Burch & Heaney

Tests of Plain Concrete Columns

.

Civil Engineering

B. S.

1908

• • •

UNIV.OF ILLINOIS MBRARY

THE UNIVERSITY OF ILLINOIS LIBRARY

1908 B89

TESTS OF PLAIN CONCRETE COLUMNS

BY

1

GEORGE FRANCIS BURCH ARTHUR NOBLE HEANEY

THESIS

FOR THE

DEGREE OF BACHELOR OF SCIENCE

IN

CIVIL ENGINEERING

COLLEGE OF ENGINEERING

UNIVERSITY OF ILLINOIS

PRESENTED, JUNE, 1908

16 6 L .

UNIVERSITY OF ILLINOIS

June 1, 190 8

THIS IS TO CERTIFY THAT THE THESIS PREPARED UNDER MY SUPERVISION BY

GEORGE FRANCIS BURCH

ARTHUR NOPLE HEANEY

ENTITLED TESTS OF PLAIN CONCRETE COLUMNS

IS APPROVED BY ME AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE

DEGREE OF Bachelor of Science in Civil Engineering

D.a. abramo

APPROVED:

Sal Baker.

HEAD OF DEPARTMENT OF Civil Engineering

Digitized by the Internet Archive in 2013

http://archive.org/details/testsofplainconc00burc

TESTS OF PLAIN CONCRETE COLUMNS.

٦.

INTRODUCTION.

Concrete construction has had a remarkable development in the last decade and is now regarded by engineers and architects generally as a safe form of construction with a wide field of economic application. Common practice established itself at first and all concrete work was given an extravagant factor of safety, but in the last few years since rainforced concrete has attained popularity, the outstanding uncertainties have been under investigation and rapid strides have been made toward establishing "good practice" in concrete construction.

Concrete is characterized by low tensile strength, relatively high compressive strength, and great durability. Its great advantages are; its rust-proof and fire-proof qualities, its cheapness, its availability in almost any location, and the ease with which it can be made into any desirable form. For structural members in which tensile stresses are developed steel must be employed as a reinforcement to the concrete, as in the case of a long slender column where there is lateral bending, but for large and compact compressive members plain concrete is used.

•

.

.

•

ŗ

.

A great many tests have been made upon small test pieces such as cubes and cylinders, but the data gathered from those experiments did not allow a comparison to be made between the strengths of the cubes and cylinders and the corresponding columns, for it has been found that the strength of the cubes is usually greater than that of the columns. For reference two series of column tests, not made at the University of Illinois, will be mentioned. The series made at the Massachusetts Institute of Technology were 8 x 8 inches and 10 x 10 inches in cross section and were all reinforced with rods parallel to the vertical axis. The lengths of the columns were 6, 12, and 17 feet. They were made in a vertical position and tested in a horizontal machine. The second series were made at the Watertown Arsenal. These tests were carefully made and perhaps compare more favorably with University of Illinois Engineering Experiment Station tests than any other which have been made. Two series of column tests have been made at the Laboratory of Applied Mechanics at the University of Illinois. The first series made in 1906 are reported in the thesis of Mr. R. C. Llewllyn '06, and in Bulletin No. 10 of the University of Illinois Engineering Experiment Station. These tests were made on the 600000 lb. Riehle vertical testing machine. Tests were made on plain, and on two varieties of longitudinal rod reinforced columns. All columns were made square in cross-section and were of two sizes, 12 x 12 inches, and 9 x 9 inches. The lengths were 6, 9, and 12 feet. The second series made in 1907

are reported in the thesis of Messrs. C. L. Mowder, C. E. Hoff and Sidney Grear, class of '07 and in Bulletin No. 20 of the University of Illinois Engineering Experiment Station. These tests were made in the same machine. The columns tested were plain, spiral and hoop reinforced, and were all round, a few being 9 inches in diameter and the rest 12 inches in diameter.

The third series of tests, just completed, will form the subject matter of this thesis. This thesis however will roport only the tests made on the plain columns, the spiral and hoop reinforced being treated by Nessre. Weber, Gonnerman, and Slaymaker, and Messre. Hudson, Grubel, and Burroughs respectivoly. The plain columns tested were of three different mixtures 1-1-2, 1-2-4, and 1-3-6. Columns in each mixture were of three different ages, 14 days, 60 days, and 1 year. Two short columns were also tested under repeated loads.

A comparison will be made between the strengths of the different columns of the same age and different mixtures, and of the same mixture and different ages. The relation between the load, the deformation, and the resulting modulus of elasticity will be determined. Also an effort will be made to measure Poisson's ratio for plain concrete.

Division of Work:- The work of this thesis was divided as follows. Mr. Burch and Mr. Heaney are together responsible for the computation of data, plotting of curves, and the conclusions. The introduction and description of materials was

written by Mr. Heaney, and the description of apparatus and method of testing by Mr. Eurch. The actual testing of the columns included in this thesis was done by all the writer, and the men previously mentioned who have the spiral and hoop reinforced columns as their theses. The responsibility for the accuracy of the data can not be given to any one man, as the men did not occupy the same positions on all the tests.

9

MATERIALS.

The materials used for the tests were similar to the test materials used for this class of work in this section of the country. The Chicago A A Portland coment was bought in the open market, the Universal Portland coment was furnished for these tests by the manufacturers.

Stone. The stone was crushed limestone from Kankakee, Illinois. It was ordered to pass through a 1-inch screen and over a $\frac{1}{4}$ -inch screen.

Table 1 gives the percentage of voids. The results given are the average of several tests. These tests show that it had about 55% of voids and weighed about 80 pounds per cubic foot.

TABLE 1.

Void Tests of Stone.

Neight cu. ft. Dry stone.	Weight cu. ft. Wet stone	Weight of Water	Percent Voids
79.25	115.0		
81.0	113.75		
80.5	114.75		
80.25	114.50	34.2	54.7

TABLE 2.

Sizes	Percent Passing
1	100
3/4	89.2
1/2	54.7
3/8	32,8
3	16.9
5	4.1
, 10	2.5

.

Cement:- The coment used in the columns was either Chicago A A or Universal Portland coment. The following tables give the results of the fineness and tensile tests of these cements.

TABLE 3.

Fineness of Cement.

Sieve	Percent Chicago A A	Passing Universal
75	98.3	99.3
100	95.1	98.5
200	80.6	90.1

TABLE 4.

Tensile Tests of Cement.

Cement	7 D	ays	28 D	ays
	Neat	1 - 3	Neat	1 - 3
Chicago A A	666	182	792	284 .
	811	227	`833	307
	665	175	799	266
Average	732	192	857	318
	559	145	707	247
	687	184	798	284
Universal	699	242	754	292
	728	232	776	285
	809	248	885	336
	363	244	764	319
	700	242	795	308

ō

+ 1

Sand:- The sand was of good quality, sherp, well graded, fairly clean, containing about 38% of voids as determined from pouring perfectly dry sand into a vescel of 1 cubic foot capa >ity, partly filled with water. The weight of 1 cubic foot of dry sand being known, the weight of the wet sand determined, the percentage of voids was computed. The sand came from near the Wabash river at Attica, Indiana. Tables 5 and 6 give the results of the mechanical analysis of this sand. The values given are averages of 40 or 50 tests of samples taken at different times throughout the season.

-

TABLE 5.

Void Tests of Sand.

Weight cu. Dry sand	ft. Weight cu. ft. Wet sand	Weight of Water	Percent Voids
101.2	118.75		
101.5			
101.0			
101.2		17.75	28

TABLE G.

Fineness of Sand.

Sieve	Number	Percent	Passing
	3	99	12
	5	89	.0
]	LO	64	.7
]	.2	57	.8
]	.6	49	,9
]	.8	39	.0
2	50	21	.6
Ľ.	FO	11	.8
5	50	5	.1
r 1	74	2	. 0
1.9	50	0	.4.6

Concrete:- Two men skilled in mixing concrete were employed, and great care was used to make the concrete as good as that found in the best structures. All materials were proportioned by loose volumes. As a check on the volume measurement all materials were weighed. The centent and sand were first placed on the flat steel plate which was used for a mixing board, and thoroughly mixed dry by turning with shovels. The stone, which had previously been thoroughly moistened, was added to the mixed sand and cement. The mass was thoroughly mixed, then water was added, and the mass turned until uniform in appearance. The turning of the mass three times after the water was added was usually sufficient to secure a uniform mixture. A fairly wet mixture was used as this permitted the tamping into the forms to better advantage. The amount of

·

. .

concrete mixed at one time was just sufficient to make one column and the auxiliary test specimens which were given the same number.

TEST SPECILENS.

The test specimens were made in as nearly a uniform manner as possible. The conditions of manufacture were practically the same in all cases. Three different mixtures of concrete were used, 1-1-2, 1-2-4, and 1-3-6. The stone and sand used were the same in all cases. The corrent was Chicago A A and Universal Portland cement. General data on all the test specimens are given in Table II, page 87.

Plain Concrete Columns:- For the series of 1908 a total of 136 columns were made. Of these 85 were reinforced and 51 were plain concrete. The total number of concrete columns tested in 1908 was 19, 3 of these being of the series of 1907. Of these 17 were cylindrical, 15 of them being 12 inches in diameter and 2 nine inches in diameter. The other two columns tested were 12 inches square. All the cylindrical columns were 10 feet long, and the square columns were 6 feet long. Columns No.'s 107, 161, and 162 from the series of 1907 were tested at the age of one year.

Auxiliary Specimens:- To give a check on the quality of the concrete, cubes and cylinders were made from the same batch that was mixed for each column. The 12 inch cubes were made

in cets of two and the 6 inch cubes in sets of three. A mingle cylinder was made from some of the batches. The mixture for each set of test specimens was the same as the mixture for the column of the corresponding number. The concrete was well tamped in the forms and was trowled around the sides to insure good surface.

Forms for Golumns:- The column forms were of galvanized sheet steel bent into a cylindrical shape and held in position by bands 1 inch wide and 3/16 inch thick. The bands could be adjusted to the proper liameter by means of bolts. The forms were built in sections 2 1/2 feet long and fitted together in stove-pipe fashion. The forms are shown in Fig. 2. The forms for the 12-inch cubes were of the ordinary wooden type two in a set. The 6-inch cube forms were of metal. The cylinder forms were of wrought iron with cast iron bases, being the same as shown in Fig. 2. All forms remained in place about seven days.

Making of Columns:- The concrete for each column and for the corresponding auxiliary specimens, was mixed in one batch. The form was set up on a cast iron base plate 14 x 14 x 1 3/4 inches which was planed on both sides, and served as a bearing plate in the column test. In making the columns the forms were built up in 2 1/2 foot sections, each section being filled before the next was added. The concrete was put in in layers of about six inches, and tamped or churned until water flushed to the surface. The lengths of all the cylindrical

column: were about 10 feet. The square columns were made in the same manner with one exception that the forms were set up complete before being fille1.

Storage of Columns:- The columns were built near the walls of the Laboratory of Applied Mechanics and remained in a vertical position until tested. The forms were taken off 7 days after makin, and after that the columns were wetted twice daily until they were tested. The temperature of the room varied from 55° to 65°F. The 12-inch cubes were stored in the open air of the same room. The six-inch cubes and cylinders were stored in damp sand.

