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ABSTRACT

Soil moisture is a very important boundary parameter in numerical weather prediction at different spatial
and temporal scales. Satellite-based microwave radiometric observations are considered to be the best
because of their high sensitivity to soil moisture, apart from possessing all-weather and day–night obser-
vation capabilities with high repetitousness. In the present study, 6.6-GHz horizontal-polarization bright-
ness temperature data from the Multifrequency Scanning Microwave Radiometer (MSMR) onboard the
Indian Remote Sensing Satellite IRS-P4 have been used for the estimation of large-area-averaged soil
wetness. A methodology has been developed for the estimation of soil wetness for the period of June–July
from the time series of MSMR brightness temperatures over India. Maximum and minimum brightness
temperatures for each pixel are assigned to the driest and wettest periods, respectively. A daily soil wetness
index over each pixel is computed by normalizing brightness temperature observations from these extreme
values. This algorithm has the advantage that it takes into account the effect of time-invariant factors, such
as vegetation, surface roughness, and soil characteristics, on soil wetness estimation. Weekly soil wetness
maps compare well to corresponding weekly rainfall maps depicting clearly the regions of dry and wet soil
conditions. Comparisons of MSMR-derived soil wetness with in situ observations show a high correlation
(R � 0.75), with a standard error of the soil moisture estimate of less than 7% (volumetric unit) for the
surface (0–5 cm) and subsurface (5–10 cm) soil moisture.

1. Introduction

During recent years significant progress has been
made in weather forecasting, climate modeling, and ex-
treme-event forecasting, using sophisticated models
and supercomputers that use input data from opera-
tional satellites apart from the conventional ground-
based observations. Soil moisture, along with sea sur-
face temperature, is a crucial boundary parameter for
numerical models and is even more important over In-
dia for the medium-to-extended-scale prediction of the
summer monsoon. Most of the models currently use
either climatology- or model-derived soil moisture.
Therefore, it is important to have soil moisture obser-
vations on scales comparable to model scales (�50–100
km). Real-time analysis of the land surface state, for
example, the distribution of soil wetness, temperature,

snow cover and depth, and large-scale properties of the
vegetation, has historically received less emphasis due
to the lack of data collected on the land surface. Many
land surface characteristics vary on a range of scales—
down to the order of meters—necessitating hundreds of
measurements of soil wetness to arrive at an accurate,
representative estimation at the resolution of the
model. The present work would help in providing the
required soil moisture database for modeling studies
and, thus, would immensely help researchers working
on the complex problem of Indian summer monsoon
prediction.

There are various methods for obtaining soil mois-
ture information, namely, field sampling, water balance
modeling, and remote sensing. Field sampling is point
based and does not give a clear picture of the variation
of soil moisture over a large area. To obtain accurate
large-area-averaged soil moisture, more points need to
be sampled, and this means using greater resources,
which at times may be difficult to obtain. Though the
water balance model is popular for large-area soil mois-
ture estimation, it is difficult to obtain on a routine basis
due to its requirement of a large number of rainfall
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observations and a suitable parameterization scheme to
account for evapotranspiration and infiltration. For
these reasons remote sensing is a more attractive
proposition than field-based sampling and water bal-
ance schemes because it gives a much better picture of
the variation of the soil moisture over an area.

Remote observations from space afford the possibil-
ity of retrieving frequent and global soil moisture. Re-
motely sensed soil moisture observations from satellites
reflect areally averaged conditions and are, therefore,
more representative than averaged point measure-
ments. Microwave measurements have the additional
benefit of being largely unaffected by cloud cover and
variable surface solar illumination, but accurate soil
moisture estimates are limited to a few-centimeters-
thick surface layer over regions with bare soil or low-
to-moderate vegetation cover. However, these mea-
surements are still unable to provide reliable observa-
tions of subsurface soil moisture.

Passive microwave remote sensing of soil moisture is
one of the possible methods for the large-scale moni-
toring of soil moisture variations. Many past studies
have examined the potential of satellite passive micro-
wave observations to measure soil moisture over large
regions using the Scanning Multichannel Microwave
Radiometer (SMMR) onboard Nimbus-7, which oper-
ated from 1978 to 1987. Most of the earlier studies were
based on the regression analysis of microwave bright-
ness temperatures with proxy estimates of soil mois-
ture, for example, the Antecedent Precipitation Index
(API), estimated using daily rainfall and surface tem-
perature observations (Wang 1985; Wilke and McFar-
land 1984; Owe et al. 1988; Choudhury and Golus 1988;
Ahmed 1995; Rao et al. 2001). During the past few
years there have been several studies using in situ–
observed soil moisture to empirically relate with satel-
lite observations (Vinnikov et al. 1999; Thapliyal et al.
2003; Owe et al. 1992; Jackson and Hsu 2001; Paloscia
et al. 2001). Recent studies have used radiative transfer
models for the soil moisture retrieval algorithm from
microwave brightness temperatures (Njoku and Li
1999; Njoku et al. 2003). Presently, efforts are being
made to retrieve the global soil moisture using the mi-
crowave brightness temperatures obtained from the
Advanced Microwave Scanning Radiometer (AMSR)
on board the Earth Observing System (EOS) Aqua and
the second Advanced Earth Observing Satellite
(ADEOS-II), launched in 2002 (Njoku et al. 2003).

