Bagby \& Casey

Tests of Reinforced Concrete Beams:

Civil Engineering
B. S.

THE UNIVERSITY

OF ILLINOIS

LIBRARY
1907
B14

MODULUS OH HLASTICHIY HOR VARIOUS MIXTURLES 13 Y
 ```INRNNCIS CYRUS BNGBY \\ AND```
 AUGUSTIUS BACON CASIEX

THESIS

Digitized by the Internet Archive in 2013


```
MOIOULJSS OH ETAASIICITIY NOMR
VARIOUS MLNTUURNS
```

HRANCIS CYRUS BAGIBI

```
HRANCIS CYRUS BAGIBI
        NN゙D
        NN゙D
AUGUSTUS BACON CASEY
```

AUGUSTUS BACON CASEY

```

\section*{THESAS}
FOK
```

DEGREE OF BACHELOR OF SCIHNCN

```

Nay 24, 1907.

This is to certify that the following thesis pres area under the direction of Processor A. N. Talbot, Head of tho Department of lunicipal and Sanitary Engineering, by

> FRANCIS CYRUS BAGRY

AUGUSTUS BACON CASFY
entitled TESTS OF REINFORCED CONCRETE BEAIIS:

MODULUS OF ELASTICITY FOR VARIOUS MIXTURES
is accented by me as fulfilling this part of the requirements for the Degree of Bachelor of Science in Civil Fncinecring.
... Iraobdakir....... Head of Department of Civil Encinecring
\(\theta\)

TESTS OF REINFORCED CONCRETE BEARS: MODULUS OF RLASTICITY FOR DIFFERENT MIXTURES.

\section*{Introduction.}

During this era of the extonsive and rapidy increasing use of reinforced concrete for nearly all kinds of construction, it is becoming essential that more be known concerning this mater1al. Extensive tests have been carried on in the past few years on the various properties of concrete. It is the object of this thesis to determine tho modulus of elasticity for various mixtures, as few, if any, tests have previously been made for this purpose. Throughout this work, by modulus of olasticity, is meant the relation which would exist between stress and deformation if the concrete compresses uniformly at the rate it compresses for the lower stresses. This is often called the "initial modulus of elasticity".

The modulus of elasticity has a direct bearing upon design in reinforced concrete construction. In the first place the position of the neutral axis depends, other conditions being the same, upon the modulus of elasticity of the concrete. (This is clearly brought out later in Part III.) The resisting moment in a beam may be taken as equal to the stress carried by the steel multiplied by the distance betweon the steol and the center of gravity of the compressive forces in the concrete. It is now seen that this last distance increases as the position of the neutral
axis risos;and thus, with tho samo stross in tho stool, tho rosisting momont is groator for higher positions of the noutral axis. In other words, upon the modulus of olasticity of concroto doponds the position of tho noutral axis, and the position of the noutral axis is an important olement in the design of roinforced concrete structures.

So, as it is seon that the modulus of elasticity of concroto is an important factor of reinforced concreto dosign, it is hopod that these rosults will give a fajr idea of what can be expected of concrote in that respect, and also, what effect various mixtures have upon this proporty.

Six different mixtures wore tested, using roinforced concrete beams with plain reinforcoment, and of standard dimensions. At least two beams of each mixture were tested. All beams were sixty days old and were made under uniform conditions.

The following division of the work will be made. I - The ory and Available Data, II - Materials, III - Observed Data and Discussion of Results, IV - Conclusions, and V - Original Readings and Curves.
I. TII:ORY \(\Lambda N 1) ~ \Lambda V A I L A B L E ~ D \Lambda ' L ' \Lambda\).

Modulus of lilasticity is a torn which his boon usod vory loosoly in connestion with reinforcod concrote. It is renorally defined as tho ratio of the unit stress to the unit deformation within tho elastic limit of the matorial. In materials having the proporty of proportionality of stress and deformation, the modulus of elasticity is constant, but in materials having a variable stross-doformation relation, liko concrete, this will not be true. Ilowever it is important that a definite oxpression for this bo used, so the name "Initial liodulus of Elasticity," as used by Prof.l'albot in Bulletin No. 4 of the University of Illinois linginoorinq; Ix periment Station, is adopted. This oxpresses the rolation which would exist botween stross and deformation if the concrete compressed uniformly at the rate it compresses for the lower strosses.

The cilculation of tho position of the neutral axis and of tho deformations at the extrome fibers was based upon the assumption that a plane soction before bending remains a plane section after bending. This work was done graphically from the observed roadings of tho extensometers and the known positions of the rollers with rospoct to tho beam. The deformation for unit of length mas calculated by dividing the total doformation by the distance between contact points. 'These deformations used refor to the zero or initial position of the boam undor its om weight and that of the loading apparotus at the time the load was first applied. In all calculations .002 mas assuned as tho ulti-
mate mit doformation for concreto. This, of courso, sfiould not hold truo for all mixtures, bul it was found that, assumine this valuo as .0016, very littlo diffororico wos made in the modulus of olasticity, and thoroforo. 002 was ussed throughout.

In Bullotin No. 4 of the Univorsity of Illinois Fngineorinc lixporiment Station, the following formuls is declucod:
\[
k=\sqrt{\frac{2 p n}{1-\frac{1}{3} q}+\frac{p^{2} n^{2}}{\left(1-\frac{1}{3} q\right)^{2}}}-p n
\]
where:
\[
\begin{aligned}
& \underline{s}= \text { ratio of distance between compression face and } \\
& \text { noutral axis to distance "d". } \\
& \mathrm{p}= \text { percent of roinforcement. } \\
& \mathrm{n}= \frac{\mathrm{E}_{\mathrm{S}}}{\mathrm{E}_{\mathrm{c}}}=\text { the ratio of the modulus of elasticity of } \\
& \mathrm{q}= \frac{\varepsilon_{\mathrm{c}}}{\varepsilon_{\mathrm{c}}}=\text { rateel to that of concrote. } \\
& \text { mote fiber to ultimato deformation. }
\end{aligned}
\]

From this formula values of " \(k\) " were computed for \(\varepsilon_{c}=.0005\), making \(q=\frac{l}{4}\), " \(n\) " boing changeri so that values of "k" were obtained for \(n=10, I 2,15,20\) and \(25 .(\) Seo Table No.1) These values were platted on a diagram as shom on next page. Thus we have a relation between the position of the neutral axis and the modulus of elasticity. 'ho modulus of olasticity of steel was taken at \(30,000,00010\).per sq.in. In this mannor the modulus was obtainod with \(\varepsilon_{\mathrm{c}}=.001\) or \(\mathrm{q}=\frac{1}{2}\). Stress in steel:-

The strests in tize steel was found in two ways,
\[
\begin{aligned}
& \text { First: } S=\mathbb{F}_{s} \varepsilon_{\mathrm{s}} \text {, or the modulus of elastlcity of the } \\
& \text { steol times the defomation in the steel, }
\end{aligned}
\]


Table No.l.
Values of "k" for difforent values of "n"
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{\(n\)} & \multicolumn{2}{|c|}{\(p=.98\)} & \multicolumn{2}{c|}{\(p=1.53\)} \\
\cline { 2 - 5 } & \(q=1 / 4\) & \(q=1 / 2\) & \(q=1 / 4\) & \(q=1 / 2\) \\
\hline 10 & .3630 & .3814 & .4350 & .1476 \\
12 & .3950 & .4085 & .4635 & .4788 \\
15 & .4290 & .4432 & .5000 & .5162 \\
20 & .4750 & .4898 & .5490 & .5651 \\
25 & \(-\cdots-\) & .5284 & \(--m-\) & .6040 \\
\hline
\end{tabular}

\section*{whoro}
\[
\begin{aligned}
& S=\text { tomsilo stress } \ln \text { stool, } \\
& \mathrm{E}_{\mathrm{s}}=\text { modulus of olasticity of storl, } \\
& \varepsilon_{s}=\text { unit deformation in stoel. }
\end{aligned}
\]

Socond: - Rosisting Ifoment,
The intermal resisting momont of


Fig. 1
Stress and deformation distribution.
the beam must equal the extornal momont, to insuro equilibrium. The internal moment"si", oquals the stross in tho stool, "s", timos the moment arm. Tho moment arm of the internal couple is equal to the distance d'.
\[
d^{\prime}=a(1-.3 .5 k), \text { when } q=\frac{1}{2}
\]

See Bulletin No. 4 of the University of Illinois mginoering Experiment Station, page 17.

Thorefore, the internal moment,
\[
M^{\prime}=S a(1-.35 k)
\]
\[
\text { whore } \mathrm{II}^{\prime}=\text { the internal moment, }
\]
\[
\mathcal{S}=\text { stress in the steel, }
\]
\[
d=\text { effectivo depth of tho boam, }
\]
\[
k=\text { ratio of distance botween compression face }
\]
and neutral axis to distance "d".