Summary of Test Pieces:- Table 7 gives a list of all the test pieces. Specimens having corresponding numbers were made from the same batch of concrete. Tables 8, 9, 10 give the general data on the auxillary specimens.

TESTING MACHINE USED.

All the columns and 12-inch cubes were tested in the 600000 pound Riehle vertical screw machine of the Laboratory of Applied Mechanics. The slowest speed of 0.05 inch per minute was used, except on two columns where repeated loading was applied. Here a speed of 0.10 inch per minute was used. Fig. 8 shows a column in the machine in position for testing. The 6-inch cubes and 8 x 16-inch cylinders were tested in the Olsen testing machine of 100000 or 200000 pound capacity.

Measuring Devices:- The longitudinal deformations vere measured by four extensometers which so ragnified one deformation that it was possible to read to ten-thousands of an inch. The arrangement was such as to give practically two independent sets of readings. The opposite dials were carried by the same yoke. Fig. 3 shows how they were placed. The distance between centers of corresponding yokes was always 100 inches for the 10 foot columns, making the gauged about 20 inches less than the length of the columns. The gauge length for the square columns was 50 inches. The yokes were placed symmetrically with respect to the middle of the length of the column. The yokes carrying the dials were placed near the bottom of the column and were four inches apart. The yokes carrying the rods were in corresponding positions near the top. The contact rods were of wood 3/8 inch by 3/4 inch and had steel blades at the ends which came in contact with the rollers of the extensometers, and were held in close contact by small elastic bands. The blades had a cylindrical surface so that there was always a bearing along one element.

Lateral Expansion:- The lateral expansion was measured by means of the "Illinois' lateral expansion instrument" shown in Fig. 4. The levers for measuring the expansion were hinged to a frame suspended at the middle of the column. At the point where the lever touched the column a small steel disk was fastened to the column with plaster-paris in order to give a good contact. The expansion was multiplied ten times by

1-

by the levers, and was read by means of two hiermeters. These icrometers were read to ten-thousanths of an inch. The contact of the micrometers at the point of reading was noted by the closing of an electric circuit. The closing of this circuit was detected by means of a telephone receiver introduced into the circuit.

Ceneral Nethod of Testing:- A few days before testing, a plate similar to the base plate shown in Fig. 1 was set on a plaster of paris cushion on top of the column, and served as the top bearing plate in the test. The top and bottom plates were connected with rods, and the columns were carried to the machine in an upright position. The load was applied through a spherical bearing block which was carefully centered on the column. The load was applied in increments of from 10000 to 20000 pounds on the 12-inch column. On the 9-inch column the increment of load rarely ran over 10000 pounds. In Columns 8051 and 8061 the loads were repeated. Readings were taken at about every 10000 poundschange in loal. In all cases the machine was stopped while readings on the instruments were taken.

·

.

•

<:

• 5 .

. ۰. ~ ۱

- 1

N. Start

·

View Showing Arrangement of Instruments.

Fig. 8.

.

· ·

Ľ

TABLE 7

LIST OF TEST COLUMNS AND

AUXILIARY SPECIMENS.

Column	Mixture	۸٥٥	Cement	Diame-	Auxili	iary	Specinens
TATHEDG L		Days		of col-	- 12"	6" 6	8"x16"
				umn. Inches	cupen	cube	lS Jy-
8011	1-1-2	14	Chicago AA	13	CQ	C2	1
8012	1-1-2	14	Chicago AA	12	2	3	1
8051	1-1-2	14	Chicago AA	12 x 1	13 2	5	-
8013	- 1-1-2	61	Universal	12	2	3	1
8014	1-1-2	60	Universal	12	-	10mma	anun
9015	1-1-2	67	Chicago AA	12	2	3	A-10
8031	1 min mit	14	universal	18	2	3	T
8022	1-2-4	14	Chicago AA	12	22	3	1
8061	1-2-4	14	Chicago AA	11 3/1	5x 2	3	
8023	1-2-4	66	Universal	12 170	2	3	l
8024	1-2-4	65	Universal	12	2	3	1
8025	1-2-4	66	Universal	12	2	3	l
107	1-2-4	. 379	Chicago AA	12	3840-2075	2-sh	-
161	1-2-4	377	Chicago AA	9	2	4.45°	
162	1-2-4	377	Chicago AA	9	2		ua.
8032	1-3-6	14	Chicago AA	12	2	3	1
8033	1-3-6	66	Universal	12	2	3	1
8034	1-3-6	64	Universal	12	2	3	1
8035	136	67	Chicago AA	12	2	3	~

1.

OBSERVED AND COMPUTED DATA

2.0

014

COLU'NS AND AUXILIARY SPECILESS.

-

•

Observed Data

Load PoundsLongitudinal Extensometer 1Transverse Extensometer Readings 1Transverse Extensometer Readings 4Transverse Extensometer Readings E. & W. N. & 6500 .0000.0000.0000.0000.0000 20500 .0077.0059.0009.0010.0111.0011 41000 .0163.0141.0042.0048.0108.0107 60500 .0226.0211.0099.0100.0101.0104 80500 .0278.0274.0167.0160.0098.0100 100000 .0343.0345.0187.0228.0093.0091 140000 .0486.0502.0282.0369.0082.0082 160000 .0565.0593.0377.0454.0071.0079 181000 .0647.0698.0489.0533.0052.0062 192000 .0698.0759.0559.0596.0043.0062 205500 .0751.0833.0640.0655.0043.0062 215000 .0739.0903.0720.0709.0058.0057 235000 .0939.0572.0848.0815.00148.0044	Gauge Len Diameter	gth 100 12.31	in. in.		Age when Cement,	tested, 14 da Universal	tys.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Load Pounds	L Exten	ongitud: someter	inal Readin	ngs A	Transver: Extensometer	Readings
245000 .0939 .1164 .1026 .0866 .0008 .0037	6500 20500 41000 60500 100000 120500 140000 160000 181000 192000 200500 215000 235000 245000	.0000 .0077 .0166 .0226 .0278 .0343 .0415 .0486 .0565 .0647 .0698 .0751 .0799 .0889 .0939	.0000 .0059 .0141 .0211 .0274 .0345 .0433 .0502 .0593 .0698 .0759 .0833 .0903 .1057 .1164	.0000 .009 .0042 .0099 .0167 .0187 .0210 .0282 .0377 .0489 .0559 .0640 .0720 .0898 .1026	.0000 .0010 .0048 .0100 .0160 .0228 .0297 .0369 .0454 .0533 .0596 .0655 .0709 .0815 .0866	.0111 .0108 .0101 .0098 .0093 .0087 .0082 .0071 .0052 .0052 .0043 .0058 .0018 .0018	.0011 .0107 .0104 .0100 .0095 .0091 .0088 .0079 .0069 .0069 .0069 .0062 .0057 .0044 .0037

/

Computed Data

Unit Load Lbs. per sq in.	Longit Deform	udinal ation	Trans Defor	Transverse Deformation			
	100 ins.	r l in.	E. 2 W.	N. & S.			
54.6	.0000	.000000	.000000	.000000			
172.2	.0039	,000039	.000000	.000000			
344.5	.0099	.000099	.000002	.000003			
508.3	.0159	.000159	.000008	.000006			
676.4	,0220	.000220	.000010	.000009			
840.2	.0276	.000276	.000015	.000013			
1012.4	.0339	.000339	.000020	.000016			
1176.3	.0410	.000410	.000023	.000019			
1344.3	.0497	.000497	.000032	.000026			
1520.8	.0592	.000592	.000044	.000031			
1613.2	.0653	.000653	,000048	.000034			
1684.6	.0720	.000720	.000055	.000040			
1806.4	.0783	.000783	.000060	.000044			
1890.5	.0843	.000843	.000067	.000047			
1974.5	.0915	.000915	.000076	.000055			
2058.5	.0999	.000999	,000084	.000060			
2066.9							

Observed Data

Length 10 ft. 0 in. Gauge Length 100 in. Diameter 12.18 in.

Mixture 1-1-2. Age when tested, 14 days. Cement, Chicago AA.

Load	Longitudinal			Transvera	50	
Pounds	Extens	someter	Rea lin	Extensometer	Realings	
	1	2	3	4	E. & W.	N. & S.
6500	.0000	.0000	.0000	.0000	.2169	.2664
21000	.0030	.0025	.0059	.0052	.2167	.2663
40500	.0082	.0080	.0100	.0120	.2160	.2659
62000	.0151	.0159	.0210	.0190	.2154	.2655
81000	.0218	.0229	.0269	.0248	.2148	.2651
101000	.0293	.0304	.0345	.0305	.2143	.2650
120500	.0377	.0388	.0408	.0371	.2139	.2648
141000	.0460	.0481	.0495	.0456	.2130	.2643
161000	.0552	.0571	.0582	.0544	.2109	.2634
182000	.0653	.0673	.0685	.0647	.2087	.2625
202000	.0765	.0796	.0795	.0756	.2057	.2603
221000	.0890.	.0933	.0915	.0877	.1989	.2568
240000	.1039	:1101	.1058	,1019	.1939	.2520
260000	.1218	.1320	.1240	.1205	.1792	.2440

COLUIN 8012

Computed Data

Unit Load Lbs. per sq in.	Longit Deform	udinal ation	Transverse Deformation		
	pe 100 ins.	l in	Total	Unit	
55.8 180.2 347.5 532.0 695.0 866.6 1033.9 1209.8 1381.4 1561.6 1733.2 1896.2 2059.2 2230.8	.0000 .0042 .0096 .0178 .0241 .0312 .0386 .0473 .0562 .0665 .0778 .0904 .1054 .1246	.000000 .000042 .000096 .000178 .000241 .000312 .000386 .000473 .000562 .000665 .000778 .000904 .001054 .001246	.000000 .00002 .000007 .000012 .000025 .000025 .000032 .000049 .000067 .000092 .000148 .000189 .000309	.000000 .000001 .000007 .000011 .000012 .000013 .000017 .000025 .000032 .000050 .000050 .000079 .000118 .000184	

.

·

· ·

.

Observed Data

Length 6 ft. $0\frac{1}{2}$ in.Nixture 1-1-2.Gauge Length 50 in.Age when tested, 14 days.Dimensions 12 in. x 11 3/4 in.Cement, Chicago AA.