Though there were several studies in the past two
decades using microwave radiometric observations for
soil moisture estimation over different parts of the
globe (especially over the U.S. Great Plains, Tibet, and
Russia), only a few such attempts (Rao et al. 2001;
Thapliyal et al. 2003) were made to estimate soil mois-
ture over India. Rao et al. (2001) found a good corre-
lation between API and the SMMR 6.6- and 10.6-GHz
brightness temperatures over India. Thapliyal et al.
(2003) showed that brightness temperatures at 6.6 GHz

obtained from the Multifrequency Scanning Microwave
Radiometer (MSMR) on board the Indian Remote
Sensing Satellite (IRS-P4) correlate well with the ob-
served soil moisture.

At microwave frequencies the brightness tempera-
ture (Tb) measured by a satellite sensor is given as

Tb � ��Ts �1�

where �� is the emissivity of the surface (at wavelength
�), and Ts is the surface temperature. The emissivity of
the soil exhibits a large contrast at lower microwave
frequencies, varying from 0.6 for wet (saturated) soils
to greater than 0.9 for dry soils (Njoku and Entekhabi
1996). Variations in brightness temperature are large
compared to the noise sensitivity threshold of micro-
wave radiometers (�1 K). Theoretically, remote obser-
vations could provide estimates of soil moisture with
errors of less than 2% (volumetric) over a smooth and
bare soil surface. However, high accuracies of soil
moisture estimates using microwave remote sensing
are difficult to obtain because of various land surface
characteristics, for example, the surface roughness
(Choudhury et al. 1979; Tsang and Newton 1982), veg-
etation cover (Jackson et al. 1982; Ulaby et al. 1983;
Jackson and Schmugge 1991), surface and subsurface
heterogeneity (Tsang et al. 1975), soil texture, and soil–
vegetation layer temperature (Schmugge 1980; Dobson
et al. 1985).

At lower microwave frequencies (�5 GHz) the ef-
fects of vegetation and roughness are much reduced
(Njoku and Entekhabi 1996). Theoretically, the best
microwave frequency for soil moisture retrieval is 1.4
GHz (Jackson and Schmugge 1989). However, the best
available microwave radiometer frequency on board
satellites to date is 6.6 GHz (e.g., SMMR, MSMR,
AMSR). The Soil Moisture and Ocean Salinity (SMOS)
mission (Kerr et al. 2001), scheduled to be launched in
2007, will provide brightness temperature measure-
ments at 1.4 GHz with a higher spatial resolution (�30–
50 km) that is suitable for numerical weather models.

Relating the observed soil moisture with the satellite
observations is very difficult because of their different
times of data acquisition. Also, large heterogeneities in
the land surface would require sufficiently large num-
bers of in situ observations to obtain the accurate area
averages. Here, we present an algorithm to estimate soil
wetness from the time series of microwave brightness
temperatures that can also take into account the effect
of different land characteristics, such as soil type, tex-
tures, vegetation characteristics, surface roughness, etc.

A time series–based methodology has been used in
the recent past to derive soil wetness from satellite-
based scatterometer data of backscattering coefficients.
Empirical algorithms, based on time series of backscat-
tering coefficients that are measured by the scatterom-
eter on board the European Remote Sensing Satellite
(ERS), have been used by Wagner et al. (1999b) over
the Iberian Peninsula, Wagner et al. (1999a) over the
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Ukraine, Wagner and Scipal (2000) over western Af-
rica, and Wen and Su (2003) over the Tibetan region to
estimate the soil moisture content. However, there has
been no effort to extend this methodology for soil mois-
ture estimation using brightness temperatures observed
by microwave radiometers. In the present study we
have used time series of the microwave brightness tem-
perature to develop an empirical algorithm to estimate
soil moisture. Though the present study area is limited
to India, it has the potential to retrieve global soil mois-
ture, using brightness temperatures observed by satel-
lite microwave radiometers. To extend this methodol-
ogy for microwave radiometer data, we must keep in
mind the fact that the physics of soil moisture remote
sensing from the radiometer is largely different from
that of the scatterometer. In the scatterometer, surface
roughness plays a dominant role and vegetation acts
primarily as a roughness parameter by changing the
backscatter coefficient, whereas in the microwave radi-
ometer vegetation and roughness affects the emitted
radiation by increasing the effective surface emissivity.

In physical retrieval methods, because of different
types of soil and surface characteristics (e.g., orography,
vegetation, soil properties) over different parts of the
globe, an algorithm developed for one region would not
work for other regions. Also, for empirical relationships
a large number of soil moisture observations over dif-
ferent parts of the globe would be required to properly
represent the spatial heterogeneity in soil moisture, soil
properties, and other limiting factors, such as vegeta-
tion and surface roughness. For these reasons a time
series–based methodology has an advantage, because it
needs information only on the minimum and maximum
soil moisture over different regions. Thus, the present
methodology could provide an accurate account of soil
moisture wherever large variations in the received sig-
nal are dominated by soil moisture and other param-
eters remain time invariant or have small variations.

