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The 2005 Nobel Prize in Physics: Optics
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The 2005 Nobel Prize in Physics has been awarded in
the area of optics, or more specifically in laser physics.
One half of the prize (theory part) has been given to Roy
Glauber of Harvard University “for his contribution to
the quantum theory of optical coherence,” which became
important soon after the invention of the laser. The
second half of the prize (experimental part) is jointly
awarded to two physicists, John Hall of the National In-
stitute of Standards and Technology (NIST) in Boulder,
USA, and Theodor Héansch of the Max-Planck Institute
for Quantum Optics in Garching, Germany. They have
been cited “for their contributions to the development of
laser-based precision spectroscopy, including the optical
frequency comb technique.”

India has a rich tradition of research in optics dating
back to the pioneering work of C V Raman (Nobel Prize
for the Raman Effect in 1930). In the 1950’s there ap-
peared S Pancharatnam’s fundamental studies on polar-
ization optics in the course of which he discovered the
geometric phase in its earliest form. Then in 1961 came
the crystal optics work of G N Ramachandran and S
Ramaseshan. Towards the end of the theory part of this
article we will describe briefly the remarkable 1963 dis-
covery of the Diagonal Coherent State Representation
and the Optical Equivalence Theorem, central to quan-
tum optics, by E C G Sudarshan working in the USA.
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The understanding of the nature and properties of light
has fascinated humankind for a very long time; its pro-
gress is an important part of the history of physics. It
may be useful to very briefly remind the reader of some
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of the more ‘recent’ events in this history, starting with the work of Maxwell in
mid 19th century. With such a background, one can understand better the work
for which the ‘theory part’ of the 2005 Physics Nobel has been given.

Maxwell! succeeded in uniting the laws of electricity and magnetism into a single
theory, and then went on to show that light was an electromagnetic wave. Thus
as a result of his work three previously separate fields of physics became one.
Around the same time, the field of statistical mechanics, as the foundation for
thermodynamics, was also being developed. Around 1900, however, it became
clear that the combination of statistical ideas and the classical Maxwell descrip-
tion of electromagnetic radiation led to an impasse: it could not explain the
experimental results concerning black body or thermal radiation, i.e. radiation
in equilibrium with material bodies at a common temperature.

It was Planck’s solution of this problem that led to the birth of quantum theory in
late 1900, the dawn of the 20th century (Nobel 1918). Planck’s work involved two
steps: first, a mathematical interpolation amounting to inspired guess work that
led to his famous radiation formula which fitted experiment beautifully; second, a
derivation of this formula based on the hypothesis that (electrically charged) ma-
terial oscillators could emit and absorb radiation energy only in discrete amounts
or quanta. This was a revolutionary idea.

Each of the later advances in the understanding of light has been equally stun-
ning. In 1905 Einstein was able to argue from the non-classical limit of Planck’s
formula that radiation in its own nature has a lumpy or particle-like aspect, in
contrast to the classical continuous Maxwell picture. He then presented an ex-
planation of the photoelectric effect as one piece of evidence in support of his
conclusions (Nobel 1921). A few years later in 1909 he studied the energy fluctu-
ations of Planck radiation and deduced that radiation simultaneously possesses
the seemingly contradictory, or dual, particle and wave properties. Then in 1916
he presented a startlingly new derivation of Planck’s law based on the processes
of emission and absorption of radiation by matter, and also showed that light
quanta — photons — carry momentum in addition to energy. In 1924, S N Bose
gave yet another derivation of Planck’s law based on a deep understanding of
the identity of light quanta; the work was immediately appreciated and taken
further by Einstein. This series of events came to a triumphant conclusion with
Dirac in 1927 showing how to apply the principles of the just discovered quantum
mechanics to the classical Maxwell theory.