The external moment \(=4 \times 12 \times \frac{\mathrm{V}}{2}\)
\[
\begin{aligned}
& M=24 \pi \\
& 1 H=M I
\end{aligned}
\]
\(\therefore 24 W^{\prime}=S d(1-.35 k)\)
\[
S=\frac{34 W}{d(1-.35 k)}
\]

For unit atress in tho stool this is dividoc by tho arer of the stool.

\section*{Vertical Shoar:-}

As many of the beams failecl in diagonal tonsion, the vertical shoar mas figurod for each beam failing in this manner.

As taken from Bulletin No.4, horotofore mentioned, the shear in \(1 \mathrm{~b} \cdot\) per \(\mathrm{sq} \cdot \mathrm{in} .=\frac{V}{b d}\),
where \(V=\) the total vertical shear at the Eiven section, \(b=\) width of the boam, \(d^{\prime}=\) distance of the reinforcement from the center of gravity of the compressive stresses.

\section*{Available Data:-}

As before stated, very little data could bo found which had a direct bearing upon the relation of the modulus of elasticity to various mixturos. Many tosts have boen made which show the relation of unit deformation to applied loads, from which the modulus of elasticity may be computod. Bulletins No. 1 and No. 4 of the University of Illinois Engineerinf Experiment Station, contain somo data along this line, especially Bulletin No.4. In this bulletin tho value of the modulus of elasticity of a \(1-3-6\) mixture is found. Curves are also platted showing tho relation of " \(n\) ", which is the ratio of the modulus of elasticity of the steel to that of
the concrote, to the position of the noutrill axis for difCeront porcents of roinforconont.

It is also interosting to obsorve resulta in Bulletin No. 10 of tho Univorsity of Illinois Fmyinooring ?xporimont Station, which troats of concrote and roinforced concrete columns. Although the conditions in the tests on columns aro entirely different from those on boams, the results obtained for the modulus of elasticity peruit of comparison for the 1-2-4 mixture. Rosults are also given for tests porformed at the Watertow Arsonal. These last tests were on columns averaging 100 days of age. Comparisons of these results and those obtained in this work will be made in Part IV.

Materinls.
In order that tho materials should not diffor from matorials used in general plactico, the stono, sand and Chicago An coment wore purchasod in tho opon market. Tho Universal cement and the roinforcing bars wero furnishod throurh the courtesy of the Illinois Stool Cornpany. This coment was a part of a shipmont to the Illinois Traction System, and it probably did not differ from that used in goneral practice. Table No. 6 shoms which brand of cemont was used for each beam.

Stone. - The stone usod was Kanisakee limestone ordered screenod through a l-in.screen and over a \(1 / 4\)-in.screen. The percentage of voids in the stone was determinoci by filling a vessel with the stone and thon determining the amount of water that could be put into the vessel with the stono. rins percentage of voids in the stone was found to be 43.8 per cent. Taile No. 2.

Analysis of Stone - Fineness.
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
Hesh \\
inches
\end{tabular}} & \multicolumn{2}{|c|}{ Percent passing. } \\
\cline { 2 - 3 } & First trial & Second trial \\
\hline 2 & 160.0 & 100.0 \\
\(11 / 4\) & 95.8 & 92.6 \\
1 & 82.5 & 65.0 \\
\(1 / 2\) & 9.3 & 2.6 \\
\(1 / 4\) & 1.9 & 0.9 \\
\(1 / 8\) & 1.0 & 0.7 \\
Aly & 0.0 & 0.1 \\
\hline
\end{tabular}

Sand.- The sand camo from now tho Wabauh Rivor at Attica, Indiana, and while not vory sharp, it was fairly cloan and of good quality.

The porcontare of voids in the sand as shown by the test described for the stone, was found to be 32.6 per cent.

Table No.3.
Analysis of Sand - Fineness.
\begin{tabular}{|c|c|}
\hline Sievo No. & Percent passing. \\
\hline 5 & 98.5 \\
10 & 74.3 \\
10 & 65.5 \\
18 & 56.1 \\
20 & 43.0 \\
30 & 27.3 \\
40 & 17.9 \\
50 & 12.5 \\
74 & 5.6 \\
150 & 1.4 \\
200 & 1.1 \\
\hline
\end{tabular}

Cement.- The cement used was Universal Portland cement, with the exception of that used in Beams No.-415.1 and No.415.2, which wero made of Chicago AA Portland cement. Table No. 4 gives the tensile strength of noat Universal cement, and 1:3 mortar. The briquettes were stored in damp air for one day and under water for the rerainder of the time.

Table No. 4 .
Tonsilo Strensth of Univorsal Portland Cemont.


The results shom in Table No.5, as the results of tho fineness test of Universal Portland cement, are the avorage of four tosts.

Table No.5.
Analysis of Coment - Finoness.
\begin{tabular}{|c|c|}
\hline Sieve No. & Percont passing. \\
\hline 74 & 98.65 \\
100 & 96.20 \\
200 & 30.05 \\
\hline
\end{tabular}

Steel. - The bars used in reinforcing the beams wene \(1 / 2\) in. in diameter, with the exception of those used in Beams No. 417.5 and No.-417.6, which wore \(5 / 8\) in. in diameter. The material used was mild steel having an elastic limit of \(38,50 C\) 1b. per sq.in. and a maximum breaking stron th of 54,500 1h. por \(3 q . i n\)., and a percont elongation in 8 in. of 31.5

Concrete.- 'The concrete was of a good quality, being mixerk by mon who had had considerable exporience in concrete work. Test Beams.

The test beams used wero all of standard size reccomended by the Joint Committee on Concrete and Reinforced Concrete, 8 in. wide, 11 in . deep, and 13 ft . long over all, with a test span of 12 ft . The beams were roinforced with four round rods, the center of the reinforcement being placed 10 in . below the top surface of the beam. \(1 / 2-i n\), mild steel smooth round rods were used with the exception of the two beams noted before, the cross-section of the steel being .785 sq.in. The effective cross-section of the beam was 80 sq.in., making the proportion of the steel, in terms of the cross-section of the beam above the bars, .98 per cent. Bars \(5 / 8\) in. in diameter were used in beams No. 417.5 and No. 417.6, the proportion of steel being 1.53 per cent. In determining the proportion of steel, no reduction was made from the area of the beam, for the area taken by the metal. The bars were placed in a horizontal position 2 in. apart center to center, with their axes parallol to and \(l\) in. above the lower face of the beam.

The number of beams which were made from each different mixture, and the general data concerning the test beams is show in table No. 6.

Trblo No. 6.
Data on T'est Boamb.


Note:- Owing to an oversight, Boams No.-411.6, 411.1, 415.1 and 416.6 were not moved to the testing laboratory until they were considerably overdue.

\section*{Making of Boans.}

Tho beams were made directly on the floor of the concrete laboratory, a strip of building paper being first sproad on the floor. The forms were of \(2-i n\). pine drossed on all surfaces, the ends being hold in place by cleats on the sidos. Braces were placod every 3 ft . to provent bulging during the tamping of the concrete. The forms wore made reversible to prevent warping, boing reversed each time they were used. The details of the form are show in Fig. 2.
\[
\text { Fig. } 2
\]

top View


End View

\section*{Details of Forms.}

All materials mere measured by loose volume, and the mixing was done by hand with shovels. The cement anc sand were mixed dry on a large sheot-steol plate, the stone was then added. After the stone had mixed with the cement and sand, water pas added, and the mixture turned until a uniform consistency was obtained. Sonetimes the sand and stone were ruch vetter than at other times, thus causing a wide variation in the amount of water used, as indicated in Table No.?.

The concrete was depositod in the forms in layers of about 3 in., each layè being thoroughly tamped. After each layer had beon tamped once a flat spado was forced betweer the face of the form and the concrete, thus flushing the mortar to the outside
of tho baam, forming a smooth Burfaco.
Table No. 7 .
Amount of Wator usod in mixing Concrote.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Beam No. & Mixture & Stone & Sand & Cement & Total & \[
\begin{aligned}
& \text { Weigh of } \\
& \text { wate } \\
& \text { Ibs. }
\end{aligned}
\] & Percont of water to total \\
\hline 411.5 & 1-1-2 & 725 & 408 & 346 & 1479 & 125 & 8.5 \\
\hline 411.6 & do & 736 & 395 & 287 & 1418 & 114 & 10.2 \\
\hline 411.1 & do & 671 & 378 & 342 & 1391 & 131 & 9.4 \\
\hline 411.2 & do & 697 & 484 & 330 & 1511 & 118 & 9.8 \\
\hline 412.6 & \[
\begin{array}{rr}
1-1 & 1 / 2 \\
-3 &
\end{array}
\] & 689 & 408 & 228 & 1325 & 112 & 8.5 \\
\hline 413.5 & 1-2-4 & 770 & 463 & 192 & 1425 & 92 & 6.5 \\
\hline 417.5 & do & 710 & 436 & 180 & 1335 & 100 & 7.5 \\
\hline -417.6 & do & 726 & 486 & 189 & 1401 & 100 & 7.1 \\
\hline 414.5 & 1-3.6 & 724 & 434 & 130 & 1288 & 107 & 8.3 \\
\hline - 415.6 & do & 705 & 400 & 14.4 & 1249 & 100 & 8.0 \\
\hline -415.1 & 1-4-8 & 771 & 410 & 97 & 1278 & 88 & 6.9 \\
\hline - 415.2 & do & 846 & 421 & 90 & 1357 & 90 & 6.6 \\
\hline 115.5 & तo & 751 & 430 & 95 & 12.76 & 88 & 6.9 \\
\hline 4415.6 & do & 733 & 475 & 92 & 1240 & 87 & 7.0 \\
\hline - 416.5 & 1-5-10 & 830 & 458 & 82 & 1370 & 88 & 6.4 \\
\hline 416.6 & do & 834 & 439 & 72 & 1343 & 60 & 4.5 \\
\hline
\end{tabular}

Storage.
The temporature of the laboratory in which the bear:s were stored was 40 to 70 degrees Fahrenheit. Tho forms were removed Whon the beams were seven days old, and the beans left in plece until they wele reroved for testing. The boams were sprinkled twico a day as long as they remainod in the laboratory.