2. Land surface characteristics of the study area

The emission of microwave radiation from a soil sur-
face depends upon various other land surface features,
namely, the soil type and texture, vegetation, and sur-
face roughness, apart from the amount of moisture
present in it. Soil properties do not change with time,
and variations in most of the other parameters, such as
vegetation and surface roughness, change slowly at
smaller time scales (1–2 months). Therefore, at smaller
time scales soil moisture is the dominant parameter that
is responsible for the large variations in the microwave
emission from the soil surface. Here, we present a brief
description of the different land surface features affect-
ing the microwave emission over the study area (India):

a. Soil properties and land topography

Figure 1a shows the dominant soil types over India
(Zobler 1986). Most of the central area is represented

by vertisols and luvisols, whereas cambisols dominate
in the Gangetic plains. Arenosols and xerosols are the
major soil types in the western part of India. Figure 1b
shows the soil texture over the study area. Central India
is dominated by fine and coarse soil textures, whereas
the Gangetic plains, the southern peninsula, and a few
western regions have a medium soil texture. The west-
ern region of India has coarse–medium and medium–
fine soil textures. Figure 1c shows the water-holding
capacity (in centimeters) of the top-30-cm soil layer.
This varies between 40 and 80 mm over most parts of
India. However, over a few locations this amount is as
low as 15 mm, and over other locations it is 100 mm.
These large heterogeneities in soil properties make the
retrieval of soil moisture from the satellite observations
more difficult. Soil moisture estimation over India is made
possible by dividing the entire region into different ho-
mogenous zones, depending upon the soil properties.

Figure 1d shows the surface elevations over the In-
dian region at 5	 grid (1/12°) resolution. Most of India
has surface elevations of less than 500 m from mean sea
level. Mountainous regions cause polarization mixing
due to the large surface slopes. For very high moun-
tainous regions soil moisture estimation becomes a dif-
ficult task. There are very high mountains (Himalayas)
in the northern part of India and medium-sized moun-
tains over the west coast of the Indian peninsula (West-
ern Ghats).

b. Vegetation characteristics

Figure 2 shows maps of the monthly composite nor-
malized difference vegetation index (NDVI) over India
for June–August 1999–2001, obtained from the Na-
tional Oceanic and Atmospheric Administration
(NOAA) Advanced Very High Resolution Radiometer
(AVHRR) Pathfinder dataset. These maps show that
the vegetation is moderate during the months of June
and July (NDVI � 0.3), whereas during the month of
August the NDVI values are greater than 0.3 over most
parts of India, with NDVI exceeding 0.4 over central
India. All 3 yr depict almost the same features, except
for June 2001, which shows relatively lower NDVI val-
ues compared to those of the other 2 yr. Based on these
maps it may be concluded that the presence of vegeta-
tion is significantly less over most parts of India during
June–July and remains constant for this period (in
terms of temporal variation). However, there are spa-
tial variations in the vegetation characteristics, which
need to be taken into the account while formulating a
suitable algorithm for the soil moisture retrieval, be-
cause vegetation reduces the sensitivity of the micro-
wave radiometric observations to the underlying soil
moisture.

3. Data

For the present study we used brightness tempera-
ture data from MSMR on board the Indian satellite
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IRS-P4. MSMR is designed primarily for deriving the
geophysical parameters on a “nearly all weather” op-
erational basis, such as the sea surface temperature, sea
surface wind speed, water vapor, and cloud liquid water
content of the atmosphere (Gohil et al. 2000; Sharma et
al. 2002; Varma et al. 2003). Other parameters derived
from the MSMR include sea ice extent, rainfall rates,
and soil moisture. IRS-P4 is in a near-circular, sun-
synchronous orbit at an altitude of 720 km, with an
inclination of 98.28°. The equatorial crossings are at
local noon (1200 local time 
 10 min) for the descend-
ing node and midnight (2400 local time 
 10 min) for
the ascending node. MSMR has a conical scan system,
with a constant incidence angle of 49.7° at each scan
position. MSMR has a swath of 1360 km and takes 2
days for global coverage. For a single day the gap be-
tween two consecutive ascending (or descending)

passes at equator is around 1300 km (due to some over-
lap in consecutive passes) and orbits are repeated every
2 days. The dynamic temperature range is 10–330 K and
the sensor sensitivity is 0.6 K. MSMR operates at 6.6-,
10.65-, 18-, and 21-GHz frequencies with both horizon-
tal and vertical polarizations. Spatial resolutions are
120 km for 6.6-GHz, 80 km for 10.65-GHz, and 40 km
for 18- and 21-GHz channels.

Midnight 6.6-GHz brightness temperatures at hori-
zontal polarization (T6H

b ) for the monsoon season of
1999–2001 (June–July) are used for soil wetness com-
putations. Microwave frequencies are more sensitive to
soil moisture at H polarization, whereas vertical (V)
polarization is more sensitive to the surface tempera-
ture (Njoku and Li 1999). Midnight observations are
used because during this time the temperature profile
in the soil is in equilibrium and the day-to-day varia-

FIG. 1. Soil properties over India (source: Zobler 1986): (a) soil types (2: cambisol, 9: lithosol, 12: luvisol, 14:
nitosols, 17: arenosol, 22: vertisol, 24: xerosol), (b) soil textures (8: organic, 6: medium–fine, 4: coarse–medium, 1:
coarse, 3: fine, 2: medium), (c) soil water holding capacity (cm, in top-30-cm soil layer), and (d) land surface
elevation (m).
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tions are less within a season when compared with
those of noontime observations (Ahmed 1995; Van de
Grind 2001). To demonstrate this we have analyzed
minimum and maximum surface air temperatures over
a few Indian meteorological subdivisions (Table 1).
Minimum and maximum observations would best rep-
resent midnight and noontime surface air temperatures,
respectively. It may be observed from Table 1 that the

variations in the minimum surface air temperature are
limited to 2–5 K, whereas the variations in the maxi-
mum surface air temperature are 7–12 K. Therefore,
midnight observations are suitable because Ts can be
assumed as constant in Eq. (1) during the June–July
period (as compared with large variations of �50 K due
to soil moisture variations from dry to wet conditions).
Van de Grind (2001) also concluded that the thermal

FIG. 2. NDVI maps for Jun, Jul, and Aug 1999–2001, depicting the vegetation conditions over India (source: NOAA AVHRR
Pathfinder dataset).
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correction factors for soil moisture estimation would
amount to �12.5 K for the daytime and �5.0 K for the
nighttime, and that the errors in the soil moisture esti-
mate would be minimum for the nighttime observations.

