, 0) for any u, v ∈ h,
(v) for fixed u, v, p, w ∈ h, the map s 7→ Ks((u, v), (p, w)) = 〈ηs(u, v), ηs(p, w)〉

is Lebesgue measurable and locally bounded in R+.

Proof. (i) The proof is exactly same as the proof of Lemma 7.1 in [11]. By Lemma
3.5, for elements (u, v, ε), (p,w, ε′) ∈M , ε ∈ Zm2 and ε′ ∈ Zn2 , we have

Ks ((u, v, ε), (p,w, ε
′)) (4.4)

= lim
t↓s

1

t− s

〈(
U

(ε)
s,t − 1

)
(u, v)Ω,

(
U

(ε′)
s,t − 1

)
(p,w)Ω

〉
=

∑
1≤i≤m, 1≤j≤n

∏
k 6=i

〈uk, vk〉
∏
l 6=j

〈pl, wl〉

× lim
t↓s

1

t− s

〈
(Us,t − 1)

(εi) (ui, vi)Ω, (Us,t − 1)
(ε′j) (pj , wj)Ω

〉
.

Since

〈(Us,t − 1) (u, v)Ω, (Us,t − 1) (p, w)Ω〉

= 〈Us,t(u, v)Ω, Us,t(p, w)Ω〉 − 〈u, v〉〈p, w〉

− 〈u, v〉 〈Ω, (Us,t − 1) (p, w)Ω〉 − 〈Ω, (Us,t − 1) (u, v)Ω〉〈p, w〉

= 〈p, (Zs,t − 1) (|w >< v|)u〉 − 〈u, v〉 〈p, (Ts,t − 1)w〉 − 〈u, (Ts,t − 1) v〉〈p,w〉,



602 UN CIG JI, LINGARAJ SAHU, AND KALYAN B. SINHA

the existence of the limits on the right hand side of (4.4) follows from the identity
(3.5) and by the equations (3.2) and (3.11), Ks is given as

Ks((u, v, ε), (p, w, ε
′)) (4.5)

= (−1)ε+ε
′
lim
t↓s

{〈
p,
Zs,t − 1

t− s
(|w >< v|)u

〉
− 〈u, v〉

〈
p,
Ts,t − 1

t− s
w

〉}
− (−1)ε+ε

′
lim
t↓s

〈
u,
Ts,t − 1

t− s
v

〉
〈p, w〉

= (−1)ε+ε
′
{
〈p,L(s)(|w >< v|)u〉 − 〈u, v〉 〈p,G(s)w〉 − 〈u,G(s)v〉〈p, w〉

}
.

(ii) For each s ≥ 0, the Kolmogorov’s construction [10] to the pair (M,Ks)
provides a Hilbert space ks as the closure of the span of {ηs(u, v, ε) : (u, v, ε) ∈M}.

(iii) Again as in [11], for any (p,w, ε′) ∈M , by Lemma 3.5, we have

〈ηs(u, v, ε), ηs(p,w, ε′)〉 = Ks ((u, v, ε), (p,w, ε
′))

=

n∑
i=1

∏
k 6=i

〈uk, vk〉 〈ηs(ui, vi, εi), ηs(p,w, ε′)〉 .

Since {ηs(p,w, ε′) : (p,w, ε′) ∈M} is a total subset of ks, (4.3) follows.
(iv) By (3.5), we have

〈ηs(u, v, 1), ηs(p,w, ε′)〉 = 〈−ηs(u, v, 0), ηs(p,w, ε′)〉

and hence ηs(u, v, 1) = −ηs(u, v, 0).
By parts (iii) and (iv) of this theorem, it is clear that ks is spanned by the

family {ηs(u, v) : u, v ∈ h}, where we have written ηt(u, v) for ηt(u, v, 0).
Since G ∈ L∞

loc(R+,Bs(h)) and L ∈ L∞
loc(R+,Bs(B1(h))) it follows from (4.5)

that ηs(., .) : h × h → ks is sesquilinear and continuous and thus separability of
ks follows from that of h.

(v) This follows similarly as for (iv). �

For any two orthonormal bases {φk}, {ψk} of h, the collection of vectors

{ηs(φk, ψl) : k, l ≥ 1}

is a countable total family in ks and

s 7→ 〈ηs(u, v), ηs(p, w)〉 = Ks((u, v), (p, w))

is a Lebesgue measurable function. Thus s 7→ 〈ηs(u, v), ηs(φk, ψl)〉 is measurable
and therefore the family {ks : s ≥ 0} spanned by {ηs(u, v) : s ≥ 0, u, v ∈ h}, is a
measurable field of Hilbert spaces (Chapter 8, [3]).