! This year marks the 175th birth anniversary of Maxwell, and is being celebrated as Maxwell Year in Scotland.
Resonance featured Maxwell in the May 2003 issue.
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As this implies, the Dirac theory of the quantised electromagnetic field came
after a satisfactory quantum mechanics for matter had been developed. The first
steps here were (apart from Planck in 1900) again taken by Einstein in 1907, in
his theory of specific heats; and then by Niels Bohr in 1913 with the theory of
stationary electronic states in the hydrogen atom (Nobel 1922). (This Bohr theory
was a vital component of Einstein’s 1916 work on radiation). There followed
what was later called the period of the Old Quantum Theory when Bohr’s initial
ideas were tried to be extended to more complex material systems. By about
1923 this effort ran into severe problems, and the situation was resolved only
with the discovery of quantum mechanics by Heisenberg, Dirac and Schrodinger
independently during 1925-26 (Nobels 1932, 1933).

Returning to radiation, after Dirac the theory of quantum electrodynamics - QED
— was further developed by many leading physicists of that time including Heisen-
berg, Pauli, Peierls and Landau. However it was now found that when one went
beyond the lowest level of approximation it was plagued by severe mathematical
inconsistencies — the so-called problem of divergences. Calculations gave mean-
ingless infinite answers for quantities which should have been finite. This was the
situation through most of the 1930’s and early 1940’s, until the discovery of the
method of renormalization independently by Tomonaga, Schwinger and Feynman
(Nobel 1965), completed by around 1947. The impetus given to this effort by the
experimental measurement of the Lamb shift (Nobel 1955) is emphasized in the
second section of this article.

With the arrival of the renormalization procedure resulting in a finite QED, it
became clear that our understanding of the fundamental nature of light and its
interaction with matter had reached a level of completion. All later work including
what will be described below is within that framework.

Meanwhile within the arena of classical optics many new developments had been
taking place. They could be regarded as a completion of the earlier elementary
treatments of diffraction and interference of classical wave amplitudes. It was re-
alised that essentially all earlier classical optical effects could be described in terms
of the two-point amplitude correlation function; and via this object the concepts
of partial coherence and its propagation were brought into the field. (Analogous
developments with regard to polarization of light had also taken place.) In this
way the role of statistical methods in optics came to be much better appreciated.
Some of the early names are those of Fritz Zernike (Nobel 1953), van Cittert,
Blanc-Lapierre and Dumontet. From about the mid-1950’s the whole subject
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was developed in a systematic manner largely by Emil Wolf. After the invention
of intensity interferometry by Hanbury Brown and Twiss in 1956, it became clear
that it was necessary to go beyond the two-point amplitude correlation func-
tion (adequate to describe Young-type interference phenomena) to higher order
correlation functions. Thus intensity correlations involve correlations among am-
plitudes at four space-time points, or a four-point function. Correlation functions
of all higher orders came into play in the treatment by Mandel of the semi-classical
photoelectron counting distribution formula. Here one has a fluctuating classical
light beam falling on a photodetector, and one wishes to find the probabilities for
various numbers of electrons to be emitted over a given time period. Then, from
the experimentally measured statistical properties of the photoelectrons emitted,
one obtains information on the statistical properties of the incident light beam.

Note the contrast to the original 1905 Einstein explanation of the photoelectric
effect. In that treatment it was light which was regarded as possessing quantum
features, and a quantum description of matter was still many years away. After
the arrival of quantum mechanics for matter it became possible to account for
the photoelectric effect in an alternative semiclassical manner — light can be
treated as a statistical fluctuating classical quantity, while the electron is quantum
mechanical. The key feature is that quantum ideas are needed at least for one of
the two players in the process, light or electrons (ultimately of course for both in
a completely satisfactory treatment). In any case, in Mandel’s work the second
of the above two viewpoints was adopted.