A database of daily T6H
b is created over India for the

period of June–July 1999, 2000, and 2001. These data
are interpolated to 1° x 1° grids over India. Because the
MSMR measurements have a repetivity of 2 days, the
data available over a particular grid is for every alter-
nate day. For the rest of the days when satellite obser-
vations are not available, brightness temperatures are
linearly interpolated from the immediately preceding
and following days. Because soil moisture is a slowly
varying parameter and would not vary much on a day-
to-day basis, the observed soil moisture could be com-
pared with the nearest satellite observation.

For comparison purposes weekly rainfall maps and
daily all-India rainfall indexes are taken from the Web
site titled “Monsoon On Line” (http://www.tropmet.
res.in/�kolli/MOL, developed by D. B. Stephenson, K.
Rupa Kumar, E. Black, and J. V. Revadekar). These
maps are based on weekly cumulative rainfall data over
the Indian meteorological subdivisions observed by the
India Meteorology Department (IMD). All-India daily
rainfall indexes are based on daily rainfall data of IMD
over 100–200 stations that are well spread throughout
India.

In situ soil moisture data were obtained from IMD
for a few locations. IMD measures in situ soil moisture
by the gravimetric method once a week for two soil
layers, that is, at the surface (SM0, surface to 5-cm-deep
soil layer) and 7.5-cm depth (SM7, 5–10-cm-deep sub-
surface layer), and these are converted to volumetric
units (in percent) using the soil bulk density. The mi-
crowave radiometer senses the top-few-centimeters-
thick soil layers, for example, the 2–5-cm-thick surface
layer at 6.6 GHz, depending on the soil wetness level,
soil bulk density, vegetation, and so on. Because of this,
satellite measurements of soil moisture in the surface and
subsurface soil layer are categorized as indirect methods.

4. Methodology

The basic concept for the computation of the soil
wetness index is adopted from Wagner et al. (1999a,b)
in which backscattering coefficients obtained from the
ERS scatterometer (operating at C- band, 5.3-GHz ver-
tical polarization) were extrapolated to a reference
angle of 40°. The lowest and highest values of backscat-
ter coefficients ever measured were extracted for each
pixel from long backscattering series and assigned to
the dry soil and saturated wet soil, respectively. The
relative measure of soil moisture content in the top few
centimeters of the soil was extracted using a simple
linear relationship between the dry and wet conditions.

However, because the physics of soil moisture re-
mote sensing from the scatterometer and radiometer
are largely different, necessary steps must be taken to
extend this methodology to microwave radiometer ob-
servations. Also, different regional aspects, such as land
surface features, soil characteristics, vegetation dynam-
ics, and climatology over the study area, have to be
considered. For example, vegetation plays a dominant
role in the scatterometer as surface roughness, whereas
it acts by increasing the emissivity of the observing sur-
face in the case of radiometer observations. Surface
orography may cause the mixing of vertical and hori-
zontal polarizations of the emitted microwave radiation
to the radiometer, whereas it can cause increased back-
scattering of the scatterometer signal. The climatology
of the region should be such that the radiometer obser-
vations include at least a dry and wet event each, and
the region should not have large variations in the sur-
face temperature.

To develop the time series–based algorithm using mi-
crowave radiometer observations, it is assumed that
over a particular location (grid cell) during a particular
season (June–July, in the present case) the dominant
time-variant component of the land surface is soil mois-
ture. Other components, like vegetation, surface rough-
ness, soil type, midnight surface temperature, and so

TABLE 1. Statistics of maximum and minimum surface air temperature, representing variations in the day- and nighttime surface
temperature, respectively, from the time series of weekly averaged data for the period of Jun–Jul (1999–2001) over a few Indian
meteorological subdivisions (Min: minimum, Max: maximum, Diff: difference of min and max, and SD: standard deviation of diff).

Subdivisions

Tmin (°C) Tmax (°C)

Min Max Diff SD Min Max Diff SD

Orissa 25 27 2 0.8 29 36 7 1.6
East Uttar Pradesh 25 27 2 0.6 32 40 8 2.0
West Uttar Pradesh 23 27 4 1.0 31 40 9 2.6
East Rajasthan 24 29 5 1.5 29 40 11 3.5
West Madhya Pradesh 23 26 3 0.9 27 39 12 3.6
East Madhya Pradesh 23 26 3 0.8 27 39 12 3.0
Gujarat region 25 28 3 1.0 30 38 8 2.6
Saurashtra region 25 28 3 0.8 30 37 7 1.8
Madhya Maharashtra 21 24 3 0.7 27 36 9 2.3
Marathwara 21 25 4 0.8 28 38 10 2.5
Vidarbha 23 27 4 1.0 27 39 12 3.1
Telangana 23 27 4 0.9 29 38 9 2.2
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on, are assumed to be time invariant during this period.
These assumptions have been verified by the support-
ing data (Fig. 2 for the vegetation, and Table 1 for the
midnight surface temperature, shown by Tmin). We also
define an index for the relative soil moisture referred
to, hereafter, as the soil wetness index (SWI), which
varies from 0 for extremely dry soil to 1 for the satu-
rated wet soil.

