SHINN

The Thinning of Orchard Fuits

Agriculture
B S
1906

THE THINNING OF ORCHARD FRUITS

by

WILLIAM: PICKETS SHIN

THESIS

for the

DEGREE OF BACHELOR OF SCIENCE in

HORTICULTURE in the COLLEGEOFAGRICULTURE of the

UNIVERSITY OF ILLINOIS
June, 1906
$\therefore=015=11$

UNIVERSITY OF ILLINOIS

June 1,
1906

THIS IS TO CERTIFY THAT THE THESIS PREPARED UNDER MY SUPERVISION BL

WILLIAM RICKETS SHIN

ENTITLED The Thinning of Orchard Fruits

IS APPROVED BY ME AS FULFILLING THIS PART OF TIE REQUIREMENTS FOR TIE DEGREE
of Bachelor of Science

HEAD OF DEPARTMENT OF Horticulture

+ el -1

```
made EH-2L ENTM
```


misilititymat

E

I N D EX.

Introduction Page 1.
Plan of the Work 1.
An Experiment in Thinning: Apples
Description of the Trees Selected 2.
Detailed Plan of the Experiment 3.
The Experimental Work 3.
Discussion of Results 7.
Conclusions Drawn from the Experiment 13.
Tables of Results ' 15.
A Summary of Literature on the Subject of
the Thinning of Orchard Fruits
Literature Relating to the Thinning of Apples 22.
-' 1 •' 1 Peaches 25.

\qquad

'

Plums 26.
28.

Digitized by the Internet Archive in 2013

THE THINNING OFOROHARD FRUITS.

$$
=1=
$$

Introducton.

In reading the Report of the Illinois State Horticultural Society for 1904 the writer was much interested in the discussion of the subject, "Thinning Apples". Having had only a very limited experience in thinning frait and realizing the need of further information along this line of horticultural Work, the writer suggested to Professor J. C. Blair, Chief in the Department of Horticulture, the possibility of doing a thesis on the subject of "Thinning Orchard Fruits". Professor Blair being agreeable to the suggestion the work was conducted inintly with the Horticultural Department.

Plan of the Work.
The work as planned was to include two distinct lines of work: first, the performance of an experiment in thinning apples; second, the reading and summarizing of available literature bearing on the subject of "Thinning orchard Fruits" with the drawing of general conclusions upon the practice of thinning thir class of fruits.

Part I.

An Experiment in Thinning Apples.

Before plans could be made in detail it was necessary to secure the use of some apple trees which bore sufficient fruit to justify thinning. None of the trees on the Horticultural grounds bore an ample crop so it was necessary to look for trees in commercial orchards. At first quest was made in the orchards of Senator Dunlap at Savoy but this

$$
=2=
$$

search proved futile as the late spring frost had almost destroyed the apple crop at this place. By going to Neoga, however, several trees were found in the orchards of Nr. F. D. Voris which bore sufficient fruit to apparently justify thinning. Through the courtesy of Mr. Voris the writer was allowed the use of such trees as were deemed necessary for the purposes of the experiment.

> Description of the Trees Selected.

It was impossible to find trees in a solid block which were suited to the purposes of the experiment so the selection of trees was made without regard to convenience of location. Twenty four trees were finally selected after one hundred and twenty acres of orchard had been quite thoroughly examined. These twenty four trees comprised five different varieties, six trees each of the Grimes Golden, Baldwin and Ben Davis varieties, and three trees each of the Jonathan and Winesap varieties. The orchard in which these trees were located was in a high state of cultivation, having been thoroughly disked, the ground was free from weeds and grasses and the surface was broken into an excellent mulch. All troes in the orchard had been sprayed twice in tre sprinf, once before the blossoms had opened and again after the blossoms had fallen. All the trees selected had been set in the orchard about sixteen years and were apoarently thrifiy and in their prime. From all appearances the

$$
=3=
$$

trees selected seemed to be exceptionally well adapted to the purposes of the experiment, the only otjection being the fact that it was necessary, to obtain suitably filled trees, to select those which were not contiguous.

Detailed Plan of the Experiment.
Having, secured the necessary trees, the next step was the working out of a plan for the conduct of the work. The following plan was the one which was adopted as it seemed to be best adapted to the purposes of the experiment.

1. To thin a portion of the fruit from some of the trees and leave the remaining trees unthinned as a check upon results.
2. To record the number and size of the windfalls and picked apples from the different trees.
3. To determine approximately the amount of injury from insects and scab.
4. To find the market grades of the picked fruit.
5. To take any other observations which might have a bearing on the thinning of apples.

The Experimental Work.

Section 1. At the beginning of the work all of the trees were numbered from one to twenty four inclusive. The trees of the different varieties were numbered as follows:

Trees numbers 1 to 6 inclusive Baldwin.

$$
=4=
$$

Trees Nos. $3,5,8,12,13,17,21$ and 23 were reserved as check trees, and the remainder of the trees were thinned as much as seemed necessary. Thinning was begun on July 9 th and completed on August $18 t h$, a period of showery weather delaying the work for some time. In thinning the fruit defective specimens injured by insects or scab were the ones removed. The time required to do the thinning varied from one hour to two and one half hours, but a longer time was required than would be necessary in practical work as all fruits removed were placed in a sack carried over the shoulder of picker While in practical work the apples removed in the thinning process would be dropped on the ground as picked. An ordinary picking ladder fifteen feet in length was used in all work while in practice a good step ladder could be used advantageously while working around the lower limbs of the trees.

