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Discrete Symmetry, Neutrino Magnetic Moment and

the 17 keV Neutrino
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Abstract

The problem of generating large transition magnetic moments for nearly mass-

less neutrinos in a truly three–generation case is discussed. A model to achieve

the same by exploiting an octahedral symmetry is presented. The scheme also

accomodates a radiatively generated mass of 17keV for a pseudo–Dirac neutrino

that decays rapidly through the Majoron channel.
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Two problems in neutrino physics have attracted much attention over the past few years.

The first, and relatively longstanding one, deals with the deficiency in the solar neutrino

count in the Davis and Kamiokande experiments [1] and the related matter of the apparent

anticorrelation between the observed solar neutrino flux and the sunspot activity [2]. The

other, more recent one, is concerned with the reported signature of a 1% admixture of a

17 keV neutrino with the νe [3].

While the first problem can be resolved by postulating a relatively large magnetic moment

for the neutrino [4], to generate the latter in realistic models is no mean task. For such an

attempt normally leads to too large a value for the neutrino mass. An elegant solution to

this problem was suggested by Voloshin [5] in the form of a SU(2)ν symmetry connecting νL

and νR (or νe and νµ if you are interested in transition moments) so that the mass term is

a triplet while the magnetic moment term a singlet. In the limit of exact SU(2)ν symmetry

you then have the spectacle of a non–zero µν but a identically vanishing mν . Several models

[6, 7] have been constructed using this idea and some variants, but most require some amount

of fine–tuning. The reason lies in the phenomenological necessity of breaking the continuous

non–abelian symmetry at a scale too high to protect mν [8].

A way out of this imbroglio is to employ a non–abelian discrete symmetry instead, an idea
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that has been richly harvested [9]. An aesthetic problem persists though in such attempts,

in the form of the unequal treatment they mete out to the Standard Model (SM ) fermions.

The point to remember is that if you put all the SM ν’s in the same representation, then for

an odd number of generations it is the mass term that contains the singlet and not the µν

term [10]. Hence, for three generations the Voloshin mechanism does not work. Instead, one

should attempt to construct models wherein the lowest dimensional higgs operators coupling

to the neutrino current are antisymmetric in the generation index [7]. To achieve this in a

model where the ν’s lie in a representation R of the symmetry group, it is essential that the

symmetric and antisymmetric parts of R ×R lie in inequivalent irreducible representations.

In our efforts to construct a model based on such ideas, we find that a very slight extension

of the same also affords a solution to the second problem mentioned at the outset of this letter.

Though phenomenolgical considerations [11] indicate that the new find is most probably a

Dirac particle and that it may be identified with the ντ , yet many embarassing questions

remain. Not the least of which are the questions of generating such a low scale, and, more

importantly, satisfying the strict theoretical constraints emanating from cosmology [12] and

primordial nucleosynthesis [13]. Though some models have been proposed [14, 15], only one

of these [15] makes an effort to connect the two issues that have been raised here.
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For our purpose, we choose the (24–element) symmetry group (O) to be that of the

octahedron, i.e. the one generated by rotations about three 4–fold axes (fi), four 3–fold

axes (tK) and six 2–fold axes (zα) [16]. The group algebra is given by f 4
i = e, t1 = f2f3,

t2 = f3f1, t3 = f1f2, t4 = f1t2f3, zi = fit
2
i , zi+3 = fit

2
4. O has five irreducible representations

namely

A1 : fi = 1; A2 : fi = −1; E : f1 = σ1, f ∗
2 = f3 =

(
−σ1 +

√
3σ2

)
/2;

F1 : f1 = exp(πT1/2), f2 = exp(−πT2/2), f3 = exp(−πT3/2); F2 : fi = −fi(F1)

where (Ti)jk = ǫijk. Note that only F1,2 are faithful representations. The Clebsch–Gordan

decomposition is given by (A and S denote symmetry properties)

F1 ×A2 = F2; E ×A2 = E ; F1 × E = F1 + F2;

F1 × F1 = (A1 + E + F2)
S + FA

1 ; E × E = (A1 + E)S + AA
2 ;

the rest following trivially.