To give the reader some idea of the kinds of expressions and concepts involved
in this development, we present in Boz 1 the definitions and interpretations of
correlation functions in classical statistical optics. For simplicity we ignore the
vector nature of the electric field and treat it as though it were a scalar. (We also
omit reference to the magnetic field). The arguments z, y,... are combined spatial
and time coordinates; and classical statistical averages are indicated by angular
brackets. Note the separation of the real total electric field into two mutually
conjugate parts, and the use of these parts in defining correlation functions and
coherence. Again for simplicity only correlation functions with equal numbers of
E®’s and E()’s are considered.

These two streams of work — the completion of QED and the growth of classical
statistical optics — merged in the early 1960’s and led to the quantum theory of
optical coherence, more generally quantum optics, to which many basic contri-
butions were made by R J Glauber. The invention of the laser by that time had
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made it clear that there was a need to describe, within the overall framework of
QFED, states of electromagnetic radiation associated with arbitrary, in particular
non-thermal, light beams. (The traditional uses of QED, in the realm of ele-
mentary particle physics, had only dealt with processes involving small numbers
of photons — absorption and emission of single photons, scattering of a photon
on an electron, and the like.) The physical principle underlying Glauber’s work,
as foreshadowed in the Mandel treatment of photo electron counting, is that all
conventional methods of light detection involve absorption of photons from the
field being observed. (This is true even in the human and animal visual sys-
tems.) Building on this, Glauber was able to arrive at the most useful measure of
(partial) coherence of the quantised electromagnetic field at the two-point level,
and then to generalize it to correlation functions of all higher orders. This was a
specific way to pass from the complete classical hierarchy of correlation functions
of various orders — Box 1 — to their quantum counterparts. In then defining and
analysing the concepts of partial and of complete coherence, to some finite order

Box 1. Classical Correlation Functions for Fluctuating Electric Fields

Real classical electric field E(z) = EM (z) + B (2)

E(H(x) = complex positive frequency part,
E)(z) = EM)(2)* = complex negative frequency part. (1a)

Classical two-point correlation function = statistical average of product E() (y)E ) (z)
of two complex field amplitudes

= (EC()EM (@) : (1b)
adequate to discuss intensity measurements (y = x), Young type interference phenomena.

Classical four-point correlation function =
(B (1) B (y2) BT (1) B () - (1c)

needed to discuss Hanbury Brown—Twiss intensity correlations (y1 = x1,y2 = x2). Man-
del’s semiclassical photo-electron counting distribution formula involves

<E(*)(y1) - E(*)(yn)E(“(:cl) .. -E(+)(xn)> (1d)

for all n, with y1 = x1,...,yn = Tp.

Coherence of order 2n holds if the expression (1d) factorises completely as
V(y)* - V(yn)*V(z1) - V(zy) for some field amplitude V.
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or to all orders, he demonstrated the great usefulness of a special set of quantum
states called coherent states. These states can be defined both for material oscil-
lators and for the free radiation field. They had been discovered by Schrodinger
in 1927, studied by von Neumann in 1930, and used in a specific context within
QED by Bloch and Nordsieck in 1937. Glauber’s work amounted to a rediscov-
ery of their enormous usefulness in describing states of radiation in the complete
quantum optics context.

Let us first describe briefly the quantum counterparts of the contents of Bozx 1,
assembled in Boz 2, and then turn to coherent states. It is of course out of place
to attempt to give here anything like a complete resumé of the basic structures of
quantum mechanics, much less of QED. We can do no better than make suggestive
statements, and try to get across some basic ideas. For simplicity we use the same
symbols E®)(z) in quantum theory as classically. In quantum theory, however,
these are not complex valued numbers any more, but operators which act on
quantum state vectors. E7)(z) is an operator which acting on a state annihilates
or subtracts one photon; E(7)(z) is the hermitian conjugate (replacement for the

Box 2. Correlation Functions for Quantised Electric Field

E(z) = EM)(2) + EC)(2), all field operators;
E™) annihilates one photon, E(™) creates one photon. (2a)

Two-point correlation function adequate to describe intensity measurements by photon
absorption, Young type interference:

GO (@y) = Tr{pE ) (y) B (2)},

p = density operator of quantum state. (2b)

Four-point correlation function needed to describe Hanbury Brown—Twiss intensity cor-
relations:

G2 (@1, w0551, 92) = Tr{pB ) (1) B (y2) B (21) B ()} (2¢)

Higher order correlation functions:
G ey, aaiyn ) = Tr{pEO (1) . BT (y) D (2y) . B (2)}. (24)
Complete coherence = for all n, G™ (z1,...;y1,...) = V(y1)*...V(x1)... for some

V(z) = essentially,
p is a coherent state.

RESONANCE | May 2006 MAM 47




GENERAL | ARTICLE

classical complex conjugate) of E()(z), and acting on a state it creates or adds
one photon. E™) and E) do not commute. In the vacuum state there are
no photons at all, so EM) applied to that state gives zero. States in quantum
mechanics may be pure, describable by a single state vector or wave function
1; or mixed, namely an ensemble of several pure states 11, 1o,..., each present
with a corresponding probability pq, pa,.... In the latter case, the entire ensemble
can be represented by what is called a density operator or density matrix p, this
is the most general quantum state. The entries in Box 2 can now be hopefully
understood.

The symbol ‘Tr’ stands for ‘Trace’ and (along with the presence of p) is the
quantum counterpart of classical statistical averaging which was denoted in Box
1 by angular brackets. One point to note with care is that in the definitions of
G G@2) in Box 2, the E() factors (creation operators) always stand to
the left of the E) factors (annihilation operators). This is the key feature of the
Glauber definition — detection by absorption of photons — and we are not free to
interchange the sequence of E(™)’s and E(*)’s since they do not commute. The
last sentence in Box 2 brings in the coherent states, so we describe them briefly
at this point, aided by Box 3.

Box 3. Coherent States of Single Mode Radiation Field
States with definite number of photons : |n),n =0,1,2,... . (3a)
For any complex number z:

Coherent state |z) = superposition of states with definite photon numbers

= ¢l /2; m|n>. (3b)

Some important properties of coherent state |z):

o2 122"

Probability of finding n photons = e~ : Poisson distribution. (3c)

n!
Mean number of photons = average of n = |z|2. (3d)

Fluctuation in number of photons = average of n%2— (average of n)?
= |z

= mean : characteristic of Poisson distribution. (3e)
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We limit ourselves to a single mode of the quantum radiation field, so all the
photons have the same spatio-temporal characteristics. (The generalisations to
several modes or to the entire field are straightforward). For example we may
fix the frequency, propagation direction and polarization state for all of them,
so only the photon number can vary. In quantum mechanical notation the state
with exactly n photons is written as |n): for n = 0 we have the vacuum or no
photon state |0), for n = 1 the one-photon state |1), and so on. Each of these
is a pure state and they are mutually exclusive or orthogonal: if we know that
there are exactly n photons present, we certainly know the total photon number
is not n’ for any n’ # n. Given any set of pure states, we can multiply each one
by some complex number and add them all up to get a new pure state. This
is the fundamental Superposition Principle of quantum mechanics which has no
classical analogue. For each complex number z, we can produce exactly one pure
state using the expression given in (3b) of Box 3. This is the coherent state |z)
of the concerned mode. Thus a coherent state has a variable number of photons
present, with probabilities given by a Poisson distribution, (3c) of Box 3. These
states turn out to be quantum states as close as possible to classical field states in
the sense that the unavoidable or inescapable uncertainty principle of quantum
mechanics is barely obeyed. They also turn out to be as close to having a definite
‘phase’ — in contrast to a definite photon number — as is possible in the quantum
framework.