Beam No. -412.5 was broken in handling in the tasting laboratory, before testing.

\section*{Dotujls o1' 'rosto.}

Tho tests were made on tho \(200,000-1 \mathrm{~b}\). Olson tosting machirne in the Laboratory of Appliod ::ochanics of the Univorsity of Illinois.

The beams weighed about 1200 lv . each, and wore moved to and from the machine by means of a portable crano providod with an cverhead track which supportod two tunning trolleys and tackles. Tho beams mere run along the tebble of the machine on a dolly and litted into place by two runnine tacklos supported by an overhead track suspended from the coiling.

The beams were supported at each end by rocking supports. 12 ft. apart center to center and resting on the tablo of tho machine. The tops of these supports were curves of small radius, while their bases were cylindrical surfaces of \(12-i n\). radius. The supports permitted a rocking action with changes in length of the lowur surface of the beam due to to its deflection. Bearing plates 1 in. X 4 in. X 8 in. were placed botween the rocker and the beam, a layer of plastor of paris boing placed betwoon the plates and the beam to overcome any uneveness of the surface.

Similar bearing plates, resting on a cushion of plaster of paris, were placed at each \(1 / 3\) point. On top of cach of these plates a \(11 / 2-i n\). turned roller was placod with its axis at right ang = les to the axis of the beam and directly over the \(1 / 3\) point. These rollers were spanned by a 7 -in. I-beam, mrooden blocks with steel plates fastoned to their boaring surface being placed between the beam and each roller. The load was transferred from tho head of the machine to the \(I\)-beam by means of a knife-odge resting st the middle of the I-beam.

Tho dofloctions at the contor of the boam wore obtajnct by means of a fine thread stretchod betwoon two points nvor the supporits at the middie of the dopth of the bram, and passing in front of a mirror-scale placed at the ridalo of the hoam. This scale was graduated to \(1 / 50-i n\), and vas road by lining up tho thread and its rofloction in the mirror. The thread was fastoned at one end and kept taut by moans of a suspendod weight at the other ond.

Deformations in the upper and lower fibers wore obtained by means of the extonsomotor apparatus shown in tho scompanying fieure. ( page 19). The two yokes wore placed symmotricilly with respect to the center of the span and 40 in . apart. The upper contact points were attached \(1 / 2\) in. below the surface of the beam, and the lower contact points at the level of the reinforcement, the two contact being \(9 \mathrm{I} / 2\) in. apart. Tho centers of the upper dials and rollers are in a straight line with the axis of the yore, and 5 in. above the upper contact points. The lower dials are \(5 I / 4\) in. below the lowor contact points, the rollers being \(201 / 4\) in. apart vertically. The other yoke is provided with fixed pins in place of the rollers on tho first yoke. Upon these pins rest \(1 / 1\)-in. brass pipes with steel strips at the other end resting upon the rollers. The dials are 4 in. in diameter, ond by moans of a vernier scale may be read to .0001 in.

The loads mere applied by the slowest speed of the machine, the dommard movement of the hoad being at the ratc of about .04 in. per minute. The load was applied in incroments of 10001 b. , the machine being stopped after each increment, and readings of the extensometors and"deflections taken.

As tho tost proqronsed tho boan wan carofully watchod for aracks and a record kopt of all cracks, showing thoir position and tho load at which they appearod.

F'ig • 3


Extensometer Apparatus.
[II. OBSB]HVIGI) DATA.
In this division of tho work a. discussion will be made of the action of each boam, tolling where and at what loads the first sign of failure and the ultimate failuro occurrod, and anything unusual in the action of the beam. Figuros will be dram showing the positions of the main cracks.

Boam No.-411.1 1-1-2 mixturo .98 o/o reinforcoment.
The first visible cracks appoared near the contor of the span and noar the north load-point at a load of 6000 lb . At a load of 11170 Ib. the boam failed, a large crack forming 6 in. to tho south of the conter of the span. Upon applying the load furthor the crack became wider and not until the beam had deflected 2 in. did the concrete crush on top.


Sketch showing Beam No.-411.1 after failure.

Boam No.4ll.i l-1-ת mixture . 98 o/o roinforcomont.
The first hair crack appotrod at the middlo of tho span at a load of 5000 lb . At a load of 6000 lb . numorous hair cracks appeared near the north load-point, and at 7000 lb . other hair cracks appeared at the south load-point. These cracks extended about half-way up the bean. At a load of 11000 lb. tho beam failod, the vortical crack at tho contor opening up. A faster speed was then put on the machine, and the beam crushed on top at a load of 10200 lb ., tho beam deflecting about \(1 \mathrm{l} / 4 \mathrm{in}\). more than at the time of failure.


Sketch showing Beam No.-4Il. 2 aftor failure. Beam No.-411.5 1-1-2 mixture .98 / o reinforcement. At a load of 7150 lb . the first hair crack appoared near the south load-point. At a load of 81751 b. a crack appeared near the north load-point and a vertical crack appeared at the middle of the span. Other hair cracks appeared near the south load-point at loads of 11000 lb . and \(11500 \mathrm{lb} .\), and the beam failod in tension at the vertical crack at tho center at a maximurn load of 13000 lb . The faster speed was then applied and the beam crushed on top at a load of lo300 lb., a horizontal crack appoaring slightly below the upper surface of the beam. The deflection was about \(3 / 4 \mathrm{in}\). more than at
the timo of failure.


Sketch showing Beam No.-411. \(\mathrm{S}_{\text {after }}\) failure.

Beam No.-411.6 1-1-2 nixture .98 o/o reinforcement.
At a load of 7000 lb . a vertical hair crack appeared noar the north load-point and ono noar the conter of the span. At a load of 8000 lb . other hair cracks appeared at the center and near the south load-point and at a point half-way between the conter of the span and tho lond-point. Other cracks appearod at a load of 9000 lb ., and at a load of 11300 lb . the beam failed in tension, the vertical crack half-may betweon the center and the south load-point opening up. The concrete crushed at a load of 10000 lb . after deflecting about \(I\) in. further than at the time of failure.


Sketch showing Beam No.- 411.6 after failure.

Beam No. -412.6 1-1 \(1 / 3-3\) mixture.\(\cap 8\) o/o reintonconont.
Tho first hair crack was vertical and appoared at a load of 5400 lv . at tho south load-point. Other cracks appearod near tho north load-point at a load of 6200 Ib . and at the conter and south load-point at loads of 3000 lb . and 10000 lb . Tho beam failod in tension, tho crack which appoarod at a load of 5400 lb . opening up at a load of 11885 lb . Tho beam was crushed on top at a load of 10300 lb . aftor doflecting about \(3 / 4 \mathrm{in}\). further than at the timo of failure.


Skotch showir. 3eam No.-412. 6 af foailuro.

Beam No. -413.5 I-2-4 mixturo :98 o/o roinforcoment.
At a load of 11950 1b. the beam failed in tension, the vertical tension crack appoaring about 6 in. south of the center of the span. The concrete crushed on top at a load of 10140 1b. after deflecting only slightly furthor than at the time of failure.


Sketch showing Beam No. \(-413 \cdot 5\) after failure.

Bearn No.-417.5 1-9-4 mixture 1.53 o/o reineorement.
Thoro wan no sign of failure until at a load of 12000 lv . tho boar failod sudionly in diakonal tonsion. Tho machino was stopped at a load of 13000 lb . to tako readings. Tho lond was again applied and before it incroases any the beam failed, dropping on the machine without warning. The crack comonced at the south support and extendod diagonally toward tho load-point as


Sketch showing Beam No.-417.5 aftor failure.