Load Pounds	Ext l	Longit ensomet 2	udinal or Read 3	ings 4
$ \begin{array}{c} 10500 \\ 25500 \\ 48000 \\ 72000 \\ 48000 \\ 26000 \\ 10500 \\ 28500 \\ 50600 \\ 72000 \\ 10500 \\ 72000 \\ 10500 \\ 72000 \\ 10500 \\ 73000 \\ 10500 \\ 73000 \\ 10500 \\ 73000 \\ 10500 \\ 73000 \\ 10500 \\ 73000 \\ 10500 \\ 73000 \\ 10500 \\ 73000 \\ 10500 \\ 72000 \\ 10500 \\ 10500 \\ 72000 \\ 1050$	1 .0000 .0026 .0066 .0114 .0100 .0068 .0030 .0052 .0089 .0128 .0035 .0126 .0040 .0130 .0042 .0134 .0042 .0134 .0042 .0159 .0045 .0142 .0045 .0142 .0045 .0142 .0046 .0142 .0046 .0142 .0047 .0143 .0052 .0074 .0112	2 .0000 .0019 .0052 .0108 .0080 .0050 .0025 .0044 .0082 .0025 .0044 .0082 .0118 .0029 .0120 .0031 .0125 .0033 .0116 .0037 .0131 .0038 .0134 .0040 .0134 .0049 .0139 .0044 .0062 .0100	3 .0000 .0021 .0062 .0113 .0076 .0041 .0016 .0037 .0077 .0019 .0123 .0022 .0125 .0024 .0126 .0026 .0130 .0028 .0133 .0030 .0132 .0031 .0133 .0032 .0031 .0133 .0032 .0031	4 .0000 .0031 .0086 .0114 .0091 .0053 .0020 .0047 .0086 .0122 .0024 .0124 .0025 .0127 .0028 .0127 .0028 .0131 .0030 .0135 .0030 .0135 .0030 .0136 .0034 .0136 .0035 .0062 .0103
77000	.0153	.0144	.0141	.0142
100000	.0208	.0195	.0192	.0190
124000	.0270	.0262	.0260	.0256
144000	.0336	.0330	.0332	.0334
118000	.0330	.0306	.0305	.0314
98000	.0308	.0280	.0275	

Observed Data

Continued

Load	Longitudinal					
Pounds	Ex	tensome	ter Rea	dings		
	1	2	3	4		
74000	.0275	.0240	.0233	.0248		
51000	.0237	.0195	.0185	.0204		
28000	.0189	.0144	.0131	.0148		
10500	.0145	.0105	.0091	.0115		
144000	.0370	.0365	.0369	.0389		
10500	.0162	.0120	.0113	.0132		
144000	.0389	.0381	.0394	.0404		
10500	.0174	.0130	.0127	.0137		
144000	.0401	.0394	.0412	.0415		
10500	.0186	.0140	.0144	.0150		
145000	.0416	.0410	.0436	.0429		
10500	.0196	.0148	.0162	.0157		
144000	.0424	.0419	.0450	.0434		
10500	.0205	.0160	,0181	.0164		
144000	.0434	.0426	.0469	.0445		
10500	.0200	.0161	.0207	.0170		
144000	.0446	.0440	.0504	.0454		
10500	.0210	.0171	.0217	.0176		
144000	.0452	.0448	.0513	.0460		
10500	.0216	.0178	.0225	.0183		
146000	.0460	.0450	.0526	.0418		
10500	.0222	.0182	.0232	.0190		
26500	.0244	.0201	.0250	.0216		
51000	.0288	.0254	.0306	.0272		
76000	.0325	.0311	.0371	.0327		
101000	.0376	.0368	.0430	.0381		
123000	.0421	.0415	.0481	.0427		
144000	.0464	.0460	.0528	.0473		
172000	.0532	.0530	.0602	.0544		
213000	1478	1336	1381	.1501		

. .

v

.

COLUIN 8051

Computed Data

Unit Loal	Longitudinal				
nos. Der si. In.	50 in's	1 in.			
74.4 180.8 340.4 510.5 340.4 184.4 74.4 202.1 358.9 510.5 74.4 510.5 74.4 510.5 74.4	Deformat 50 in's .0000 .0024 .0067 .0120 .0087 .0053 .0023 .0023 .0023 .0045 .0084 .0120 .0027 .0123 .0027 .0123 .0030	ion l in. .000000 .000048 .000133 .000240 .000174 .000106 .000046 .000090 .000167 .000240 .000240 .000247 .000247 .000254 .000059 .000254			
74.4 517.7 74.4 517.7 74.4 510.5 74.4 510.5 74.4 184.4 354.6 546.0 709.2 872.3	.0127 .0034 .0134 .0035 .0136 .0037 .0136 .0039 .0138 .0041 .0062 .0102 .0102 .0145 .0196 .0262	.000254 .00068 .000268 .000070 .000272 .000272 .000272 .000276 .000276 .0002276 .000223 .000223 .000203 .000290 .000593			
836.9 695.0	.0335 .0314 .0287	.000666 .000628 .000575			

Computed Data

Continued

Unit Load	Longitud	linal
102° har 2d° TH'	50 in's.	l in.
524.8	0249	.000498
361.7	.0205	.000411
198.6	.0153	.000306
74.4	.0114	.000228
1021.2	.0373	.000747
74.4	.0132	.000264
1021.2	.0392	.000784
74.4	.0142	.000284
1021.2	.0406	.000911
74.4	.0155	.000310
1028.3	.0423	.000846
74.4	.0166	.000332
1021.2	.0432	.000864
74.4	.0178	.000355
1021.2	.0444	.000887
74.4	.0185	.000569
1021.2	.0461	.000922
74.4	.0194	.000387
	.0468	.000937
74.4	.0201	.000401
	0207	000967
197 9	0228	000456
361.7	0280	.000560
539.0	.0334	.000667
716.5	.0589	.000778
872.3	.0436	.000872
1021.2	.0481	,000963
1219.8	.0552	.001104
1510.6	.1424	.002848

/

.

,

· .

COLUIN 8013

Observed Data

Length 10 ft. 0	in.	Vixture	1-1-2.
Cauge Length 100	in.	Age when	tested, 61 lays.
Diameter 12.18	in.	Cenent,	Universal.

Load	Longitudinal				Transverse		
Pounds	Exter	nsometer	r Readi	ngs	Extensomet	er Readings	
	1.	2.	5.	4.	E. & V	I. N. & S.	
6500	.0000	.0000	.0000	.0000	.2429	.2960	
26000	.0050	.0035	.0023	.0058	.2433	.2965	
51000	.0119	.0079	.0035	.0101	.2434	.2965	
72000	.0190	.0130	.0142	.0152	.2435	.2961	
100500	.0221	.0225	.0129	.0242	.2439	.2960	
125500	.0258	.0320	.0230	.0341	.2440	.2957	
150000	.0299	.0403	.0278	.0428	.2439	.2949	
176000	.0342	.0502	.0321	.0521	.2438	.2944	
201000	0400	.0590	.0368	.0609	.2435	.2939	
233000	.0471	.0701	.0426	.0723	,2431	.2927	
251500	.0522	.0777	.0460	.0789	.2427	.2917	
275000	.0582	.0860	.0520	.0871	.2423	.2915	
300000	.0652	.0951	.0590	.0962	.2407	.2908	
326000	.0686	.1061	.0674	.1072	.2389	.2890	
353000	.0692	.1151	.0725	.1161	,2369	.2872	
377000	.0695	.1243	.0761	.1260	,2347	.2848	
401000 417000	.0695	.1328	.0829	.1358	.2291	.2837	

.
Computed Data

Unit Load	Unit Load Longitudinal			
Lbs. per sq. in.	Deforma	tion	Deiom	nation
	per		E. & W.	N. & S.
	100 ins.	l in.		
55.8	.0000	.000000	000000	.000000
223.1	.0041	.000041	000005	000004
437.6	.0068	.000068	000004	000004
617.8	.0147	.000147	-,000005	000001
862.3	.0216	.000216	- 000008	000000
1077.0	.0286	.000286	000009	.000002
1287.0	0353	000353	000008	.000009
1510 1	0421	000421	- 000007	000013
1794 6	0100	000400	000007	.000013
1000 7	.0403	.000403	000005	.000017
1999.1	.0575	.000575	00002	.000027
2157.9	.0625	.000625	.000002	.000035
2359.5	.0696	.000696	.000005	.000037
2574.0	.0776	.000776	.000018	.000043
2797.1	.0873	.000873	.000033	.000058
3028.7	.0943	.000943	.000049	.000080
3234.7	.1011	.001011	.000067	.000092
3440.6	.1094	.001094	.000113	.000101
3577.9				

/

•

•

· · ·

Observed Data

Length 10 Gauge Len Diameter	ft. 0 2 gth 100 12.25	in. in. in.		Mixture Age when Cement,	l-l-2. tested, 60 da Universal.	ays.
Load	L	ongitud	inal		Transvers	30 Dan 1 in
Pounds	l L	someter 2	З	ngs 4	Extensometer E. & W.	Realings N. & S.
6500	.0000	.0000	.0000	.0000	.2790	.2945
22000	.0025	.0012	.0021	.0037	.2780	.2937
51500	.0070	.0078	.0082	.0112	.2759	.2937
76000		.0142		.0170	.2740	.2917
100000	.0191	.0205	.0172	.0232	.2718	.2900
124000	.0272	.0258	.0218	.0705	.2695	.2878
152000	.0360	.0330	.0283	.0389	.2669	.2851
177000	.0432	.0392	.0343	.0468	.2640	.2820
201000	.0510	.0460	.0404	.0543	.2615	.2819
230000	.0608	.0548	.0487	.0642	.2582	.2800
252000	.0692	.0620	,0557	.0720	.2557	.2780
275000	.0774	.0698	.0631	.0800	.2530	.2748
302000	.0372	.0790	.0717	.0894	.2500	.2725
325000	.0964	.0868	.0798	.0999	.2475	.2703
350000	.1072	,0980	.0900	.1081	.2443	.2675
375000	.1202	.1108	.1009	,1183	,2405	.2642
400000	.1332	.1265	,1139	.1252	.2375	.2610
404000						

χ.

Computel Data

			Transverse Deformation		
10	0 ins.	l in.	E. & W.	N. & S.	
55.1 .0 186.6 .0 436.9 .0 644.8 .0 848.4 .0 1052.0 .0 1289.6 .0 1501.7 .0 1705.5 .0 1951.3 .0 2333.1 .0 2562.2 .0 2757.3 .0 2969.4 .0 3181.5 .0 5393.6 .0	0000 0024 0086 0156 0200 0263 0341 0409 0479 0571 0571 0547 0726 0547 0726 0818 0907 1008 1126 1247	000000 00024 000086 000156 000200 000263 000341 000409 000479 000571 000647 000726 000818 000907 001008 001126 001247	.000000 .00008 .000025 .000041 .000058 .000077 .000099 .000122 .000122 .000142 .000142 .000170 .000190 .000212 .000237 .000257 .000257 .000283 .000314 .000338	.000000 .00007 .000023 .000023 .000054 .000076 .000102 .000102 .000102 .000134 .000134 .000161 .000184 .000184 .000197 .000220 .000247	

1

1712

1

•

·

· ·

·

Observed Data

Length 9 ft. 104	in.	llixture	1-1-2.		
Cauge Length 100	in.	Age when	testel,	67	days.
Diameter 12.25	in.	Cement, (Chicago A	IA.	