We will conclude this part of our article by describing two crucial properties of
coherent states, justifying their importance for quantum optics. Each coherent
state |z) is a pure state. Consider now a mixed state p in which all these |z) are
present with various probabilities, described by a ‘classical’ probability distribu-
tion ¢(z) over the complex plane. It then turns out that the particular definitions
of the quantum optical correlation functions given in (2b), (2¢), (2d) of Boz 2
combine with the very special properties of coherent states to lead to a remark-
able result: each quantum correlation function has the same form and the same
value as the corresponding classical correlation function calculated for a suitably
defined classical statistical state. The key to this lies in two facts: the E(7) fac-
tors always stand to the left of the E(P) factors in the definitions of quantum
correlation functions; and the E™) factors act very simply on coherent states
|z). This brings out graphically the extreme appropriateness of coherent states
in these problems.

Now we come to our final point. A general quantum state p can certainly not
be reconstructed from the coherent states {|z)} via a classical probability dis-
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tribution ¢(z), as was assumed in the previous paragraph. But in a remarkable
and truly fundamental result it was shown in 1963 by E C G Sudarshan that
every quantum state p can be formally regarded as a ‘generalized ensemble’ over
the coherent states |z), except that ¢(z) may not be interpretable as a ‘classi-
cal’ probability distribution! This is known technically as the Diagonal Coherent
State Representation and the Optical Equivalence Theorem. Referring to the
highlighted phrase in the previous paragraph we can say that in case ¢(z) is not
a true probability distribution, we have equivalence of forms but not of values
for the two families of correlation functions, quantum and classical. For the most
general quantum state p, ¢(z) is not a function in any ordinary mathematical
sense, but a singular quantity, a so-called distribution of a particular class that
can be precisely characterized. This result is truly basic to the theory of quantum
optics, as it is the only way in which we can exhibit the clear distinction between
classical and quantum natures of optical fields. States displaying sub-Poissonian
photon statistics or antibunching, so-called squeezing and Hanbury Brown—Twiss
anticorrelations are all truly quantum in nature, and correspond to singular, or at
least non-positive definite, ¢(z) in the Sudarshan classification. One can say that
the need to allow ¢(z) to go beyond the collection of probability distributions in
considering all quantum states shows why quantum and classical theories are rad-
ically different, the former overstepping the confines of the latter. In fact this is
a recurring feature of attempts to express quantum mechanics in the language of
classical physics — the range of quantum mechanical possibilities always overflows
classical boundaries. It is extremely unfortunate that this result of Sudarshan has
not received the credit and recognition that is its due. The interested reader may
refer to the article, ‘On Sudarshan’s Diagonal Coherent State Representation’ by
C L Mehta [2].

That apart, the reader would have appreciated all the developments that form
the backdrop to the ‘theory part’ of the physics 2005 Nobel.

2. Optical Frequency Comb Technique

Lasers have impacted our lives in a countless number of ways. Today they are
found everywhere, in computer hard disk drives, CD players, grocery store scan-
ners, and in the surgeon’s kit. In research laboratories, almost everyone uses
lasers for one reason or another. However, arguably the greatest impact of lasers
in physics has been in high-resolution spectroscopy of atoms and molecules. To
see this, consider how spectroscopy was done before the advent of lasers. You
would use a high-energy light source to excite all the transitions in the system,
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and then study the resulting emission “spectrum” as the atoms relaxed back to
their ground states. This is like studying the modes of vibration of a box by
hitting it with a sledgehammer and then separating the resulting sound into its
different frequency components. A more gentle way of doing this would be to try
and excite the system with a tuning fork of a given frequency. Then by chang-
ing the frequency of the tuning fork, one could build up the spectrum of the
system. This is how you do laser spectroscopy with a tunable laser; you study
the absorption of light by the atoms as you tune the laser frequency. When you
come close to an atomic resonance, you build up a typical absorption curve with
a characteristic width called the natural width.