Table I shows the total number of apples produced by the trees which were thinned, the number of apples remaining on the trees at the time thinning was done, the number of apples removed in the thinning process, the per cent of the total removed, and the per cent removed of the number remaining on the trees at the time of thinning. As the season progressed more defective frixit was observed, hence those varieties
which were thinned last, Grimes Colden, Jonathan and Winesap, were thinned more closely than the Ben Davis and Baldwin trees. Section 2. The Number and Size of Windfalls and Picked Fruit.

In order to form a proper estimate of the benefits be
which are tongained by thinning, the n:umber and sizo of the apples borne by each tree must be taken into consideration. Tc count the frui's on a mature appla tree is impracticable so the apples falling and those which were removed by pickinf were counted. Table II gives the number of apples counted at each picking of windfalls and sathered fruit, and it also gives the total number of apples borne by each tree.

To determine what influence thinning exerts upen the size of the fruit a record was kept of the number of apples of different sizes produced by each tree. A board having a number of circilar holes ranging from one half inch to three and one quarter incher in diameter, each hole being one fourth inch larger than the preceding one, was used in determining tho size of the apples. Table III gives the total number of appler of each size produced by each tree and Table IV gives the percent ages of the apples of each size.

If thinning has any value in increasing the size of fruit it is the picked fruit which i^{2} is desired to afeoct, as size and market value have a very definite r?lation. Hence Tarle vgiving the percentages of the picked apples of each size, has been prepared.

$$
=6=
$$

Section 3. The Amount of Injury kesul'ing from Insects and scab.

Shortlir after the experiment was started one fact became evident, consideration must be, given to the possibility scab
of severe injury from insects and before deciding the question of the profitableness of thinning apples ro determine more definitely the amount of injury resulting from these enemies, a record war kept for the greater portion of the time of the the injury from this source. rable VI gives the result of this vork expressod in percentages of the fruits injured by insects and scab.

Section 4. Market Crades of ricked Fruit.
All picked fruits were carefully graded into three grades, No. l's, No. 2's, and culls, and the amount of the apples of each grade from each tree was recorded. Table VII gives the results of this work.
section 5. Minor Ubservations.
Three other factors which migh ${ }^{+}$have an influence on the thinning of apples are; the weather, the coloring of the fruit, and the condition of the foliage.

The first of these factors doubtless had considerable influence upo? the development of the fruit. During a considerable portion of the time the weather was extremely dry and it is certain that the trees suffered from the drought. Whether this unfavorable weather had any influence upon the falling of fruit can not be definitely known but it undoubt -

$$
=7=
$$

odly checked the development of the apples.
Une of the chief merits claimed for thinning is the higher color secured on the fruit from thinned trees. Careful observation was made at the time of final picking but no difference could be detected between the friit from the thinned and unthinned trees in regard to color, it being uniformly high on all fruits.
ro secure the highest development of the fruis the foliage must be in a thrifty, healthy condition. so far as could be detected there were no marked differences in the foliage of the different trees. All trees suffered quite uniformly from an attack of yellow leaf during the latter part of July following a protracted period of cloudy, showery weather. Brow spotting of the leaves was common on all trees, and none of the trees were attacked by tent caterpillars. Since all of the trees were affected similarly with regard to foliage injury, any differences in the fruit arenot due to differences in the foliage of the trees.
section 6. Discussion of Results.
For the purpose of comparison the trees will be grouped together by threes, the trees in each group being quite uniform in size and bearing approximately the same amount of fruit. The following table shows the trees in each group and it also gives the variety of the trees in each group.

$$
=8=
$$

Nos. of trees.

Group	I.	1,	2,	and	3	Baldwin.
',	II.	4,	5.	and	6	,
, '	III.	7 ,	8,	and	9	Jonathan.
' '	1V.	10,	11.	and	12	Grimes Golden.
' '	V.	13.	14 ,	and	15	' ${ }^{\prime \prime}$
11	VI.	16,	17.	and	18	Ben Davis.
,	VII.	19.	20,	and	21	,
'	VIII.	22,	23,	and	24	Winesap.

For the sake of convenience the results in each group will be discussed separately as this method will give fairer comparison than by comparing all of the trees of one variety.

In Group I tree No. I was reserved as a check, tree No. 2 was thinned 31.0%, and tree No. 3 was thinned 34.6%. (Table I). By consulting Table II it is found that tree No. 1 produced 2099 apples, tree NO. 2 produced 3327 apples, and tree No. 3 produced 2389 apples. From Tables III and $1 V$ it can be seen that the apples from tree No. 3 averaged slightly larger in size than those from the other two trees. At the final picking the apples from tree No. l were larger, and the apples from tree No. 2 were smaller than the apples from tree No. 3. (Table V). Evidently thinning had little influence upon the size of fruit in this group, the observed differences are probably due to other couses. By referring to Tables II and VII it is seen that tree No. 3 prodiced the largest num-

$$
=0=
$$

ber and also the largest quantity of picked fruit. As far as can be determined there was an absolute loss in this group from thinning.

In Group II tree No. 5 was used as a check, 42.5% of the frutt was removed from tree No. 4 and 32.3% from tree No. 6. (Table I). Table II showe that tree No. 4 produced 2063 apples, tree No. 5 produced 1393, and tree No. 6 produced 1599. From ?ables III and IV it is seen that the fruit from tree No. 5 averaged fully as large, if not larger than the fruit from the other two trees. At the final picking the fruit from trees Nos. 4 and 6 was considerably larger than the fruit from tree No. 5. (Table V). In both cases there is a slight increase in size due to the efeect of thinning. By referring to Tables II and VII it is seen that tree No. 5 produced a larger number and also a slightly greater quantity of picked fruit than either of the other trees. In this groip there is a slight increare in the size of the picked fruit from the thinned trees as compared with the size of that from the check tree, but there is an absolute los in the quantity of picked fruit from the thinned trees.