Beam No.-417.6 1-2-4 mixture 1.53 o/o roinforcement.
This bean failed in a manner similar to the failure of Beam No.-417.5, the failure coming without warning, at a load of 10520 lb. by diagonal tension. The crack commenced at tho bottom of the beam about 2 ft . south of the south load-point, and extended diagonally upward to the load-point.


Skotch shoring Boam No.-417.6 after failure.

\(\qquad\) = \(\qquad\)

Beam No.-414.5 1-3-6 mixturo .n8 o/o roinforcement.
The first hair crack appoared at the south load-point at a load of 5000 lb . At a load of 7000 lb . another hair crack appoared at the north load-point, and tho beam farled in diagonal tension at a load of 7920 lb ., the crack commencing noar the top of the boam at the north load-point and running diagonally downward until it struck tho reinforcement at a point 2 ft. north of tho load -point. From this point the crack follomed the reinforcement to tho north support. In taking the beam from the machine, the concrete split entirely away from the rods.


Sketch showing Boan No.-414.5 after failure.

Beam No.- 414.0 1-3-6 mixture .98 //o reinforcement.
At a load of 7800 Ib . a short diagonal hair crack appeared at a point lf ft . to the north of the north load-point, and another one appeared a little to the north of the first one at a load of 8100 lb . At a load of 8430 lb . the beam failed in diagonal tension, the crack extending from a point at the bottom of the beam 2 ft . north of the north load-point, diagonally upward to the load-point.


Sketch showing Boam No.- -114.6 aftor failure.

Boam No. -115.5 1-4-8 mixture .98 o/o reinforcement.
This boam failed in compression at a load of 7000 lb. , the concrote crushing on top at the conter of the span. The hoad was then run down at a faster spood, the load dropping off, until at a load of 5200 Ib. a horizontal crack appeared, commoncing at a point at the middle about \(21 / 2\) in. below the tep surface of the beam, and extending about 1 ft . to the north. At a load of 900 Ib . horizontal cracks appeared near the bottom of the beam at tho center of the span and extending slightly past the north load-point.


Sketch showing Beam No- -415.5 after failure.
in


Beam No.-415.6 1-4-8 mixture .98 o/n roinforcoment.
The boam fa+led in diagonal tensjon at a load of 8000 lb . without any preliminary sign of failure. Tho crack commenced at a point about 2 ft . south of the south load-point and oxtendod diagonally upward to the load point. The beam dropping on the machino caused the concrote to pull away from the rods.


Sketch showing Boarn No.-415.5 after failure.

Beam No.-415.1 1-4-8 mixture .98 o/o roinforcement.
The first crack appeared about 2 f.t. south of tho south load point at a load of 8600 lb . At a load of 8680 lb . the beam failed in diagonal tension before the deflection for the load could be read. The crack extended diagonally upvard toward the south load point from the first crack which appeared, and also toward the left from this crack, the concrete being stripped from the bars, due to the beam falling on the machine.


Sketch showing Beam No. -415.1 after failure.

Boam No. \(-415 \cdot 2,1-4-8\) mixturo .98 o/o roinforcenent.
The boam failod in a mannor similar to the failure of Boam No. -415.1 , excopting that tho boam showod no sign of failure until it dropped on tho machino at a load of 7220 lv.


Sketch showing Boam No. \(-415 \cdot 2\) after failure.

Beam No. -416.5 1-5-10 mixture .98 o/o reinforcement.
The beam failed in diagonal tension at a load of 5060 lb . without showing any preliminary sign of failure. Tho crack commenced at a point about 15 in. north of the north load point, extonding diagonally upward to the load point, and also toward the north, the crack following tho reinforcement.


Skotch showing Beam No•-416.5 after Pailure.

Boam No--416.6 1-5-10 mixturo .98 o/o roinforcement. Tho beam failod in diagonal tonsion at a load of 5830 lb . The crack extondod from a point at tho bottom of the beam about 18 in. south of the south load point, upward to the load point.


Sketch showing Beam No.-116.6 aftor failure.

\section*{Discussion of Tosults.}

Table No. a contains tho modulus of elasticity for oach
beari as calculated from the tests. The averago volues ni the modulus of olasticity for differont mixtures aro \&iven. For the lean mixture, \(1-5-10\), a value of \(1,100,000 \mathrm{lb}\). per sq.in. was obtained; for the 1-4-8 mixture, \(1,400,000 \mathrm{lb}\). por sq. in. \(;\) for the \(1-3-6\) mixture, 1,600,000 lb.per sq.in.; for the l-2-4 mixture, 1,800,000 lb. per sq.in.; for the l-1 \(1 / 2-3\) mixture, \(2,460,000 \mathrm{lb} \cdot\) per sq.in., and for the 1-1-2 mixture, 2,700,000 lb.per sq.in. These results show clearly that the amount of cement in concrete has a direct bearing upon the modulus of elasticity. The curve plotted on page 38 shows the relation existing botweon the modulus of olasticity and the proportion by weight of the cement to the sand and stone. This curve is practicnlly a straight line, indicating that the modulus of elasticity varies directly as the per-cent of cement in the concrete, for the range of mixtures used.

In Bulletin No. 4 of the Univorsity of Illinois Tngineering Experiment Station, the modulus of elasticity of a 1-3-6 mixture is calculated to be about 2,000,000 \(\mathrm{lb} \cdot \mathrm{per}\) sq.in. The result obtained for this mixture, as shom above, is \(1,600,0001 \mathrm{lb}\).per sq.in. This result agreer favorably with given above. The values in the bulletin were given in round numbers.

Comparisons may also be made with tho modulus of elasticity obtained in the column tests, as shorm in Builetin No.4, heretofore mentioned. For a \(1-2-4\) mixture the average modulus of elasticity obtained was 2,200,000 lb.per sq.in., as compared with 1,800,000 lb.per"sq.in. obtained from the beam tests. Frorl the column tests at the Watertovi Arsenal, the value \(2,500,000 \mathrm{lb}\). per Sq.in. was obtained. These last tests were made on pebble
concrete 105 drys old. obviously, the conditions woro ontiresy difforont in tho column tosts and tho boam tosts, and tho samo value could not bo anticipator. However, the variation ifs not largo.

Many of the beams of a fairly rich mixture did not stress the steol to its yield point, but broke by diagonal tonsion. Thie naturally leads tr an invostigetion of the vertical sheor in these beams, as tho shear dovoloped may bo takon as a measure of the diaconal-tensile stresses. The formula, \(\mathrm{v}=\mathrm{V} / \mathrm{bd}\) ' was used in obtaining the shoars. In lablc No. 8 are found the values of the vertical shear for all beams, and the manner of failure. The curve on page 37 shows the relation between the vertical shear and the percont by weight of cement to the sum of the weights of the sand and stone, in the bearas that failed by diagonal tension. This curve also rasembles a straight line, and it is of interest to note that if extonded on dow, it would nearly meet the zero point for both coordinates. From this curve it may be said that the maximum vertical shear is proportional to the ratio by weight of the cement to the sum of the weights of the sand and stone.

In the beams that broke by tension in the steel the maximum vertical shear was not developed. This is seen by comparine the vortical shear in the beams of the \(1-1-2\) mixture, which failed by tension, with the vertical shear in the Beams of the 1-2-4 mixture, which failed by diagonal tension. It is seen that in the richer mixture he vortical shern was about 85 7h.non fo.in, while for the leanor mixture about 80 lb.per sq.in. was developed. This clearly shows that in the beams mhide failed by tension in the steel the maximum vertical shear was not fully
developod.
In the same table aro the calculatod strossos in the steol. The two methods usod gave results which checked favorably. In strosses calculatod from the resisting moment, the weicht of the beam itsolf and of the I-beam usod in losding, is noglected. The addition of these loads would tend to increase the amount of the atress in the stoel. The assumption is made that the concrote does not take tonsile stress, but this is not true, except in the case of pure tension failures. This error would tend to corspensate the one previously mentioned. The yield point of stecl is exceoded only in the boams which failed by tonsion. Taking the value found, 31,500 lb.per sq.in., as the yield point, j.t is seon that in all other failures the steel could have taken more stress.

The results of the tests, taken as a whole, are satisfactory, and bring out clearly the variations of the modulus of elasticity for various mixtures. In tho case of the \(1-11 / 2-3\) mixture, one of the two boans made was broken in handing. The value calculated from the other boam is high, and is not the averaco of two tests, as were the others.

An investigation of the avorage doflections for the different mixtures may also be made, as they show in a way tho relative stiffness of the beams of different mixtures. It was found that the beams of the lean mixtures did not defloct as much as did those of the richer mixtures. For the 1-5-10 mixture the deflection at the center was .30 in. at the maximum load, while a deflection of .60 in. was noticed for the 1-l-2 mixture at its maximum load. Considerińg a certain load, as \(5000^{`} 1 \mathrm{~b} \cdot\), and comparing the deflection for each beam, it is seen that while the

1-1-i mixturo datilectod only. I6 In., tho \(1-5-70\) mixture doflocted noarly . 30 in. Ihis shows that the rich mixturen hove greater stiffness than the lean mixtures.