The time series of T6H
b are generated and analyzed at

every grid point for June–July 1999, 2000, and 2001 to
find out the lowest and highest values of brightness
temperatures, that is, T6H,min

b and T6H,max
b , respectively;

T6H,max
b is assigned to the driest soil conditions, that is,

SWI � 0, and T6H,min
b is assigned to the wettest (satu-

rated) soil conditions, that is, SWI � 1. There are very
a few chances of atmospheric and land contamination
to the T6H,max

b because the largest brightness tempera-
ture values would correspond to clear-sky conditions
and dry soil surfaces (high emissivity). To avoid any
noise in the data, the largest two values of T6H,max

b

within the time series are averaged to obtain the final
value of T6H,max

b .
However, assigning the T6H,min

b value, corresponding
to the wet (saturated) soil surface, requires some qual-
ity evaluation on the brightness temperature measure-
ments to avoid the raining conditions (very intense pre-
cipitation is sometimes responsible for a sharp decrease
of microwave emissivity). This is achieved in the
present case by removing the anomalous T6H

b gradients.
First, the lowest value of T6H

b in the time series is ana-
lyzed. For heavy raining situations the brightness tem-
peratures are far less than the saturated wet soil with a
clear sky due to the very low emissivity and the lower
physical temperature (governed by the lapse rate of the
atmosphere) of the rain layer (Tb � �Ts, product of two
small quantities, � and Ts would be smaller). Therefore,
by the given criteria a heavy rain event can be filtered
out from the saturated wet soils. If a sharp dip in T6H

b is
followed by a sudden increase in T6H

b (�40 K) in the
next satellite pass, then the dip in T6H

b is considered to
be a raining or noisy case, and the next lowest value of
T6H

b is examined. Because the land surface evaporation
is a slow process and should take at least 2–3 days to dry
up, a rise in the T6H

b values from a saturated wet soil to
a dry soil should be gradual. After removing the
anomalous cases, the two lowest values of T6H

b are av-
eraged to obtain T6H,min

b and are assigned to SWI � 1.
Because the brightness temperature follows a linear re-
lationship with the soil moisture (except for the very
low amount of soil moisture), the daily SWI values for
the entire period are computed using a linear relation-
ship between these extremes:

SWI �
Tb

6H,max � Tb
6H

Tb
6H,max � Tb

6H,min . �2�

The large difference between T6H,max
b and T6H,min

b

determines the sensitivity of brightness temperatures to

the soil moisture over a particular grid. Only those grids
are selected where this difference is larger than 35 K
(Fig. 3). This criterion is based on our subjective analy-
sis, along with the vegetation and topographic informa-
tion. The mountainous and highly vegetated regions
show the least sensitivity for soil moisture, using micro-
wave radiometer data, and are excluded from the
present analysis. The threshold limit is chosen at one-
half of the peak difference (70 K) between T6H,max

b and
T6H,min

b and would avoid soil moisture estimation over
regions of dense vegetation and high mountainous ter-
rain, causing the mixing of H and V polarization (e.g.,
Himalayas). To include other regions (�35 K) where
the sensitivity of T6H

b to soil moisture is low, significant
corrections for vegetation and polarization mixing (due
to mountains) would be required. Coastal regions are
excluded to avoid the seawater contamination to the
brightness temperature observations (due to the large
footprint size at 6.6 GHz).

It may be noted that sensitivity is at a maximum over
the northwestern sector, which corresponds to low veg-
etation, and is at a minimum over the southeastern sec-
tor, which corresponds to high vegetation (NDVI maps,
Fig. 2). The sensitivity also depends upon the soil prop-
erties and surface characteristics (e.g., soil type, soil
bulk density, surface orography/slopes), which are con-
stant in time for a particular grid. The slope correction
factors (soil moisture versus brightness temperature),
due to the presence of vegetation and other soil prop-
erties, are automatically included in the formulation,
which reflects the reduction of the difference of T6H,max

b

and T6H,min
b , indicating the sensitivity to soil wetness.

However, small changes in vegetation and roughness
(due to vegetation growth) within this period may in-
troduce a small amount of error in the soil moisture
estimation. Because brightness temperature observa-
tion is an average quantity over a large MSMR foot-
print, the retrieved SWI is better representative of
area-averaged soil moisture accounting for the large
heterogeneity present in the soil and vegetation char-
acteristics within the footprint.

Further, by knowing the minimum (Wmin) and maxi-
mum (Wmax) soil moisture values (gravimetric or volu-
metric) over a grid cell, SWI can be easily converted
into the quantitative estimate of soil moisture (W) at
time t using the relation (Wagner et al. 1999b)

W�t� � Wmin � SWI�t��Wmax � Wmin�. �3�

The soil parameters commonly used to define critical
soil moisture values are the wilting level (WL), the field
capacity (FC), and the total water capacity (TWC). In
Eq. (3) Wmin is closely related to the WL value, whereas
Wmax can take values between FC and TWC. In most
cases, except immediately after the heavy rainfall event
or irrigation, Wmax can be set equal to FC. For more
practical purposes Wmax can be taken as the arithmetic
mean of FC and TWC.