In Group No. III tree No. 8 was used as^ check, 30.8%
of the fruit was removed from tree No. 7 and 41.3% from tree No. 9. By referring to Table II it is found that tree No. 7 produced a total of 2593 apples, tree No. 8 prciuced 2010 , and tree No. 9 produced 1669. Tables III and IV show comparatively slight differences in the fruit from the different trees. The

$$
=10=
$$

picked fruit from trees Nos. 7 and 9 was larger than th? picked fruit from tree No. 8. (Table V). Tables II and VII show that tree No. 7 produced a greater number and a larger quantity of picked fruit than did tree No. B, while the picked fruit from tree No. 9 was less in both quantity and number than the picked fruit from tree No. 8. Giving the proper consideration to the number of apples produced by each tree it appears that thinning increased the size of the picked fruit, the differences in quantity of picked fruit are probably due to the differences in the total number of apples produced by each tree.

Considering Group IV in which tree No. 12 is used as a check, 43.6% of the fruit was removed from tree No. 10 , and 48.1% from tree No. 11. Tree No. 10 produced 1292 apples, tree No. 11 produced 1061, and tree No. 12 produced 1075. (Table II). From Tables III and IV it can be seen that the average size of the fruit from trees Nos. 10 and 11 is slightly larger than the fruit from tree No: 12. Table V shows that the picked fruit from tree No. 10 is larger, and that from tree No. 11 is smaller than the picked fruit from tree No. 12. Referring to Tables II and VII it is found that the number of picked fruits from tree No. 12 is greater than the number of picked fruits from either of the other trees but that the quantity of picked fruit from tree No. 12 is only equal to that from tree No. 10 and slightly greater than that of tree No. 1l. The resilts in this group

$$
=11=
$$

do not seem to indicate any gain from thinning, the fruit from one tree is apparently increased in size by thinning while the fruit of the other tree is not appreciably affected. The observed differences mey be largely due to the individuality of the tree nevertholess thinning probably influenced the size of the fruit to a certain extent.

In Group V tree No. 13 is the check tree, tree No. 14
was thinned 54.2%, and tree No. 15 was thinned 44.8%. The number of apples produced by each tree as given in Table II is: tree No. 13,1610 ; tree No. 14, 1887; and tree No. 15, 1669. Tables III and IV show that the fruit from the thinned trees averaged slightly larger than the fruit from tree No. 13. Comparing the size of the picked fruit, (Table V), it is found that the fruit from the thinned trees is larger than the fruit from the check tree. From Table VII it is seen that the quantity of picked fruit from tree No. 15 is larger, and that from tree No. 14 is equal to the quantity of picked fruit from tree No. 13. Table II shows that tree No. 15 produced the largest number of picked frui今s and tree No. 14 produced the smallest number. The results from both of the thinned trees seem to indicate a slightly incrased size due to thinning.

Tree No. 17 is the check tree in Group VI, 36.5% of the fruit was removed from tree No. 15 , and 32.2% was removed from tree No. 18. Tree No. 16 produced 1978 apples, tree No. 17 produced 1695, and tree No. 18 produced 1725. (Table II). By consulting Tables III and IV it is found that the fruit of

$$
=12=
$$

tree No. 17 averages slightly larger than the fruit from either of the othor trees. In Table V it is shown that the picked fruit of trees Nos. 17 and 18 is practically equal in size while the fruit from tree No. 16 is larger than the fruit from either. Table II shows that a larger number of apples was picked from tree No. 17 than from either of the other two a trees, and Table VII shows that tree No. 17 yieldedAslightly larger quantity of picked fruit than tree No. 16 or tree No. 18. This latter table also shows that the fruit from the trees which had been thinned graded somewhat better than the fruit from the check trse. In this group thinning increased the size of the picked fruit, and it also improved the grade, but there is a loss in the total yield of picked fruit. Group VII includes tree No. 19 , thinned 31.8%, tree No. 20 , thinned 46.6%, and tree No. 21 , check. Table II shows that tree No. 19 produced 1291 apples, tree No. 20 produced 1481, and tree No. 21 produced 1980. The average size of the picked fruit from the thinned trees is larger than the average size of the picked fruit from the check tree. (Tables III and IV). A marked difference in favor of the fruit of the thinned is found when a comparison of the sizes of the picked fruit from the thinned and check trees is made. (Table V). Tables II and VII show that tree No. 21 produced a greater number and a larger quantity of picked fruit than did either of the other trees. Much of the fruit from tree No. 2 I was too small to grade well hence a much larger proportion of the fruit

$$
=13=
$$

from this tree graded as culls. In this group thinning increased the size of the fruit and it also improved the grade but there was quite a loss in the quantity of fruit harvested.

In Group VIII tree No. 23 is the check tree, 49.9% of the fruit was removed from tree No. 22 and 56.8% was removed from tree No. 24. The total number of apples produced by each tree is: tree No. 22, 1497 ; tree No. 23, 1245; and tree No. 23, 1295. Tables III and IV show that the average size of the apples from the thinned trees was somewhat larger than the size of apples from the check tree. The size of the picked fruit from tree No. 22 is greatest while the size of the picked frint from trees Nos. 23 and 24 is practically the same. The number of picked apples is greatest from tree No. 22 and is least from tree No. 24. Yields of picked fruit from these trees are so small that they are scarcely worthy of consideration. There being no harmony in the resilts obtained in this group it appears that the differences are not due to thinning but are the result of other causes.