If further tosts were to ve made \(\Omega\) long this line, we would suggest that at least four boams of each mixture be testod, for the roason that many influences, such as storage, uniformity of mixture, handing, and testing, may causo wide variations in the results, and tho greator the numbor of beams tested, the more trustworthy will be the rosults obtained. \(\Lambda l s o\), to detormine more accurately the modulus of elasticity, the ultimato unit deformation for each mixture should be determined. This could be done by testing beams reinforced with sufficient stocl and in such a mannor that the boams would fail by compression in the concrete. If this more done it would not be necessary to assume .002 as the ultimate unit deformation for every mixture, as was done in this work.
lixplimation of Tablos.
Tablo No. B.
In this table may be found the mixture and maximum applioci load for oach bonm. For this maximum load the vertical shear Was found for each beam. Undor tho hoading, "lodd considered" are the loads for which the stresses in the ste日l wero calculated. For example, for Beam No. 111.5, the load considered was 10000 10. The formula for calculating the stress in the stoel from the resisting moment is, \(S=2.4 \mathrm{~W} / \mathrm{d}(1-.35 \mathrm{k}) \mathrm{A}\), in which the "W" was takon as 10000 lb., tho " \(k\) " and "d" also depending upon this load. The stross calculatod from the doformation mas obtained by means of the formula, \(S=\sum_{S} \varepsilon_{S}\), in which the unit deformation was taken for the load of 10000 lb . Table No. 9 .

This table contains the calculated modulus of olasticity for each beam, for \(q=1 / 4\) and \(q=1 / 2\). As before stated, the assumption was mado that the ultimate unit deformation for each beam was .002 . Phen for \(q=1 / 4\) the unit deformation .0005 was considered and the applied load and value of "k" found for this deformation. With this value of "k", the modulus of elasticity was calculated as doscribed in Part \(I\). For \(q=1 / 2\), the modulus was found in the same manner, using . 001 as the unit deformation.

The values under the heading "Mean E" were an averase of the results for each mixture, excluding those valuos mhich seemed to be in error.

Table No. 8 .
Data and Calculatod Results for Roinforcod Conerota Beams.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Boam No.} & \multirow[t]{2}{*}{Mixturo} & \multirow[t]{2}{*}{Maximum appliod load lbs.} & \multirow[t]{2}{*}{Load consid ered 1 bs .} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Nout. } \\
& \text { Axis } \\
& k
\end{aligned}
\]} & \multirow[t]{2}{*}{Vort Shear V bd'} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Calculater stress \\
in stool-lb.sq.in
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Manner 01 \\
Failuro
\end{tabular}} \\
\hline & & & & & & \[
\begin{aligned}
& \text { Mror } \\
& \text { Resisting } \\
& \text { Momont }
\end{aligned}
\] & \[
\begin{aligned}
& \text { From } \\
& \text { Deformation }
\end{aligned}
\] & \\
\hline 411.5 & \(1-1-2\) & 13000 & 10000 & .395 & 94 & 36800 & 31800 & 'rension \\
\hline 411.6 & \(1-1-2\) & 11130 & 10000 & . 395 & 81 & 35500 & 38550 & do. \\
\hline 411.1 & 1-1-2 & 11170 & 11000 & . 380 & 81 & 38900 & 40800 & do. \\
\hline 411.2 & 1-1-2 & 11000 & 10000 & . 4.15 & 81 & 356000 & 36600 & do \\
\hline 412.6 & \(1-11 / 5\)
-3 & 11885 & 11000 & . 400 & 86 & 39100 & 43500 & do \\
\hline 413.5 & 1-2-4 & 11050 & 10000 & . 4.75 & 90 & 36400 & 33300 & do \\
\hline 417.5 & 1-2-4 & 12000 & 12000 & . 55.50 & 93 & 23000 & 27750 & Diag.ten, \\
\hline 417.6 & 1-2-4 & 10520 & 10000 & . 610 & 83 & 24600 & 26000 & do \\
\hline 414.5 & 1-3-6 & 7920 & 7000 & .470 & 59 & \(\bigcirc 5300\) & 25000 & do \\
\hline 414.6 & 1-3-6 & 8.430 & 8000 & . 550 & 65 & 30000 & 31050 & do \\
\hline 415.1 & \(1-4-8\) & 8680 & 8000 & .540 & 67 & 29,300 & 27500 & do \\
\hline 415.2 & \(1-4-8\) & 7220 & 7000 & . 560 & 56 & 26600 & 24200 & do \\
\hline 415.5 & 1-4- 3 & 7000 & 6000 & . 560 & 54 & 22300 & 23550 & Compress. \\
\hline 415.6 & 1-4-8, & 8000 & 8000 & .497 & 61 & 29600 & 31350 & Diag.Ten. \\
\hline 416.5 & 1-5-10 & 5060 & 4000 & . 560 & 39 & 15000 & 12500 & do \\
\hline 416.6 & 1-5-10 & 5830 & 5000 & .500 & 40 & 18500 & 18000 & do \\
\hline 211.1 & \(\begin{array}{cc}1-1 & 1 / 2 \\ -3\end{array}\) & 2 & ---- & --- & 213 & & & \\
\hline 211.2 & do & ---- & ---- & --- & 136 & & & \\
\hline 212.1 & 1-2-4 & --m- & ---- & --- & 148 & & & \\
\hline 212.3 & 1-2-4 & -ッ-* & ---- & --- & 154 & & & \\
\hline 212.5 & 1-2-4 & ---- & ---- & - & 1.15 & & & \\
\hline 212.6 & 1-2-4 & ---*- & -.... & -.. & 126 & & & \\
\hline
\end{tabular}

Note:- All of the beams had .as o/o roinforcement, with the exception of Beams NO. -417.5 and No. -4 l' \(^{4} \cdot 6\), which had \(1.530 / 0\) reinforcement.

The results for the last six bears marked(*) were obtained
from the thosis of Chestor Alva Foroman, Carl Jamos and Leon
Browning Kinsey of the Class of 1907 of the Univorsity of Illinois. These boams were made of Chicago AA Portland cement.

Tablo No.9.
Modulus of Elasticity for Nifferont Mixturos.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Bearn No.} & \multirow[t]{2}{*}{Mixturo} & \multicolumn{2}{|r|}{\(q=1 / 4\)} & \multicolumn{2}{|r|}{\(q=1 / 2\)} & \multirow[b]{2}{*}{Moon E} \\
\hline & & k & E & k & E & \\
\hline 411.5 & 1-1-3 & . 395 & 2,500,000 & - 305 & 2,730,000 & \\
\hline 411.6 & do & . 415 & 2,175,000 & . 390 & 2,830,000 & \\
\hline 411.1 & do & . 390 & 2,591,000 & . 390 & 2,830,000 & \\
\hline 411.2 & do & . 405 & 2,270,000 & . 125 & 2,240,000 & 2,700,000 \\
\hline 412.6 & \[
1-1 . x / 8
\] & . 405 & 2,270,000 & . 400 & 2,650,000 & 2,460,000 \\
\hline 413.5 & 1-2-4 & . 440 & 1,850,000 & . 460 & 1,820,000 & \\
\hline 417.5 & do & . 507 & 1,960,000 & . 160 & 1,830,000 & \\
\hline 417.6 & do & . 540 & 1,580,000 & . 570 & 1,460,000 & \\
\hline 314.2\% & do & . 475 & 1,500,000 & . 472 & 1,700,000 & \\
\hline 314.6* & do & . 450 & 1,800,000 & . 450 & 1,9:30,000 & \\
\hline 314.1* & do & . 450 & 1,800,000 & . 430 & 2,180,000 & 1,900,000 \\
\hline 414.5 & 1-3-6 & . 440 & 1,850,000 & . 460 & 1, \(32,0,000\) & \\
\hline 414.6 & do & . 475 & 1,500,000 & . 500 & 1,430,000 & 1,600,000 \\
\hline 415.1 & \(1-4-8\) & . 485 & 1,4.10,000 & . 505 & 1,3,0,000 & \\
\hline 415.2 & do & . 530 & 1,132,000 & . 540 & 1,120,000 & \\
\hline 415.5 & do & . 480 & 1,445,000 & . 510 & 1,350,000 & \\
\hline 415.6 & do & . 455 & 1,685,000 & . 480 & 1,600,000 & 1,400,000 \\
\hline 416.5 & 1-5-10 & . 530 & 1,132,000 & & & \\
\hline 416.6 & do & . 520 & 1,141,000 & & & 1,100,000 \\
\hline
\end{tabular}

Note:- The aata on the threo beams marked(*), were secured from the thesis of Stanley Worcester Galhuly, Wilfred Lewis and Roy Austin lifler of the class of 1907 of the University of Illinois.