The model: To the standard model fermions, we add a charge +1 vector singlet pair

of leptons per generation. Also we introduce three right–handed neutrino fields. The new

additions however are given an unconventional assignment of the total lepton number, which

is conserved explicitly. The quarks are the same as in the SM and we shall not talk about

them any further. The entire leptonic spectrum (under SU(2)L⊗U(1)Y ⊗O⊗U(1)l) is then

LL (2,−1/2,F1, 1), ER (1,−1,F1, 1), FL,R (1, 1,F1, 1), N1R (1, 0,A1,−1), N2R (1, 0,A1,−2)

and N3R (1, 0,A1,−4)
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As for the scalar sector, apart from the φ (2, 1/2,A1, 0) and H (2, 1/2, E , 0) which give

masses to the SM fermions, we also have Σ (1, 0,F1, 5) and σ (1, 0,A1, 6) to break the lepton

number and give a Majorana mass term; Ω (1, 1,F1, 7), Ξ (1, 1,A1, 6), χ (2, 3/2,A1, 0) and

η(2, 1/2,F1, 2) that traverse in loops responsible for various radiative generations; and finally

ξ (2, 1/2,F1,−2) and ζ (2, 1/2,F1,−3) to give Dirac masses to the neutrinos.

The fermion mass and Yukawa terms then read

Lm+Y = m̃FLFR + LLER(a1φ + a2H) + b1N1RLLξ + b2N2RLLζ

+cN c
2RN3Rσ + g1FRLLχ + g2Lc

LFLη† + H.c.,
(1)

while the higgs potential, apart from the usual quadratic and quartic invariants, also contains

the cross terms

LHiggs = Ω†Ση (λ1φ + λ′
1H) + λ2Ξ

†σ†ΩΣ + λ3χ
†σ†Ξφ

+λ4χ
†Σ†ξΩ + λ5ζ

†σ†ξΣ + µ1η
†ζΣ + · · ·

(2)

where we have displayed only those terms that interest us. In all of above the Clebsch–

Gordan coefficients are implicitly present.

The fields η, ζ, ξ are ascribed a positive (mass)2 value so that they do not gain a vacuum

expectation value (v.e.v. ) at the tree level. One good feature of our model is that we do

not need to introduce a new high scale as all symmetry including O and the lepton number
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are broken at the weak scale. The tree–level v.e.v.s are then

〈σ〉 = s; 〈Σ〉 = (S1, S2, S3); 〈φ〉 = vs; 〈H〉 = (v1, v2); (3)

where only the O dependence is exhibited. Apropos the domain wall problem, it can be

tackled [17] by either invoking symmetry non–restoration in multi–Higgs models or the pos-

sible absence of high temperature phase transition in a system with large net lepton number

as is the case here.

To this level then, the charged lepton mass matrix is diagonal with all three exotic

particles degenarate with a mass m̃ ∼ 200 GeV . This form assures that there are no flavour

changing neutral currents (FCNC) to the leading order. The model however cannot explain

the SM fermion mass hierarchy which is to be taken care of by appropriate choice of v.e.v.s

and Yukawa couplings. On the other hand, no Dirac masses for the neutrinos have been

generated and the neutrino mass matrix is of rank two.

A magnetic moment for the neutrino is generated through the diagram in Figure 1 on

insertion of a photon on either internal line. The contribution to µν can be symbolically

expressed as

µν ∼ 2e

16π2

g1g2λ1λ2λ3S
2s2v2

m̃7(xχ − xΩ)

[
h(xΞ, xη) − h(xΞ, xχ)

xη − xχ

− h(xΞ, xη) − h(xΞ, xΩ)

xη − xΩ

]
(4)
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where

h(x, y) =
f(x) − f(y)

x − y
,

f(x) = (1 − x)−3 [(1 − 4x + 3x2)/2 − x2 ln x] and xχ ≡ m2
χ/m̃2. The function f(x) is mono-

tonically decreasing with f(0) = 1/2, f(1) = 1/3 and f(∞) = 0. It should be noted that

the above is only the contribution for a particular set of fields travelling in the loop. The

full family dependence of µν can easily be obtained by summing over all such diagrams tak-

ing into account the different masses, v.e.v.s and couplings. To get an order of magnitude

estimate, we assume that all the scalars and the F–fields have mass ∼ O(200GeV ) and that

the couplings in eqn(4) are each O(0.1). We then have

µν ∼ O
(
10−11µB

)
(5)

and hence of the correct order of magnitude to explain the observed anticorrelation [2, 4].