Conclusions Drawn from this Experiment.
Final conclusions can not be dram from this experiment because; (1) the trees selected did not bear a sufficientof ly heavy crop a iruit to justify severe thinning, (2) insect injuries and scab coupled with unfavorable weather conditions produced an extremely large proportion of windfalls. These conditions modified results tosuch an extent that they are valueless from a commercial standpoint. Instead they must be

$$
=14=
$$

interprepted as indicating in a general way the effect of judicious thinning upon the fruit. Further investigation under more favorable conditions and carried on for a series of years is needed to ottain conclusive results on the thinning of apples.

One conclusion can be dram from the experiment without fear of contradiction: thinning of apples is unprofitable when there is only a moderate setting of fruit and when there is an unusually large amount of injury from insects and scab. Hence it behooves the orchardist to pive carefil attention to his trees, proper pruning, spraying, and cultivation, before giving any attention to the secondary matter of reducing the number of apples borne by the trees.

Results in most cases indicate an increased size and a slightly better grade of fruit from the thinned trees. Under more favorable conditions and with a discriminating market, willing to pay higher prices for the better grade of apples, thinning might be a profitable practice. In sorne $e x-$ ceptional cases thinning is of great value in protecting the tree from injury from over bearine, preventing breaking of the branches. Otherwise there does not appear to be any material benefit from thinning apples. Further investigation may show far greater benefits from thinning but as far as this expermen goes, no thinning of apples is recommended except as stated arove for the protection of the tree.

$$
=15=
$$

TABLE NO.I.

Tree No.	Total No. of Apples	No.on tree at time of thinning	No.removed by thinning	Per cent of total removed	Per cent of crop then on tree removed
1	2099	1450	455	21.4	31.0
2	3327	2327	805	24.2	34.6
3	Check.				
4	2063	1505	641	31.1	42.6
5	Check.				
6	1599	1338	432	27.0	32.3
7	2593	1553	618	23.8	39.8
8	1669 Check.				
9	1669	888	367	21.9	41.3
10	1292	972	424	32.9	43.6
11	1051	818	394	37.1	48.1
12	Check.				
13	Check.				
14	1887	1274	691	36.6	54.2
15	1669	1202	539	32.3	44.8
16	1978	1262	461	23.3	36.5
17	Check.				
18	1725	1070	345	20.0	32.2
19	1291	852	271	20.9	31.8
20	1481	1200	560	37.8	45.6
21	Check.				
22	1497	872	435	29.1	49.9
23	Check.				
24	1285	682	388	29.9	56.8

$$
=16=
$$

TABLE NO.II.
Number of Apples at each Picking.

Tree		Windfalls.					Thinned.Final. Total		
No.	1	2	3	4	5	6			
1	649	177	442	213	68		455	95	2099
2	1000	278	467	422	116		805	239	3327
3	758	262	580	338	104			347	2389
4	558	142	347	227	21		141	127	2063
5	472	186	398	160	37			140	1393
6	261	127	383	232	45		4.32	119	1599
7	等	214	826	314			614	621	2593
8		153	656	731				470	2010
9		156	625	316			367	205	1569
10	208	112	123	235			424	190	1292
11	122	121	43	222			394	159	1061
12	102	173	232	307				231	1075
13	202	315	390	419				283	1610
14	193	420	38	287			591	258	1887
15	182	285	71	302			539	290	1039
16	716	239	220	93	44	50	461	155	1978
17	787	124	258	180	48	83		215	1595
18	655	122	229	88	42	70	345	174	1725
19	439	106	188	90	53	48	271	96	1291
20	281	82	218	138	46	59	560	97	1481
21	536	140	394	171	81	173		487	1980
22	59	106	460	178	66	101	435	92	1497
23	21	112	532	381	36	99		64	1245
24	48	139	425	146	44	62	388	42	1295

\# The fallen fruit from trees Nos. 7,8 , and 9 had been covered up cultivation a few days before the first picking of windfalls.

$$
=17=
$$

TABLE NO.III.
Size of fruit. Number of Apples of Different sizes.

Tree No.	$\frac{1}{2}{ }^{\prime \prime}$	$\frac{3}{4} 1$	1"	17"	1-7 ${ }^{\prime \prime}$	13 ${ }^{\prime \prime}$	2"	$2 \frac{11}{4}$	2글 ${ }^{1}$	$2 \frac{31}{4}$	3"	$3 \frac{1}{4}$ "	Total
1	22	91	393	119	140	65	127	405	171	257	215	94	2099
2	52	157	571	178	219	133	304	671	195	375	400	72	3327
3	17	103	444	145	152	65	79	275	192	357	425	135	2387
4	8	54	287	147	153	57	144	524	144	240	213	92	2063
5	5	33	257	118	116	38	46	151	135	208	184	101	1393
6	14	34	118	65	100	47	28	172	412	294	205	110	1599
7		14	51	49	205	484	486	737	306	245	13	2	2593
8		3	25	22	81	131	282	692	589	185			2010
9		5	22	38	136	274	302	439	241	205	7		1569
10	5	43	124	53	61	62	124	359	204	199	54	4	1292
11	13	29	76	32	62	70	125	314	179	128	30	3	1061
12	9	21	69	38	71	90	192	320	124	124	17		1075
13	16	42	129	55	81	118	310	480	301	74	4		1610
14	31	34	110	86	128	137	258	524	430	127	21	1	1887
15	32	68	77	58	100	159	287	376	347	131	26	8	1569
16	51	170	392	134	394	253	173	130	57	68	78	48	1978
17	48	230	391	119	95	61	111	204	183	165	75	13	1695
18	73	205	332	94	266	191	15.5	136	95	116	53	9	1725
19	36	118	243	82	202	133	124	66	81	81	66	29	1291
20	10	77	153	63	257	322	203	120	53	100	57	20	1481
21	52	206	247	80	293	320	378	285	77	27	13	4	1980
22	2	33	70	65	119	326	376	374	107	25			1497
23		5	45	62	103	299	386	236	76	33			1245
24		9	60	79	115	271	300	350	87	24			1295