\section*{IV. CONCIUSIONG.}

From tho provious discussion tho following comblusions may be dorived:

Firgt - From the curve on piago 38 it is readily seen that there is a certain rolation existing betwoen the difforont mixtures of concrote, and the modulus of elasticity. Values of \(1,000,0001 b\). per sq.in. for a \(1-5-10\) mixture, to 2,700,000 1b. por sq.in. Ior a \(-1-2\) mixture were obtainca.

Socond - The curve mentioned above is practically a suraight line, indicating that the modulus of elasticity is directly proportional to tho amount of cement in the mixture, for the rango of mixtures used.

Third - \(\Lambda\) s many of tho beams failed by diagonal teusion, the vertical shears in the beams were investiçated. The values obtained mere low, that for a 1-5-10 mixture being 40 Ib.per sq.in., and for a \(1-11 / 2-3\) mixture, \(1701 b \cdot p e r s q \cdot i n\). The curve on page 37 indicates that the avorage ultimate vertical shear developed, is proportional to the amount of cement in tho mixture.

Fourth - The tonsile stress in the steel was calculatod by two methods, the results obtained acreeing favorably For mixtures \(1-3-6,1=4-8\) and \(1-5-10\), the steelwas not stressed to the yield point, showing that the percent of reinforcement should be reduced for the most economical construction.
V. ORIGINAL RFADINGS MND CURVIS.

\section*{Tabler.}

In tho following part are given the original roadincs and a part of the derived values for tho beams. Tho first column gives the applied load in pounds and doos not include the woight of tho beam or of tho loadir!g apparatus. Tho column headed "Defloction" does not contain the oricinal readings from the scale but the deflections from tho position of zero load. In the columns hoadod "Original rxtonsomotor Roadings" are givon the original readings of the four extensometers. The sub-headings indicate the four extensometers. I and III aro the upper extensomoters and II and IV the lower. In the two columns headed "Deformation" are given tho deformations por unit of length for the fiber indicated in the sub-heading, computod with roforence to zero deformation at the first zoro or applied load, by the methods explained on page 3 . The last column gives tho position of the noutral axis for each applied load.
\[
\text { Beam No. } 411.5 \text { l-1-؟: mixturo. }
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Applied } \\
\text { load } \\
\text { lb. }
\end{gathered}
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Defloc- } \\
\text { tion } \\
\text { in. }
\end{gathered}
\]} & \multicolumn{4}{|l|}{Fxtonsometor Poadings.} & \multicolumn{2}{|l|}{Doformation} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Noutral } \\
\Lambda x i s \\
k
\end{gathered}
\]} \\
\hline & & & & & & \multirow[t]{2}{*}{\begin{tabular}{l}
Uppor \\
fiber
\end{tabular}} & \multirow[t]{2}{*}{Stoel} & \\
\hline & & I & I. 1 & III & IV & & & \\
\hline 1000 & 800 & . 0005 & . 0008 & . 0008 & . 0015 & . 000005 & . 00002 & \\
\hline 2000 & . 02 & . 0036 & . 0036 & . 0033 & . 0046 & . 0000475 & . 00005 & . 460 \\
\hline 3000 & . 03 & . 0072 & . 0068 & . 0074 & . 0080 & . 000093 & . 00009 & . 495 \\
\hline 4000 & . 05 & . 0112 & . 0108 & . 0118 & . 0125 & . 000145 & . 000165 & . 495 \\
\hline 5000 & . 08 & . 0180 & . 0182 & . 0189 & .0215 & . 0002275 & . 0002475 & . 477 \\
\hline 6000 & . 14 & . 0266 & . 0305 & . 02884 & . 0341 & . 000318 & . 000418 & . 430 \\
\hline 7000 & . 18 & . 0362 & . 0443 & . 0385 & . 0475 & .000418 \({ }^{\text {r }}\) & . 000587 & . 4.90 V \\
\hline 8000 & . 27 & .0459 & . 0570 & . 0483 & . 0603 & .00052 \(\downarrow\) & . 00079 & . 395 \\
\hline 9000 & . 32 & ----- & & & ----- & & & --- \\
\hline 10000 & . 37 & . 0615 & . 0773 & . 0645 & . 0815 & . 000688 & . 00106 & . 390 \\
\hline 11000 & . 40 & . 0700 & . 0878 & . 0729 & . 0823 & . 000813 & . 001115 & . 420 \\
\hline 18000 & . 165 & . 0785 & . 0988 & . 0815 & . 1036 & . 0000875 & . 001355 & . 390 \\
\hline 13000 & . 610 & . 1057 & . 1603 & . 1093 & . 1679 & & & \\
\hline
\end{tabular}

Boam No. 411.6 I-1-2 mixture.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1000 & . 015 & . 0039 & . 0034 & . 0039 & . 0032 & . 00005 & . 000035 & . 560 \\
\hline 2000 & . 040 & . 0074 & . 0067 & . 0077 & . 0067 & . 0000975 & . 000075 & . 550 \\
\hline 3000 & . 065 & .0115 & . 0106 & . 0120 & . 0107 & . 000154 & . 000125 & . 540 \\
\hline 4000 & . 095 & . 0173 & . 0165 & . 0178 & . 0164 & . 00023 & . 000193 & . 535 \\
\hline 5000 & . 155 & . 0287 & . 0328 & . 0297 & . 0327 & . 0003475 & .000417 & . 450 \\
\hline 6000 & . 215 & . 0398 & . 0480 & . 0410 & . 0486 & .0004675 & . 000632 & . 420 \\
\hline 7000 & . 275 & . 0488 & . 0605 & . 0506 & .0615 & . 000555 & . 000817 & . 405 \\
\hline 8000 & . 335 & . 0579 & . 07383 & . 0600 & . 0739 & . 000647.54 & . 000990 r & . \(305 \sim\) \\
\hline 9000 & . 390 & . 0668 & . 08.44 & . 0690 & . 0855 & . 000750 r & .001137 V & . 3 O5 \\
\hline 10000 & . 445 & . 07.55 & . 0959 & . 0782 & . 0970 & . 000850 & .001285 & . 395 \\
\hline 11000 & . 505 & . 0844 & . 1078 & . 0879 & . 1099 & . 0009475 & .001463 & . 390 \\
\hline 11130 & . 550 & & & & & & & -- \\
\hline
\end{tabular}

Beam No. 411.1 1-1-2 mixturo.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1000 & . 030 & . 0028 & . 0022 & . 0032 & . 0029 & . 000043 & . 00003 & . 560 \\
\hline 2000 & . 040 & . 0074 & . 0061 & . 0084 & . 0085 & . 000103 & . 000083 & . 540 \\
\hline 3000 & . 075 & . 0120 & . 0122 & . 0138 & . 0145 & . 000163 & . 000168 & . 485 \\
\hline 4000 & . 105 & . 0190 & . 0213 & . 0234 & . 0254 & . 000260 & . 000295 & . 465 \\
\hline 5000 & . 150 & . 0268 & . 0315 & . 0309 & . 0375 & . 000335 & . 000453 & . 420 \\
\hline 6000 & . 220 & . 0349 & . 0428 & . 0403 & . 0500 & . 000420 & . 000618 & . 405 \\
\hline 7000 & . 265 & . 0422 & . 0532 & . 0484 & . 0614 & . 000498 & . 000775 r & . 390 V \\
\hline 8000 & . 330 & . 0495 & . 0631 & . 0568 & . 0724 & . 000580 & . 009130 & . 390 \\
\hline 9000 & . 370 & . 0.570 & . 0730 & . 0648 & .0830 & . 000660 & . 001045 & . 387 \\
\hline 10000 & . 420 & .0640 & . 0823 & . 0727 & . 0925 & . 000745 & . 001180 & . 390 \\
\hline 11000 & . 480 & . 0721 & . 0944 & . 0826 & . 1067 & .000825 & \(.001360^{\prime}\) & . 380 V \\
\hline 11170 & & & & --- & --- & & ---- & --- \\
\hline
\end{tabular}