For any T ≥ 0, define KT ((u, v), (p, w)) =
∫ T
0
Ks((u, v), (p, w))ds

=

∫ T

0

{〈p,L(s)(|w >< v|)u〉 − 〈u, v〉 〈p,G(s)w〉 − 〈u,G(s)v〉〈p, w〉}ds.

Since eachKs is positive definite it can be seen thatKT is a positive definite kernel.
Let the associated Hilbert space kT . There exists a family of vectors ηT (u, v) which
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spans the Hilbert space kT such that

〈ηT (u, v), ηT (p, w)〉 = KT ((u, v), (p, w))

=

∫ T

0

Ks((u, v), (p, w))ds =

∫ T

0

〈ηs(u, v), ηs(p, w)〉ds.

Comparing the two expressions for KT , it follows that

〈ηt(u, v), ηt(p, w)〉 = 〈p, {L(t)(|w >< v|)−|G(t)w >< v|−|w >< G(t)v|}u〉. (4.6)

In kT there exists a bounded self adjoint operator A with absolutely continuous
simple spectrum such that AηT (u, v)(s) = sηs(u, v) for almost every s ∈ [0, T ] and

kT is the direct integral
∫ ⊕
[0,T ]

ksds ( [3]). There is natural isometric embedding of

kT in kT
′
for T ≤ T ′ by setting ηT,T

′

s (u, v) = ηTs (u, v) for all 0 ≤ s ≤ T and 0 for
s ∈ (T, T ′].

Remark 4.2. The integral
∫
R+
Ks((u, v), (u, v))ds =

∫
R+
‖ηs(u, v)‖2ds need not

exist and therefore
∫ ⊕
R+

ksds may not be defined.

Lemma 4.3. Under the hypothesis of Theorem 4.1, we have the following:

(i) There exists a unique strong measurable family of bounded operators L(t) :
h→ h⊗ kt such that

‖L(t)v‖2 = −2Re 〈v,G(t)v〉 , ∀v ∈ h.

(ii) The map t 7→ L(t) is locally norm bounded.

Proof. (i) By the identity (4.5), for any u, v ∈ h, we have for almost every t ≥ 0

‖ηt(u, v)‖2 = 〈u,L(t)(|v >< v|)u〉 − 〈u, v〉 〈u,G(t)v〉 − 〈u,G(t)v〉〈u, v〉.

and thus∑
k

‖ek ⊗ ηt(ek, v)‖2 =
∑
k

‖ηt(ek, v)‖2

=
∑
k

[
〈ek,L(t)(|v >< v|)ek〉 − 〈ek, v〉 〈ek, G(t)v〉 − 〈ek, G(t)v〉 〈ek, v〉

]
= Tr (L(t)(|v >< v|))− 〈v,G(t)v〉 − 〈v,G(t)v〉.

Moreover, since Zs,t is trace preserving it follows that Tr (L(t)(|v >< v|)) = 0.
Therefore

∑
k ‖ek ⊗ ηt(ek, v)‖2 = −2Re 〈v,G(t)v〉 . This implies that

∑
k ek ⊗

ηt(ek, v) is convergent in norm and in fact for almost every t it defines a bounded
operator L(t) : h→ h⊗ kt given by L(t)v =

∑
k ek ⊗ ηt(ek, v) with

‖L(t)v‖2 = −2Re 〈v,G(t)v〉 . (4.7)

The strong measurability of t 7→ L(t) follows from the definition.
The part (ii) follows from the local norm boundedness of G(.). �
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5. Hudson-Parthasarathy (HP) Evolution Systems and Equivalence

5.1. HP Evolution Systems. In order to simplify the discussion of the existence
and uniqueness of the solution of HP type quantum stochastic differential equation

in Γsym(
∫ ⊕
R+

ksds) and to be able to refer to the existing literature, it is convenient

to introduce the following point of view which allow us to embed the process in
the standard Fock space Γ = Γsym(L2(R+,k)) where k = l2(N).

Note that for almost every t ≥ 0, kt is a complex separable Hilbert space.
Setting d(t) = the dimension of kt, d : R+ → N∪ {∞} is measurable and defining
Λn = {t : d(t) = n}, R+ can be written as disjoint union

⋃∞
n=1 Λn of measurable

sets. Let us consider the Hilbert space l2(N) with a fixed orthonormal basis {Ej :
j ≥ 0}. Now for t ∈ Λn, n < ∞ we embed kt as the n dimensional subspace
Span{Ej : 1 ≤ j ≤ n} of k and for t ∈ Λ∞, kt identified with k. Then the direct

integral
∫ ⊕
R+

ktdt =
⊕

n≥1 L
2(Λn,Cn)

⊕
L2(Λ∞,k). If Λ∞ = ∅ , then

∫ ⊕
R+

ktdt is

isometrically embedded in L2(R+,k).
For any subset D ⊆ L2(R+,k), let E(D) be the subspace of Γ which is spanned

by the set {e(f) : f ∈ D} of exponential vectors defined as:

e(f) := ⊕n≥0
f⊗n√
n!
.