Load	Longitudinal				. Transverd	66
Pounds	Exten	someter	Readin	gs	Extensometer	Readings
	1	2	3	4	E. & W.	N. & S.
7000	.0000	.0000	. 0000	. 0000	2305	2555
26000	0048	0052	00%2	0048	2303	2545
51,000	0091	0122	0105	0110	2285	2537
75000	0145	0186	0170	0165	2272	2522
102000	0208	.0100	0250	.0100	2251	2504
102000	0000	0779	0%35	,0606	• \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0100f
1.50000	.0200	.0.00	.0335	.0300	0100	9450
1250000	.0330	0470	.0400	• 0000	0005	0120
175000	014	.0470	.0400	.0430	+ GOUU 0100	0/10
201000	.0440	.0002	.007%	.0519	• 6107 • 701	• 6410 9705
NS2000	.0468	.0000	.0000	.0590	1610+	• KOYO
250000	.0474	.0738	.0780	.0678	.STTP.	07.65.
275000	.0515	.0832	.0880	.0758	.2065	.2344
300000	.0560	.0940	.1015	,0850	.2038	.2308
325000	.0618	.1047	.1122	.0932	,1999	.2264
350000	.0638	.1.170	.1285	.1040	. 1951	.2206
375000	.0708	.1320	.1462	.1152	.1898	.2134
400000						

/

.

.

Computed Data

Unit Load Lbs. per sj in.	Longit Deform	udinal ation	Transverse Deformation		
	100 ins.	l in.	E. & W.	N. & S.	
59.4 220.6 432.7 636.3 865.4 1069.0 1272.6 1484.7 1705.3 1908.9 2121.0 2333.1 2545.2 2757.3 2969.4 3181.5	.0000 .0045 .0107 .0238 .0309 .0374 .0442 .0524 .0593 .0667 .0746 .0841 .0929 .1033 .1160	.000000 .00045 .000107 .000238 .000309 .000374 .000442 .000534 .000593 .000667 .000746 .000841 .000929 .001033 .001160	.000000 .00001 .000016 .000022 .000044 .000071 .000077 .000082 .000082 .000082 .000121 .000159 .000196 .000250 .000250 .000289 .000332	.000000 .00008 .000015 .000027 .000042 .000064 .000078 .000095 .000114 .000131 .000147 .000172 .000202 .000238 .000285 .000344	
0000.0					

Observed Data

Longth 10 ft. 1 in.	Mixture	1-3-4.
Gauge Longth 100 in.	Age when	tested, 14 days.
Diamoter 12.36 in.	Coment,	Universal.

Load	L	ongitud	inal		Transverse
Pounds	Exten	someter	Readin	gs	Extensometer Readings
	1	2	3	4	E. & W.
6500	.0000	.0000	.0000	.0000	.0121
12000	.0018	.0023	.0005	.0010	.0119
20000	.0024	.0053	.0022	.0052	.0118
30600	.0068	.0100	.0052	.0102	.0116
41000	.0104	.0140	.0085	.0146	.0114
51500	.0158	.0175	.0123	.0192	.0113
61000	.0202	.0220	.0161	.0242	.0112
70600	.0256	.0264	.0204	.0294	.0109
80000	.0314	.0312	,0250	.0346	.0108
90300	.0384	.0362	.0255	.0420	.0106
100000	.0467	.0432	.0353	.0506	.0104
110000	.0570	.0523	.0425	.0624	.0102
120000	.0692	.0645	.0521	.0724	.0099
130000	.0902	.0855	.0690	.1026	.0092
132000					

/

COLUIN 8021

Computed Data

Unit Load Lbs. per sq in.	Longit Deform	udinal ation	Transverse Deformation	
	100 ins.	l in,	Unit	
54.2 100.0 166.7 255.1 341.7 424.3 514.4 588.5 666.8 750.2 833.5 916.9 1000.2 1083.6	.0000 .0014 .0038 .0081 .0119 .0162 .0206 .0255 .0306 .0355 .0306 .0355 .0440 .0536 .0646 .0868	.000000 .000014 .000038 .000081 .000119 .000162 .000206 .000255 .000306 .000355 .000355 .000440 .000536 .000646	.000000 .00004 .000006 .000010 .000013 .000015 .000017 .000025 .000025 .000025 .000032 .000032 .000032	
1100.3				

Observel Data

Longth 10 ft. 1 in.	Mixture 1-2-4.
Gauge Longth 100 in.	Age when tested, 14 days.
Diameter 11.78 in.	Cement, Chicago AA.

Load Longitudinal			<i>a</i> .a.	Transvərsə		
rounus	1	2	3	gB 4	E. & W.	N. & S.
6500	.0000	.0000	.0000	.0000	.2424	.2273
11700	.0040	.0018	.0012	.0014	.2443	.2265
24000	.0100	.0058	.0042	.0084	.2439	.2259
35500	.0175	.0120	.0068	.0160	.2431	.2246
47000	.0270	.0195	0132	.0258	.2416	.2225
59000	.0410	.0305	.0254	.0414	.2354	.2177
70000	.0632	.0498	.0458	.0670	.2255	.2095
75000	.0950	.0760	.0758	.1022	.2013	.1830

/

.

K

Computed Data

Unit Load Lbs. per sq in.	Longitu Deforma per	idinal ation r	Trans Defor Unit	verse mation Unit
	100 ins.	l in.	E.& W.	N.& S.
59.6	.0000	.000000	.000000	.000000
222.0	.0021	.000021 .000071	000016	.000007
325.7 431.2	.0131 .0214	.000131 .000214	-,000006 ,000007	.000023 .000041
541.3 642.2 688.0	.0346 .0565 .0873	.000346 .000565 .000873	.000059 .000144 .000349	.000082 .000151 .000376

•

Observed Data

Length 6 ft.	01	in.				
Gauge Length	50	in.				
Dimension 11 3.	/16	in.	x 1	.2]	1/8	in.

Mixture 1-2-4. Age when tested, 14 days. Coment, Chicago AA.

Load	L.	ongitu	inal		Transvers	50
Pounds	Exten	someter	c Readi	ings	Extensometer	Readings
	1.	2.	3.	4.	E. & W.	N. & S.
1600	.0000	.0000	.0000	.0000	.2441	.2716
11000	.0005	.000S	.0025	.0003	.2437	.2721
20000	.0021	.0022	.0048	.0017	.2434	.2714
30500	.0051	.0053	.0061	.0045	.2427	.2714
20000	.0049	.0048	.0054	.0036	.2431	.2714
11000	.0035	.0036	.0048	.0031	.2437	.2719
1000	.0014	.0003	.0028	.0003	.2440	.2719
30500	.0061	.0060	.0077	.0055	.2430	.2711
11000	.0035	.0030	.0051	.0033	.2434	.2713
1000	.0018	.0002	.0030	.0008	.2439	.2724
31000	.0068	.0061	.0072	.0061	.2434	.2708
1000	.0019	.0003	.0034	.0011	.2436	.2715
31000	.0072	.0069	.0078	.0075	.2423	.2705
1000	.0020	,0002	.0038	.0018	.2438	.2713
31000	.0078	.0068	.0079	.0072	.2421	.2708
1000	.0022	.0008	.0040	.0021	.2436	.2711
31500	.0079	.0070	.0084	.0074	.24.25	.2707
1000	.0022	.0005	.0042	.0017	.2433	.2712
34000		.0072		.0081	.2419	.2706
1000	.0025	.0008	.0042	.0022	.2432	.2714
34000	.0090	.0078	.0091	.0083	.2416	,2706
1000	.0029	.0009	.0044	.0023	.2430	.2713
31000	.0089	.0070	.0089	.0081	.2418	. 2707
1000	.0029	.0010	.0047	.0024	.2430	.2712
11000	.0039	.0021	.0062	.0039	.2424	.2709
19000	.0060	.0042	.0077	.0061	.2423	.2709
33000	.0091	.0075	.0093	.0085	.2421	.2704
51000	.0192	.0135	.0145	.0160	.2390	.2691
20000	.0154	.0090	.0101	.0115	.2411	.2694
1000	.0060	.0020	.0055	.0044	.2424	.2704
51000	.0212	.0142	.0155	.0176	.2383	.2687
1000	.0069	.0022	.0059	.0050	.2423	.2706

. N

COLUMN 8061.

Observed Data

Continuel.

Load	Longitud:	inal	Transverse			
Pounds	Extensometer Readings		Extensometer Reading			
	1. 2.	3. 4.	E. & W.	N. & S.		
51000	.0232 .0152	.0159 .0189	. 2377	.2687		
2000	.0091 .0038	.0063 .0062	.2417	.2705		
51000	.0248 .0152	.0159 .0168	.2371	.2681		
1000	.0102 .0041	.0065 .0070	.2416	.2702		
51000	.0262 .0165	.0174 .0214	.2369	.2678		
1000	.0105 .0042	.0067 .0071	.2416	.2700		
51000	.0272 .0168	.0176 .0217	.2368	.2678		
1000	.0110 .0040	.0069 .0073	.2415	.2700		
52000	.0285 .0178	.0185 .0231	.2364	.2673		
1000	.0119 .0042	.0073 .0074	.2417	.2699 .		
51000	.0291 .0172	.0185 .0234	.2367	.2675		
1000	.0121 .0042	.0074 .0081	.2420	.2699		
2000	.0500 .0190	.0193 .0249	6000. 0 F M C	.2000		
11000	0170 0065	.0000.0000	041 <i>C</i>	2202		
21000	0220 0102	0118 0151	2409	2690		
31000	.0260 .0138	.0140 .0182	.2395	.2685		
42000	.0279 .0160	.0172 .0221	.2381	.2678		
52000	.0318 .0190	.0203 .0256	.2367	.2668		
63000	.0382 .0230	.0245 .0304	.2340	.2658		
39000	.0380 .0190	.0213 .0264	.2355	.2651		
24000	.0329 .0158	.0173 .0242	.2387	.2663		
2000	.0205 .0065	.0102 .0123	.2419	.2698		
62000	.0432 .0242	.0268 .0342	.2332	•2652		
1000	.0219 .0068	.0116 .0127	.2423	.2698		
62000	.0462 .0261	.0294 .0361	.2326	.2649		
81000	.0203 .0080	0710 0770	・ム 生 ん生 つてつ1	• KOKO		
2000	0270 0282	0148 0153	0A001	2695		
61000	.0514 .0270	.0354 .0404	2319			
1000	.0272 .0085	.0167 .0164	.2429	.2700		
61000	.0530 .0289	.0369 .0421	.2312	.2637		

•

Observed Data

Continuel

Load	Longitudinal				Transverse			
Pounds	Extens	Extensometer Rea		lgs	Extensometer	Readings		
	1	2	3	6	E. & W.	11. & S.		
1000	.0298	.0088	.0191	.0177	.2428	.2691		
62000	.0572	.0290	.0397	.0452	.2305	.2625		
1000	.0312	.0091	.0215	.0193	.2428	.2683		
61000	.0595	.0290	.0422	.0465	.2303	.2617		
1000	.0340	.0095	.0241	.0209	.2429	.2679		
61000	.0610	.0290	.0455	.0484	. 2299	.2611		
2000	.0368	.0108	.0271	.0234	.2433	.2673		
61000	.0649	.0292	.0477	.0505	.2295	.2599		
1000	.0390	.0112	.0285	.0246	.2421	.2673		
61000	.0680	.0300	.0495	.0535	.2291	.2593		
1000	.0425	.0120	.0310	.0268	.2418	.2659		
61000	.0702	.0305	.0521	.0564	.2290	.2577		
3000	.0452	.0132	.0332	.0295	.2411	.2646		
12000	.0499	.0145	.0357	.0341	.2401	.2642		
28000	.0600	.0209	.0412	.0423	.2365	.2610		
46000	.0682	.0275	.0493	.0502	.2321	.2579		
61000	.0735	.0315	.0542	.0581	.2279	.2563		
70000	.0832	.0358	.0615	.0663	.2240	.2505		
1000	.0510	.0151	.0388	.0347	.2390	.2639		
68000	.1140	.0440	.0890	.0916	.2195	.2462		