Boarn No. 411.2 I-l-? mixture.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Applior } \\
\text { load } \\
\text { lb. }
\end{gathered}
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Dofloc } \\
\text { tion } \\
\text { in. }
\end{gathered}
\]} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Extonsometor Rondings. in.}} & \multicolumn{2}{|l|}{Doformation.} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Neutral } \\
& \text { Axis } \\
& k
\end{aligned}
\]} \\
\hline & & & & & & \multirow[t]{2}{*}{Uppor fibor} & \multirow[b]{2}{*}{Stonl} & \\
\hline & & I & II & I II & IV & & & \\
\hline 1000 & . 02.5 & .0032 & . 0020 & . 0013 & . 0030 & . 0000875 & . 000030 & . 460 \\
\hline 2000 & . 040 & .0071 & . 0052 & . 0047 & . 0067 & . 0000875 & . 000067 & . 490 \\
\hline 3000 & . 065 & . 0129 & . 0107 & .0082 & . 0121 & . 0001000 & . 000145 & - 460 \\
\hline 4000 & . 110 & .0202 & .0283 & . 0153 & . 0209 & . 0002150 & .000247 & . 4 F0 \\
\hline 5000 & . 155 & . 0305 & . 0312 & . 0250 & . 0336 & . 0003250 & . 000423 & -.\(_{2} 30\) \\
\hline 6000 & . 330 & . 0401 & . 0455 & .0352 & . 0467 & . 0004220 & . 000613 & . 105 \\
\hline 7000 & . 375 & . 0502 & . 0.579 & . 0448 & . 0592 & . 0005040 r & .000781 & . 4.05 \\
\hline 8000 & . 330 & . 0591 & . 0691 & .0534 & -0702 & . 0006270 & . 000925 & : 405 \\
\hline 9000 & . 385 & . 0680 & . 0799 & - 0 ¢50 & & . \(0000^{7} 200\) & . 001070 & \\
\hline 10000 & . 440 & . 0760 & . 0906 & . 0708 & -0ก18 & . 0008220 & . 001220 & . 400 \\
\hline 11000 & . 510 & . 0862 & .1037 & . 0808 & .1047 & . 0009500 & . 001820 & . 415 \\
\hline
\end{tabular}

Beam No. 412. 3 I-1 1/2-3 mixture.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1000 & . 020 & . 0049 & . 0039 & . 0041 & . 0044 & . 0000575 & . 000045 & . 540 \\
\hline 2000 & . 040 & . 0101 & .00?3 & . 0091 & . 0098 & . 000125 & . 0001115 & . 505 \\
\hline 3000 & . 075 & . 0157 & . 0150 & . 0148 & . 0162 & . 000193 & . 000197 & . 490 \\
\hline 4000 & . 115 & .0237 & . 0255 & . 0227 & . 0264 & . 000278 & . 000388 & . 445 \\
\hline 5000 & . 160 & . 0319 & . 0367 & . 0312 & . 0380 & . 000355 & . 000487 & - 425 \\
\hline 6000 & . 220 & . 0412 & . 0494 & . 02027 & . 04.98 & . \(000463^{\circ}\) & . 000552 & . 410 \\
\hline 7000 & . 280 & . 0500 & .0613 & . 0494 & . 0613 & . 000555 & . 000818 & . 400 \\
\hline 8000 & . 330 & . 0537 & . 0726 & . 0580 & . 0723 & . 000650 & . 000970 & . 400 \\
\hline 9000 & . 395 & . 0689 & . 0850 & . 0679 & . 0845 & . 000753 & . 001130 & . 400 \\
\hline 10000 & . 455 & . 0786 & . 0968 & . 0774 & . 0957 & . 000875 & . 001270 & . 405 \\
\hline 11000 & . 520 & . 0889 & . 1093 & . 0876 & . 1075 & . 000985 & . 001450 & . 400 V \\
\hline 11835 & . 600 & & & & & & & \\
\hline
\end{tabular}

Bean No. \(413.5 \quad 1-2-4\) mixture.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1000 & . 015 & . 0035 & . 0036 & . 0032 & . 0034 & . 000043 & . 000043 & . 500 \\
\hline 2000 & . 030 & . 0080 & . 0078 & . 0076 & . 0075 & . 000097 & . 000093 & . 510 \\
\hline 3000 & . 070 & . 0139 & . 0143 & . 0130 & . 0135 & . 000157 & . 000175 & . 490 \\
\hline 4000 & . 115 & .0228 & .0253 & . 0212 & . 0140 & . 000168 & . 000315 & . 455 \\
\hline 5000 & . 170 & . 0328 & . 0372 & . 0308 & . 0358 & . 000375 & . 000470 & -445 \\
\hline 6000 & - 220 & . 0425 & . 0483 & . 0398 & . 0401 & . 000485 & . 00050 R & . 440 \\
\hline 7000 & . 275 & . 0525 & . 0593 & . 04187 & . 0.564 & . 000590 & .000750 & . 440 \\
\hline 8000 & . 330 & . 0627 & . 0697 & . 0578 & . 0669 & . 000708 & .000880 & . 445 \\
\hline 9000 & . 390 & . 0729 & . 0803 & . 0670 & . 0754 & . 000 5 \({ }^{\text {d }}\) & . 000990 & . 5004 \\
\hline 10000 & . 455 & . 0838 & . 0913 & . 0768 & . 0859 & . \(000963^{\circ}\) & . 001130 & .460 V \\
\hline 11000 & . 520 & . 0901 & . 1023 & . 0870 & . 0961 & . 001070 & . 001223 & . 465 \\
\hline 11950 & . 655 & & & & & & & --- \\
\hline
\end{tabular}

Boam No. 417.5 1-s-4 misturo.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Applied } \\
\text { load } \\
\text { 1b. }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Dofloc- } \\
\text { tion } \\
\text { in. }
\end{gathered}
\]} & \multicolumn{4}{|l|}{lixtensometor Roadings} & \multicolumn{2}{|l|}{Deformation} & \multirow[t]{2}{*}{\begin{tabular}{l}
Neutral \\
^xis k
\end{tabular}} \\
\hline & & & II & III & IV & Upper fibor & Steol & \\
\hline 1000 & . 020 & . 0049 & . 0028 & . 0014 & . 0033 & . 000043 & . 000033 & . 540 \\
\hline 2000 & . 045 & .0001 & . 0077 & .004? & . 0079 & . \(000073^{\circ}\) & . 000105 & . 400 \\
\hline 3000 & . 075 : & . 0149 & . 01807 & . 0097 & . 0132 & .000153 & . 000163 & . 480 \\
\hline 4000 & . 100 & . 0209 & . 0137 & . 0260 & . 0199 & . 000230 & .000238 & . 490 \\
\hline 5000 & . 135 & . 0271 & . 0248 & . 02283 & . 0259 & . 000310 & . 000310 & . 495 \\
\hline 6000 & . 175 & . 03848 & . 0318 & . 0297 & . 0336 & . 000405 & . 000395 & . 505 \\
\hline 7000 & . 195 & . 0422 & . 0385 & . 03370 & . 0410 & .0004931 & . 000485 & . 507 \\
\hline 8000 & . 260 & . 0505 & .04.58 & . 0454 & . 0491 & . 00062.20 & . 000570 V & . 515 \\
\hline 9000 & . 300 & . 0591 & . 0534 & . 0541 & . 0570 & . 000783 & . 000663 & . 520 \\
\hline 10000 & . 355 & . 0673 & .0614 & . 0637 & . 0655 & . 000835 & . 000760 & . 520 \\
\hline 11000 & . 410 & . 0761 & . 0702 & . 0750 & . 0745 & . \(00000^{655}\) & . 000358 & . 527 \\
\hline 13000 & . 480 & . 0368 & . 0736 & . 0862 & . 0811 & .001130 & . 000925 & . 550 \\
\hline
\end{tabular}

Beam No. 417.6 1-2-4 mixture.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1000 & . 020 & . 0037 & . 0029 & . 0040 & . 0033 & . 000050 & . 000030 & . 600 V \\
\hline 2000 & . 040 & . 0084 & . 0070 & . 0038 & . 0076 & . 000115 & . 000080 & . 580 \\
\hline 3000 & . 070. & . 0140 & . 0122 & . 0145 & . 0.130 & . 000790 & . 000140 & . 565 \\
\hline 4000 & .100 & . 0212 & . 0194 & . 0218 & . 0199 & . 000285 & . 000235 & . 555 \\
\hline 5000 & . 150 & . 0293 & . 0278 & . 0302 & . 0288 & . 000385 & . 000325 & . 540 \\
\hline 6000 & . 190 & . 0389 & . 0368 & . 0395 & . 0369 & . 000510 & . 000428 V & . \(540{ }^{\text {V }}\) \\
\hline 7000 & . 250 & . 0497 & . 0461 & . 0501 & . 0459 & . 000655 & . 000538 & . 54.7 \\
\hline 3000 & . 310 & . 0623 & . 0555 & . 0626 & . 0550 & . 000825 & . 000643 & . 560 \\
\hline 9000 & .375 & . 0743 & . 0566 & . 0763 & . 0664 & . 001025 & . 000750 & . 570 \\
\hline 10000 & . 460 & . 0936 & . 0800 & . 0954 & .0792 & . 001280 J & . 000868 & . 595 \\
\hline 10520 & & & --- & & & & & --- \\
\hline
\end{tabular}