TABLE NO.IV.
Percentages of apples of different sizes.

Tree

 $\begin{array}{rrrrrrrrrrrrr}1 & 1.05 & 4.34 & 18.72 & 5.67 & 6.67 & 3.10 & 6.05 & 19.29 & 8.15 & 12.25 & 10.23 & 4.48 \\ 2 & 1.55 & 4.72 & 17.16 & 5.35 & 5.58 & 4.00 & 9.14 & 20.17 & 5.86 & 11.27 & 12.05 & 2.15 \\ 3 . & .71 & 4.31 & 18.59 & 5.07 & 6.36 & 2.72 & 3.31 & 11.51 & 8.04 & 14.94 & 17.79 & 5.65 \\ 4 & .39 & 2.62 & 13.93 & 7.13 & 7.41 & 2.76 & 6.98 & 25.40 & 6.98 & 11.63 & 10.33 & 4.45 \\ 5 & .41 & 2.37 & 18.45 & 8.47 & 8.33 & 2.73 & 3.30 & 10.84 & 9.69 & 14.93 & 13.22 & 7.25 \\ 6 & .88 & 2.13 & 7.39 & 4.07 & 5.26 & 2.94 & 1.75 & 10.77 & 25.79 & 18.41 & 12.83 & 6.88\end{array}$

7		.54	1.97	1.89	7.94	18.51	18.74	28.42	11.80	9.45	.50	.08
8		. .15	1.24	1.09	4.03	6.52	14.03	34.42 .29 .30	9.20			
9		.29	1.32	2.27	8.15	16.42	18.09	25.30	14.14	12.28	.42	
10	.39	3.33	9.60	4.10	1.45	4.53	9.60	27.79	15.79	15.40	4.18	.31
11	1.22	2.74	7.17	3.02	5.85	0.60	11.79	29.62	16.89	12.07	2.83	.28
12	.83	1.95	5.42	3.53	6.60	8.37	17.86	29.77	11.53	11.53	1.58	
13	.99	2.61	8.01	3.41	5.03	7.33	19.25	29.81	18.69	4.59	.25	
14	1.64	1.80	5.83	4.56	5.78	7.26	13.68	27.77	22.79	6.73	1.11	0.05
15	1.92	4.07	4.61	3.47	5.99	9.53	17.13	22.53	20.79	7.85	1.56	.48
15	2.58	8.59	19.82	8.29	19.92	12.84	8.75	6.57	2.88	3.44	3.94	2.42
17	2.83	13.57	23.07	7.02	5.60	3.60	6.55	12.03	10.79	9.73	4.42	.75
18	4.23	11.88	19.25	5.45	15.42	11.07	8.98	7.88	5.51	6.72	3.07	.50
19	2.79	9.14	18.82	5.35	15.65	12.64	9.61	5.11	6.33	6.33	5.11 .2 .25	
20	1.08	5.20	10.33	4.25	17.30	21.74	13.71	8.10	6.28	6.75	3.85	1.35
21	2.62	10.39	12.45	4.04	14.78	16.15	19.07	14.38	3.88	1.36	.65	.20

$\begin{array}{lllllllllll}.40 & 3.41 & 4.98 & 8.27 & 24.02 & 31.01 & 18.96 & 6.10 & 2.65\end{array}$
$\begin{array}{lllllllll}. & 69 & 4.53 & 6.10 & 8.88 & 20.93 & 23.17 & 27.03 & 6.72\end{array} 1.85$

$$
=19=
$$

TABLE NO.V.
Size of Picked Fruit.
Percentages of Apples of Different Sizes.

Tree	1表"	$13^{\prime \prime}$	$2^{\prime \prime}$	$2 \frac{1}{4}{ }^{\prime \prime}$	2	$23^{\prime \prime}$	$3 \prime$	$3 \frac{1}{4}^{\prime \prime}$
No.								
1					2.11	10.53	33.68	53.68
2					2.93	13.32	61.09	19.66
3					2.31	17.00	45.57	31.12
4					1.57	9.45	33.86	53.12
5					2.86	11.43	42.15	43.56
6					. 84	9.24	34.45	55.46
7			. 48	23.67	40.58	34.95	. 32	
8			2.97	28.08	43.85	25.10		
9			. 97	14.15	24.87	57.57	2.44	
10			2.10	17.89	17.37	47.37	13.69	1.58
11			5.03	35.85	20.76	30.19	7.55	. 62
12		. 43	7.79	29.03	18.17	38.53	6.05	
13		4.24	28.27	20.49	37.10	9.54	. 36	
14		. 39	1.55	12.79	62.79	18.60	3.49	. 39
15		. 69	4.14	12.76	56.53	19.31	4.83	1.72
16				5.81	8.39	26.45	35.48	23.87
17			4.19	14.88	18.61	34.62	22.78	5.12
18			4.60	9.19	20.31	39.65	21.26	5.17
19				2.08	11.46	28.23	39.58	18.75
20			2.06	6.19	8.25	46.39	22.68	14.43
21	. 62	6.57	39.63	38.61	8.83	3.48	1.64	. 62
22	4.35	20.65	22.83	31.52	16.30	4.35		
23	7.81	23.44	28.13	25.00	14.06	1.53		
24	2.38	16.67	45.24	28.57	4.76	2.38		

$$
=20=
$$

TABLE NO.VI.
Percentages of Frults injured by Insects or affected by Scab.
Tree No. Curculio. Coaling Moth. Other Insects. Scab. Perfect.