/

+

· · ·

· · ·

Computed Data

Unit Load	Longitu	linal	Transv	Transverse			
Lbs. per sq. in.	Deformation		Deforma	Deformation			
	50 in's.	l in.	E. & W.	N. & S.			
11.8	.0000	.000000	.000000	.000000			
81.1	.0009	.000018	.000003	000004			
147.4	.0027	.000054	.000006	.000002			
224.8	.0053	.000105	.000012	.000002			
147.1	.0047	.000094	.000008	.000002			
81.1	.0038	.000075	.000003	000003			
7.4	.0012	.000024	.000000	000003			
224.8	.0063	.000127	.000009	.000004			
181.1	.0037	.000075	.000006	.000003			
0.4	.0014	.000029	.000010	000007			
ふんひ。 つ A	.0065	.000151	.000014	.000008			
	.0017	·000034	.000015	.000000			
γA	.0074	,000147	.000015	000003			
228 5	.0020	000040	.000003	.000003			
7 4	0025	000145	.000017	.000007			
232.2	0077	000154		.000004			
7.4	.0022	000043	.0000010	.000000			
250.6	.0077	.0001.53	.000018	.000008			
7.4	.0024	.000049	.000008	.000002			
250.6	.0086	.000171	.000021	.000008			
7.4	.0026	.000053	.000009	.000003			
228.5	.0082	.000165	.000019	.000008			
7.4	.0028	.000055	.000009	.000003			
81.1	.0040	.000081	.000014	.000006			
140.0	.0060	.000120	.000015	.000006			
243.2	.0086	.000172	.000017	.000010			
375.9	.0158	.000316	.000043	.000021			
147.4	.0115	.000230	.000025	.000018			
7.4	.0045	.000090	.000014	.000010			
375.9	.0171	.000343	.000048	.000024			
7.4	.0050	.000100	.000015	,000008			
Computed Data

Continued

Unit Load Lbs. per sq. in	Longitudinal		Transverse Deformation			
The for othe two	50 in's.	l in.	E. & W.	V. & S.		
375.9	.0183	.000366	.000053	.000024		
14.7	.0064	.000127	.000020	.000011		
375.9	.0195	.000391	.000058	.000029		
7.4	.0070	.000139	.000031	.0000TS		
010.9	·0804	.000408	.000000	.000032		
(• 4 375 Q	.0071	.000140	.000031	.000013		
970.0 7 A	0073	.000417	.000000	.000032		
385.2	.0220	000440	.000025	.000036		
7.4	.0077	.000154	.000020	.000014		
375.9	.0221	.000443	.000062	.000034		
7.4	.0080	.000159	.000017	.000014		
383.2	.0233	.000466	.000065	.000039		
14.7	.0089	.000178	.000018	.000017		
81.1	.0110	.000220	.000021	.000019		
154.8	.0148	.000296	.000027	.000055		
228.5	.0180	.000360	.000038	.000026		
309.5	.0208	.000416	.000050	.000032		
383.2	.0242	.000484	.000062	.000040		
464.3	.0290	.000581	.000084	.000048		
287.4	.0262	.000524	.000072	.000054		
170.9	0220	.000451	.000045	,000044		
	0201	000649	.000018	.000015		
	0122	.000548	.000091	.000000		
456.9	.0345	.000389	.000010	.000056		
14.7	.0152	.000304	.000014	.000076		
449.6	.0352	.000717	.000100	.000058		
14.7	.0167	.000327	.000012	.000018		
449.6	.0381	.000761	.000102	.000061		
7.4	.0172	.000344	.000010	.000013		
449.6	.0402	,000805	.000108	.000066		

Computed Data

Continued

Unit Load	Longitu	Longitudinal		80
Lbs. per sq. in.	Deforma	tion	Deformat	ion
	50 in's	1 in.	E. & W.	N. & S.
7.4	.0189	.000377	.000011	.000021
456.9	.0428	.000856	.000113	.000076
7.4	.0203	.000406	.000011	.000038
449.6	.0443	.000886	.000115	.000083
7.4	.0221	.000443	.000010	.000030
449.6	.0460	.000920	.000118	.000088
14.7	.0245	.000490	.000007	.000036
449.6	.0480	.000960	.000122	.000104
7.4	.0258	.000516	.000016	.000036
449.6	.0503	.001005	.000126	.000102
7.4	.0281	.000562	.000019	.000048
449.6	.0523	.001046	.000126	.000116
22.1	.0303	.000606	.000025	.000058
88.4	.0336	.000671	.000033	.000062
206.4	.0411	.000822	.000063	.000098
339.0	.0488	.000976	.000017	.000114
449.6	.0543	.001086	.000135	.000128
515.9	.0617	.001234	.000176	.000176
7.4	.0349	.000598	.000042	.000064
501.2	.0846	.001693	.000205	,000212

Observed Data

Length 9 ft. 9 in. Gauge Length 100 in. Diameter 12.19 in.

Mixture 1-2-4. Age when tested, 66 days. Cement, Universal.

Load	Longitudinal			Transverse	
Pounds	Exten	someter	Readin	.gs	Extensometer Readings
	1	2	3	4	E. & W.
650 0	.0000	.0000	.0000	.0000	.0134
21600	.0069	.0031	.0030	.0057	.0126
41100	.0148	.0088	.0088	.0081	.0117
61000	.0194	.0149	.0138	.0188	.0109
71000	.0249	.0195	.0193	.0243	.0100
85000	.0252	.0257	.0253	.0294	.0090
100300	.0361	.0330	.0318	.0349	.0080
120000	.0462	.0430	.0400	.0433	.0065
130500	.0527	.0491	.0445	.0492	.0053
141000	.0577	.0539	.0483	.0538	.0042
151000	.0629	.0596	.0527	.0588	.0030
161000	.0688	.0649	.0569	.0639	.0020
175000	.0774	.0728	.0638	.0712	.0003
185600	.0838	.0790	.0697	.0771	0010
200500	.0928	.0874	.0766	.0851	0031
211000	.1011	.0955	.0830	.0924	0051
220500	,1088	.0977	.0890	.0993	0070
230500	.1173	.1108	.0964	.1070	0092
240500 '	.1269	.1201	.1048	.1157	0121
251500	.1371	.1316	.1134	.1252	0151
262000	.1485	.1420	.1234	.1360	0240
271000					

.

Computed Data

Unit Load Lbs. per sq in.	Longit Deform	udinal ation	Transverse Deformation	
	pe 100 ins.	l in.	E. & W.	
55.3 183.8 349.8 519.1 604.2 723.3 853.6 1021.2 1110.6 1199.9 1289.3 1370.1 1489.2 1579.5 1706.3 1795.6 1876.5 1961.6 2046.7 2140.3 2225.6	.0000 .0047 .0101 .0167 .0220 .0264 .0540 .0431 .0489 .0534 .0585 .0636 .0713 .0774 .0855 .0930 .0987 .1079 .1169 .1268 .1375	.000000 .000047 .000101 .000167 .000220 .000264 .000340 .000431 .000431 .000585 .000536 .000713 .000774 .000855 .000930 .000930 .000987 .001079 .001268 .001268	.000000 .000007 .000014 .000021 .000028 .000036 .000044 .000057 .000066 .000075 .000085 .000094 .000108 .000125 .000152 .000152 .000167 .000185 .000203 .000233 .000207	
2306.2				

• •

COLUNN 8024

Observed Data

Length 10 Gauge Len Diameter	ft 0 in gth 100 12.19 in	n. in. 1.		Mixture Age when Cement,	1-2-4. tested, 65 da Universal	тус.
Load Pounds	L Extens 1	ongitud someter 2	inal Readin 3	ngs 4	Transvera Extensoreter E. & W.	30 Readings N. & S
6500 20400 40000 60000 80000 100500 116000 130500 146000 160500 174000 190500 200000 210000 220000	.0000 .0049 .0120 .0198 .0264 .0363 .0443 .0527 .0625 .0721 .0814 .0847 .0847 .1066 .1177 .1395	.0000 .0030 .0100 .0176 .0243 .0338 .0413 .0491 .0578 .0665 .0749 .0868 .0966 .1108 .1217	.0000 .0032 .0097 .0177 .0214 .0352 .0432 .0510 .0592 .0683 .0772 .0898 .0999 .1094 .1209	.0000 .0050 .0111 .0196 .0296 .0395 .0481 .0562 .0663 .0761 .0860 .1010 .1124 .1246 .1442	.0074 .0067 .0055 .0043 .0028 .0014 .0002 0010 0022 0036 0051 0073 0089 0109 0125	.0050 .0051 .0048 .0047 .0044 .0040 .0034 .0029 .0021 .0012 .0000 0023 0023 0036 0073 0085

.

1

Computed Data

Unit Load Lbs. per sq in.	Longitudinal Deformation		Transv Deform	verse nation
	100 ins.	- 1 in.	Total	Unit
55.3 173.6 540.4 510.6 680.8 855.3 987.3 1110.6 1242.5 1365.9 1480.7 1621.2 1702.0 1787.1 1872.2	.0000 .0040 .0107 .0187 .0254 .0362 .0442 .0523 .0615 .0708 .0799 .0906 .1039 .1156 .1316	.000000 .000107 .000187 .000254 .000362 .000442 .000523 .000615 .000708 .000799 .000906 .001039 .001156 .001316	.000000 .000006 .000025 .000025 .000038 .000049 .000059 .000059 .000069 .000079 .000079 .000090 .000102 .000120 .000134 .000150 .000163	.000000 .000002 .000003 .000005 .000008 .000013 .000017 .000024 .000031 .000041 .000060 .000070 .000100 .000110

1

-

Observell Data

Longth 10 Gaugo Lon Diameter	ft. 0 gth 10 12.18	1/8 in. 0 in. in.		Mixturo Age when Cement,	1-2-4. testod, 66 da Universal.	lys.
Load Pounds	L Exten l	ongitud: somater 2	inal Readir 3	ngs 4	Transver Extensometer E. & W.	se Readings N. & S.
6500 21000 41000 60500 80000 120000 120000 140000 161000 180000 200000	.0000 .0025 .0095 .0170 .0252 .0328 .0404 .0492 .0582 .0692 .0820	.0000 .0038 .0090 .0110 .0196 .0263 .0350 .0442 .0548 .0660 .0800	.0000 .0032 .0091 .0157 .0235 .0312 .0399 .0497 .0609 .0722 .0867	.0000 .0028 .0088 .0135 .0195 .0258 .0326 .0404 .0506 .0608 .0608	.2066 .2063 .2055 .2049 .2039 .2024 .2002 .1981 .1956 .1926 .1926	.2334 .2337 .2337 .2332 .2326 .2318 .2307 .2297 .2297 .2282 .2267 .2246
220000	.0990	.1005	.1073	•0898	.1849	.2214

1

•

Computed Data

Unit Load Lbs. per sq in.	Longitudinal Deformation		Trans Defoi	verse mation
	be	r	Unit	Unit
	100 ins.	l in.	E.& W.	N. 2 S.
55.8	.0000	.000000	.000000	.000000
180.2	.0031	.000031	.000002	000002
351.8	.0091	,000091	.000009	000002
519.1	.0143	.000143	.000014	.000002
686.4	.0220	.000220	.000022	.000007
858.0	.0290	.000290	.000034	.000013
1029.6	.0370	.000370	.000053	.000022
1201.2	.0459	.000459	.000070	.000030
1381.4	.0561	.000561	.000090	.000043
1544.4	.0671	.000671	.00011.5	.000055
1716.0	.0804	.000804	.000140	.000072
1887.6	.0992	.000992	.000178	.000099
2033.5				

1

.