For 0 ≤ s < t < ∞ and f ∈ K = L2(R+,k), we denote the functions 1[0,s]f ,
1(s,t]f and 1[t,∞)f by fs], f(s,t] and f[t, where 1A is the indicator function of
A ⊂ [0,∞). Then the Hilbert spaces K and Γ can be decomposed as K = Ks] ⊕
K[s,t) ⊕K[t and Γ = Γs] ⊗ Γ[s,t) ⊗ Γ[t via the unitary isomorphism given by:

Γ 3 e(f) ←→ e(fs])⊗ e(f(s,t])⊗ e(f[t) ∈ Γs] ⊗ Γ[s,t) ⊗ Γ[t,

where Ks] = L2([0, s),k), K[s,t) = L2([s, t),k), K[t = L2([t,∞),k) and Γs] =
Γ(Ks]), Γ[s,t) = Γ(K[s,t)), Γ[t = Γ(K[t).

Let us consider the Hudson-Parthasarathy (HP) type equation on h⊗ Γ:

Vs,t = 1h⊗Γ +
∑
µ,ν≥0

∫ t

s

Lµν (τ)Vs,τΛ
ν
µ(dτ). (5.1)

Here the coefficients Lµν (τ) (µ, ν ≥ 0) are operators in h and Λνµ(t) are fundamental
processes define by

Λµν (t) =


t1h⊗Γ for (µ, ν) = (0, 0),
a
(
1[0,t] ⊗ Ej(t)

)
for (µ, ν) = (j, 0),

a†
(
1[0,t] ⊗ Ek(t)

)
for (µ, ν) = (0, k),

Λ
(
1[0,t] ⊗ |Ek(t) >< Ej(t)|

)
for (µ, ν) = (j, k),

(5.2)

where Ej(t) = Ej for j ∈ {1, 2, · · · d(t)} and Ej(t) = 0 otherwise. With respect to
the orthonormal basis Ej(t) we have bounded operators {Lj(t) : t ≥ 0, j ≥ 1} in
h such that

〈u, Lj(t)v〉 = 〈Ej , ηt(u, v)〉 = 〈u⊗ Ej , L(t)v〉, ∀u, v ∈ h. (5.3)

For the details about quantum stochastic calculus see [10, 6]).
Now, let us state the main result of this article.
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Theorem 5.1. (i) The HP equation

Vs,t = 1h⊗Γ +
∑
µ,ν≥0

∫ t

s

Lµν (τ)Vs,τΛ
ν
µ(dτ) (5.4)

on h⊗ Γsym(K) with coefficients Lµν (t) given by

Lµν (t) =


G(t) for (µ, ν) = (0, 0),
Lj(t) for (µ, ν) = (j, 0),
−Lk(t)∗ for (µ, ν) = (0, k),
0 for (µ, ν) = (j, k),

(5.5)

with the unitarity condition (4.7) admit a unique unitary solution Vs,t.

(ii) Assume A, B, C and D. Then there exists a unitary isomorphism Ξ̃ :
h⊗H → h⊗ Γ such that

Us,t = Ξ̃∗Vs,tΞ̃, ∀ 0 ≤ s ≤ t <∞. (5.6)

Proof. (i) The existence of the strong solution Vs,t of the equation (5.4) follows
exactly as in Proposition 27.5 of ([10]) since for any Ψ ∈ h⊗ Γ, we have

∞∑
j=1

‖(Lj(τ)⊗ I)Ψ‖2 =
∑
j

∑
i

‖(Lj(τ)vi)⊗ Ei‖2 =
∑
i

∑
j

‖Lj(τ)vi‖2

=
∑
i

‖L(τ)vi‖2 ≤ sup0≤τ≤T (‖L(τ)‖2)
∑
i

‖vi‖2

= sup0≤τ≤T(‖L(τ)‖2)‖Ψ‖2,

where we have written Ψ =
∑
vi ⊗ Ei,{Ei} an ONB in Γ.