Normally, with the removal of the photon, this diagram would generate a mass correction

for the neutrino thus requiring fine–tuning. However, in the present model, this correction

term is antisymmetric in the generation index and hence does not contribute at all to the

neutrino Majorana mass. As pointed out right at the beginning, this is not a consequence

of a Voloshin–like symmetry. Rather, unlike in the Voloshin mechanism, here the µν term is

not a group invariant and hence cannot arise until after the symmetry is broken. The key
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to the protection of the mass lies in structure of the theory and more particularly that of

the lowest–order diagram leading to µν . A look at the fermion line of Figure 1 shows that

irrespective of the scalars traversing the loop, the effective operator coupling to the neutrino

current has to be antisymmetric. This result owes its origin to the fact that the mass term

for the exotic fermions (FL,R) is O–invariant (i.e. independent of the breaking) and hence

proportional to the unit matrix in the generation space. Any departure from such structure

is caused only by higher–dimensional operators and shall be commented upon later.

This would have been the whole story were it not for the fields NiR and the scalars ξ

and ζ . Though there are no three or four–dimensional operators leading to v.e.v.s for them,

higher–dimensional operators arising from radiative corrections do contribute to 〈ξi〉 etc. A

typical example is the operator ξΣ†2σ2φ (as in Figure 2), resulting in

〈ξi〉 ∼
λ2λ3λ4

16π2

S2s2v

m2
ξm

2
loop

∼ O(1 MeV ). (6)

where mloop is the typical mass of the scalars in the loop. Similar values for 〈ζi〉 and 〈ηi〉 are

also generated through such diagrams and mixings with each other. Non–zero 〈ηi〉 of course

lead to mixings of the SM charged leptons with the exotics, but due to the huge disparity

in scales the levels of FCNC are somewhat below current experimental limits. The neutrino

mass matrix, in the (νi N1 N2 N3) basis (where νi represent the SM particles and all fields
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are of the same helicity), now reads

Mν =




0 MT
1

M1 M2


 , M1 ≡




α1 α2 α3

β1 β2 β3

0 0 0




, M2 ≡




0 0 0

0 0 M

0 M 0




(7)

where αi = b1〈ξi〉, βi = b2〈ζi〉 and M = cs. Mν , which is of rank 4, has the eigenvalues 0, 0,

±
[(

G −
√

G2 − 4H
)
/2

]1/2
and ±

[(
G +

√
G2 − 4H

)
/2

]1/2
. Here G = M2+~α2+~β2 and H =

M2~α2 +
(
~α × ~β

)2
. Note that αi, βi can naturally be ∼ O(10 keV ) without requiring either

an artificial generation of such a scale or unnaturally small Yukawa couplings. Assuming

M ∼ 250 GeV , the neutrino spectrum then consists of three apparently–Dirac particles —

one superheavy, one massless and one of mass 17keV . The mixing of ν17 with νe is engendered

by the ratios of the Dirac mass terms and easily give the required strength.

At this stage it is as well to point out that the full symmetry of Mν is not a symmetry

of the theory and hence is broken by quantum corrections. For example, the off–diagonal

mass terms for the charged leptons arising out of 〈ηi〉 would lead to non—trivial mixing in

that sector and hence to neutrino mass corrections through diagrams as in Fig. 1. However,

due to the smallness of 〈ηi〉, these corrections are almost of the see–saw type in magnitude

(∼ 10−3 eV ) and do not alter the neutrino spectrum to any significant degree. Also, higher

loop diagrams generate Majorana mass terms of similar order and involving “ordinary”

9



neutrinos. As a result of all these, the mass degeneracies are lifted and the Dirac neutrinos

split into three pairs of pseudo–Dirac particles. The small masses for νe and νµ that are thus

generated would be adequate for a MSW type of resonance enhancement in the Sun [18].

Also the effective mass contributing to the neutrinoless double beta decay [ ββ0ν ], is <∼β2
1/M

and though miniscule, affords an example where the effective Majorana mass for ββ0ν could

be larger than that to be observed in Kurie plots [19].

Of course, one might wonder if diagrams analogous to those in Fig. 1, but with NiR as

the virtual leptons instead of FL,R would contribute to Majorana mass terms. For if they

did, the earlier group theoretic argument leading to exact cancellations would not hold and

indeed the contributions could be large. However, it is easy to see that there is no place for

such apprehension. Two facts need to be noted. Firstly, there is no Dirac term involving

N3R and secondly, the only tree order (and hence large) Majorana mass term is of the form

(N c
2RN3R + H.c.). As a result, there can exist no one–loop diagram with NiR as the internal

particle(s) and contributing to the neutrino Majorana masses. This can be verified rigorously

by working with the mass eigenstates instead. Such arguments obviously do not hold for

complicated multi–loop diagrams, but those contributions are too small to be relevant.