1	76.64	55.50	18.16	89.76	. 93
2	71.52	43.73	27.33	80.00	1. 80
8	74.22	71.14	15.86	90.98	1.07
4	59.29	41.33	28.52	81.41	3.45
5	76.03	71.58	15.09	94.35	. 34
6	38.01	55.31	20.49	84.51	4.03
7	53.46	81.10	13.97	58.82	1.20
8	57.00	78.81	17.05	76.24	. 86
9	52.54	82.55	14.30	82.35	. 10
10	74.97	64.04	18.06	86.50	. 40
11	56.46	67.21	14.26	86.56	. 90
12	63.45	72.42	18.15	93.79	. 00
13	66.71	71.53	19.97	93.20	. 42
14	50.60	57.75	20.70	87.82	. 17
15	68.80	66. 13	15.78	93.74	. 46
16	81.85	36.85	13.09	91.85	. 43
17	78.02	67.80	20.94	92.41	. 79
18	80.46	13.39	12.64	91.52	. 57
19	72.74	41.05	21.24	88.14	1.59
20	59.42	39.89	15.70	89.31	1.86
21	72.66	73.41	11. 51	95.13	1.31
22	62.17	92.27	7.55	98.42	. 00
23	72.13	88.50	11.21	97.64	. 00
24	68.12	82.26	10.46	97.82	. 00

$$
=21=
$$

TABLF NO.VII.

Final Picking. Market Grades of Picked Fruit.

Tree	No. No.	Amou O.l.	$\text { Of } A_{1}$ No	$\begin{aligned} & \text { ples ol } \\ & 0.2 \text {. } \end{aligned}$	Differe	ent Grad ulls.		$\begin{aligned} & \text { Total } \\ & \text { Yield. } \end{aligned}$
1		bushel	1/15	bushel	3/13	bushels	$\frac{3}{4}$ b	bushel
2	1	,	- $\frac{3}{8}$	"	$\frac{1}{4}$	"	$1 \frac{5}{8}$	"
3	$1 \frac{1}{4}$	"	$\frac{3}{8}$	"	$\frac{8}{3}$	"	2	"
4	$\frac{3}{4}$	"	$\frac{1}{3}$	"	$\frac{1}{4}$	"	17 $\frac{1}{8}$	"
5	$\frac{3}{4}$	"	$\frac{1}{8}$	"	$\frac{3}{8}$	"	$1 \frac{1}{4}$	"
6	$\frac{5}{8}$	"		"		"	1	"
7	3/15	"	7/15	"	178	"	2 $\frac{1}{2}$	"
8	$\frac{1}{8}$	"	$\frac{1}{4}$	"	1, $\frac{3}{8}$	"	$1 \frac{3}{4}$	"
9	1/32	"	3/32	"	$\frac{3}{4}$	"	$\frac{7}{8}$	"
10	3/16	"	3/16	"	9/16	"	1-5/16	6
1.1	$\frac{1}{83}$	"	3/15	"	7/16	"	$\frac{3}{4}$	"
12	$\frac{1}{8}$	"	3/15	"	$\frac{5}{8}$	"	$1-5 / 13$	6
13	$\frac{1}{4}$	"	$\frac{1}{4}$	"	$\frac{5}{8}$	"	118	"
14	$\frac{3}{8}$	"	$\frac{1}{4}$	"	$\frac{1}{2}$	"	$1 \frac{1}{8}$	"
15	$\frac{3}{3}$	"	$\frac{1}{4}$	"	4	"	$1 \frac{3}{8}$	"
16	3/16	相	$\frac{3}{3}$	"	7/16	"	1	"
17	3/16	"	$\frac{1}{4}$	"	$\frac{5}{8}$	"	1-1/16	6
18	5/16		$\frac{1}{8}$	"	7/16	"	$\frac{7}{8}$	"
19	능	"	$\frac{1}{8}$	"	$\frac{1}{4}$	"	$\frac{1}{2}$	"
20	$\frac{1}{4}$	"	1/16	"	3/16	"	$\frac{2}{2}$	"
21	?	"	$\frac{2}{2}$	"	1 $\frac{1}{8}$	"	2	"
22					$\frac{1}{4}$	"	$\frac{1}{4}$	"
23					3/16	"	3/15	"
24					$\frac{1}{8}$	"	$\frac{1}{8}$	"

$$
=22=
$$

Part II.

A Summary of Available Literature on the Subject of
The Thinning of Orchard Fruits.
Eiore or less extensive experiments in thinning orchard
fruits have been coducted at several agricultural experiment stations and the results of these tests are published in the form of bulletins and in the annual reports of the stations. A review of this literature gives one a broader view of the subject in hand and ennables one to form more accurate conclusions regarding the value of thinning apples, peaches, pears, and plums.