The isometry of Vs,t follows easily as in the proof of the theorem 27.8 of ([10]).
On the other hand for the proof of co-isometry of Vs,t we proceed as in Theorem
5.3.3 of ([6]) and for f, g ∈ L2

⋂
L∞(R+,k) define Yg,f (t) : B(h) → B(h) by

Yg,f (t)X = [
∑
j gj(t)Lj(t), X]−[

∑
j fj(t)Lj(t)

∗, X]+{
∑
j Lj(t)

∗XLj(t)+XG(t)+

G(t)∗X}, so that if we setXg,f (s, t) = 〈.⊗ e(g), (Vs,tV ∗
s,t).⊗ e(f)〉, then Xg,f (s, .)

satisfy the equation

Xg,f (s, t) = 〈e(g), e(f)〉Ih +

∫ t

s

Yg,f (τ)Xg,f (s, τ)dτ. (5.7)

By the equation (4.7) ,we note that 〈e(g), e(f)〉Ih is a solution of the linear equation
(5.7) and hence by the uniqueness of the solution of the B(h)-valued initial value
problem we have that Xg,f (s, t) = 〈e(g), e(f)〉Ih or Vs,t is a co-isometry, leading
to the unitarity of the same. We postpone the proof of part (ii) to the next two
subsections. �

For ε = (ε1, ε2, · · · , εn) ∈ Zn2 , we define V
(ε)
s,t ∈ B(h⊗n ⊗ Γ) by setting V

(ε)
s,t ∈

B(h⊗ Γ) by

V
(ε)
s,t =

{
Vs,t for ε = 0,
V ∗
s,t for ε = 1.

The next result verifies the properties of Assumption A for the family Vs,t
with Ω = e(0) ∈ Γ.
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Lemma 5.2. The unitary solution {Vs,t} of HP equation (5.4) satisfies

(i) for any 0 ≤ r ≤ s ≤ t <∞, Vr,t = Vs,tVr,s,
(ii) Assumption A holds for the family {Vs,t} with the distinguished vector

e(0) in Γ,
(iii) for any 0 ≤ s ≤ t <∞,

〈e(0), Vs,t(u, v)e(0)〉 = 〈u, Ts,tv〉 , ∀u, v ∈ h.

Proof. (i) For fixed 0 ≤ r ≤ s ≤ t <∞, we set Wr,t = Vs,tVr,s. Then by (5.4), we
have

Wr,t = Vr,s +
∑
µ,ν≥0

∫ t

s

Lµν (τ)Vs,τVr,sΛ
ν
µ(dτ)

=Wr,s +
∑
µ,ν≥0

∫ t

s

Lµν (τ)Wr,τΛ
ν
µ(dτ),

since Wr,s = Vr,sVs,s = Vr,s. Thus the family {Wr,t} of unitary operators also
satisfies the HP equation (5.4) for Vr,t. Hence by the uniqueness of the solution of
this quantum stochastic differential equation, Wr,t = Vr,t for any 0 ≤ r ≤ s ≤ t <
∞, and the result follows.

(ii) For any 0 ≤ s ≤ t < ∞, the solution Vs,t ∈ B(h ⊗ Γ[s,t]). Therefore, for
p, w ∈ h, Vs,t(p, w) ∈ B(Γ[s,t]) and the Assumptions A2(i) and A2(ii) are verified
by the property of the continuous tensor-factorization of the Fock space.

(iii) Let us define〈
u, T̃s,tv

〉
:= 〈e(0), Vs,t(u, v)e(0)〉 , ∀u, v ∈ h.

Then T̃s,t is a contractive family of operators and by (5.4), we have that

T̃s,t = 1 +

∫ t

s

G(τ)T̃s,τdτ. (5.8)

Thus T̃s,t − Ts,t satisfies the differential equation

T̃s,t − Ts,t =
∫ t

s

G(τ)(T̃s,τ − Ts,τ )dτ.

Since G(τ) is locally norm bounded, an iteration of this equation will lead to

T̃s,t = Ts,t for almost all s, t and therefore by continuity also for all s, t. �

Consider the family of operators Z̃s,t defined by

Z̃s,t(ρ) = TrΓ
[
Vs,t(ρ⊗ |e(0) >< e(0)|)V ∗

s,t

]
, ∀ ρ ∈ B1(h).

As for Zs,t, it can be seen that Z̃s,t is a contractive family of maps on B1(h) and,
in particular, for any u, v, p, w ∈ h,〈

p, Z̃s,t(|w >< v|)u
〉
= 〈Vs,t(u, v)e(0), Vs,t(p, w)e(0)〉 .

Lemma 5.3. The family {Z̃s,t} is a uniformly continuous evolution of contraction

on B1(h) and Z̃s,t = Zs,t, where Zs,t is given as in (3.8).
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Proof. By (5.4) and Itô’s formula, for u, v, p, w ∈ h〈
p,
[
Z̃s,t − 1

]
(|w >< v|)u

〉
= 〈Vs,t(u, v)e(0), Vs,t(p, w)e(0)〉 − 〈u, v〉 〈p, w〉

=

∫ t

s

〈Vs,τ (u, v)e(0), Vs,τ (G(τ)∗p, w)e(0)〉 dτ

+

∫ t

s

〈Vs,τ (G(τ)∗u, v)e(0), Vs,τ (p, w)e(0)〉 dτ

+
∑
j

∫ t

s

〈Vs,τ (Lj(τ)∗u, v)e(0), Vs,τ (Lj(τ)∗p, w)e(0)〉 dτ

=

∫ t

s

〈
p, {G(τ)Z̃s,τ (|w >< v|) + Z̃s,τ (|w >< v|)G(τ)∗

+
∑
j≥1

Lj(τ)Z̃s,τ (|w >< v|Lj(τ)∗}u

〉
dτ.