Beam No. 411.5 1-3-6 mixture.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1000 & . 025 & . 0045 & . 0047 & . 0047 & . 0045 & . 0000475 & . 0000425 & . 520 \\
\hline 2000 & . 065 & . 0119 & . 0132 & . 0108 & . 0124 & . 000138 & . 000165 & .440 \\
\hline 3000 & . 105 & . 0199 & . 0228 & . 0189 & . 0819 & . 000228 & . 000290 & . 440 \\
\hline 4000 & . 155 & . 0289 & . 0333 & . 0278 & . 0325 & . 000333 & . 000425 & . 430 \\
\hline 5000 & . 210 & . 0384 & . 0438 & .0371 & . 0432 & . \(000440^{2}\) & . \(000555^{\text {r }}\) & . 440 \\
\hline 6000 & . 270 & . 0486 & . 0545 & . 0468 & .0542 & . 000555 & . \(000705 x\) & . 440 \\
\hline 7000 & . 330 & . 0595 & . 0656 & . 0572 & . 0650 & . 000693 & . \(000833^{\prime}\) & . 150 \\
\hline 7920 & . 420 & & & & --- & & & -- \\
\hline
\end{tabular}

Boam No. 414.6 1-3-6 nixture.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Appliod loud 1b.} & \multirow[t]{3}{*}{Dofloc tion in.} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Fxtonsometor Roarlings. in.}} & \multicolumn{2}{|l|}{Dof'nraation} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Houtral } \\
\text { Axis } \\
k
\end{gathered}
\]} \\
\hline & & & & & & \multirow[t]{2}{*}{Uppur fibor} & \multirow[b]{2}{*}{Stool} & \\
\hline & & I & II & III & IV & & & \\
\hline 1000 & . 030 & . 0062 & . 0053 & . 0055 & . 0057 & . 000075 & .000065 & . 520 \\
\hline 2000 & . 065 & . 01.36 & . 0133 & . 0130 & . 0136 & . 000200 & . 000165 & . 500 \\
\hline 3000 & . 130 & . 0233 & . 0245 & . 02227 & . 02848 & . 000288 & . 000308 & . 430 \\
\hline 4000 & . 190 & .0336 & . 0362 & . 0332 & . 0361 & . 000405 & . 000453 & . 470 \\
\hline 5000 & . 2.50 & . 0455 & . 0485 & . 0451 & . 0475 & . 000553 & . 000505 & . 480 V \\
\hline 6000 & . 325 & . 0585 & .0614 & . 0578 & . 0599 & . 000713 & . 000758 & . 485 \\
\hline 7000 & . 395 & . 0728 & . 0740 & . 0720 & . 0723 & . 000910 & .000393 & . 505 \\
\hline 8000 & . 485 & . 0917 & . 0890 & . 0804 & . 0866 & . 001175 & . 001035 & . 530 \\
\hline 8430 & . 565 & & & & & & & \\
\hline
\end{tabular}

Beam No. 415.1 1-4-8 mixture.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1000 & . 030 & . 0034 & . 0046 & . 0041 & . 0054 & . 000040 & . 000068 & . 350 \\
\hline 2000 & . 075 & . 0117 & . 0127 & . 01.18 & . 0132 & . 000140 & . 000168 & . 450 \\
\hline 3000 & . 120 & . 0216 & . 0227 & . 0214 & . 0233 & . 000265 & . 000288 & . 480 \\
\hline 4000 & . 180 & . 0312 & . 0328 & . 0311 & . 0336 & . 000383 & . 000412 & . 480 \\
\hline 5000 & . 245 & . 0418 & .1431 & . 0417 & . 0441 & . 000515 & . 0005434 & . 487 \\
\hline 6000 & . 305 & . 0522 & . 0531 & . 0527 & . 0545 & . 000658 & . 000663 & . 495 \\
\hline 7000 & . 375 & . 0639 & . 0633 & . 0647 & . 0655 & . 000810 & . 000788 & . 505 \\
\hline 8000 & . 455 & . 0776 & . 0752 & . 0788 & . 0776 & . 000995 & . 0009184 & . 520 \\
\hline 8680 & & & & & & & & \\
\hline
\end{tabular}

Beam No. 415.2 1-4-8 mixture.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \hline 1000 & .030 & .0064 & .0053 & .0060 & .0045 & .000085 & .000050 & .620 \\
2000 & .080 & .0164 & .0137 & .0162 & .0155 & .000218 & .000168 & .550 \\
3000 & .130 & .0266 & .0239 & .0267 & .0265 & .000348 & .000295 & .537 \\
4000 & .190 & .0378 & .0345 & .0380 & .0379 & .000490 & .000425 & .530 \\
5000 & .260 & .0495 & .0454 & .0502 & .0494 & .000648 & .000560 & .535 \\
6000 & .330 & .0625 & .0560 & .0631 & .0612 & .000815 & .000685 & .540 \\
7000 & .410 & .0775 & .0674 & .0779 & .0731 & .001023 & .000808 & .555 \\
7220 & --- & ---- & --- & ---- & --- & --- & ---- & -- \\
\hline
\end{tabular}

Beam No. 115.5 1-4-8 mixture.
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline 1000 & .035 & .0047 & .0048 & .0051 & .0053 & .000060 & .000050 & .500 \\
2000 & .070 & .0131 & .0146 & .0139 & .0146 & .000165 & .000180 & .470 \\
3000 & .120 & .0230 & .0243 & .0242 & .0262 & .000290 & .000315 & .475 \\
4000 & .185 & .0340 & .0358 & .0361 & .0390 & .000427 V & .000465 & .4902 \\
5000 & .250 & .0452 & .0473 & .0491 & .0517 & .000580 & .000613 & .435 \\
6000 & .432 & .0617 & .0614 & .0665 & .0673 & .000805 & .000785 V & .507 \\
7000 & .470 & .0920 & .0810 & .0998 & .0918 & .001360 & .000983 & .560 \\
\hline
\end{tabular}
- Boim No. 415.6 1-4-8 mixturis.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Appliod load 11.} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Dofloc- } \\
\text { tion } \\
\text { in. }
\end{gathered}
\]} & \multicolumn{4}{|r|}{\multirow[t]{2}{*}{Extensomotor Roadings. in.}} & \multicolumn{2}{|l|}{Deformation} & \multirow[t]{3}{*}{lieutral Axis k} \\
\hline & & & & & & \multirow[t]{2}{*}{Upper fibor} & \multirow[b]{2}{*}{Stoel} & \\
\hline & & I & II & III & IV & & & \\
\hline 1000 & . 025 & . 0055 & . 0062 & . 0056 & . 0056 & . 000065 & . 000075 & . 460 \\
\hline 2000 & . 080 & . 0149 & . 0172 & . 0144 & . 0155 & . 000178 & . 000210 & . 4.50 \\
\hline 3000 & . 140 & . 0248 & . 0289 & . 0236 & . 0258 & . 000290 & . 000345 & . 450 \\
\hline 4000 & . 190 & . 0350 & . 0405 & . 0323 & . 03360 & . 000408 & . 000488 & . 455 \\
\hline 5000 & . 250 & . 0452 & . 0516 & . 0429 & . 0461 & . 000525 & . 000620 & ( 457 \\
\hline 6000 & . 315 & . 0569 & . 06388 & . 0543 & . 0.572 & . 000628 & . 000768 & . 465 \\
\hline 7000 & . 390 & . 0696 & . 0760 & . 0668 & . 0690 & . 0000 Rnay & .0009081 & . 180 \\
\hline 8000 & . 480 & . 0850 & . 0898 & . 0824 & . 0820 & .001065 & .001045 & . 497 \\
\hline
\end{tabular}

Beam No. 416.5 1-5-10 mixture.
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline \hline 1000 & .030 & .0061 & .0049 & .0062 & .0059 & .000080 & .000060 & .560 \\
2000 & .080 & .0148 & .0139 & .0150 & .0149 & .000193 & .000168 & .520 \\
3000 & .145 & .0252 & .0246 & .0258 & .0250 & .0003 .33 & .000295 & .520 \\
4000 & .200 & .0374 & .0361 & .0375 & .0353 & .000485 & .000418 & .530 \\
5000 & .285 & .0520 & .0476 & .0513 & .0461 & .000688 & .000504 & .560 \\
5060 & .370 & --- & ---- & --- & ---- & --- & --- & -- \\
\hline
\end{tabular}

Beam No. 416.6 1-5-10 mixture.
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline 1000 & .040 & .0061 & .0067 & .0072 & .0077 & .000093 & .000080 & .540 \\
2000 & .090 & .0083 & .0167 & .0175 & .0215 & .000228 & .000195 & \(.530 \times\) \\
3000 & .145 & .0120 & .0268 & .0284 & .0395 & .000373 & .000313 & .5404 \\
4000 & .215 & .0230 & .0378 & .0346 & .0414 & .000420 & .000475 & .470 \\
5000 & .290 & .0235 & .0493 & .0433 & .0536 & .000600 & .000605 & .495 \\
5830 &.\(-\infty\) & \(--\infty\) & --- & --- & --- & \(--\infty\) & ---- & --- \\
\hline
\end{tabular}

Note:- In Beam No. 416.6 the roadings of Dials No. 2 and No. 3 only wore used, as tho others Fere evidently in error.















```