Section 1. Literature Relating to the Thinning of Apples. New York Eulletin 234.

New York Bulletin 234 reports tests of thinning apples for a period of four years. Mature trees of Baldwin, Rhode Island Greening, and Hubbardston Nonesuch were used in the test. The thinning was done in June and July of each year and observations were made on the effect of thinning on the color, size, market value, and the amonent and regularity of fruit production. The following is abrief summary of the results.

Color. Whenever the trees were well filled, thinning heightened the color.

Size. When the trees were full, thinning increased the size of the fruit.

Market Value. Thinning produced a superior grade of

$$
=23=
$$

of apples better adapted to marketing in the smaller packages. When the fruit is marketed in barrels there is less chance for the thinned fruit to sell at a sufficient advance to pay for thinning.

Amount and Regularity of Fruit Production. The practice of thinning did not appear to cause any change in the amount or regularity of fruit production.

Time to Thin. These experiments lead to the opinion that early thinning is best.

Cost of Thinned as Compared with Unthinned Fruit. The cost of thinning sho:xld not exceed fifty cents per tree. Apples from thinned trees can be handled more economically than apples from unthinned trees as there is a proportionally less amount of drops, culls, and No. 2's.

Niassachusetts, (Hatch), Bulletin 44.
This bulletin reports an experiment in thinning Gravenstein and Tetofsky apples. Wuch of the fruit dropped prematurely but the market value of the fruit from the tininned trees was greater than the market value of the fruit from the unthinned trees.

Table of Results.
Firsts. Seconds. Windfalls. Mkt. Val. Gain. Gravenstein Thinned. 7 bus. 1 bus. 912 bus. $8.45 \% ~ \$ 2.33$ 1 , Unthinned. $21 / 2^{11} \cdot 2^{1 / 2 "} \cdot 10^{\prime \prime} 4^{\prime \prime} \cdot \$ 2.12$ Cost of thinning. Profit

Cost of thinning.

Profit
*
Firsts valued at $60 \notin$ and seconds at $25 \nLeftarrow$ per bushel.

$$
=24=
$$

Connecticut, (Storrs), Report 1902-3, pp28-29
Four benefits are expected to be derived from thinning fruit. (1) maintaining the vigor of the tree; (2) producing fruit of maximum size, appearance and quality; (3) securing annual crops instead of alternate; (4) preventing the spread of parasitic diseases. An account of an experiment in thinning apples is also given. Five Baldwin trees of medium size, in a good state of thrift, and under the same conditions were selected for the experiment. Three of the trees were thinned July 15, 1902, and the other trees were left unthinned as a check on the results.

Table of Results.

Tree	No.	No.	No.	Tot. No.	Barrels	Earrels	Tつさal
No.	Thinned.	l's	215	Apples.	No. I's	No. 2 's	Value
1	1260	2440	375	4075	4.60	. 64	\$6.25
2	1450	3515	1205	6270	6.81	1.64	9.80
3		1710	3805	5605	3.00	5.44	7.62
4	325	2825	1150	4900	5.40	1.67	8.00
5	----	2190	1970	4160	4.00	2.54	7.00

These results show that thinning increased the proportion of first grade fruit and that there was a profit in thinning in all but one case.

Niaryland Bulletin 82.
This bulletin is for the purpose of calling the attention of fruit-growers to the benefits derived from thinning, it also enumerates the objections to thinning. The closing sentences of this bulletin are; " It should be distinctly understood that thinning will not pay except the other practices, which go with proper fruit culture, have been attended to. It

$$
=25=
$$

will not pay to thin an orchard which has not been properly pruned, sprayed, fertilized and cultivated".

Section 2. Literature Relating to the Thinning of Peaches.

American Agriculturist Vol. 69, page 700.
An account is given by Alva T. Jordan of an experiment conducted at the New Jersey Agricultural Experiment Station in 1900. Two peach trees, one bearing 86.2 and the other bearing 852, were selected for the experiment.
Table of Result.

Tree No. I. Tree N゙o. II.

Per cent removed by thinning.	69.5\%	31.9%
Baskets of fruit picked.	2.83	3.92
Average weight per peach.	1.49 ozs.	2.81
Price per basket offered by grocers.	$\$ 1.00$	\$0.45
Value per tree.	82.83	81.76
Gain in favor of severe thinning.		$\stackrel{1.07}{ }$

No tabulated results are given, but the statement is made that the results obtained favor the thinning of peaches to a distance of about eight inches apart.

$$
\text { Michigan Bulletin 205, p, } 30
$$

In this bulletin, as in the preceding one, no table of
results is given. It was found that the thinned trees had healthier foliage and were more thrifty than the unthinned trees. The fruis from the thinned trees, because of its larg-

4e

$$
=26=
$$

er size and better quality, was of more more value than the fruit from the unthinned trees. Severe thinning is recommended for peaches.

Section 3. Literature Relating to the Thinning of

Pears.

Only one reference bearing on this topic could be found and that is in the Report of the Delaware Station for 1900. An experiment in thinning Kieffer pears was tried in a commercial orchard. A severe windstorm stripped the pears from the tops of the trees hence results are only suggestive not positive. Following are the results obtained. No. I pears from the check trees ran 92 per $5 / 8$ bushel basket. No. I pears from the thinned trees ran 80 per $5 / 8$ bushel basket. 61% of the fruit from the check trees were of No. I grade. 83% of the fruit from the thinned trees were of No. I grade.