The summer monsoon over India is characterized by
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several active and break periods. Active periods, lasting
for a few weeks, bring heavy rainfall over most parts of
India. Therefore, chances for saturated wet surface soils
are very high. Similarly, in the beginning of June (at the
time of the monsoon onset), and also during the pro-
longed break periods (lasting for a few weeks) during
the monsoon season, the clear-sky and tropical warm
summer conditions make the surface soil extremely dry.
Because MSMR observes a particular location every
alternative day, the chances are high for satellite obser-
vations for saturated surface soils and dry soils to ob-
tain corresponding lowest and highest values of T6H

b in
a long time series. Once these values are obtained for
each of the grid cells, SWI could be computed for sat-
ellite observations using Eq. (2). A database of Wmin

and Wmax could be generated from the in situ observa-
tions of soil moisture or by computing the same with
the knowledge of soil properties, such as soil bulk den-
sity and porosity.

This approach has the advantage that it is computa-
tionally less cumbersome, and the vegetation and sur-
face roughness effects can be minimized easily without
having the data on vegetation and surface roughness.
This index, being similar to the wetness factor (ratio of
soil moisture present in the layer with the maximum
water holding capacity), which is used in the general
circulation models to compute latent heat flux from the
land surface, can be easily assimilated as the land sur-
face boundary data.

Soil wetness maps over India

From the daily SWI database, maps have been gen-
erated for weekly averaged SWI for June–July 1999,
2000, and 2001 (Figs. 4a–c). These maps clearly bring
out the features of relative soil wetness conditions dur-
ing the monsoon season over India. Five classes of the
soil wetness index have been shown in these figures
(viz., 0–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8, and 0.8–1.0).

5. Comparison and validation

SWI maps have been compared and validated with
the rainfall maps showing relative soil wetness condi-
tions and with in situ-observed soil moisture available
over a few locations. The SWI averaged over central
India is also compared with the volumetric soil mois-
ture contents, computed using the empirical relation-
ship obtained in the previous section.

a. Comparison with rainfall maps

During the monsoon season over India rainfall is a
major forcing parameter for spatial and temporal

←

FIG. 3. (a) Maximum, (b) minimum, and (c) difference of maxi-
mum and minimum brightness temperatures at 6.6-GHz H polar-
ization (T 6H,max

b , T 6H,min
b and their difference, respectively) over

the study area (India) during Jun–Jul 1999–2001.
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changes in the soil moisture and should represent the
spatial and temporal variations in the soil wetness con-
ditions. Therefore, MSMR-derived SWI is first com-
pared qualitatively with the observed rainfall data.
Rainfall is chosen for comparison first, instead of direct
in situ soil moisture measurements, because the former
has a dense network of observation (more than 500
surface observatories and more than 3500 nondepart-
mental rain gauge stations) over India, whereas the lat-
ter is measured only once a week over selected loca-
tions (�35). Also the rainfall measurements are the
cumulative daily amount, whereas the in situ soil mois-
ture measurements are made once in a week during the
monsoon season and are only point observations.
Therefore, for the comparison of microwave radiom-
eter data with a large footprint size, that is, �150 km,
the spatial average of a large number of rainfall obser-
vations will be better representative of the spatial and
temporal variations in soil wetness conditions instead of
a few point measurements of soil moisture.

Figure 4d shows weekly rainfall maps for June–July
2001, which can be compared with the weekly SWI

maps shown in Fig. 4c. It may be noted from these maps
that regions of high soil wetness values match well with
the regions of high rainfall for the corresponding weeks
(e.g., the central region in the third week and the east-
ern region in the fourth week). Similarly, the regions of
low soil wetness correspond to those regions where
rainfall was scanty (e.g., the northern regions in the
second week and the western region in the fourth
week). The patterns of rainfall and soil wetness are
matched well in all of the cases. Similar comparisons
were observed for other years also (not shown).

Figure 5 shows a comparison of the time series for
the all-India rainfall index with the SWI averaged over
the entire area, and a very good correspondence is seen
between the two. SWIs averaged over the shaded re-
gion (shown in Fig. 3) and may be considered to rep-
resent the corresponding all-India mean SWI. Periods
of high rainfall show corresponding high soil wetness
values, and prolonged dry periods show low soil wet-
ness values. Because soil moisture is a slowly varying
parameter, the magnitude of day-to-day variations in
the mean SWI are smaller than those seen in rainfall.

FIG. 5. Comparison of (top) MSMR-derived all-India-averaged SWI with the (bottom) all-India rainfall index (source: Monsoon On
Line, available at http://www.tropmet.res.in/�kolli/MOL).
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b. Comparison with the observed in situ
soil moisture

As discussed in the previous section, the satellite-
derived SWI compares qualitatively well with rainfall.
Due to the different times of satellite observation (mid-
night) and in situ soil moisture measurement (morning)
quantitative comparisons are difficult. Also, because of
high spatial variability, the large-area-averaged soil
moisture is difficult to obtain for better quantitative
comparison with the satellite estimates. However, here
we make an attempt to relate the satellite-derived SWI
with the available in situ–observed soil moisture to dis-
cuss the physical significance of the satellite observa-
tions of soil moisture. Figure 6 shows the location of the
in situ soil moisture observations over India.