In order to be able to do such high-resolution laser spectroscopy, two things have
to be satisfied. First, the atomic resonance should not be artificially broadened.
This can happen, for example, due to the Doppler effect in hot vapour, where the
thermal velocity causes a frequency shift and broadens the line. Even with atoms
at room temperature, the Doppler width can be 100 times the natural width, and
can prevent closely-spaced levels from being resolved. The second requirement
for high-resolution spectroscopy is that the tunable laser should have a narrow
“linewidth”. The linewidth of the laser, or its frequency uncertainty, is like the
width of the pen used to draw a curve on a sheet of paper. Obviously, you cannot
draw a very fine curve if you have a broad pen.

It is in the above context that the Nobel citation mentions the work of the two
laureates in laser-based precision spectroscopy. Their names are quite well known
to anyone working in laser spectroscopy. In the early 1970s, Hansch, then work-
ing at Stanford University with Arthur Schawlow (Nobel Prize for laser spec-
troscopy, 1981), pioneered the use of Doppler-free techniques such as saturation
spectroscopy, particularly for spectroscopy in hydrogen. Around the same time,
Hall developed many techniques to stabilize the frequency of lasers and reduce
their linewidth. Today, two of the most popular techniques for laser stabilization
are called the Hansch-Couillaud technique and the Pound-Drever-Hall technique,
in honour of these scientists.

In 1976, Hall and coworkers used high-resolution laser spectroscopy in methane
to observe for the first time the recoil-induced splitting of a line. In other words,
when the molecule absorbs a photon of wavelength A, the photon momentum A/
imparts a recoil to the molecule. This recoil velocity results in a frequency shift
due to the Doppler effect. But this is a small effect, about 2 kHz in a frequency of
10'* Hz, and requires an extremely high resolving power. In the same year, Hénsch
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and Schawlow independently proposed that the momentum of laser photons could
be used to cool atoms to very low temperatures, a technique that is now called
“laser cooling”. The field of laser cooling has grown explosively in the last two
decades, and two Nobel Prizes have been awarded; the first in 1997 for techniques
of laser cooling (Chu, Cohen-Tannoudji, and Phillips), and the second in 2001 for
using laser-cooled atoms to achieve Bose-Einstein condensation (Cornell, Ketterle,
and Wieman).

But back to spectroscopy. Many advances in physics have been brought about
by high-resolution spectroscopy of atoms. Indeed, one might argue that the most
obvious manifestation of quantisation (or discreteness) at the atomic scale is the
fact that atomic spectra show sharp spectral lines. The well known Fraunhofer
lines were first observed in the solar spectrum as dark lines using a spectrom-
eter that was “high-resolution” for its time. In the early part of the twentieth
century, Niels Bohr (Nobel Prize 1922) was able to explain such discrete lines by
postulating that an electron in an atom was allowed only certain quantised values
of angular momentum. This led to the development of quantum mechanics as a
theory in the atomic domain. Further measurements of atomic spectra at higher
resolution revealed that many lines were actually doublets. A common example
is the yellow light emitted by the ubiquitous sodium vapour lamp; it actually
consists of two lines, called D1 and D2, which can be resolved and measured
in a high school laboratory today. The origin of this splitting is the interaction
between two types of electronic angular momentum — orbital and spin. In 1928,
Dirac (Nobel Prize 1933) wrote down his famous equation to describe the elec-
tron, which incorporated its spin angular momentum in a natural way. However,
even the very successful Dirac theory predicted that the 2S5 and 2P states of
hydrogen have the same energy. A precise measurement of these levels by Lamb
(Nobel Prize 1955) showed that their energies are slightly different, which is now
called the Lamb shift. The discovery of the Lamb shift led to the birth of quan-
tum electrodynamics (QED), for which the Nobel Prize was awarded to Feynman,
Schwinger, and Tomonaga in 1965.