Observed Data

Length 10 ft. $0\frac{1}{4}$ in. Gauge Length 100 in. Diameter 12.18 in.

Mixture 1-2-4. Age when tested, 379 days. Cement, Chicago AA.

Load	Longitudinal			Transverse		
Pounds	Exten	someter	Readin	gs	Extensometer	Readings
	1	2	5	4	E. & W.	N. & Š.
6500	.0000	.0000	.0000	.0000	.2689	.2704
25000	.0083	.0000	.0000	.0086	.2701	.2715
52000	.0156	.0048	.0025	.0164	.2697	.2723
75000	.0215	.0088	.0076	.0215	.2691	.2718
100000	.0279	.0144	.0136	.0277	.2682	.2724
125000	.0344	.0190	.0184	.0335	.2672	.2715
151000	.0430	.0258	.0224	.0418	.2661	.2705
176000	.0509	.0324	.0280	.0484	.2648	.2698
200000	.0605	.0398	.0328	.0574	.2629	.2686
225000	.0715	.0482	.0428	.0676	.2603	.2670
248000	.0846	.0578			.2571	.2652
267000	.0977	.0690			.2531	.2629
282000						

/

,

•

.

.

Computed Data

Unit Load Lbs. per sp in.	Longit: Deforma	udinal ation	Transverse Daformation		
	per	r	Unit	Unit	
	100 ins.	l in.	E.& W.	N.& S.	
55.8	.0000	.000000	.000000	.000000	
214.5	.0042	,000042	-,000010	000010	
446.2	.0098	.000098	000007	000015	
643.5	.0148	.000148	000002	000011	
858.0	.0209	.000009	.000006	000016	
1072.5	.0263	.000263	.000014	000010	
1297.6	.0333	.000333	.000023	000001	
1510.1	.0399	.000399	.000034	.000005	
1716.0	.0476	.000476	.000049	.000015	
1930.5	.0575	.000575	.000071	.000028	
2127.8	.0712	.000712	.000097	.000043	
2290.9 2419.6	.0834	.000834	.000129	.000061	

1

•

Observed Data

Length 10 ft. 1 in. Gauge Length 100 in. Diameter 8.67 in.		Mi Ag Co	xture e when ment, C	1-2-4. testod, hicago	l year. AA.
Load	17 ~~+	Longit	udinal	1000	
Pounds	1	S S S S	or noud 3	4	
3000	.0000	.0000	.0000	,0000	
10000	.0050	.0025	.0029	.0040	
20000	.0129	.0090	.0089	.0114	
30000	.0195	.0163	.0139	.0173	
40000	.0273	.0260	.0206	.0230	
51000	.0360	.0350	.0272	.0296	
60000	.0450	.0445	.0341	.0357	
70000	.0543	.0553	.0413	.0425	
80000	.0625	.0700	.0511	.0516	
90000	.0830	.0875	.0623	.0622	
100000					

1

· ·

·

Computed Data

Unit Load Lbs. per sq in,	Longitudinal Deformation per			
	100 ins.	l in.		
50.8 169.4 338.8 508.2 677.6 863.9 1016.4 1185.8 1355.2 1524.6	.0000 .0036 .0106 .0168 .0242 .0320 .0398 .0484 .0588 .0738	.000000 .000036 .000106 .000168 .000242 .000320 .000398 .000484 .000588		
1693.7	00100			

.

COLLIN 162

Observel Data

Length 10 ft, 12 in. Gauge Length 100 in. Diamoter 8.83 in.		Vixtur Age wh Cement	e 1-2- en test , Chica	4. ed, 1 ye go AA.	oar.
Load Pounds	E x l	Longi tensome 2	tudinal ter Rea 3	dings 4	
3000 9700 21000 31000 40500 50000 61000 70000 80000 90000 100000 110000 120000 123000	.0000 .0035 .0092 .0155 .0238 .0295 .0372 .0450 .0545 .0640 .0762 .0910 .1210	.0000 .0035 .0082 .0137 .0190 .0250 .0325 .0325 .0395 .0485 .0575 .0685 .0815 .0815 .1080	.0000 .0028 .0093 .0154 .0216 .0275 .0355 .0425 .0513 .0596 .0708 .0835 .1055	.0000 .0035 .0112 .0165 .0236 .0302 .0382 .0460 .0552 .0638 .0704 .0794 .1051	

1

•

Computed Data

Unit Load Lbs. per sq in.	Longitudinal Deformation					
* *	Per 100 ins.	Per in.				
49.0 158.4 342.9 506.2 661.4 816.5 996.1 1143.1 1306.4 1469.7 1633.0 1796.3 1959.6	.0000 .0053 .0095 .0153 .0218 .0281 .0281 .0281 .0359 .0433 .0524 .0612 .0715 .0839 .1099	.000000 .000033 .000095 .000155 .000218 .000281 .000359 .000433 .000524 .000612 .000715 .000839 .001099				
2008.6						

/

Observed Data

Length 10 ft. 0 in.Hixture 1-3-6.Gauge Length 100 in.Age when tested, 14 days.Diameter 13.01 in.Cement, Chicago AA.

L Exten	ongitud	inal Readin	n a	Traverse	Realings
1	2	5 ⁻	4	E. & W.	N. & S.
.0000	.0000	.0000	.0000	.2620	.2485
.0058	.0042	.0056	.0054	.2609	.2475
.0258	.0242	.0248	.0232	.2584	.2456
.1020	.1090	.0910	.0726	.2519	.2385
	L Exten 1 .0000 .0058 .0258 .1020	Longitud Extensometer 1 2 .0000 .0000 .0058 .0042 .0258 .0242 .1020 .1090	Longitudinal Extensometer Readin 1 2 3 .0000 .0000 .0000 .0058 .0042 .0056 .0258 .0242 .0248 .1020 .1090 .0910	Longitudinal Extensometer Readings 1 2 3 4 .0000 .0000 .0000 .0000 .0058 .0042 .0056 .0054 .0258 .0242 .0248 .0232 .1020 .1090 .0910 .0726	Longitudinal Traverse Extensometer Readings Extensometer 1 2 3 4 Extensometer .0000 .0000 .0000 .2620 .0058 .0042 .0056 .0054 .2609 .0258 .0242 .0248 .0232 .2584 .1020 .1090 .0910 .0726 .2519

COLUIN 8032

Computed Data

Unit Load Lus. per sq in.	Longitudinal Deformation		Tran: Defoi Unit	werse mation
	100 ins.	l in	E. P. W.	N.& S.
57.4 132.4 264.8 353.1 353.1	.0000 .0053 .0245 .0937	.000000 .000053 .000245 .000937	.000000 ,000009 .000029 .000084	.000000 .000008 .000024 .000085

·

.

-

Observel Data

Length 10 ft. 0 in. Gauge Length 100 in. Diameter 12.30 in. Mixture 1-3-6. Age when tested, 66 days. Cement, Universal.

Load	L	ongitud	inal		Transver	rse
Pounds	Exten	someter	Readin	gs	Extensometer	Readings
	1	2	3	4	E. & W.	N. & S.
6500	.0000	.0000	.0000	,0000	.1862	.2614
20000	.0030	.0036	.0053	.0039	.1855	.2609
37000	.0094	.0110	.0148	.0101	.1853	,2608
51000	.0150	.0170	.0188	.0160	.1850	.2608
66000	.0228	.0262	.0268	.0233	.1845	.2604
80000	.0302	.0362	.0353	.0301	,1839	.2602
100000	.0452	.0466	.0501	.0447	.1824	.2591
112000	.0578	.0620	.0600	.0560	.1305	.2572
125000	.0740	.0752	.0727	.0720	.1770	.2542
140000	.1132	.1098	.1130	.1208	.1579	.2374
142000						

/

· ·

.

Computed Data

Unit Load Lbs. per sq in.	Longit Deform	udinal ation	Transverse Deformation		
	100 ins.	l in.	Total	Unit	
54.7	.0000	.000000	.000000	.000000	
168.2	.0040	.000040	.000006	.000004	
311.2	.0113	.000113	.000007	.000005	
428.9	.0167	.000167	.000010	.000005	
555.1	.0248	.000248	.000014	,000008	
672.8	.0330	.000330	.000019	,000010	
S41.0	.0467	.000467	.000031	.000019	
941.9	.0590	.000590	.000046	.000035	
1051.3	.0735	.000735	.000075	.000059	
1177.4	.1142	.001142	.000230	,000189	
1.194.2					

.

.

Observed Data

Length 10 Gauge Le: Diameter	0 ft. 0½ ngth 100 19.25	in. in. in.		Nixture Age when Cement,	1-3-6. n tested, 64 day Universal.	75.
Load	L.	ongitud	inal Daadir		Transve	rse
Pounds	l Laten	someter 2	көайт. З	1gs 4	E. & W.	N. & S.
6500	.0000	.0000	.0000	.0000	.2393	.2491
21500	.0048	.0035	,0030	.0057	.2389	.2491
41500	.0122	.0108	.0100	.0136	.2390	.2493
61500	.0207	.0195	.0195	.0212	.2387	.2493
80000	.0305	.0325	.0318	.0299	.2364	.2498
100000	.0420	.0497	.0485	.0420	.2322	.2447
121000	.0641	.0758	.0782	.0684	.2241	.2350
128000						
90000	.1518	1 591	1685	1 590	2125	2511

1

¢

COLUIN 8034

Computed Data

Unit Load Lbs. per sq. in.	Longitudinal in. Deformation		Transverse Deformation		
	p 100 in;	er . lin	Total	Unit	
55.1 182.4 352.1 521.8 678.7 848.4 1026.6 1086.0	. 0000 .0043 .0117 .0202 .0312 .0458 .0716	.000000 .000043 .000117 .000202 .000312 .000458 .000716	.000000 .000003 .000003 .000005 .000024 .000058 .000124	.000000 .700000 000002 000002 000005 .000036 .000115	
763.6	.1596	.001596	.000219	.000147	

• ٩.

COLUIIN 8035

Observed Data

Length 10 ft. 0 in. Gauge Length 100 in. Diameter 12.18 in.

Mixture 1-3-6. Age when tested, 67 days. Cement, Chicago AA.