First, the satellite-derived soil wetness index is com-
pared with the in situ–observed surface soil moisture
over central India [as defined in Thapliyal et al. (2003)
as a homogenous region combining three stations: Bho-
pal, Sagar, and Jabalpur]. MSMR-derived SWI is aver-
aged for the region of 22°–25°N, 77°–80°E, and the in
situ–observed surface soil moisture (in percent) within
this region is obtained by averaging the data for Bho-
pal, Jabalpur, and Sagar. The regression analysis be-
tween the MSMR-derived SWI and observed surface
soil moisture (Fig. 7a) shows a very good correlation, R
� 0.82 (0.1% significance level), with the standard er-
ror (SE) of the surface soil moisture estimate as 6.1%.
The regression equation is

SM0 � 37.4SWI � 2.7. �4a�

This relation is analogous to Eq. (3), with Wmax �
40.1% and Wmin � 2.7%. Here, it is interesting to note

that this relation could be obtained with the knowledge
of minimum and maximum values of soil moisture over
the particular location. From the available in situ soil
moisture data, these values are 39.6% and 0.5%, re-
spectively, which, substituting in Eq. (3), yields the re-
lation

SM0 � 39.1SWI � 0.5, �4b�

which is very similar to Eq. (4a). This confirms our
assumption that knowing the minimum and maximum
values of soil moisture over a particular gridpoint sat-
ellite-derived SWI can be converted to volumetric/
gravimetric soil moisture estimates using Eq. (3).

Because of the differences in spatial and vertical (soil
depth) resolution, and data acquisition time, the scat-
terplots may not serve well as a validation tool, except
in the comparison of the general trend. Therefore, we
converted the time series of the MSMR-derived SWI
over central India into volumetric soil moisture esti-
mates using Eq. (4b) and compared them with the time
series of the weekly observed in situ surface soil mois-
ture (Fig. 7b). There is a good agreement between the
MSMR-derived and observed surface soil moisture
variations, with the differences mostly within 
10%
(volumetric). These differences consist of the random
error of soil moisture measurements, the error that is
due to inadequate numbers of observed soil moisture
samples, representing the area-averaged soil moisture
over central India, and the error that is related to the
different times of observations. None of these errors is
very small, and most may be considered statistically
independent random errors. Considering these limita-
tions, the presently achieved accuracy of MSMR-
derived soil moisture is highly satisfactory and is com-
parable with the accuracies achieved by the past works
over other parts of the world (discussed in the following
section).

Similarly, the comparison of the MSMR-derived SWI
with the observed soil moisture at 7.5-cm depth (SM7)
over central India is shown in Fig. 8. Empirical analysis
of the MSMR-derived SWI with SM7 shows a slightly
lower correlation (R � 0.77, Fig. 8a), with SE � 6.8%,
which is slightly higher than that for SM0. The corre-
sponding regression equation is

SM7 � 35.0SWI � 3.5. �5a�

Here, Wmax � 38.5%, and Wmin � 3.5%. From the
available in situ soil moisture data minimum and maxi-
mum soil moisture values are 34.6% and 0.7% respec-
tively. Therefore, the expression using Eq. (3) for the
soil moisture at 7.5-cm depth is

SM7 � 33.9SWI � 0.7, �5b�

which is again very close to Eq. (5a). Comparing the
time series of the MSMR-derived volumetric soil mois-
ture estimates [using SWI in Eq. (5b)] with the weekly
observed SM7 (Fig. 8b) shows good agreement be-FIG. 6. Locations of in situ soil moisture observations.
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tween them, with the differences mostly within 
10%
(volumetric). This shows that the MSMR-derived SWI
can be converted to volumetric/gravimetric estimates of
subsurface soil moisture using Eq. (5b) with reasonably
good accuracy.

Similarly, comparisons are also done for a few indi-
vidual locations with the observed in situ soil moisture
data. Figures 9a–d show the scatterplot and regression
analysis of SWI with the observed surface soil moisture
over Solapur, Jabalpur, Udaipur, and Sabour. The cor-

relation coefficient is high in all of these cases (R �
0.75), with SE less than 7%. Variation in Wmax and
Wmin at all these locations may be attributed to the
variations in the field capacity of the different soil
types. Similarly, Figs. 10a–d show the scatterplot and
regression analysis of the MSMR-derived SWI with ob-
served soil moisture at 7.5-cm depth over Solapur, Ja-
balpur, Udaipur, and Sabour. Except for Solapur, all
three stations show a good correlation (R � 0.70) be-
tween SWI and SM7.

FIG. 7. Comparison between MSMR-derived SWI and weekly observed in situ surface soil mois-
ture (SM0) over central India: (a) regression analysis between SWI and SM0, and (b) time series of
MSMR-derived surface soil moisture (averaged over 22°–25°N, 77°–80°E) and observed surface soil
moisture along with their differences (observed soil moisture are averaged over Sagar, Jabalpur, and
Bhopal).
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These results further emphasize the uniqueness of
the SWI formulation, which uses only two parameters,
that is, T6H,min

b and T6H,max
b , from the long time series of

brightness temperatures at a particular location and still
matches well with the empirical relationship that was
established with a large number of in situ–observed soil
moisture data. Additional parameters, like the wilting
level and the field capacity of the surface soil layer, are
required over different grids to convert the SWI values
into the volumetric soil moisture estimates with reason-
ably good accuracy.

6. Comparison with previous works

The SWIs derived for India were validated with the
observed soil moisture at the surface (0–50 cm) and the
subsurface layer at 7.5-cm depth (5–10 cm). Regression
analysis of SWI with observed surface soil moisture
yields R � 0.82 and SE � 6.1%, whereas with observed
soil moisture at 7.5-cm depth, R � 0.77 and SE � 6.8%.
Comparing the time series of soil moisture estimated
from SWI with observed soil moisture it was found that
the differences in the retrieved and observed soil mois-

FIG. 8. Comparison between MSMR-derived SWI and weekly observed in situ soil moisture at 7.5-cm
depth (SM7) over central India: (a) regression analysis between SWI and SM7, and (b) time series of
MSMR-derived soil moisture at 7.5-cm depth (averaged over 22°–25°N, 77°–80°E) and observed soil
moisture at 7.5-cm depth along with their differences (observed soil moisture are averaged over Sagar,
Jabalpur, and Bhopal).