Thus by identity (5.3) for {Lj(t)} and (4.6), we have that〈
p,
[
Z̃s,t − 1

]
(ρ)u

〉
=

∫ t

s

〈
p,L(τ)Z̃s,τ (ρ)u

〉
dτ, (5.9)

where ρ = |w >< v|. Thus the family {Z̃s,t} satisfies the equation

Z̃s,t(ρ) = ρ+

∫ t

s

L(τ)Z̃s,τ (ρ)dτ, ρ ∈ B1(h).

Therefore, proceeding as in the proof of Lemma 5.2 (iii) we can conclude that

Z̃s,t = Zs,t. �

5.2. Minimality of HP Evolution Systems. In this section we shall show the
minimality of the HP evolution system {Vs,t} discussed in Section 5.1 which will
be needed to prove (ii) in Theorem 5.1, i.e., to establish unitary equivalence of
Us,t and Vs,t. We shall prove here that the subset

S ′ =
{
Vs,t(u, v)e(0) :

s = (s1, s2, · · · , sn), t = (t1, t2, · · · , tn); 0 ≤ s, t <∞,
sj ≤ tj ; u = ⊗ni=1ui, v = ⊗ni=1vi ∈ h, n ≥ 1

}
is total in the symmetric Fock space Γ(K) ⊆ Γ(L2(R+,k)), where

Vs,t(u, v)e(0) := Vs1,t1(u1, v1) · · ·Vsn,tn(un, vn)e(0).

Let T ≥ 0 be fixed and as in ([11]), we note that for any 0 ≤ s < t ≤ T , u, v ∈ h,

1

t− s
[Vs,t − 1] (u, v)e(0) = γ(s, t, u, v) + ρ(s, t, u, v) + ζ(s, t, u, v) + ς(s, t, u, v),

(5.10)
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where these vectors in the Fock space Γ are given by

γ(s, t, u, v) :=
1

t− s
∑
j≥1

∫ t

s

〈u, Lj(λ)v〉 a†j(dλ) e(0),

ρ(s, t, u, v) :=
1

t− s

∫ t

s

〈u,G(λ)v〉 dλ e(0),

ζ(s, t, u, v) :=
1

t− s
∑
j≥1

∫ t

s

(Vs,λ − 1) (Lj(λ)
∗u, v) a†j(dλ) e(0),

ς(s, t, u, v) :=
1

t− s

∫ t

s

(Vs,λ − 1) (G(λ)∗u, v) dλ e(0).

Note that any φ ∈ Γ can be written as φ = φ(0) ⊕ φ(1) ⊕ · · · , where φ(n) is in the
n-fold symmetric tensor product L2(R+,k)

⊗sn ≡ L2(Σn) ⊗ k⊗n. Here Σn is the
n-simplex {t = (t1, t2, · · · , tn) : 0 ≤ t1 < t2 · · · < tn <∞}.

Lemma 5.4. Let u, v ∈ h and let CT = 4eT sup{‖L(λ)‖2 + ‖G(λ)‖2 : 0 ≤ λ ≤ t}.
Then for any 0 ≤ s ≤ t ≤ T,

(i)

‖(Vs,t − 1)ve(0)‖2 ≤ CT |t− s|‖v‖2. (5.11)

(ii) ‖(Vs,t − 1)(u, v) e(0)‖2 ≤ CT ‖u‖2‖v‖2|t− s|.
(iii) For any u ∈ h

‖
∑
j≥1

∫ t

s

Vs,λ(u, Lj(λ)v)a
†
j(dλ)e(0)‖

2

≤ CT ‖u‖2‖v‖2|t− s|.

Proof. (i) By estimates of quantum stochastic integration (Proposition 27.1, [10])

‖(Vs,t − 1)ve(0)‖2

= ‖
∑
j≥1

∫ t

s

Vs,λLj(λ)a
†
j(dλ) ve(0) +

∫ t

s

Vs,λG(λ)dλ ve(0)‖2

≤ 2eT
∫ t

s

{
∑
j≥1

‖Lj(λ)v‖2 + ‖G(λ)v‖2}dλ

≤ 2eT ‖v‖2
∫ t

s

{‖L(λ)‖2 + ‖G(λ)‖2}dλ

= ‖v‖2CT |t− s|.