The Majoron (the only surviving Goldstone boson in the theory), to the leading order,
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is given by

ϑ ∼ (6s Im σ + 5Si Im Σi + 2〈ηi〉 Im ηi − 2〈ζi〉 Im ζi − 3〈ξi〉 Im ξi) /N (8)

(where N gives the normalization) and is hence primarily a SU(2)L singlet. Thus its coupling

with the SM charged leptons is highly suppressed and fully in consonance with the bounds

coming from Z–decay width [20] as well as astrophysical considerations[21]. However, if one

considers the coupling of the ν’s with the Majoron, one gets

Gνϑ ≈ N−1




0 GT
1

G1 6M2


 , G1 ≡




2α1 2α2 2α3

3β1 3β2 3β3

0 0 0




, (9)

which is not diagonalized simultaneously alongwith Mν . This then leads to a nondiagonal

ν −ϑ coupling of the order of mν/N and as a consequence to a very fast decay of the 17keV

neutrino which would have a lifetime ∼ O(105 sec).

To conclude, we have presented a model based on a non–abelian discrete symmetry O that

leads to a significant amount of transition magnetic moment for nearly massless neutrinos.

The model is not a discrete version of the Voloshin mechanism, which we have argued cannot

work for the truly 3–generation case. Rather, the protection of mν owes its existence to the

absence of any family–symmetric effective scalar operator to the lowest order. The magnetic

moment term itself arises on breaking the symmetry, which, being discrete, can be preserved
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until at least the weak scale. Higher order effects do lead to small mass corrections but these

are greatly suppressed.

A simple extension of this model is shown to accomodate a pseudo–Dirac 17keV neutrino

as well. The latter can be identified with the ντ and is generated through a cripple see–saw

mechanism that keeps νe and νµ massless. However, tiny FCNCs in the charged lepton

sector and multiloop diagrams together cause small mass corrections of the order of 10−3 eV .

The ν17 decays very fast into a lighter neutrino and a singlet–doublet Majoron and is thus

consistent with all known experiments, whether terrestrial or cosmic.

Acknowledgements The author would like to thank Utpal Sarkar for useful discussions

and suggestions. Thanks are also due to the referees for illuminating comments.

12



References

[1] R. Davis et al., Phys. Rev. Lett. 20, 1205 (1968); J. K. Rowley, B. T. Cleveland

and R. Davis in Solar Neutrinos and Neutrino Astrophysics, AIP Conf. Proc.

No. 126, p.1 (1985). K. S. Hirata et al., Phys. Rev. Lett. 63, 16 (1989).

[2] R. Davis, Proc. of “Neutrino 88”, eds. J. Schneps, T. Kafka, W. Mann and

P. Nath (World Scientific) p. 518.

[3] J.J. Simpson, Phys. Rev. Lett. 54, 1891 (1985); J.J. Simpson and A. Hime,

Phys. Rev. D 39, 1825 (1989); ibid, 1837; A. Hime and N.A. Jelley, Phys. Lett.

B 257, 441 (1991); Oxford preprint OUNP–91–21(1991); B. Sur et al., Phys.

Rev. Lett 66, 2444 (1991).

[4] M.B. Voloshin, M.I. Vysotskii and L. Okun, Yad. Fiz. 44, 677 (1986) [Sov. J. of

Nucl. Phys. 44, 440 (1986)].

[5] M. Voloshin, Yad. Fiz. 48, 677 (1986) [Sov. J. of Nucl. Phys. 48, 512 (1988)].

[6] R. Barbieri and R.N. Mohapatra, Phys. Lett. B 218, 225 (1989); J. Liu, Phys.

Lett. B 225, 148 (1989); K.S. Babu and R.N. Mohapatra, Phys. Rev. Lett.

13



63, 228 (1989). See also, P. Pal, in Proc. WHEPP II, Calcutta, Jan. 1991, and

references therein.

[7] D. Choudhury and U. Sarkar, Phys. Lett. B 235, 113 (1990).

[8] M. Leurer and N. Marcus, Phys. Lett. B 237, 81 (1990).

[9] G. Ecker, W. Grimus and H. Neufeld, Phys. Lett. B 232, 217 (1990); K.S. Babu

and R.N. Mohapatra, Phys. Rev. Lett. 64, 1705 (1990); D. Chang, W.-Y. Ke-
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Figure Captions

Figure 1. Diagrams (sans photon lines) contributing to neutrino magnetic moments.

Figure 2. Typical diagram leading to radiative generation of 〈ξi〉.
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