JANUARY 2005 T H A P L I Y A L E T A L . 139



ture are within 
10% (volumetric) for both the surface
and 7.5-cm depth. These accuracies (6%–7% volumet-
ric) are comparable to those of Thapliyal et al. (2003) in
which the observed soil moisture was used for regres-
sion analysis over India.

Because of a similar approach in formulation, we first
compare the MSMR-derived SWI with Wagner et al.
(1999a,b), which uses the time series of ERS scatter-
ometer backscattering coefficients. Using the soil mois-
ture dataset over the Ukraine for validation of the al-
gorithm, they found that in 95% of the cases the soil
moisture content could be estimated with an rms error
of less than 8% volumetric units for the 0–20-cm layer
and less than 6.4% for the 0–100-cm layer.

Vinnikov et al. (1999) compared the SMMR bright-
ness temperatures with in situ soil moisture over 14
sites in the Illinois area for the period of 1982–87. They
showed that differences between the retrieved and ob-
served soil moisture variations were within 
15% (by

volume) when using the calibration for the same sta-
tions and within 
20% when independent stations
were used for comparison. The rms error of retrieving
the state of Illinois’s average soil moisture of the top
10-cm soil layer is equal to 5%–6% by volume. This is
about half of the same error for a single station, indi-
cating the importance of spatial averaging and includ-
ing more numbers of samples for improvement.

Jackson and Hsu (2001) used Tropical Rainfall Mea-
suring Mission (TRMM) Microwave Imager (TMI)
10.7-GHz brightness temperatures to relate them with
the observed soil moisture over three sites in the south-
ern Great Plains of the United States and found the
standard error of estimate to be SE � 3.6% (volumet-
ric) for the site with the least vegetation, and SE �
4.7% (volumetric) for the site with the densest vegeta-
tion. Njoku and Li (1999), using a radiative transfer
model for land surface and atmospheric emission,
showed that for SMMR frequencies (6, 10, 18 GHz) the

FIG. 9. Scatterplots and regression analysis of SWI with the observed in situ surface soil moisture (SM0) for (a)
Solapur, (b) Jabalpur, (c) Udaipur, and (d) Sabour.
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retrieved soil moisture accuracy of 0.06 g cm�3 (6%
volumetric) should be achievable in regions with a veg-
etation water content less than approximately 1.5 kg
m�2. The stated accuracy goal of the AMSR soil mois-
ture retrieval is 0.06 g cm�3, or 6% volumetric soil
moisture at 60-km spatial resolution (Crow et al. 2001).

These comparisons clearly show that the accuracy of
soil moisture estimation by the present algorithm over
India is comparable to the similar works carried out
over other parts of the globe. It is also clear that with
the present accuracies of satellite-derived soil moisture,
only three to four classes of wetness conditions can be
retrieved. These errors (�5%–7% volumetric or 10%–
15% of field capacity) are not very large for climate
models where the long-term component related to at-
mospheric forcing is important. However, these errors
are too large to monitor variations of soil moisture for
each agricultural field.

7. Conclusions

We have developed a methodology for the estima-
tion of the soil wetness index (SWI), using time series of
microwave brightness temperatures, normalized to the
extreme values of 0 and 1, corresponding to dry and
saturated soil wetness conditions, respectively. This ap-
proach provides a simpler alternative to estimate the
index for relative soil wetness. The present algorithm
requires identification of minimum and maximum
brightness temperature values from the long time series
of the satellite observations over a particular location
for a season. A time series of daily microwave bright-
ness temperatures during June–July at 1° 
 1° pixel
resolution from MSMR data were generated for three
monsoon seasons (1999–2001). From this time series
maximum and minimum brightness temperatures have
been obtained for each pixel representing the driest and

FIG. 10. Scatterplots and regression analysis of SWI with the observed in situ soil moisture at 7.5-cm depth
(SM7) for (a) Solapur, (b) Jabalpur, (c) Udaipur, and (d) Sabour.
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wettest periods, respectively. The daily SWIs over each
pixel are computed by normalizing the time series of
brightness temperature observations from these ex-
treme values.

This algorithm has an advantage that it takes into
account the effect of time-invariant factors on the sen-
sitivity of soil wetness estimation, such as vegetation,
surface roughness, soil type and texture, and, to some
extent, the midnight surface temperature variation
within a particular season. SWI can be converted to
volumetric soil moisture if the wilting level and the filed
capacity for the pixel are known. The SWI derived from
MSMR has been compared and validated with the ob-
served soil moisture and rainfall data. For central India
SWI shows a high correlation (R � 0.82, SE � 6.1%)
with the observed surface soil moisture and a relatively
lower correlation (R � 0.77, SE � 6.8%) with the soil
moisture at 7.5-cm depth. This indicates that the satel-
lite-derived SWI can provide about three to four cat-
egories of surface soil wetness and about three catego-
ries of soil wetness at 7.5-cm depth. Qualitative com-
parisons of weekly SWI show a very good relation with
corresponding weekly rainfall maps, depicting clearly
the regions of dry and wet soil conditions. Such accu-
racy of satellite-derived soil wetness is reasonably good
for the purpose of numerical modeling and for validat-
ing the land surface parameterization schemes. High
repetitousness and global observations from the satel-
lites are an added advantage for these purposes.
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