(ii) By Lemma 2.1 (ii), we have (Vs,t − 1)(u, v)e(0) = F ∗
u (Vs,t − 1)ve(0) and

therefore the result follows from (i).
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(iii) By lemma 2.1,

‖
∑
j≥1

∫ t

s

Vs,λ(Lj(λ)
∗u, v)a+j (dλ)e(0)‖

2

= ‖
∑
j

∫ t

s

F ∗
u (Lj(λ)⊗ IΓ)Vs,λa+j (dλ)ve(0)‖

2

≤ 2eT ‖u‖2‖v‖2sup0≤λ≤T ‖L(λ)‖2|t− s|
≤ CT ‖u‖2‖v‖2|t− s|,

where we have used the standard estimate of a quantum stochastic integral. �

Lemma 5.5. For any u, v ∈ h, 0 ≤ s ≤ t ≤ T,

(i) sup{‖ζ(s, t, u, v)‖2 : 0 ≤ s ≤ t ≤ T} ≤ C2
T ‖u‖2‖v‖2 and ‖ς(s, t, u, v)‖ ≤

CT |t− s|1/2‖u‖‖v‖.
(ii) For any φ ∈ Γ(L2(R+,k)), limt↓s〈φ, ζ(s, t, u, v)〉 = 0 and

lim
t↓s
〈φ, γ(s, t, u, v)〉 =

∑
j≥1

〈u, Lj(s)v〉φ(1)j (s) = 〈φ(1)(s), ηs(u, v)〉, a.e. s ≥ 0.

Proof. (i) By Lemma 5.4, part (iii), we have

‖ζ(s, t, u, v)‖2 =
1

|t− s|2
‖
∑
j≥1

∫ t

s

(Vs,λ − 1)(Lj(λ)
∗u, v)a†j(dλ) e(0)‖

2

= |t− s|−2‖
∑
j

∫ t

s

F ∗
u (Lj(λ)⊗ IΓ)(Vs,λ − I)a+j (dλ)ve(0)‖

2

≤ 2eT ‖u‖2|t− s|−2supλ‖L(λ)‖2
∫ t

s

‖(Vs,λ − I)ve(0)‖2dλ

≤ C2
T ‖u‖2‖v‖2,

where we have used the estimate (5.10). Similarly,

‖ς(s, t, u, v)‖ =
1

|t− s|
‖
∫ t

s

(Vs,λ − 1)(G(λ)∗u, v)dλ e(0)‖

= |t− s|−1‖
∫ t

s

F ∗
u (G(λ)⊗ IΓ)(Vs,λ − I)ve(0)dλ‖

≤ ‖u‖|t− s|−1supλ(‖G(λ)‖)
∫ t

s

‖(Vs,λ − I)ve(0)‖dλ

≤ CT |t− s|1/2‖u‖‖v‖.

(ii) For any f ∈ L2(R+,k),
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〈e(f), ζ(s, t, u, v)〉 = 〈e(f), 1

t− s
∑
j≥1

∫ t

s

(Vs,λ − 1)(Lj(λ)
∗u, v)a†j(dλ) e(0)〉

=
1

t− s
∑
j≥1

∫ t

s

fj(λ)〈e(f), (Vs,λ − 1)(Lj(λ)
∗u, v) e(0)〉dλ

=
1

t− s

∫ t

s

R(s, λ)dλ,

where R(s, λ) =
∑
j≥1 fj(λ)〈e(f), (Vs,λ−1)(Lj(λ)

∗u, v) e(0)〉. Note that the com-

plex valued function R(s, λ) is locally integrable in λ and continuous in s and and
therefore it makes sense to talk about R(s, s) which is 0. So we get

lim
t↓s
〈e(f), ζ(s, t, u, v)〉 = 0.

Since ζ(s, t, u, v) is uniformly bounded in s, t

lim
t↓s
〈φ, ζ(s, t, u, v)〉 = 0,∀φ ∈ Γ.

We also have

〈φ, γ(s, t, u, v)〉 = 1

t− s
∑
j≥1

∫ t

s

〈u, Lj(λ)v〉φ(1)j (λ)dλ. (5.12)

Since

|
∑
j≥1

〈u, Lj(λ)v〉φ(1)j (λ)|2 ≤ ‖u‖2
∑
j≥1

‖Lj(λ)v‖2|φ(1)j (λ)|2 ≤ Cτ‖v‖2‖φ(1)(λ)‖2,

the function
∑
j≥1〈u, Lj(λ)v〉φ

(1)
j (λ) is in L2 and hence locally integrable. Thus

we get

lim
t↓s
〈φ, γ(s, t, u, v)〉 =

∑
j≥1

〈u, Lj(s)v〉φ(1)j (s) = 〈φ(1)(s), ηs(u, v)〉 a.e. s ≥ 0.