We thus see that improvement in precision almost always leads to new discoveries
in physics. In recent times, one atomic transition that has inspired many advances
in high-resolution spectroscopy and optical frequency measurements is the 15—25
resonance in hydrogen, with a natural width of only 1 Hz. Measurement of the
frequency of this transition is important as a test of QED and for the measurement
of fundamental constants. However, the wavelength of this transition is 121 nm,
corresponding to a frequency of 2.5 x 10*® Hz. Since the SI unit of time is defined
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Figure 1. Radio frequency
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in terms of the cesium radio-frequency transition at 9.2 x 10° Hz, measuring the
optical frequency with reference to the atomic clock requires spanning 6 orders
of magnitude! You can think of this as having two shafts whose rotation speeds
differ by a factor of 1 million, and you need to measure the ratio of their speeds
accurately. If we use a belt arrangement to couple the two shafts, then there is
a possibility of errors in the ratio measurement due to phase slip. Instead, one
would like to couple them through a gearbox mechanism with the correct teeth
ratio so that there is no possibility of slip (see Figure 1). This is precisely what
is achieved by the frequency comb.

The basic idea of the comb technique is that periodicity in time implies peri-
odicity in frequency. Thus, if you take a pulsed laser that produces a series
of optical pulses at a fixed repetition rate, then the frequency spectrum of the
laser will consist of a set of uniformly spaced peaks on either side of a central
peak. The central peak is at the optical frequency within each laser pulse (carrier
frequency), and the peaks on either side are spaced by the inverse of the repe-
tition period (called sidebands). You can produce such a spectrum by putting
the laser through a nonlinear medium such as a nonlinear fiber. The larger the
nonlinearity, the more the number of sidebands. Around 1999, there was a major
development in making nonlinear fibers; fibers with honeycomb microstructure
were developed which had such extreme nonlinearity that the sidebands spanned
almost an octave?. If you sent a pulsed laser (operating near 800 nm) through
such a fiber, you would get a near continuum of sidebands spanning the entire

2Hall calls this development the dawn of a new epoch.
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Figure 2. Frequency mea-  |-Periodicity in Time = Periodicity in Frequency
surement using a comb. t,,

known freq
Is the pulse repetition rate, fy unknown freq.
and F.T. is Fourier trans- F T. ftna
form. / y
© The Nobel Foundation, 2005. (
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visible spectrum. The series of uniformly spaced peaks stretching out over a large
frequency range looks like the teeth of a comb, hence the name optical frequency
comb. The beautiful part of the technique is that the comb spacing is determined
solely by the repetition rate, thus by referencing the repetition rate to a cesium
atomic clock, the comb spacing can be determined as precisely as possible. In
1999, Hansch and coworkers showed that the comb spacing was uniform to 3 parts
in 10'7, even far out into the wings.

Thus the procedure to produce a frequency comb is now quite straightforward.
One starts with a mode-locked, pulsed Ti:sapphire laser and sends its output
through 20-30 cm of nonlinear fiber. The pulse repetition rate is referenced to
an atomic clock, and determines the comb spacing. The carrier frequency is
controlled independently, and determines the comb position. But how does one
measure an optical frequency using this comb? This can be done in two ways.
One way is to use a reference transition whose frequency fj is previously known.
We now adjust the comb spacing A so that the reference frequency f, lies on one
peak, and the unknown frequency f lies on another peak that is n comb lines
away, i.e. f = fo + nA (see Figure 2)3. Thus by measuring n, the number of
comb lines in between, and using our knowledge of fy and A, we can determine
f. This was the method used by Hansch in 1999 to determine the frequency
of the D1 line in cesium (at 895 nm). The measurement of this frequency can
be related to the fine-structure constant «, which is one of the most important
constants in physics because it sets the scale for electromagnetic interactions and
is a fundamental parameter in QED calculations.