These results while not conclusive, show a gain in size and an improvement in quality due to the effect of thinning.

Section 4. Literature Relating to the Thinning of Plums.

```
Massachusetts, (Hatch), Bulletin 44.
A tree each of the Guei and Victoria plums were div-
``` ided into approximately equal halves and one half of each tree was thinned.
\[
=27=
\]

Table of Results.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Variety. & \multicolumn{6}{|l|}{Marketable Plums. Value. Gain. Per cent Rot.} \\
\hline Guei thinned. & 9 & quar & ts. & \$0.81 & \(\because .32\) & 28\% \\
\hline ', check. & 5.5 & ' & , & 0.49 & & 42\% \\
\hline Victoria thinned. & 16 & , & , & 1.41 & . 59 & 20\% \\
\hline \multirow[t]{4}{*}{', check.} & 9.5 & , & 1 & . 85 & - & 46\% \\
\hline & Gain. & & & & & . 91 \\
\hline & \multicolumn{6}{|l|}{Cost of thinning two half trees. . 30} \\
\hline & \multicolumn{5}{|l|}{Net gain.} & \& 61 \\
\hline
\end{tabular}

Delaware Report 1899.
Accounts are given in this report of two experiments in thinning plums. In the first experiment trees of the Burbank variety were used and the results were unfavorable to thinning. The cost of thinning was ten cents per tree and the fruit from the check trees had a greater market value than the fruit from the thinned trees. A noticeable increase in size was observed in the fruit of the thinned trees but as no difference in price was obtained in favor of the plums from the thinned trees, thinning was unprofitable.

In the second experiment trees of Poole's Pride plum were used and the cost of thinning was fifteen cents per tree. Practically the same quantity of fruit was produced by the thinned and unthinned trees so there was no profit in the thinning in this experiment. Some difference in size in favof or the fruit from the thinned trees was noticed. The most noticeable difference in favor of thinning was seen in the
\[
=27=
\]

Table of Results.
Variety. Marketable Plums. Value. Gain. Per cent Rot.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Guei thinned. & 9 & quar & t & & \$0.81 & 8.32 & 28\% \\
\hline - check. & 5.5 & ' & - & - & 0.49 & & 42\% \\
\hline Victoria thinned. & 16 & , & , & - & 1.41 & . 59 & 20\% \\
\hline 1. check. & 9.5 & , & , & - & . 85 & & 46\% \\
\hline & Gain. & & & & & & . 91 \\
\hline
\end{tabular}

Cost of thinning two half trees. . 30 Net gain.

Delaware Report 1890.
Accounts are given in this report of two experiments in thinning plums. In the first experiment trees of the Burbank variety were used and the results were unfavorable to thinning. The cost of thinning was ten cents per tree and the fruit from the check trees had a greater market value than the fruit from the thinned trees. A noticeable increase in size was observed in the fruit of the thinned trees but as no difference in price was obtained in favor of the plums from the thinned trees, thinning was unprofitable.
In the second experiment trees of Poole's Pride plum
were used and the cost of thinning was fifteen cents per tree. Practically the same quantity of fruit was produced by the thinned and unthinned trees so there was no profit in the thinning in this experiment. Some difference in size in favof or athe fruit from the thinned trees was noticed. The most noticeable difference in favor of thinning was seen in the
\[
=28=
\]
condition of the trees. The unthinned trees were so badly broken that it was necessary to renew the tops while the thinned trees were in good condition to bear a good crop the succeeding year.

New Mexico Bulletin 39, pp. 1:3-25.
Trees of the Wild Goose, Clyman, Tragedy, and Yellow Egg varieties were thinned; check trees were also kopt of each variety. In every case the percentage of first class fruit produced by the thinned trees was greater than the percentage of first class fruit produced by the unthinned trees. The percentage of salable fruit was increased in each case by thinning, hence on the whole the results are in favor of thinning.

Part III.

Final Conclusions.
1. In any kind of orchard fruit it will pay to thin the fruit if necessary for the protection of the tree.
2. Thinning of apples and pears, except in cases where a marked discrimination in favor of quality is made, has gener ally been unprofitable. Practically all experiments indicate that larger and better fruit is produced by thinning.
3. Thinning of peaches has generally been very profitable. Size and quality determine the market value of peachesq hence quantity can be sacrificed to secure quality with profitable results. Severe thinning of peaches is more profitable than moderate thinning.
\[
=29=
\]
of plums
4. Thinningais not usually very profitable although
larger fruit is obtained by thinning. Thinning has proven to be valuable in protecting the tree and also in the prevention of brown rot. Experiments show that thinning the fruits so that they do not touch prevents brown rot to a certain extent. Size is of little importance in determining the market value of plums hence the increased size resulting from thinning does not enhance the value sufficiently to pay for thinning.
5. Thinning is always unprofitable unless the other practices of fruit culture; pruning, spraying, cultivation and fertilization; have been given proper attention. In other words thinning is not a problem for the careless orchardist, it is only a problem for the skillful horticulturist. At present the thinning of orchard fruits is usually of minor consideration, but as progress is made in solving the other horticultural problems, and as the demand of the market changesfrom quantity to quality, thinning may, and undoubted will, become of greater importance in the management of orchards.
6. A final word should be added as to the cost of thinning. The experiment conducted cost 52.3 but only a small portion of this total cost should be credited to thinrinc. The time required to thin a medium sized apple tree bearing a full crop should not be greater than two or two and one half hours, valuing labor at \(15 \psi\) per hour the cost would be 30 to \(371 / 2 \nmid\) per tree.```