�

Lemma 5.6. For n ≥ 1, s ∈ Σn and uk, vk ∈ h : k = 1, 2, · · · , n, φ ∈ Γ(L2(R+,k))
and disjoint [sk, tk),

(i) limt↓s〈φ,
∏n
k=1M(sk, tk, uk, vk) e(0)〉 = 0, where

M(sk, tk, uk, vk) =
(Vsk,tk − 1)

tk − sk
(uk, vk)− ρ(sk, tk, uk, vk)− γ(sk, tk, uk, vk)

and limt↓s means tk ↓ sk for each k.

(ii) limt↓s〈φ,⊗nk=1γ(sk, tk, uk, vk)〉 = 〈φ(n)(s1, s2, · · · , sn), ηs1(u1, v1) ⊗ · · · ⊗
ηsn(un, vn)〉.

Proof. (i) First note that M(s, t, u, v)e(0) = ζ(s, t, u, v) + ς(s, t, u, v). So by the
above observations in Lemma 5.5, {M(s, t, u, v)e(0)} is uniformly bounded in
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s, t ≤ τ and limt↓s〈e(f),M(s, t, u, v)e(0)〉 = 0,∀f ∈ L2(R+,k). Since the intervals
[sk, tk)’s are disjoint for different k’s,

〈e(f),
n∏
k=1

M(sk, tk, uk, vk) e(0)〉 =
n∏
k=1

〈e(f[sk,tk)),M(sk, tk, uk, vk) e(0)〉

and thus limt↓s〈e(f),
∏n
k=1M(sk, tk, uk, vk) e(0)〉 = 0.

Since
∏n
k=1M(sk, tk, uk, vk) e(0) is uniformly bounded in sk, tk requirement

follows for φ ∈ Γ.
(ii) It can be proved similarly as part (iii) of the previous Lemma. �

Lemma 5.7. Let φ ∈ Γ be such that

〈φ, ψ〉 = 0, ∀ ψ ∈ S ′. (5.13)

Then we have

(i) φ(0) = 0 and φ(1) = 0,
(ii) for any n ≥ 0, φ(n) = 0,
(iii) the set S ′ is total in the Fock space Γ.

Proof. (i) For any s ≥ 0, Vs,s = 1h⊗Γ and so, in particular, (5.13) gives, for any
u, v ∈ h,

0 = 〈φ, Vs,s(u, v)e(0)〉 = 〈u, v〉φ(0)

and hence φ(0) = 0.
(ii) By (5.13), 〈φ, [Vs,t − 1] (u, v)e(0)〉 = 0 for any 0 ≤ s < t ≤ τ < ∞ and

u, v ∈ h. By HP equation (5.4) and part (iii) of Lemma 5.5 , we have

0 = lim
t↓s

1

t− s
〈φ, [Vs,t − 1](u, v)e(0)〉

=
∑
j≥1

〈u, Lj(s)v〉φ(1)j (s)

= 〈φ(1)(s), ηs(u, v)〉.

So
〈
φ(1)(s), ηs(u, v)

〉
= 0 for any u, v ∈ h for almost every s. Since {ηs(u, v) :

u, v ∈ h} is total in ks, it follows that φ
(1)(s) = 0 ∈ ks for almost every 0 ≤ s ≤ τ,

i.e, φ(1) = 0.
(iii) We prove this by induction. The result is already proved for n = 0, 1. For

n ≥ 2, assume as induction hypothesis that for all m ≤ n − 1, φ(m)(s) = 0, for
almost every s ∈ Σm (si ≤ τ for i = 1, 2, · · · ,m). To show that φ(n) = 0, we note
that by a similar argument as in [11],〈

φ(n)(s1, s2, · · · , sn), ηs1(u1, v1)⊗ · · · ⊗ ηsn(un, vn)
〉
= 0.

for almost every s ∈ Σn (si ≤ τ). Since {ηs(u, v) : u, v ∈ h} is total in ks, it follows
that φ(n)(s1, s2, · · · , sn) = 0 ∈ ks1 ⊗ · · · ⊗ ksn for almost every (s1, s2, · · · , sn) ∈
Σn. �
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5.3. Unitary Equivalence. We shall now prove (ii) in Theorem 5.1 that the
unitary evolution {Us,t} on h ⊗ H is unitarily equivalent to the unitary solution
{Vs,t} of HP equation (5.4). To prove this we need the following two results.