Load	Longitudinal			Transverse		
Pounds	Exten	someter	Readin	gs	Extensometer	Readings
	l	3	3	4	E. & W.	N. & S.
7000	.0000	.0000	.0000	.0000	.1.880	. 2335
26000	.0080	.0162	.0068	.0080	.1848	.2388
50000	.0214	.0290	.0200	.0218	.1843	.2348
75000	.0395	.0482	.0390	.0398	.1781	.2295
87000	.0514	.0615	.0518	.0515	.1740	.2266
100000	.0698	.0852	.0722	.0692	.1719	.2205
112000	.0946	.1158	.1008	.0932	.1641	.2093
119000						

.

.

COLUIIN 8035

Computed Data

Unit Load Lbs. per sq in.	Longi Defor	tudinal mation	Transverse Deformation		
	100 ins	er l in.	Total	Unit	
60.1	. 0000	.000000	.000000	.000000	
223.1	.0098	.000098	.000025	000044	
429.0	,0251	.000251	.000030	000010	
643.5	.0416	.000416	.000081	.000033	
746.5	.0541	.000541	.000115	.000057	
858.0	.0736	.000736	.000132	.000107	
961.0	.1011	. 001011	.000196	.000199	
1021 0					

/

.

.

· ·

· ·

.

· ·

TAPLE 8

AUXILIARY SP CILTUS.

12 In. ales.

Cube Number	Kin1 of Cement	Lixture	Age Days	Weight At 7 Clays	in Lbs. At test	Un't Load Lbs. per Sq. In.
8011	Chicago AA	1-1-2	14	149.5	148.8	3100
8012	Chicago AA	1-1-2	14	101.8	145.8	2300
8051	Chicago AA	1-1-2	14	148.6	148.4	2300
8013	Universal	1-1-2	61	147.6	146.5	4070
3014	Universal	1-1-2	60			
8015	Chicago AA	1-1-2	67	142.8 142.8	141.8 140.9	3550 3640
8021	Universal	1-2-4	14	153	150.8	2080
8022	Chicago AA	1-2-4	14	154.5	146.1	1180
8061	Chicago AA	1-2-4	14	145.7	145.8 145.8	713
8023	Universal	1-2-4	66	147.0	140.4	2940
8024	Universal	1-2-4	65	140.0	147.5	1900
8025	Universal	1-2-4	66	143.7 148.7 152.0	148.1	2260
107	Chicago AA	1-2-4	379	LUKIOV murio ma	147°0	nem d=== demisipan
161	Chicago AA	1-2-4	377	ann dea an 🖉 🧌	10.00 0 0	1910
162	Chicago AA	1-2-4	377	WE FU DID Not Bale	and deve or is a spare	2150
8032	Chicago AA	1-3-6	1.4	149.5	147.5	932
8033	Universal	1-3-6	66	147.7	145.8	1310
8034	Universal	1-3-6	64	140.0	148.4	2080
8035	Chicago AA	1-3-6	67	151.8 146.0 145.3	148.7 141.8 143.2	1300 1470

TABLE 9.

30

AUXILIANY SPECIMENS.

6 In. Cubes.

Cube Number	Kin1 of Cemont	Mixture	Age when tested	Unit Load Lbs, per sq, in,	
8011	Chicago AA	1-1-2	Days 14	3535	
8012	Chicago AA	1-1-2	14	3385 2140 2310	
8051	Chicago AA	1-1-2	14	2070 2530 2470	
8015	Chicago AA	1-1-2	67	2670 3560 3880	
8021	Universal	1-2-4	14	3760 1550 1355	
8022	Chicago AA	1-2-4	14	1410 1263 1182	
8061	Chicago AA	1-3-4	14	1133 607 505	
8023	Universal	1 2 4	66	545 2365 2463	
8034	Universal	1-2-4	65	2367 2104 1794	
8025	Universal	1-2-4	66	2163 2600 2650	
8033	Chicago AA	1-3-6	14	2730 920 884	
8033	Universal	1-3-6	66	942 1140 1280	
8034	Universal	1-3-6	64	1120 1390 1630	
8035	Chicago AA	1-3-6	67	1660 1610 1470	
				1490	

·

TABLE 10

AUXILIARY SPECILLAS.

8 In. x 16 In. Cylinders,

Cylinder Number	Kind of Cenent	Mixture	Age when Tested	Unit Load Lbs. per
			Days	Sq. In.
8011	Chicago AA	1-1-2	14	1995
8012	Chicago AA	1-1-2	14	2125
8051	Chicago AA	1-1-2	14	where some some
S013	Universal	1-1-3	61	4240
8014	Universa]	1-1-2	60	stant stars was speci
8015	Chicago AA	1-1-2	67	them, were some were to be
8021	Universal	1-2-4	14	1150
8022	Chicago AA	1-2-4	14	354
8061	Chicago AA	1-2-4	14	man bran was pud
8023	Universal	1-2-4	66	1670
8024	Universal	1-2-4	65	760
8025	Universal	1-2-4	66	dinari ku-ta sinin dinari
107	Chicago AA	1-2-4	379	where speed speed speed
161	Chicago AA	1-2-4	377	ganas ar-sin ganat gangt
162	Chicago AA	1-2-4	377	stati pak pos titi
8032	Chicago AA	1-2-4	14 '	299
8033	Universal	1-3-6	66	1350
8034	Universal	1-3-6	64	1030
8035	Chicago AA	1-3-6	67	state state state
TABLE 11.

SUMMARY OF TESTS.

Column	Mixture	Age	Coment	Maximum Load IL, per 12 in. 6 in.			3q. in.
		Days		Columns	.cubes	ເພື່ອຮ	cylin- lers.
8011	1-1-3	14	Chicago AA	2067	3100 3000	2535 3385	1095
8012	1-1-2	14	Chicago AA	2231	2300 2410	2140 2310 2070	2125
8013	1-1-2	51	Universal	3576	4070 4160	1470 4760 4450	4840
8014	1-1-2	60	Universal	3427	NAME AND A CONTRACT OF	dan ana mananan	steve used filled add?
3013	11-2	67	Chicago AA	3394	3550 3640	3560 3880 3760	ana 100 200 64
8021	1-2-4	14	Universal	1100	2080 2170	1550 1355 14 10	1150
8022	1-2-4	14	Chicago AA	688	1180 1042	1263 1182 1133	954
8023	1-2-4	66	Universal	2306	2940 3110	2365 2463 2367	1670
8024	1-2-4	65	Universal	1872	1900 2900	2104 1794 2163	760
8025	1-2-4	66	Universal	2234	2260 2870	2600 2650 2730	1705
107	1-2-4	379	Chicago AA Chicago AA	2420	1910	gerb medi sung kult	
TOT	1-13-5	511	Jur ougo un	100.1	1660		
162	1-2-4	377	Chicago AA	2009	2150 2320	(2010 weak weak 2010	and may we use

TATLE II.

SUCIARY OF TESTS.

Continuel.

Column Number	llixture	Age	Cenent	Maximur.	Load L 12 in.	L. per 3 in.	sr. in. 8 x 16
		Days		Columns	cubes	cubes	cylin- ders.
050	1-3-6	14	Chibago AA	353	038 373	928 384 943	.309 Crush
8033	1-3-6	66	Universal	1194	1310 1410	1140 1280 1120	1350
8034	1-3-6	64	Universal	1086	2000 3390	1300 1630 1660	1030
8035	156	67	Chicago AA	1021	1300 1470	1610 1470 1490	dada ana a s
8051	1-1-2	14	Chicago AA	Repeat Loa l	2300 2100	2530 2470 2670	50°3 0 00 0°00 v°00
8061	1-2-4	14	Chicago AA	Repeat Load	713 760	607 505 545	900- 8 4 528 1889

MADIT 12.

SUMMARY OF COLUMN TESTS.

Col- Mix- Age Cement Maxi- Initial Ratio lateral Manner unn ture mur. Holulus to 10 Davs load of Eless-longitudinal Failure. ber. Lbs. ticity. leformation Sq. In. 8011 1-1-2 14 Chicaje AA 2067 3500000 ----- mishel at top. Chicago AA 2231 3200000 1:10.0 1:50 prushing 8012 1-1-2 14 at top 8051 1-1-2 Chicago AA Fe- 2500000 -----14 omish at peat 1111110 801.3 1-1-2 30 Universal 5578 4300000 ---- 1:10.1 sheared bo an at top.Extended 3' dorn. Universal 3407'4700000 1:3.6 1:4.0 crush. 8014 1-1-2 60 Chicago AA 3394 3900000 ----- shear at 8015 1-1-2 60 middle. 8021 1-2-4 Universal 1100 2800000 1:12.1 1:15.8 crush 2' 14 from bottom. 8022 1-2-4 14 Chicago AA 688 2600000 1:5.2 1:2.4 crush Chicago AA Re- 3200000 ----- shearing l_2^1 8061 1-2-4 14 peat from bottom. 2306 2860000 ----- shear 8023 1-2-4 60 Universal middle 8024 1-2-4 60 1872 3300000 1:9.7 1:7.1 shear about Universal 1' from top. 8025 1-2-4 60 Universal 2234 3900000 shear 107 1-2-4 365 Chicago AA 2430 3900000 1:18 1:6.5 shear 4' from botton. 161 1-2-4 377 Chicago AA 1694 3000000 ----- crush Chicago AA 2009 3200000 ----- crush 162 1-2-4 377 Chicago AA 353 2000000 1:9.4 1:11.2 crush 8032 1-3-6 14 8033 1-3-6 60 Universal 1194 2600000 1:22.5 1:5.4 sheared 3' from bottom. 8034 1-3-6 60 Universal 1086 3100000 1:40 1:5.7 crush 4! from bottom. 8035 1-3-6 60 Chicago AA 1021 2000000 1:7.3 1:5.2 shear at millle.

.

· .

Fig. 5.

- . .

View Showing Crushing in Connection with Shearing Failure.

View Showing Typical Srushing Failure. This folumn was telled in the 1907 meries.

7i. 7.

Vice owing Gio ring ailure no Tolun after balcy statuted of Reinforcement. ----

PISCUSSION PLATY DIVERTING.

Methols of Failure:- In general there were two distinct forms of failure: (a) a failure by diagonal shearing and (b) a failure by general crushing. Fig. 5 is a view of a typical diagonal shearing fallure, and Fig. 7 one of a simple compression failure. The 14-day columns generally failed by crushing near the top or bottom. The single exception to this was Column 3061 which failed under repeated loads by shearing about 12 fect from the bottom. This was perhaps due to the fact that the concrete was still green. In general the failures were gradual, and were not noted until the load began to decrease. The shortening in these columns was considerably greater than in the older columns of the same mixture. Furthermore, as a general rule the failure was not accompanied by a loud report. The 60-day columns failed by crushing or shearing. In these tests the columns broke suddenly and without warning, and the failure was accompanied by a loud report. The manner of the failure in these tests differed from those of the year previous in that most of the failures were near the ends of the columns rather than near the middle. In nearly all cases the approach of the ultimate strength of the column might have been predicted from the increase in the rate of shortening.