However, the above method requires that we already know some optical frequency
fo. If we want to determine the absolute value of f solely in terms of the atomic
clock, the scheme is slightly more complicated. In effect, we take two multiples

3 It is not necessary that the comb peak aligns perfectly with the laser frequency. A small difference between the
two can be measured easily since the beat signal will be at a sufficiently low frequency
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(or harmonics) of the laser frequency, and use the uniform comb lines as a precise
ruler to span this frequency difference. Let us say we align one peak to 3.5f, and
another peak that is n comb lines away to 4f, then we have determined

Af —35f =nA,

which yields
f=2nA,

so that we have f in terms of the comb spacing. In 2000, Hansch and coworkers
used this method to determine the frequency of the hydrogen 15 — 25 resonance
with an unprecedented accuracy of 13 digits. This was the first time that a
frequency comb was used to link a radio frequency to an optical frequency.

Currently, one of the most important questions in physics is whether fundamental
constants of nature are really constant, or are changing with time. For example,
is the fine-structure constant o constant throughout the life of the universe or is
it different in different epochs? Now, if you want to measure a very small rate of
change & (= da/dt), then you can do it in two ways. You can take a large dt so
that the integrated change in « is very large. This is what is done in astronomy,
where looking at the light from a distant star is like looking back millions of years
in time. You can then compare atomic spectra from distant stars to spectra taken
in the laboratory today. Alternately, if you want to do a laboratory experiment
to determine ¢, then you have no choice but to use a small dt. Therefore, you
have to improve the accuracy of measuring a so that even small changes become
measurable. This is what has been done by Hansch and his group. By measuring
the hydrogen 1S — 25 resonance over a few years, they have been able to put a
limit on the variation of «. Similar limits have been put by other groups using
frequency-comb measurements of other optical transitions. The current limit on
&/a from both astronomy and atomic physics measurements is about 107 per
year.

In the last few years, several optical transitions have been measured using fre-
quency combs. The primary motivation is to find a suitable candidate for an
optical clock to replace the microwave transition used in the current definition.
An optical clock will “tick” a million times faster, and will be inherently more
accurate. However, since the cesium atomic clock has an accuracy of 107, one
has to measure the candidate optical transition to this accuracy to make sure it
is consistent with the current definition. The race is on to find the best candidate
among several alternatives such as laser-cooled single ions in a trap, ultracold

RESONANCE | May 2006 W\/\Nf 55



GENERAL | ARTICLE

Figure 3. Improvement in
theaccuracy of clocks over ACCU racy Of ClOCkS optical
© The Nobel Foundation, 2005.
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neutral atoms in an optical lattice, or molecules. As shown in Figure 3, the accu-
racy of clocks has increased by several orders of magnitude in recent times. The
applications for more precise clocks of the future range from telecommunications
and satellite navigation to fundamental physics issues such as measurement of
pulsar periods, tests of general relativity, and variation of physical constants.

In concluding this article, one of the authors (VN) would like to switch to the first
person singular and make some comments on the motivations that underlie work
in experimental physics. I recently attended a small reception in honour of John
Hall after he won the Nobel Prize. In his speech, he mentioned that the thing
he enjoyed most about being at NIST was that the management allowed him
complete freedom to play with the latest “toys and gadgets”, pleasures that he
has carried from his childhood. I remember that, as a child, I too was fascinated
by mechanical and electrical gadgets, and the precision with which they were
engineered. I think many of us take to experimental research precisely for this
reason, that it allows us to take our childhood pleasures of playing with toys into
adulthood, and even make a living out of this enjoyment! I cannot think of a
greater advertisement for the young readers of this journal to take up a fulfilling
career in research.
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Errata: Resonance, Vol.11, No.2, February 2006.

Page 90: TIO - Solution to ‘On a Use of Normal Distribution’
Equations (10) and (11) should read as

w/2
. /2 / e " do
B, ~ NG e dv = _7;22— (10)
T J=n/2 / e dv
w/2
/ e " dou
—7/2
~ 0.97368, (11)

oo 2
/ e dv
—0o0

Page 99: Classics — Suggested Reading [1] should read as

pp.379-423, July 1948.

[1] C E Shannon, A mathematical theory of communication, Bell Sys. Tech. ¥., Vol.27,

-
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