Lemma 5.8. Let Us,t(u, v)Ω and Us′,t′(p,w)Ω be in S, where v, z ∈ h⊗n. Then

there exist an integer m ≥ 1, a = (a1, a2, · · · , am), b = (b1, b2, · · · , bm) with
0 ≤ a1 ≤ b1 ≤ · · · ≤ am ≤ bm < ∞, partition R1 ∪ R2 ∪ R3 = {1, · · · ,m} with
|Ri| = mi, family of vectors xkl , gki ∈ h and ykl , hki ∈ h for l ∈ R1 ∪ R2 and
i ∈ R2 ∪R3 such that

Us,t(u, v) =
∑
k

∏
l∈R1∪R2

Ual,bl(xkl , ykl),

Us′,t′(p,w) =
∑
k

∏
l∈R2∪R3

Ual,bl(gkl , hkl).

Proof. It follows from the evolution hypothesis of {Us,t} that for r ∈ [s, t] and a
complete orthonormal basis {fj} ∈ h we can write

Us,t(u, v) =
∑
j≥1

Us,r(u, fj)Ur,t(fj , v).

�

Remark 5.9. Since the family of unitary operators {Vs,t} on h ⊗ Γ enjoy all the
properties satisfy by family of unitary operators {Us,t} on h⊗H, the above lemma
also hold if we replace Us,t by Vs,t.

Lemma 5.10. For Us,t(u, v)Ω, Us′,t′(p,w)Ω ∈ S, we have〈
Us,t(u, v)Ω, Us′,t′(p,w)Ω

〉
=
〈
Vs,t(u, v)e(0), Vs′,t′(p,w)e(0)

〉
. (5.14)

Proof. The proof of (5.14) is very similar to that in [11]. In fact, for

0 ≤ s ≤ t <∞, 〈Us,t(u, v)Ω, Us,t(p, w)Ω〉 = 〈p, Zs,t(|w >< v|)u〉
while

〈Vs,t(u, v)e(0), Vs,t(p, w)e(0)〉 =
〈
p, Z̃s,t(|w >< v|)u

〉
but Z̃s,t = Zs,t. �

Now defining a map Ξ : H → Γ by sending Us,t(u, v)Ω ∈ S to Vs,t(u, v)e(0) ∈ S ′,
as in [11], we can establish unitary equivalence of HP evolution Vs,t with the
evolution Us,t we started with.

6. Appendix

Let X be a complex separable Banach space with the Radon − Nikodym
property, i.e., every f ∈ Lip(R, X) ≡ {f : R→ X|‖f(t)−f(s)‖ ≤ C|t−s| for some
0 < C < ∞} is differentiable almost everywhere. In such a case, f ′ ∈ L∞

loc(R, X)
and

f(t)− f(s) =
∫ t

s

f ′(τ)dτ. (6.1)
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It is known [1] that separable reflexive Banach spaces and separable dual Banach
spaces have the Radon-Nikodym property. Thus the cases relevant to our problem
in which X = h and X = B1(h) qualify as spaces with Radon-Nikodym property.
We shall denote by Bs(X) the linear space B(X) equipped with strong operator
topology.

Let {S̃s,t|s, t ∈ R, s ≤ t} be a contractive evolution acting on a complex sepa-

rable Banach space X, i.e., ‖S̃s,t‖ ≤ 1 and S̃r,t = S̃s,tS̃r,s, S̃s,s = 1 for r ≤ s ≤ t.
Then we have the following theorem [9] characterizing such evolution.

Theorem 6.1. Let the Banach space X have the Radon-Nikodym property and let
the evolution S̃s,t satisfy uniform Lipshitz condition: ‖S̃s,t−1‖ ≤ C|t−s| for s, t ∈
R and s ≤ t. Then there exists an operator valued function G̃ ∈ L∞

loc(R,Bs(X))

such that S̃s,t = 1 +
∫ t
s
g̃(τ)S̃s,τdτ .

This theorem is proven in [9]. We need to adapt this for the evolutions (viz.,
Ts,t and Zs,t) that we have constructed earlier where s, t ∈ R+.

Given a contractive evolution Ss,t on R+, we can extend it to define a contractive

evolution S̃s,t on R as follows:

S̃s,t =

 Ss,t if 0 ≤ s ≤ t
1 if s ≤ t ≤ 0
S0,t if s ≤ 0 ≤ t.

It is easy to check that this S̃s,t is a contractive evolution on R. Furthermore, it

is clear that S̃s,t satisfies Lipshitz condition on R if Ss,t does the same on R+.

Corollary 6.2. Let X be either h or B1(h) and let Ts,t and Zs,t be contractive
evolutions on R+ respectively. Then there exist operator valued functions G ∈
L∞
loc(R+,Bs(h)) and L ∈ L∞

loc(R+,Bs(B1(h))) respectively such that

Ts,t = 1 +

∫ t

s

G(τ)Ts,τdτ

and

Zs,t = 1 +

∫ t

s

L(τ)Zs,τdτ.
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