3.5

. •

Stress-Deformation Diagrams:- Stress-deformation diagrams are drawn for each column representing the observed unit loads and the corresponding unit deformations. The ordinates represent the load or pressure in pounds per square inch on the column, and the abscissae the unit deformations as determined from the extensioneter readings for the gauged length used. These values are taken from the average of the readings on the four faces of the column. The amount of the deformation was calculated by using as the zero readings, the extensioneter readingstaken at the original zero of load, or load at which the first reading was taken. This initial load varied from about 6000 to 10000 pounds. On the same curve sheet showing the stress-deformation diagram is a diagram showing the unit deformations along two perpendicular diameters at the middle of the column.

Strength of Plain Concrete Columns:- In Table 11 is given the ultimate unit load taken by the several columns. The average strengths of the 14-day columns are as follows: 1-1-2 concrete 2150 lb. per sq. in., 1-2-4 concret **894** lb. per sq. in., 1-3-6 concrete 353 lb. per sq. in. The 60 day columns are as follows: 1-1-3 concrete 3465 lb. per sq. in,, 1-2-4 concrete 2140 lb. per sq. in., 1-3-6 concrete 1100 lb. per sq. in. Three columns, No.'s 107, 161, 162 of the series of 1907 were tested at the age of one year. For the purpose of comparison the average strengths of columns at the age

of 30 days and 200 days hale of the sume material will be taken from Bulletin No. 20 of the University of Illinois Engineering Experiment Station. These columns were of 1-2-4 concrete. The average unit strengths are as follows: 30 days 1740 lb. per sq. in., 200 days 2025 lb. per sq. in., 365 days 2040 lb. per sq. in.

In Fig. 10 the increased strength with an increased proportion of cement is shown graphically for the 14-day and 60lay columns, the weight of the cement being given in terms of the combined weights of sand and stone. It is juite readily seen that the addition of cerent will give an additional strength much greater than the additional cost of material. Assuming the cost of cement at \$2.00 per barrel, sand and stone at \$2.00 per cu. yd. and taking the percentage of voids from the mechanical analysis of the stone and sand used in these tests which are 54.7 % and 28 % respectively, the cost of the materials in a cubic foot of concrete is as follows: 1-1-2 concrete 272 cents per cubic foot, 1-2-4 concrete 22 3/10 cents per cubic foot, 1-3-6 concrete 19 6/10 ¢ per cubic foot. The increase of cost of the 1-1-2 concrete over the 1--2-4 and 1-3-6 concrete are 34 % and 41 % respectively. The increase of cost of the 1-2-4 concrete over the 1-3-6 concrete is 14 %. Taking the strengths of the 60-day columns because they are more nearly representative of actual conditions it is found that the increased strength of the 1-1-2 concrete over the 1-2-4 and 1-3-6 concrete are 62 % and 215 % respectively. The increased strength of the 1-2-4 concrete over the 1-3-6

concrete is 94 °. The 1-3-6 concrete has 2 ° of voide after the and and corrent are added. The 1-2-4 has 6 ° excess of mortar. The 1-1-2 concrete has 24 ° excess of mortar. The theoretical mixture for concrete is understood to be just enough coment to fill the voids in the sand, and enough mortar to fill the voids in the stone. The 1-2-4 concrete is about the ideal mixture. The above data, if representative of actual conditions, indicates that from an economical standpoint the 1-1-2 concrete is the best, even though it has a considerable excess of mortar. The increase in strength of the 1-1-2 concrete over the 1-2-4 concrete is 250 ° greater than the increase in cost.

A comparison of the strengths of the 1-2-4 concretes of the series of 1907 and 1908 at the ages of 60-days, 200-days, and 365-days, shows that the strength of the 200-day columns has increased in the interval about 15 %, while the 365-day columns show an increase of only about 1 %. The maximum unit strength for a single column was the 60-day 8210 lb. per sq. in. for 200-day 2680, and for the 365-day 2420 lb. per sq. in. It is seen by this data that no definite conclusions can be drawn, for there was not a sufficient number of test pieces of each age to eliminate, by taking an average, the accidental variations either of manufacture or of testing which enter into the strength of the columns. The strengths of the cubes in these tests is generally greater than that of the columns of the same mixture and age, but they show, as per example cubes

· · · · ·

.

·

۰. ۱

~

.

161 and 156, the difference in strongth of properly rixed and improperly mixed concretes.

Volulus of Elasticity of Plain Concrete Columns: The molulue of elasticity of concrete varies with the stress in the concrete, as the deformation produced by a load is not proportional to the compressive stress. It has been found that the stress deformation relation of concrete closely approaches a parabola with its vertex at the ultimate load, and passing through the origin. As the ratic between the stress and deformation does not vary much for the first one-third of the strength of the concrete, the modulus of elasticity may be represented by the tangent to this parabola at this initial load. The tangent of the angle which this tangent makes with the horizontal, is called the initial modulus of elasticity. The average moduli of elasticity for the 14-day tests are as follows: 1-1-2 concrete 3,350000 1b. per sq. in., 1-2-4 concrete 2,700000 lb. per sq. in., 1-3-6 concrete 2,000000 lb. per sq. The values for the 60-day tests are as follows: 1-1-2 in. concrete 4,300000 lb. per sq. in., 1-2-4 concrete 5,320000 lb. per sq. in., 1-3-6 concrete 2,560000 lb. per sq. in. The average for the 1-2-4 concrete at the age of 60 days is somewhat greater than the average for 1907 but a comparison of the columns shows that the maximum unit load was also greater. The 1-1-2 concrete 14-lay old has about the same strength and the same modulus of elasticity as the 1-2-4 concrete at the age of

-

30 days, also the 1-2-4 concrete 14 days old as about the same strongth and modulus of elasticity as the 1-5-6 concrete at the age of 60 days. The average of the 1-2-4 concrete of the 1907 period at the ages of 30 days, 200 days and 365 days are respectively: 5,040000 lb. par 31. in., 3,140000 lb. per sq. in., and 3,360000 lb. per sq. in. The data above shows that the richer the concrete the greater the modulus of elasticity. It is evident therefore that the addition of cement gives a much stiffer concrete. The results of the 365-day tests of 1908 give a slightly higher modulus of elasticity than the 200-lay tests of 1907, and these in turn give a slightly higher modulus of elasticity than the 30-day tests of 1907. This difference is very small and might be attributed to lifference of materials or manufacture. However it may indicate that the stiffness and rigidity of concrete increases with age but in a decreasing ratio after a certain length of time.

Poisson's Ratio:- When a load is applied to a column in compression the column shortens longitudinally, and at the same time expands laterally. Lateral expansion in plain concrete columns alone is of small importance, but in the study of plain columns in connection with columns having banded reinforcement, it is of the greatest importance as it shows the point at which the steel begins to take stress. The ratio between the lateral unit deformation and the longitudinal unit deformation is termed Poisson's Ratio. The apparatus used in measuring the

lateral 1 for ation was experimental. A slight slip of the apparatus made a marked error in the readings, as the expansion is so minute that great care must be taken to obtain accuracy of readings. The results however show that for an increased load the lateral deformation increases faster than the longi- 'tudinal deformation. For 1-2-1 contract at the age of 60 days, Foisson's ratio for $\frac{1}{4}$ load is about $\frac{1}{9}$, for the half load about 1/6.

Repetitive Loaling:- In most of the tests the columns were loaded progressively to failure. Columns 8051 and 8061 were tested by repetitive loading. When a load is applied in any amount and released, the same load reapplied, and then released, and the operation continued, the longitudinal deformation for any given load increases, and there is also an increase in deformations due to the repetition of the load. The total deformation and resulting set soon becomes constant. For the higher loads the deformations and resulting set gradually increase with the repetition of the load, and finally failure occurs at a much smaller load than had the column been loaded progressively to failure. The two columns under consideration were square in cross section, being 12 inches on a side. The length of the columns was 6 feet. The gauge length used was 50 inches.

Column 8051 made of 1-1-2 concrete and 14 days old hal a load of about 500 lb. repeated 10 times and the total deforma-

tion and resulting set approached a constant. The lond was increased to about 1120 lb. per sq. in. and repeated 10 times. The total deformation and resulting set for this load again approached a constant, and it was evident from this that the column would not fail at this load no matter how often the load was applied and released. A third increment of load was then applied and the column failed on the first application at a unit load of 1900 lb. per sq. in.

Solumn 3061 was of 1-3-4 concrete and was 14 days old. An initial unit load of about 320 lb. per sq. in. was first applied 10 times, and then a unit load of 380 lb. per sq. in. applied 10 times. The unit load was then increased to 450 lb. per sq. in. This loading was repeated 13 times. The deformation and resulting set did not approach a constant, but the increase in deformation for each successive loading was about constant with the resulting set variable. It was evident that the column would fail under this loading if repeated a sufficient number of times as the unit deformation was approaching a maximum. After 13 applications of the load the unit load was increased to 510 lb. per sq, in. which showed a marked increase in the resulting leformation. The column failed at 500 lb. per sq. in, on the second application of the newly increased load.

When a certain load is repeated on a column and the load increased, the stress-deformation curve at once rises until it joins the general direction of the stress-deformation curve

•

for a single application of the loal. If the points for the last repetition of each load be joined a curve will be ob ained which has the same general form as the curve for a single application but with greater deformations. This is shown by lotted lines on the curve sheets of Columns 8051 and 8061. .

.

.

.

SJTARY.

The number of test specimens for each mixture and for each age is not large enough to form absolutely definite conclusions, but the following statement may be made some of these only as possibilities.

1. The average ultimate strength of plain concrete columns at 14 days of age are as follows: 1-1-2 concrete 2150 1b. per s1. in., 1-2-4 concrete 890 lb. per sq. in., 1-3-6 concrete 350 lb. per sq. in. The 60 day columns are as follows: 1-1-2 concrete 3460 lb. per sq. in., 1-2-4 concrete 2140 lb. per sq. in., 1-3-6 concrete 1100 lb. per sq. in. The effect of the amount of cement used is very marked, and this proves that for purely compressive stresses cement is an excellent reinforcing material.

2. The average unit stresses in the 1907 series of 1-2-4 concrete at different ages are as follows: 60 days 1740 lb. per sq. in., 200 days 2025 lb. per sq, in., 365 days 2041 lb. per sq. in. If this gradual increase is not a personal error, the data indicates that concrete gains strength slowly with age. This is of importance ' in that if the elements do not tend to combine chemically with the concrete and disintegrate it, that concrete is practically indestructible.

3. The average initial moduli of elasticity for 14-day concrete is as follows: 1-1-2 concrete 3,350000 lb. per sq. in., 1-3-6 concrete

10:
2000000 lb. per sp. in. The 30-lay tests are as follows: 1-1-2 concrete 4,300000 lbs. per sq. in., 1-2-4 concrete 3,320000 lbs. per sq. in., 1-3-6 concrete 2,560000 lbs. per s1. in. This shows an increase in the 60-day 1-3-4 concrete over last year's test.

4. Poisson's ratio for concrete in compression is a variable quantity. The value varies with age, with the character of the material and with the unit load.

5. The repetition of a load gives an increased amount of shortening and an increased set. For small loads the increase becomes smaller after a small number of repetitions. For the higher loads the effect of repetition is to gradually increase the deformations and the resulting set until the column fails.

10

